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Abstract

This paper considers testing for independence in a time series of small counts within an Integer

Autoregressive (INAR) model, taking a semi-parametric approach that avoids any distribu-

tional assumption on the arrivals process of the model. The nature of the testing problem is

shown to differ depending on whether or not the support of the arrivals distribution is the full

set of natural numbers (as would be the case for Poisson or Negative Binomial distributions

for example) or some strict subset of the natural numbers (such as for a Binomial or Uniform

distribution). The theory for these two cases is studied separately.

For the case where the arrivals have support on the natural numbers, a new asymptotically

efficient semi-parametric test, the effective score (Neyman-Rao) test, is derived. The semi-

parametric Likelihood-Ratio, Wald and score tests are shown to be asymptotically equivalent

to the effective score test, and hence also asymptotically efficient. Asymptotic relative efficiency

calculations demonstrate that the semi-parametric effective score test can provide substantial

power advantages over the first order autocorrelation coefficient, which is most commonly

applied in practice.

For the case where the arrivals have support that is a strict subset of the natural numbers,

the theory is considerably altered because the support of the observations becomes different

under the null and alternative hypotheses. The semi-parametric Likelihood-Ratio, Wald and

score tests become asymptotically degenerate in this case, while the effective score test remains

valid. Remarkably, in this case the effective score test is also found to have power against local

alternatives that shrink to the null at the rate T−1. In rare cases where the arrival support is

partly or totally known, additional tests exploiting this information are considered.

Finite sample properties of the tests in these various cases demonstrate the semi-parametric

effective score test can provide substantial power advantages over the first order autocorrelation

test implied by a parametric Poisson specification. The simulations also reveal situations in

which the first order autocorrelation is preferable in finite samples, so a hybrid of the effective

score and autocorrelation tests is proposed to capture most of the benefits of each test.
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1 Introduction

Consider the INAR(1) model (originally proposed by Al-Osh and Alzaid (1987) and McKenzie

(1985)) for count data {yt, t = 1, . . . , T}, which has the form

yt = β ◦ yt−1 + ut, (1)

where the arrivals process (disturbance) ut is i.i.d. with some distribution Π on a support U ⊆ N

(N is the set of non-negative integers). Here β◦ is the usual binomial thinning operator whereby

Pr (β ◦ n = k) = Bi (n, k;β) for k = 0, 1, . . . , n and 0 ≤ β < 1. This model has a well defined

physical interpretation as it may be thought of as a queue, a birth and death process or even a

branching process with immigration. It is a natural model for any series of low counts that may be

thought of as a “stock” variable. The INAR model has found many applications in an increasing

number of fields: for example in medicine one can consult Franke and Seligmann (1993), Pickands

and Stine (1997) and Cardinal et al. (1999), in environmental studies Thyregod et al. (1999)

and Pavlopoulos and Karlis (2008), in commerce Bockenholt (1999) and Gourieroux and Jasiak

(2004), and in economics Brännäs and Hellstrom (2001) and Rudholm (2001).

Testing for independence in yt across time involves testing

H0 : β = 0 versus H1 : β > 0.

Testing for independence in counts has already been discussed by, for example, Venkataraman

(1982) and Mills and Seneta (1989), and in the context of the INAR model, Freeland (1998),

Jung and Tremayne (2003) and Sun and McCabe (2013) have postulated some parametric forms

for ut.

In this paper we do not assume that ut has a known distribution such as a Poisson or negative

binomial or even a member of a family such as that of Katz (1965). Instead a semi-parametric

approach is adopted, in which the arrivals distribution Π is not parameterised. Estimation theory

in this setting has been developed by Drost et al. (2009) when estimating β ∈ (0, 1) , and extended

by McCabe et al. (2011) to theory for forecast distributions. The current work makes the non-

trivial extension of this theory to include the boundary case β = 0.

Without a known parametric form for Π, the support U is also unknown. It may be that ut

is supported on U = N (such as for a Poisson or Negative Binomial distribution) or that ut is

supported on a finite set (such as a Binomial, Uniform or truncated distribution). The support

may also contain gaps if the arrivals are composed of a mixture distribution, such as may be formed

from several unobserved streams or if a censoring mechanism is at work, which may also in extreme

cases mimic outlier behaviour. In this paper we show that the semi-parametric hypothesis testing

theory differs substantially depending on whether U = N or U ⊂ N, and therefore focus separately
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on these two cases. The role of the structure of the support is novel here and does not arise in this

form in standard time series tests of dependence (eg Box-Pierce (1970), Whang (1998) and Shao

(2011) among others). Semi- and non-parametric specification tests (eg Rodŕıguez-Póo, Sperlich

and Vieu (2015)) or (conditional) independence tests (eg Huang, Sun and White (2016)) routinely

invoke finite support assumptions on observable variables, but such regularity conditions are not

as fundamental to the structure of the optimal testing problem as the arrivals support is in the

semi-parametric INAR model.

In section 2 we focus on the case where U = N. We extend the result of Drost et al. (2009) on

the local asymptotic normality (LAN) of the likelihood ratios of (1) to include β = 0 and hence,

in the manner of Choi et al. (1996, CHS), derive an efficient (i.e. asymptotically uniformly most

powerful) test of H0 : β = 0 versus H1 : β > 0, with Π being considered as an infinite-dimensional

nuisance parameter. The resulting effective score test has asymptotically normal distribution

theory under the null and local alternatives. The classical score, Wald (W) and likelihood ratio

(LR) tests, modified to account for the null lying on the boundary of the parameter space for β, are

shown to be equivalent to the effective score test and hence also efficient. A commonly used test

is based on the lag-1 autocorrelation, which is asymptotically efficient for Poisson arrivals but

otherwise inefficient. Under negative binomial arrivals, a numerical comparison of the Pitman

asymptotic relative efficiency (ARE) reveals potentially very large efficiency gains for the new

effective score test relative to the lag-1 autocorrelation test.

In section 3 we focus on the case where U is a strict subset of N, so that it is finite and/or

contains gaps. The structure of U in this case is made specific in Assumption 3 below. Non-

standard theory applies in this case because the support for yt is dependent on the parameter

under test, being U under β = 0 and a super-set of U when β > 0. Under the null of independence,

the three classical statistics are shown to exhibit degenerate asymptotic behaviour whilst the

effective score remains asymptotically normal. Remarkably, the effective score test is also shown

to have power against local alternatives that converge to the null at rate T−1, much faster than

the usual T−1/2 rate, implying a greater than usual ability to distinguish β > 0 from β = 0.

While the details are technical, intuitively the reason is that when the support of H0 is a strict

subset of H1, observations that lie outside of the support of H0 are highly informative about

the hypotheses, additional to any correlation present in the data. It is noteworthy that it is not

necessary to know the structure of U for this power to obtain.

In section 4 we report on simulation studies that confirm the asymptotic local power findings,

showing the superiority of the effective score over the correlation test is especially pronounced

for larger sample sizes when the arrivals support is restricted. Nevertheless in some cases the

correlation coefficient may still perform better in small samples. This motivates a hybrid test,
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which combines the small sample advantages of the parametric correlation test with the large

sample adaptiveness of the semi-parametric effective score. This hybrid test rejects if either the

correlation or the effective score test individually rejects, with the sizes of the individual tests

modified so that the overall size of the hybrid is controlled. Simulations indicate that the hybrid

test does indeed retain the advantages of the individual components at little cost and hence

provides the best available independence test for practical count data time series analysis.

In section 5, we consider the rare cases where the structure of U is totally or partially known.

Tests exploiting such information are proposed, and shown in some special cases to have even

greater power than the effective score test. However they are also shown to be practically inap-

plicable in general.

Proofs of the main mathematical results are provided in Appendix A, and some supplementary

results and proofs are collected in the online Appendix B, available at Cambridge Journals Online

(journals.cambridge.org/ect).

2 Efficient testing with standard support

Assume we have an integer valued time series generated by the Markovian process (1). The

following conditions are used throughout the paper.

Assumption 1

(a) The arrivals ut form an i.i.d. sequence whose support is denoted U , where U ⊆ N.

(b) For every t, ut has distribution Π = {πk}∞k=0 where πk = Pr(ut = k), and Π is such that

E(|ut|5) <∞.

(c) β ∈ [0, 1) and the thinning operator sequence {β ◦ yt−1} is independent of the arrivals se-

quence {ut}.

(d) The initial value y0 is drawn from the distribution Π and is independent of the thinning and

arrivals sequences.

The mean and variance of the arrival process ut can then be defined respectively as µu = E(ut) =∑∞
k=1 kπk and σ2

u = var(ut) =
∑∞

k=1 k
2πk − µ2

u.

This section derives semi-parametric likelihood-based tests for H0 : β = 0 against H1 : β > 0

in equation (1) and proves their efficiency under the following standard support assumption.

Assumption 2 The support of ut satisfies U = N.

An implication of this support assumption is that πk is strictly positive for every k ∈ N, as would

be the case for the Poisson or negative binomial distributions for example.
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2.1 The effective score test

The semi-parametric log-likelihood is

logLT (β,Π) =
T∑
t=1

log

yt∧yt−1∑
k=0

Bi (yt−1, k;β)πyt−k, (2)

and the MLE of Π defined after imposing the null hypothesis on the log-likelihood is

Π̂ = arg max
Π∈PYT

logLT (0,Π) (3)

where PYT = {Π : 0 < πj ≤ 1 for j ∈ YT and πj = 0 for j 6∈ YT } and YT is the empirical support

of (y1, . . . , yT ). This estimator simply consists of the sample probabilities

π̂j = T−1
T∑
t=1

1j (yt)

for j ∈ YT , where 1j (yt) is the indicator function for the event yt = j. By definition these sample

probabilities will satisfy π̂j > 0 for every j ∈ YT , while the definition of the estimator Π̂ also

implies that π̂j = 0 for any j 6∈ YT (which includes j = −1, which will be relevant when yt = 0).

Following the definitions of CHS, the standardised effective score test statistic can be shown

to be

ξ̂T =
Ŝ∗T,β
ω̂

(4)

where the numerator of (4) consists of

Ŝ∗T,β = T−1/2
T∑
t=1

(yt−1 − µ̂u) (ĝt − 1) ,

with ĝt = π̂yt−1/π̂yt and µ̂u = ȳ. The denominator of (4) is

ω̂2 = σ̂2
u · σ̂2

g, (5)

with estimators σ̂2
u = T−1

∑T
t=1 (yt−1 − µ̂u)2, σ̂2

g = T−1
∑T

t=1 (ĝt − ḡ)2 and ḡ = T−1
∑T

t=1 ĝt. The

derivation of this effective score test statistic and its asymptotic properties are summarised in the

following theorem.

Theorem 1 Under Assumptions 1 and 2 and the local sequence β = βT (hβ) = T−1/2hβ, hβ ≥ 0,

ξ̂T  N (ωhβ, 1) ,

where ω2 = σ2
u(
∑∞

k=1 π
2
k−1/πk − 1) and “ ” denotes weak convergence. The effective score test

that rejects H0 for ξ̂T > zα, where zα is the 100(1 − α)% percentile of the standard normal

distribution, is asymptotically efficient.
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The proof of the Theorem is given in section A.1, and involves the following steps.

1. First, it is shown that the log-likelihood ratios of the semi-parametric INAR model have the

LAN property under Assumption 2. This extends the LAN result of Drost et al. (2009) for

0 < β < 1 to include the case β = 0.

2. The LAN property permits standard asymptotic inference to be carried out. In this case

the effective score test defined by CHS is derived based on knowledge of the nuisance pa-

rameters, i.e. the arrivals probabilities {πk}. The effective score statistic is then shown to

have an asymptotically standard normal null distribution, and to provide an asymptotically

uniformly most powerful test against alternatives of the form β > 0.

3. The effective score test is infeasible because it depends on nuisance parameters, specifically

{πk} and the associated means and variances µu, σ2
u and σ2

g. It is then shown that replacing

these parameters with MLE’s defined under H0 gives the feasible statistic ξ̂T in (4) and that

ξ̂T − ξT
p→ 0 under both the null and local alteratives. Hence the feasible effective score test

is shown to have the asymptotic properties claimed in the statement of Theorem.

The theorem shows that the asymptotic local power of the effective score test is 1−Φ (zα − ωhβ),

Φ being the distribution function of the standard normal distribution. The parameter ω2 depends

on the arrivals variance σ2
u and the sum

∑∞
k=1 π

2
k−1/πk. The latter is equal to E(π2

yt−1/π
2
yt),

which arises as part of the limit of the sample variance σ̂2
g of ĝt = π̂yt−1/π̂yt .

2.2 The Wald, LR and score tests

The asymptotic distributions of the classical W, LR and score tests can also be derived with

appropriate modifications for the fact that β = 0 is on the boundary of the parameter space. The

Wald and LR tests are shown to be asymptotically equivalent to the effective score test. They

require estimation of the model (1) under the alternative and in this situation estimators for β

must lie in the parameter space B = [0, 1). The MLE is(
β̃, Π̃

)
= arg max

β∈B,Π∈PYT
logLT (β,Π) .

The statistics are the Wald, WT = T ω̂2β̃
2
, the likelihood ratio ΛT = 2(logLT (β̃, Π̃)−logLT (0, Π̂))

and the score ΨT = Ŝ2
T,β/ω̂

2. Here ŜT,β = T−1/2
∑T

t=1 yt−1 (ĝt − 1) and this differs from the

effective score by the lack of a centering factor for yt−1. Also there is the one-sided score statistic

Ψ+
T = ŜT,β/ω̂, that differs from ξ̂T by using the raw score of β, not the effective score. The

following theorem provides the asymptotic distribution, under local alternatives, of the MLE of

β̃ and of the various test statistics.
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Theorem 2 Under the conditions of Theorem 1 :

(i)
√
T β̃  (Zβ ∨ 0) where Zβ ∼ N

(
hβ, ω

−2
)
,

(ii) ΛT ,WT  (ZΛ ∨ 0)2 where ZΛ ∼ N (ωhβ, 1) ,

(iii) ΨT  Z2
Λ and Ψ+

T − ξ̂T
p→ 0.

The proof of Theorem 2, given in section A.2, follows standard arguments once the LAN property

in item 1 of the proof of Theorem 1 above has been established.

Theorem 2 implies that tests of asymptotic level α are provided by rejecting the null for

ΛT ,WT > z2
α (z2

α being the usual α level χ2
1 critical value), ΨT > z2

α/2 and Ψ+
T > zα. Part

(iii) shows that the one-sided score test, Ψ+
T , is efficient as it is asymptotically equivalent to the

effective score ξ̂T . An inspection of the proof shows that this is also true for ΛT and WT as they

are based directly on the MLE β̃ and hence the Wald and LR tests are efficient as well. The

test ΨT based on the square of the score (i.e. the textbook two-sided score test) is not efficient

because it does not allow for the one-sided nature of the hypotheses.

2.3 Comparison with an autocorrelation test

The effective score test can be compared with that based on the standardized first order correlation

coefficient

ρ̂T =
T−1/2

∑T
t=1 (yt−1 − ȳ) (yt − ȳ)

T−1
∑T

t=1 (yt−1 − ȳ)2
,

which has asymptotic distribution ρ̂T  N (hβ, 1) under the conditions of Theorem 1. This test

is efficient when ut is Poisson, although the mean-variance equality is not imposed in the denomi-

nator of ρ̂T so that the test remains asymptotically correctly sized for other arrivals distributions.

(Obviously ρ̂T also emerges from a normally distributed AR(1) model.)

Since, from Theorem 1, we know that ξ̂T  N (ωhβ, 1), it follows that the Pitman ARE of ξ̂T

relative to ρ̂T is given by ω. To illustrate the role of ω, Table 1 shows the ARE of ξ̂T relative to

ρ̂T when ut has a Negative Binomial distribution specified by

πk =

(
k + r − 1

r − 1

)
(1− p)r pk, k = 0, 1, 2, . . .

for 0 < p < 1 and r = 1, 2, . . ., which satisfies Assumption 2. When r = 1 this corresponds to

the geometric distribution and as r increases the Negative Binomial distribution approaches the

Poisson.

Compared to ρ̂T , the effective score test shows moderate power gains for p = 0.25, rising to

very large power gains for p = 0.75 and small r. Notice ω is different from the over-dispersion,

which is commonly used to describe deviations from the canonical Poisson distribution. The over-

dispersion (variance relative to the mean σ2
u/µu) for the Negative Binomial distribution depends
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Table 1: ARE of ρ̂T relative to ξ̂T , NegBin(r, p) arrivals

r p = 0.25 p = 0.50 p = 0.75

1 1.15 1.41 2.00

2 1.10 1.24 1.50

5 1.05 1.10 1.18

10 1.02 1.05 1.08

only on p and is equal to 1.33 for p = 0.25, 2 for p = 0.50 and 4 for p = 0.75. Therefore

the asymptotic local power of the effective score test tends to increase with the over-dispersion,

although this is not the only factor that affects the power of the test, since r is also an important

determinant as it influences the probabilities of adjacent members of the support. The power of

the ξ̂T test approaches that of the ρ̂T test as r increases.

3 Extension to General Support

The behaviour of the statistics for testing H0 : β = 0 changes once U 6= N. This occurs when U

is a finite set and/or when U contains “gaps”. In this section, gaps are formally defined along

with some other classes of sets that prove useful when analysing local power. The behaviour of

the optimal tests derived under U = N is analysed when in fact U does contain gaps, and it turns

out that only the effective score test ξ̂T has non-degenerate asymptotic behaviour in the presence

of gaps. The effective score test remains asymptotically normal but surprisingly has local power

against alternatives that converge to the null at rate T−1.

The concept of a finite support and/or support with gaps is formalised in the following as-

sumption.

Assumption 3 The support U of ut is such that

(a) there exists at least one integer k ≥ 1 such that k − 1 ∈ U but k 6∈ U ,

(b) there exists at least one integer k ≥ 1 such that k − 1 ∈ U and k ∈ U .

Part (a) of the Assumption is the defining feature — a support with this structure will be finite

and/or have at least one gap. In this case the support of yt in (1), denoted Yt, is dependent on

β. In particular Yt = U for all t when β = 0, but Yt ⊃ U when β > 0, so that the support of

yt differs between the null and alternative hypotheses under Assumption 3(a). As shown in this

section, the asymptotic theory of the testing problem becomes non-standard as a consequence.

A variety of possible structures for U are included in Assumption 3(a). A leading example is

where U is finite.
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Example 1 (Finite support) Let U = {0, 1, . . . ,M} for M < ∞. Then Yt = U when β = 0 and

Yt = {0, 1, . . . ,M + tM} when β > 0, where the support of y0 is assumed to be U in Assumption

1(d).

This example includes arrivals distributions such as the binomial and the uniform, and M will

generally be unknown.

Example 2 (Support with a gap) Let U = {0, 1, . . . ,M1,M1 +1+g, . . . ,M2} where g is a strictly

positive integer. In this case there is a gap in the support in which at least one integer following

M1 has probability zero. It is possible that M2 may be either finite or infinite.

Illustrations of supports with this structure can be found in the discussion following Theorem 4

below.

Part (b) of Assumption 3 requires that there be at least one pair of consecutive integers

contained in U . Example 1 satisfies this for M ≥ 1 and Example 2 satisfies it provided M1 ≥ 1

and/or M2 ≥ M1 + 1 + g. The following example, in which arrivals occur in pairs, satisfies

Assumption 3(a) but not 3(b).

Example 3 (Infinite support with gaps – “Noah’s Ark arrivals”) Let U = {0, 2, 4, . . .}. Then

Yt = U when β = 0 and Yt = N when β > 0.

A support such as this one without any consecutive integers leads to degenerate behaviour under

the null in the effective score test, as discussed following Theorem 3 below.

It is convenient to have notation for various subsets of integers defined from U and its gaps.

First define U (0) = U . We now wish to consider those integers that constitute the first element(s)

of each of the gap(s) in U (0) i.e. those i that satisfy

U (1) =
{
i 6∈ U (0) : i− 1 ∈ U (0)

}
.

Thus in Example 1 we have U (1) = {M + 1}, in Example 2 we have U (1) = {M1 + 1,M2 + 1} (the

second element being omitted if M2 is infinite), while in Example 3 we have U (1) = {1, 3, 5, . . .}.

The set U (1) turns out to be particularly influential for the asymptotic local power of the effective

score test under Assumption 3.

The constants π(0) =
∑

j∈U(0) πj−1 and π(1) =
∑

j∈U(1) πj−1 are of particular relevance to

the asymptotic analysis under Assumption 3, and satisfy π(0) + π(1) = 1. So, in Example 1,

π(0) = 1− πM and π(1) = πM while in Example 3, π(0) = 0 and π(1) = 1.
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3.1 Asymptotic Properties under the Null when U 6= N

Theorems 1 and 2 showed that, under Assumption 2, the effective score test is asymptotically

equivalent to the usual one-sided score, Wald and likelihood ratio tests. This equivalence breaks

down when Assumption 2 is replaced by Assumption 3. The following theorem shows this under

the null hypothesis.

Theorem 3 Under Assumptions 1 and 3 and H0 : β = 0

(i) ξ̂T  N (0, 1) ,

(ii) ΨT
p→ +∞, Ψ+

T

p→ −∞,

(iii) ΛT ,WT
p→ 0.

Part (i) of the Theorem shows that the asymptotic null distribution of ξ̂T remains standard normal

under Assumption 3. A test of asymptotic level α is therefore specified by rejecting the null for

ξ̂T > zα, without knowledge of whether or not Assumption 2 or 3 holds. The three classical

statistics, however, have degenerate behaviour under Assumption 3. The score tests based on ΨT

and Ψ+
T have asymptotic size of one if applied with the usual rejection criterion, while the Wald

and likelihood ratio tests have asymptotic size of zero.

The source of the difference between ξ̂T and the other statistics lies in the difference between

the properties of the score ŜT,β and the effective score Ŝ∗T,β. In particular it can be shown using

the arguments in the proof of Theorem 3 that

T−1/2ŜT,β = E

(
yt−1

(
πyt−1

πyt
− 1

))
+Op(T

−1/2),

and then it follows that

E

(
yt−1

(
πyt−1

πyt
− 1

))
= µu

∑
j∈U(0)

(
πj−1

πj
− 1

)
πj = µu

(
π(0) − 1

)
= −µuπ(1).

This expectation is not zero under Assumption 3 since π(0) =
∑

j∈U(0) πj−1 < 1. This implies

that

ŜT,β = −T 1/2µuπ
(1) +Op(1)

p→ −∞

under Assumption 3, which explains the properties of the score tests given in part (ii) of Theorem

3. The effective score, however, satisfies

T−1/2Ŝ∗T,β = E

(
(yt−1 − µu)

(
πyt−1

πyt
− 1

))
+Op(T

−1/2),

in which

E

(
(yt−1 − µu)

(
πyt−1

πyt
− 1

))
= E ((yt−1 − µu))π(1) = 0.
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The centering of yt−1, the effect of which is asymptotically negligible under Assumption 2, is vital

to the construction of a non-degenerate test under Assumption 3.

More generally, following on from the score ŜT,β not having zero mean (even asymptotically),

the usual LAN (Local Asymptotic Normality) property of the log-likelihood ratio does not hold

in this model under Assumption 3. As is well-known (and discussed in detail in CHS for ex-

ample), this LAN property provides the fundamental underpinning for standard likelihood based

asymptotic inference. In the proof of Theorem 1 the LAN property was shown to hold under

Assumption 2 (see section A.1.1 in the Appendix for details), but this no longer applies under

Assumption 3. As a result the usual properties and implications of scores and likelihood ratio

expansions can no longer be relied upon under Assumption 3.

Theorem 3 shows that only the effective score statistic ξ̂T provides a test with non-degenerate

behaviour under Assumption 3. There is an important role for Assumption 3(b) in this result,

because if this does not hold (such as if the support is given in Example 3) then it must be the

case that π̂yt−1 = 0 for every t, resulting in ĝt = 0 for every t and hence Ŝ∗T,β = 0. It is for this

reason that we exclude this situation from Assumption 3, but if ever it is found in an application

that the sample support YT contains no consecutive integers then we define ξ̂T = 0 and do not

reject H0.

3.2 Asymptotic Local Power U 6= N

The asymptotic power of the effective score test of β = 0 under Assumption 3 can be shown

to be determined by those observations, if any, that fall outside the arrivals support U (0). Even

though it is not assumed that U (0) is known, such observations carry a lot of information in this

hypothesis testing problem since yt 6∈ U (0) is impossible under the null hypothesis. In fact the

possibility of such observations permits the test to have non-degenerate asymptotic local power

against the local sequence

βT = T−1hβ, hβ > 0, (6)

which approaches the null hypothesis faster than the usual T−1/2 rate. The reason is that the

behaviour of the effective score depends importantly on ĝt = π̂yt−1/π̂yt , in which the denominator

π̂yt has different asymptotic properties depending on whether yt ∈ U (0) or not. The magnitude of

the T−1 rate will be better appreciated after the results of Lemma 1 below are presented.

The main determinant of the asymptotic local power of the test is the number of observations

that remain in U (1) asymptotically. To quantify this, define the counting process which counts

the number of times that the number i occurs in the sample by

NT,i =
T∑
t=1

1i (yt)
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for any i. The following lemma gives a law of small numbers for these processes.

Lemma 1 Under Assumptions 1 and 3 and βT = T−1hβ, hβ > 0, as T →∞{
NT,i, i ∈ U (1)

}
 
{
Ni, i ∈ U (1)

}
,

where
{
Ni, i ∈ U (1)

}
is a set of independent Poisson random variables with respective parameters

hβµuπi−1. In addition,

Pr
(
yt ∈ U (0) for all t = 1, . . . , T

)
→ exp

(
−hβµuπ(1)

)
, (7)

Pr
(
yt ∈ U (1) for any t = 1, . . . , T

)
→ 1− exp

(
−hβµuπ(1)

)
. (8)

Consider, for example, U (0) = {1, 2, ...,M} and let NT,M+1 be the number of yt’s in the sample of

size T which equal M+1. Then, under these local alternatives, Pr [NT,M+1 = k], k = 0, 1, 2... may

be computed asymptotically from the Poisson distribution e−λλk/k! with mean λ = hβµuπM .

The limit probabilities in (7) and (8) show that there are just two possibilities under (6):

(a) asymptotically the sample {y1, . . . , yT } is restricted to U (0), which happens with probability

exp
(
−hβµuπ(1)

)
, or (b) the sample contains at least one element of U (1), which happens with

probability 1− exp
(
−hβµuπ(1)

)
. No other outcome is possible in the limit. The lemma includes

Assumption 2 as a degenerate case since under that assumption Pr
(
YT = U (0)

)
= 1 for all t,

which is consistent with (7) since π(1) = 0 under Assumption 2.

The intuition for the T−1 rate in (6) comes from (7). It can be deduced from the proof of

Lemma 1 that, approximately,

Pr
(
yt ∈ U (0) for all t = 1, . . . , T

)
≈
(

1− βTµuπ(1)
)T

which converges to the exponential function when βT = O
(
T−1

)
.

The asymptotic local power of the effective score test under (6) depends on the limiting

counting process
{
Ni, i ∈ U (1)

}
, and in particular whether or not Ni > 0 for any i ∈ U (1). We

define the indicator random variable

Q = 1
(
Ni > 0 for any i ∈ U (1)

)
(9)

for this event. If Q = 0 then all observations lie in U (0) asymptotically while if Q = 1 at least one

observation lies in U (1).

Theorem 4 Under Assumptions 1 and 3 and βT = T−1hβ, hβ > 0, as T →∞

ξ̂T  ZQ +XQ
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where ZQ ∼ N(0, 1) and XQ = 0 if Q = 0, and ZQ = 0 and XQ = X if Q = 1, where Q is given

in (9) and X is a random variable which depends on the underlying law of the observations (i.e.

Π and hβ).

The theorem shows that if the sample is asymptotically restricted to U (0) (i.e. Q = 0), which

occurs with probability exp
(
−hβµuπ(1)

)
, then ξ̂T is asymptotically standard normally distributed,

implying the effective score test has asymptotic power equal to size under (6). If some observations

remain in U (1) asymptotically (i.e. Q = 1), the asymptotic distribution of ξ̂T is provided by the

distribution of X, which is non-standard and depends on Π and hβ in a complicated way. A

representation of X is provided in the proof of the Theorem, but the extent of the power arising

from this non-standard distribution needs to be approximated by simulation, which is investigated

in Section 4.2. Note the effect of increasing the local alternative parameter hβ is to increase the

probability that Q = 1 (given by 1 − exp
(
−hβµuπ(1)

)
), so that larger deviations from the null

increase the potential for non-trivial power against βT = T−1hβ.

In addition to hβ, the parameters π(1) and µu determine the probability of Q = 1 and hence

the asymptotic local power of the test. The parameter π(1) is of particular interest since it reflects

the role of the finiteness/gaps in the arrivals distribution. To illustrate, consider a Binomial

distribution with parameters (6, 0.5) which has finite support U (0) = {0, 1, 2, 3, 4, 5, 6} and a mean

of µu = 3. In this case U (1) = {7} and π(1) = Pr (ut = 6) = Bi (k = 6;n = 6, p = 0.5), which

is 0.015625. Taking hβ = 1 for this illustration, this produces Pr(Q = 1) = 1 − exp(−1 × 3 ×

0.015625) ≈ 0.04579, implying relatively low asymptotic local power.

Suppose, however, we keep the same binomial probabilities as before but relabel the support

to U (0) = {0, 1, 2, 3, 6, 7, 8}. There is now a gap in the distribution at {4, 5}, implying that

U (1) = {4, 9} and hence

π(1) = π3 + π8

= Bi (6, 3; 0.5) + Bi (6, 6; 0.5)

= 0.3125 + 0.015625

= 0.328125.

The mean of this relabelled distribution is now µu = 3.6875 and the resulting probability of Q = 1

is 1− exp
(
−hβµuπ(1)

)
≈ 0.7018, implying the potential for much higher asymptotic local power

in this case. This is largely due to the introduction of the gap at {4, 5} into the distribution

producing a larger value of π(1). However there is evidently also a change in µu in this example,1

from 3 to 3.6875. As an alternative illustration to control for µu, suppose we maintain the support

1We are grateful to a referee for this observation.
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U (0) = {0, 1, 2, 3, 6, 7, 8}, but now use the probabilities from a Bi(6, k; 0.4271) distribution for {πk}

instead of Bi(6, k; 0.5). This has the effect of producing µu = 3 (i.e. the same as the Bi(6, k; 0.5)

distribution supported on {0, 1, 2, 3, 4, 5, 6}) and now

π(1) = π3 + π8

= Bi (6, 3; 0.4271) + Bi (6, 6; 0.4271)

≈ 0.2991.

The probability of Q = 1 in this case is now 1 − exp
(
−hβµuπ(1)

)
≈ 0.5923, which is again very

much higher than the standard Binomial case (0.04579). This illustrates the importance of the

structure of the gaps in the arrivals distribution in determining the asymptotic local power of the

test.

It is not whether the arrivals support is finite or infinite that matters, as the following ex-

ample illustrates. Consider a Poisson distribution with parameter 4, but supported on U (0) =

{0, 1, 3, 4, 6, 7, . . .}, so that gaps appear at U (1) = {2, 5, 8, . . .}. This results in a relatively large

value of π(1) given by

π(1) = Pr (ut = 1) + Pr (ut = 4) + Pr (ut = 7) + . . . ≈ 0.3337

and illustrates that it is the locations of any gaps relative to points of high probability mass in

the support that determine π(1) and hence test power.

Finally, Assumption 3(b) requires that U contains at least one pair of consecutive integers,

which is likely to be most empirically relevant. If, however, this part of the Assumption does not

hold, we have defined above that ξ̂T = 0 under H0, which provides a test with size equal to zero.

This unusual size property is not a problem here (in fact it can be viewed as a nice feature not

to be risking Type I errors), since it can be seen in the proof of Theorem 4 that ξ̂T  XQ under

the local alternatives βT = T−1hβ. That is, if all observations are asymptotically restricted to

U (0) then the statistic ξ̂T remains exactly zero asymptotically, while if any observations remain

in U (1) asymptotically then ξ̂T is no longer degenerate and in fact, because its limit is given by X

in this case, will exhibit qualitatively similar asymptotic power properties to the situation where

Assumption 3(b) holds. Therefore the effective score test is valid to apply under any unknown

structure of the arrivals distribution.

4 Finite Sample Properties

4.1 U = N

A Monte Carlo experiment was carried out to illustrate some of the features of the finite sample

properties of the effective score test ξ̂T and the first order autocorrelation test (ρ̂T ). In each case
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the data generating process is (1) with T = 100, 200, 400, 800 and ut i.i.d. with a distribution

satisfying Assumption 2. In each experiment the sizes of the two tests are simulated under β = 0,

and power for a suitable range of values of β corresponding to the sample size and distribution.

The tables below are a selection from a larger set of results available from the authors.

Table 2 shows results when the arrivals distribution is Poisson with parameter 5. The finite

sample size properties of both tests are good at each sample size, with only small deviations below

the nominal 0.05 level in smaller samples that are reduced by T = 800. In this case both of the

ξ̂T and ρ̂T tests are asymptotically efficient. For smaller samples and larger deviations from the

null hypothesis, the parametric nature of the ρ̂T test results in higher power than the ξ̂T test.

Correspondingly, large deviations from the null and large Poisson parameters result in high counts

and hence a large number of probabilities are required to be estimated by the semi-parametric

test, leading to a possible loss of power relative to the parametric test.

The arrivals distribution may deviate from standard distributions such as Poisson and Negative

Binomial if it takes a mixture form. This may occur if the arrivals are drawn randomly from

two different sources with different distributions. For example, Table 3 shows the results when

the arrivals are an equally weighted mixture of Poisson with parameter 1 and Binomial with

parameters (10, 0.75). In this case the finite sample size properties of both tests remain good,

while the ξ̂T test is clearly superior in power, local to the null hypothesis, for all sample sizes, and

for all parameter values for larger sample sizes. This illustrates the capacity of the ξ̂T to adapt

to unknown and non-standard arrivals distributions.

In general the ξ̂T test tends to perform better in the locality of the null hypothesis, most likely

because the sample support of (y1, . . . , yT ) is smallest there. The ρ̂T test can obtain finite sample

power higher than the ξ̂T test for smaller sample sizes, but the ξ̂T test tends to dominate in larger

samples when the arrivals are not Poisson, as predicted by the asymptotic theory.

4.2 U 6= N

A Monte Carlo experiment was carried out to illustrate the effect of having an arrivals support

that satisfies Assumption 3.

Table 4 gives results for the ξ̂T and ρ̂T tests when the arrivals distribution is uniform on finite

support U = {0, 1, 2, 3}. In all cases the test sizes are close to the nominal level of 0.05. Other

than for some large deviations from the null for T = 100, the ξ̂T test exhibits substantially greater

power than the ρ̂T test for all parameter values. The power difference is especially large (over

50%) for the larger sample sizes and for smaller values of β. This particularly large divergence in

the power properties of the two tests under Assumption 3 is predicted by the asymptotic theory,

in which ξ̂T has power against O
(
T−1

)
alternatives while ρ̂T only has power against O

(
T−1/2

)
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alternatives. For larger values of β (closer to one) the powers of the two tests are very similar,

reflecting the consistency of both tests against fixed alternatives.

The influence of the arrivals’ distributional shape and the gaps in its support can also be illus-

trated with the binomial distribution. Table 5 shows results for the Binomial(6, 0.5) distribution

which falls under Assumption 3 and the parameter π(1) is 0.015625. For comparison, Table 6

gives results for the previously discussed Binomial(6, 0.5) supported on {0, 1, 2, 3, 6, 7, 8} with a

gap at {4, 5} with π(1) = 0.328125. This larger value of π(1) results in massive power increases

for the ξ̂T test relative to the Binomial(6, 0.5) distribution with no gaps, while the power of the

ρ̂T test is essentially unchanged. The size of these power gains is attributable to the superior

efficiency of the ξ̂T test becoming overwhelmingly apparent in finite samples when π(1) is large.

More extensive simulation results that further confirm these findings are available on request.

4.3 A Hybrid Test

The results of the Monte Carlo experiments reveal that the ξ̂T and ρ̂T tests each have situations

in which their finite sample power is substantially superior to the other. The ρ̂T test is often

superior for small sample sizes due to its simpler parametric form, while the ξ̂T test is often

superior in larger samples when the arrivals distribution is clearly non-Poisson and especially

when the arrivals support takes non-standard forms under Assumption 3. This suggests that

it may be of practical interest to explore whether a combined test could be constructed. The

combined test would attempt to capture the good power performance of each component without

incurring the large power losses that an individual test may incur. The general form of the

combined test is

reject H0 if ξ̂T > cα and/or ρ̂T > cα,

for some critical value cα.

Under H0 and either Assumptions 2 or 3(a) these statistics can easily be seen to be jointly

asymptotically distributed as ξ̂T

ρ̂T

 
 Zξ

Zζ

 ∼ N
 0

0

 ,

 1 λ

λ 1

 ,

where in practice λ can be consistently estimated by

λ̂ =
T−1

∑T
t=1 (ĝt − ḡ) (yt − ȳ)

ω̂
,

and the joint critical value obtained by solving

1− Φ2

(
ĉα, ĉα; λ̂

)
= α,
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for ĉα. Since ĝt and yt are generally found to be positively correlated, this procedure of estimating

λ and the subsequent critical value will provide some power gain relative to a standard Bonferroni

inequality.

Some Monte Carlo results are shown in Table 7 that illustrate the comparative advantages of

each of the ξ̂T and ρ̂T and the practical contribution of the hybrid. The arrivals distribution is

an equally weighted mixture of Poisson(1) and Negative Binomial(1, 0.75) distributions. For the

small sample size (T = 100) the simple structure of ρ̂T delivers a more powerful test, while for

the larger sample size (T = 800) the asymptotic efficiency of the ξ̂T test delivers superior power.

The hybrid test has good finite sample size properties and comparable power to whichever is the

better test of ξ̂T and ρ̂T in any situation. The combined test is not asymptotically efficient, but

has the appealing practical property of retaining most of the power of the individual tests while

not suffering from the substantial power deficiencies that can beset either of them. Similar results

are found in unreported simulations for many other distributions.

5 Testing with known or partially known support

It is unlikely in practice that the structure of the support U will be known. However in this

section we briefly discuss the potential value of knowing either (a) the exact form of U , or (b)

that U satisfies Assumption 3, but not its exact form.

5.1 Known support

First suppose that U is known and satisfies Assumption 3. Thus, for every t, yt has support U

when β = 0, but has support strictly larger than U when β > 0. The implication is that any

observation yt that falls outside U implies that H0 : β = 0 must be false. We therefore define the

test

ΓT : reject H0 if yt 6∈ U for any t.

which has size of exactly zero since yt 6∈ U is impossible under H0. The ΓT test has interesting

asymptotic power properties since, from (7), the power of ΓT against βT = T−1hβ is asymptoti-

cally 1− exp
(
−hβµuπ(1)

)
. This is Pr(Q = 1), see equation (9). Both the ΓT and ξ̂T tests derive

their asymptotic power against βT = T−1hβ from observations that fall outside U (0) asymptoti-

cally (i.e. when Q = 1). Given Q = 1, the power of the ΓT test is one while the power of the ξ̂T

test is Pr (X > zα), which is less than one. Given Q = 0 the power of the ΓT test is zero while

the power of the ξ̂T test is α, so in this case both tests have power equal to size. Knowledge of

U therefore permits the construction of a test with very good asymptotic properties, superior to

those of the effective score test.
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5.2 Partially known support

Now suppose that U is partially known, in the sense that Assumption 3 is known to apply but

the exact form of U is not known. In this case the ΓT test is infeasible, but the following feasible

procedure can be applied.2 Consider two estimators of U — the first is the usual unconditional

sample support

Û = {j : yt = j for any t = 1, . . . , T},

and the second is the sample support conditional on yt−1 = 0 for any t:

Ũ = {j : yt = j and yt−1 = 0 for any t = 2, . . . , T}.

A feasible test of H0 : β = 0 against H1 : β > 0 will reject H0 if Ũ ⊂ Û , or, in a form analogous

to that of ΓT above,

Γ̂T : reject H0 if yt 6∈ Ũ for any t.

Any observation that falls outside the conditional support Ũ is evidence against H0.

If β = 0 then it clearly must hold that Û ⊆ U . Furthermore Pr(Û = U)→ 1 as T →∞, since

for any j ∈ U , Pr(j ∈ Û) = 1 − (1 − πj)T → 1. Similarly Ũ ⊆ U and Pr(Ũ = U) → 1, which

implies the unconditional and conditional supports are asymptotically equivalent under H0 and

hence that the size of Γ̂T is asymptotically zero (although not exactly zero as it is for ΓT ).

If β > 0 the construction of the support Ũ conditional on yt−1 = 0 ensures that Ũ ⊆ U and

Pr(Ũ = U) → 1 continue to hold. However now there is some non-zero probability that yt 6∈ U

for some t, and such observation(s) outside U must also be outside Ũ , which causes the Γ̂T test

to reject H0. Specifically, for β = βT = T−1hβ, Lemma 1 implies that Pr(yt 6∈ U for some t) →

1− exp(−hβµuπ(1)), and this probability is the asymptotic local power of the Γ̂T test. Therefore

this Γ̂T test matches the asymptotic properties of the ΓT test when U is fully known.

Clearly the ΓT and Γ̂T tests are inapplicable if it is not known that Assumption 3 applies.

5.3 Finite sample properties

Table 8 gives some simulation results for a data generating process with Uniform arrivals on

U = {0, 1, 2, 3} for the tests introduced in section 5 that incorporate full or partial knowledge

of U . The tests ΓT (based on knowing U fully) and Γ̂T (based on knowing that U has the form

{0, 1, . . . ,M} with M unknown) are included, along with randomised versions of both that are

mixed with an independent Bernoulli draw to produce size of (approximately) 5%. The Hybrid

test is also included for comparison purposes. The results shown for T = 100 and T = 200 show

the potentially very large power gains available from knowledge (full or partial) of the structure

2We are grateful to a referee for this insightful suggestion.
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of U . Both ΓT and Γ̂T achieve power far above that of the Hybrid test, while maintaining sizes

of (essentially) zero. It is also notable that the performances of ΓT and Γ̂T are almost identical

in these sample sizes, showing that partial knowledge of the structure of the support can be as

good as full knowledge in some circumstances.

However the finite sample properties of Γ̂T can vary dramatically with the arrivals distribu-

tion. Table 9 presents some simulation results from a data generating process with β = 0 and

Binomial(6, 0.5) arrivals distribution. To clarify the discussion we have assumed knowledge that

the structure of the support is {0, 1, . . . ,M} and defined

Û = {0, 1, . . . , M̂}, M̂ = max
t
yt,

and

Ũ = {0, 1, . . . , M̃}, M̃ = max
t:yt−1=0

yt.

The Γ̂T test therefore rejects H0 if M̃ < M̂ . It must always be true that M̃ ≤ M̂ and M̃ ≤M . If

H0 is true then M̂ ≤M must also hold, but if H0 is false then M̂ > M is possible. The columns

of Table 9 report the proportion of replications for which M̂ = M , M̃ = M and the resulting

Γ̂T test rejects H0 (i.e. M̃ < M̂). The results reveal that very large sample sizes (T greater

than 10,000) are required for the asymptotic theory to provide a reasonable approximation for

the size properties of Γ̂T . For practical sample sizes the test has sizes of over 90% and is therefore

unusable. Unreported simulations, available on request, document similar behaviour for other

arrivals distributions and illustrate the infeasibility of the attempt to control the finite sample

size of Γ̂T .

The conclusion from these simulations is that if the support U is fully known then ΓT should

be applied. However, if the support is only partially known in the sense of only knowing that

Assumption 3 applies, then the Γ̂T is theoretically beneficial but in finite samples cannot be

size-controlled across the range of arrivals distributions that satisfy Assumption 3. Instead, in

the likely absence of full knowledge of the arrivals support, the effective score test and especially

the hybrid test have been demonstrated to provide a theoretically sound and practically useful

semi-parametric independence test in the INAR model.

6 Conclusion

In this paper we have investigated the asymptotic theory of semi-parametric likelihood-based

independence tests in INAR(1) models, and shown that the structure of the support of the ar-

rivals process plays a crucial role in the distribution theory under both null and local alternative

hypotheses. If the arrivals are supported on the non-negative integers then the classical likelihood-

based tests were shown to have standard asymptotic distribution theory and to be asymptotically
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efficient in the sense of Choi et al (1996). If the support of the arrivals is finite and/or contains

gaps, it was shown that only the Neyman-Rao (effective score) test retains a non-degenerate

asymptotic null distribution, and also that it has non-trivial power against local alternatives that

approach the null at the unusually fast rate of 1/T . Moreover this power was shown to derive from

observations that fall outside the support of the arrivals, further emphasising the importance of

the structure of the support in this problem. Finite sample simulations illustrated the practical

importance of these asymptotic findings and were also used to motivate the construction of a hy-

brid of the effective score and first order autocorrelation tests that provides robust performance

across a wide range of sample sizes and unknown arrivals distributions and supports, and can be

recommended for use in practical data analysis.

Within the framework of count data modelling, certain interesting extensions of our results ex-

ist. Dependence testing in a higher order INAR model with non-parametric arrivals process would

give rise to the same support issues as investigated here, while also involving more complicated

methods to handle the null hypothesis lying on the boundary of a higher dimensional parameter

space. Tests involving other thinning operators (see Weiss (2008)) could also be considered, along

with potentially extended versions of the standard INAR model involving covariates. In all cases

the possibility of restricted supports implied by low counts may complicate standard inference.

While beyond our scope, the results of this paper suggest the possibility that there exist other

situations, not necessarily count data, in which statistical inference may depend in important

ways on the support of the observations. For example, other testing problems involving latent

processes (e.g. factor or state space models) with restricted supports, perhaps subject to censoring

or truncation, may exhibit similar non-standard features to those demonstrated here.
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Table 2: Simulated size and power, Poisson(5) arrivals

T = 100 T = 200 T = 400 T = 800

β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T

0.000 0.048 0.040 0.000 0.044 0.046 0.000 0.044 0.042 0.000 0.049 0.049

0.080 0.108 0.163 0.050 0.115 0.156 0.030 0.110 0.133 0.015 0.098 0.107

0.160 0.206 0.431 0.100 0.235 0.374 0.060 0.228 0.303 0.030 0.180 0.202

0.240 0.315 0.732 0.150 0.387 0.636 0.090 0.392 0.532 0.045 0.289 0.347

0.320 0.441 0.919 0.200 0.551 0.845 0.120 0.569 0.752 0.060 0.412 0.497

0.400 0.548 0.984 0.250 0.697 0.960 0.150 0.729 0.895 0.075 0.555 0.662

0.480 0.619 0.999 0.300 0.807 0.993 0.180 0.845 0.969 0.090 0.690 0.799

0.560 0.660 1.000 0.350 0.886 1.000 0.210 0.919 0.994 0.105 0.799 0.897

0.640 0.676 1.000 0.400 0.935 1.000 0.240 0.962 0.999 0.120 0.887 0.955

0.720 0.672 1.000 0.450 0.957 1.000 0.270 0.983 1.000 0.135 0.936 0.983

0.800 0.705 1.000 0.500 0.965 1.000 0.300 0.990 1.000 0.150 0.969 0.996

Table 3: Simulated size and power, Equal mixture of Poisson(1) and Binomial(10,0.75) arrivals

T = 100 T = 200 T = 400 T = 800

β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T

0.000 0.046 0.043 0.000 0.047 0.036 0.000 0.050 0.041 0.000 0.046 0.043

0.050 0.251 0.110 0.030 0.270 0.086 0.020 0.309 0.095 0.010 0.232 0.079

0.100 0.507 0.221 0.060 0.598 0.166 0.040 0.677 0.185 0.020 0.543 0.134

0.150 0.670 0.387 0.090 0.814 0.309 0.060 0.903 0.308 0.030 0.798 0.201

0.200 0.756 0.580 0.120 0.922 0.476 0.080 0.976 0.465 0.040 0.937 0.290

0.250 0.762 0.757 0.150 0.967 0.640 0.100 0.996 0.616 0.050 0.983 0.393

0.300 0.736 0.880 0.180 0.983 0.783 0.120 0.999 0.759 0.060 0.998 0.497

0.350 0.678 0.952 0.210 0.990 0.884 0.140 1.000 0.862 0.070 1.000 0.607

0.400 0.605 0.985 0.240 0.992 0.949 0.160 1.000 0.928 0.080 1.000 0.711

0.450 0.532 0.997 0.270 0.992 0.980 0.180 1.000 0.965 0.090 1.000 0.806

0.500 0.466 1.000 0.300 0.992 0.994 0.200 1.000 0.989 0.100 1.000 0.873
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Table 4: Simulated size and power, Uniform{0,1,2,3} arrivals

T = 100 T = 200 T = 400 T = 800

β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T

0.000 0.044 0.043 0.000 0.050 0.048 0.000 0.045 0.045 0.000 0.046 0.044

0.050 0.167 0.100 0.030 0.214 0.104 0.015 0.217 0.083 0.012 0.371 0.090

0.100 0.338 0.221 0.060 0.431 0.195 0.030 0.437 0.131 0.024 0.659 0.160

0.150 0.521 0.394 0.090 0.618 0.320 0.045 0.616 0.204 0.036 0.839 0.257

0.200 0.656 0.591 0.120 0.763 0.486 0.060 0.755 0.297 0.048 0.924 0.377

0.250 0.755 0.760 0.150 0.850 0.642 0.075 0.850 0.405 0.060 0.974 0.509

0.300 0.837 0.883 0.180 0.912 0.787 0.090 0.920 0.524 0.072 0.990 0.632

0.350 0.896 0.954 0.210 0.946 0.883 0.105 0.954 0.646 0.084 0.996 0.746

0.400 0.930 0.983 0.240 0.964 0.944 0.120 0.974 0.752 0.096 0.999 0.842

0.450 0.958 0.995 0.270 0.982 0.978 0.135 0.986 0.831 0.108 1.000 0.911

0.500 0.974 0.999 0.300 0.990 0.993 0.150 0.992 0.894 0.120 1.000 0.954

Table 5: Simulated size and power, Binomial(6,0.5) arrivals

T = 100 T = 200 T = 400 T = 800

β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T

0.000 0.042 0.039 0.000 0.041 0.045 0.000 0.046 0.048 0.000 0.047 0.047

0.080 0.138 0.168 0.040 0.118 0.120 0.020 0.103 0.099 0.015 0.120 0.105

0.160 0.322 0.415 0.080 0.246 0.271 0.040 0.192 0.180 0.030 0.236 0.209

0.240 0.534 0.722 0.120 0.435 0.488 0.060 0.308 0.297 0.045 0.375 0.337

0.320 0.730 0.916 0.160 0.607 0.693 0.080 0.448 0.448 0.060 0.537 0.498

0.400 0.853 0.986 0.200 0.766 0.861 0.100 0.597 0.613 0.075 0.696 0.667

0.480 0.915 0.999 0.240 0.877 0.949 0.120 0.725 0.755 0.090 0.824 0.804

0.560 0.948 1.000 0.280 0.935 0.983 0.140 0.836 0.862 0.105 0.910 0.902

0.640 0.958 1.000 0.320 0.970 0.995 0.160 0.909 0.931 0.120 0.957 0.950

0.720 0.961 1.000 0.360 0.988 0.999 0.180 0.952 0.970 0.135 0.982 0.982

0.800 0.936 1.000 0.400 0.993 1.000 0.200 0.974 0.988 0.150 0.993 0.993
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Table 6: Simulated size and power, Binomial(6,0.5), gap at {4,5} arrivals

T = 100 T = 200 T = 400 T = 800

β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T β ξ̂T ρ̂T

0.000 0.056 0.040 0.000 0.046 0.045 0.000 0.052 0.046 0.000 0.050 0.046

0.060 0.453 0.123 0.030 0.453 0.098 0.020 0.553 0.101 0.015 0.707 0.106

0.120 0.687 0.285 0.060 0.742 0.191 0.040 0.850 0.181 0.030 0.943 0.207

0.180 0.766 0.499 0.090 0.880 0.325 0.060 0.954 0.303 0.045 0.992 0.337

0.240 0.739 0.723 0.120 0.940 0.480 0.080 0.986 0.448 0.060 0.999 0.501

0.300 0.708 0.879 0.150 0.969 0.647 0.100 0.995 0.602 0.075 1.000 0.656

0.360 0.714 0.960 0.180 0.976 0.787 0.120 0.998 0.750 0.090 1.000 0.799

0.420 0.721 0.988 0.210 0.982 0.892 0.140 1.000 0.862 0.105 1.000 0.901

0.480 0.735 0.998 0.240 0.979 0.949 0.160 1.000 0.926 0.120 1.000 0.955

0.540 0.761 1.000 0.270 0.975 0.978 0.180 1.000 0.965 0.135 1.000 0.980

0.600 0.779 1.000 0.300 0.978 0.990 0.200 1.000 0.987 0.150 1.000 0.994

Table 7: Simulated size and power, Equal mixture of Poisson(1) and Negative Binomial (10,0.75)

arrivals

T = 100 T = 200 T = 800

β ξ̂T ρ̂T Hybrid β ξ̂T ρ̂T Hybrid β ξ̂T ρ̂T Hybrid

0.000 0.059 0.047 0.060 0.000 0.048 0.048 0.053 0.000 0.051 0.059 0.059

0.080 0.230 0.160 0.236 0.050 0.248 0.160 0.245 0.015 0.185 0.118 0.169

0.160 0.445 0.406 0.531 0.100 0.525 0.359 0.555 0.030 0.410 0.208 0.383

0.240 0.575 0.704 0.792 0.150 0.739 0.638 0.806 0.045 0.664 0.340 0.626

0.320 0.652 0.918 0.936 0.200 0.859 0.862 0.946 0.060 0.846 0.499 0.820

0.400 0.692 0.986 0.989 0.250 0.912 0.967 0.988 0.075 0.947 0.670 0.931

0.480 0.680 0.998 0.999 0.300 0.940 0.994 0.998 0.090 0.983 0.806 0.978

0.560 0.668 1.000 1.000 0.350 0.954 0.999 1.000 0.105 0.996 0.898 0.996

0.640 0.643 1.000 1.000 0.400 0.963 1.000 1.000 0.120 0.999 0.954 1.000

0.720 0.559 1.000 1.000 0.450 0.966 1.000 1.000 0.135 1.000 0.985 1.000

0.800 0.464 1.000 1.000 0.500 0.967 1.000 1.000 0.150 1.000 0.996 1.000
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Table 8: Simulated size and power, Uniform {0, 1, 2, 3} arrivals

T = 100 T = 200

β Hybrid ΓT Γ̂T Γ∗T Γ̂∗T β Hybrid ΓT Γ̂T Γ∗T Γ̂∗T

0.000 0.035 0.000 0.001 0.051 0.048 0.000 0.040 0.000 0.000 0.053 0.050

0.050 0.127 0.848 0.848 0.854 0.855 0.030 0.152 0.894 0.894 0.899 0.897

0.100 0.299 0.983 0.983 0.983 0.984 0.060 0.352 0.991 0.991 0.991 0.991

0.150 0.479 0.999 0.999 0.999 0.999 0.090 0.544 0.999 0.999 0.999 0.999

0.200 0.653 1.000 1.000 1.000 1.000 0.120 0.695 1.000 1.000 1.000 1.000

0.250 0.789 1.000 1.000 1.000 1.000 0.150 0.808 1.000 1.000 1.000 1.000

0.300 0.896 1.000 1.000 1.000 1.000 0.180 0.892 1.000 1.000 1.000 1.000

Table 9: Simulated properties of M̂ , M̃ , Γ̂T under H0 with Binomial(6, 0.5) arrivals

T M̂ = M M̃ = M Γ̂T

100 0.791 0.024 0.943

200 0.967 0.054 0.934

400 0.995 0.092 0.908

800 1.000 0.171 0.829

1600 1.000 0.324 0.676

3200 1.000 0.542 0.458

6400 1.000 0.773 0.227

12800 1.000 0.963 0.037

25600 1.000 0.997 0.003

M̂ = M : proportion of replications with M̂ = M

M̃ = M : proportion of replications with M̃ = M

Γ̂T : proportion of replications where Γ̂T rejects H0
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A Proofs of Main Results

A.1 Proof of Theorem 1

Both Theorems 1 and 2 hold under Assumption 2, in which the arrivals support is specified to be

U = N. This implies that πj is strictly positive for every j ∈ N. This fact will be used throughout

the proofs of these two theorems.

A.1.1 Proof of Theorem 1: The LAN Property

The log-likelihood of the model (1) is given by (2). Theorem A.1 below shows that the log-

likelihood ratio for this model has the LAN property under H0. Statement of the result requires

the specification of a local sequence at β = 0

βT (hβ) = T−1/2hβ, hβ > 0 (A.1)

and a local sequence for Π given by a linear map ΠT : Hπ 7→ PN with typical element

πT,k (hπ) = πk

1 + T−1/2

hπ,k − ∞∑
j=0

πjhπ,j

 , (A.2)

from Hπ = {hπ ∈ `∞ (N) : hπ,0 = 0} to PN, the set of probability distributions on N. So ΠT acts

linearly on members of Hπ i.e. hπ = {hπ,j}, which are convergent sequences (in `∞ (N)) and

transforms them into probability distributions in PN. The condition hπ,0 = 0 makes explicit the

adding-up restriction for any Π = {πk} expressed as π0 = 1−
∑∞

k=1 πk. The combined directions

for β and Π are denoted h = (hβ, hπ). Define notation θ = (β,Π), θ0 = (0,Π) and θT = (βT ,ΠT ).

Theorem A.1 Under Assumption 2

log
LT (θTh)

LT (θ0)
= ST (h)− 1

2
〈h, V h〉+ rT (h) (A.3)

where

(i) ST = (ST,β, ST,π) is a random linear functional with elements defined by

ST,βhβ = T−1/2
T∑
t=1

yt−1

(
πyt−1

πyt
− 1

)
hβ, (A.4)

ST,πhπ = T−1/2
T∑
t=1

hπ,yt − ∞∑
j=1

πjhπ,j

 , (A.5)

that satisfies ST  Z, where Z is a tight Gaussian process with mean zero and variance V under

θ0,
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(ii) V is a positive definite self-adjoint bounded linear operator with elements specified by

Vββ = E
(
u2
t

)( ∞∑
k=1

π2
k−1

πk
− 1

)
(A.6)

Vβπhπ = µu

∞∑
k=1

(πk−1 − πk)hπ,k (A.7)

〈hπ, Vππhπ〉 =
∞∑
k=1

πkh
2
π,k −

( ∞∑
k=1

πkhπ,k

)2

(A.8)

where 〈., V.〉 denotes the inner product induced by V ,

(iii) rT (h)
p→ 0 for every h under θ0.

The proof of this Theorem is provided in the online supplementary appendix section B.1.

A.1.2 Proof of Theorem 1: The infeasible effective score test

Having proved the LAN property the next step in constructing an optimal test is to assume the

nuisance parameters {πk} are known. Based on these known {πk}, define the statistics

S∗T,β = T−1/2
T∑
t=1

(yt−1 − µu) (gt − 1) (A.9)

and

ω2 = σ2
u

( ∞∑
k=1

π2
k−1

πk
− 1

)
,

where gt = πyt−1/πyt . Note that Assumption 2 ensures that πyt > 0 for every yt, while π−1 = 0

when yt = 0.

Lemma A.1 Suppose Assumption 2 holds. The standardised effective score test statistic is

ξT =
S∗T,β
ω

.

Under H0 this statistic satisfies ξT  Z∗ ∼ N (0, 1), so the effective score test that rejects H0

for ξT > zα therefore has asymptotic size of α. This effective score test is asymptotically uni-

formly most powerful at a given Π. In addition, under local alternatives θT , Pr (ξT > zα) →

1− Φ (zα − ωhβ) which gives the local power.

The proof of this Lemma is provided in the online supplementary appendix section B.2.
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A.1.3 Proof of Theorem 1: The feasible effective score test

The final step to prove Theorem 1 is accomplished by showing that a feasible test and the infeasible

one are equivalent asymptotically. The feasible test is given by ξ̂T in (4) and we now show that

the distribution of ξT is unchanged when the nuisance parameters are replaced by
√
T -consistent

estimators, hence concluding that the test based on ξ̂T is asymptotically uniformly most powerful.

The following detailed derivations show that ξ̂T − ξT
p→ 0 under H0, i.e. under the parameter

vector θ0. The same result under θT then follows immediately from Le Cam’s third lemma and

the LAN property proved in Theorem A.1 above. Therefore we proceed with β = 0.

Recalling the notation ĝt = π̂yt−1/π̂yt and gt = πyt−1/πyt

Ŝ∗T,β − S∗T,β = T−1/2
T∑
t=1

(yt−1 − µ̂u) (ĝt − 1)− T−1/2
T∑
t=1

(yt−1 − µu) (gt − 1)

= T−1/2
T∑
t=1

(yt−1 − µu) (ĝt − gt) (A.10)

− (µ̂u − µu)T−1/2
T∑
t=1

(ĝt − gt) (A.11)

− (µ̂u − µu)T−1/2
T∑
t=1

(gt − 1) . (A.12)

The sample mean µ̂u is consistent for µu and gt−1 satisfies a CLT under Assumption 2, so (A.12)

is op (1). Both (A.10) and (A.11) require analysis of ĝt − gt.

The restricted estimator (3) can be re-expressed as

Π̂ = ΠT

(
ĥπ

)
,

where ΠT is defined in (A.2) and

ĥπ = arg max
hπ

log
LT (0,ΠT (hπ))

LT (0,Π)
.

Regardless of whether Assumption 2 or 3 applies, these log-likelihood ratios (with β = 0 imposed)

have the LAN representation under the null

log
LT (0,ΠT (hπ))

LT (0,Π)
= ST,πhπ −

1

2
〈hπ, Vππhπ〉+ op (1)

so that ĥπ can be represented.

ĥπ = V −1
ππ ST,π + op (1) . (A.13)

Now, using (A.2),

ĝt − gt =
π̂yt−1

π̂yt
− πyt−1

πyt

= T−1/2
∑
k∈U

1k (yt)
πk−1

πk

 ĥπ,k−1 − ĥπ,k
1 + T−1/2

(
ĥπ,k −

∑∞
j=1 πj ĥπ,j

)
 .
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Thus

T−1/2
T∑
t=1

(ĝt − gt) =
∑
k∈U

(
T−1

T∑
t=1

1k (yt)

)
πk−1

πk

 ĥπ,k−1 − ĥπ,k
1 + T−1/2

(
ĥπ,k −

∑∞
j=1 πj ĥπ,j

)


=
∑
k∈U

π̂k
πk−1

πk

 ĥπ,k−1 − ĥπ,k
1 + T−1/2

(
ĥπ,k −

∑∞
j=1 πj ĥπ,j

)


=
∑
k∈U

πk−1

(
ĥπ,k−1 − ĥπ,k

)
= −

∑
k∈U

(πk−1 − πk) ĥπ,k.

Combining this with (A.7) and (A.13) gives

T−1/2
T∑
t=1

(ĝt − gt) = − 1

µ1

ST,πV
−1
ππ Vπβ = Op (1) ,

so that (A.11) is op (1) by the consistency of µ̂u. Similarly

T−1/2
T∑
t=1

(yt−1 − µu) (ĝt − gt)

=
∑
k∈U

(
T−1

T∑
t=1

(yt−1 − µu) 1k (yt)

)
πk−1

πk

 ĥπ,k−1 − ĥπ,k
1 + T−1/2

(
ĥπ,k −

∑∞
j=1 πj ĥπ,j

)


= (µ̂u − µu)
∑
k∈U

πk−1

(
ĥπ,k−1 − ĥπ,k

)
+ op (1) ,

so that (A.10) is also op (1).

Finally the variance ω̂2 is consistent for ω2 by the consistency of Π̂ and the sample variances,

so ξ̂T = Ŝ∗T,β/ω̂ = S∗T,β/ω + op(1) = ξT + op(1) under H0, which is the required result. �

A.2 Proof of Theorem 2

(i) The LAN representation (A.3) implies that

T 1/2β̃ =
(
S∗T,β/ω

2 + op (1)
)
∨ 0. (A.14)

It follows from (??) that the asymptotic joint null distribution of S∗T,β/ω
2 and the quadratic

approximation to the likelihood ratios

λTh = STh−
1

2
〈h, V h〉

is, for any h = (hβ, hπ), hβ > 0, λTh

S∗T,β/ω
2

 N

 −1
2 〈h, V h〉

0

 ,

 〈h, V h〉 hβ

hβ 1/ω2

 .
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Le Cam’s third lemma therefore implies that

S∗T,β/ω
2  N

(
hβ, 1/ω

2
)

= Zβ

under θTh, which combines with (A.14) to give the conclusion.

(ii) Given a consistent estimator ω̂2 (which can be demonstrated as in Theorem 1), it follows

from part (i) that the Wald statistic satisfies

WT =

(
T 1/2β̃

ω̂

)2

 
(
ω−1Zβ ∨ 0

)2
= (ZΛ ∨ 0)2 .

The LR statistic satisfies

ΛT = 0, if β̃ = 0, (and hence Π̃ = Π̂)

ΛT = 2
(〈
ST , V

−1ST
〉
−
〈
ST,π, V

−1
ππ ST,π

〉
+ op (1)

)
=

(
S∗T,β
ω

)2

+ op (1) if β̃ > 0.

Combining these with (A.14) implies

ΛT =

(
T 1/2β̃

ω

)2

+ op (1) = WT + op (1) .

(iii) The score statistic satisfies

ΨT =

(
S∗T,β
ω

)2

+ op (1) Z2
Λ,

while its one-sided version satisfies

Ψ+
T =

S∗T,β
ω

+ op (1) = ξT + op (1)

�

A.3 Proof of Theorem 3

The following proofs of Theorems 3 and 4 are carried out under Assumption 3, in which the

arrivals support is specified to be U 6= N. This implies that πj = 0 for some j ∈ N, which changes

many of the results proved for Theorems 1 and 2.

Theorem 3 is stated and proved assuming H0 is true, implying yt ∈ U for every t, and hence

πyt > 0 for every t. The presence of gaps may imply πyt−1 = 0 for some t, so that πyt−1/πyt = 0,

but this causes no problems in the derivations to follow.
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(i) Under Assumption 3, E (πyt−1/πyt) =
∑

k∈U(0) πk−1 = π(0) < 1. Since µ̂u = T−1
∑T

t=1 yt−1+

Op
(
T−1

)
, the sample effective score can be represented

Ŝ∗T,β = T−1/2
T∑
t=1

(yt−1 − µ̂u)
(
ĝt − π(0)

)
+ op (1) (A.15)

= T−1/2
T∑
t=1

(yt−1 − µu)
(
gt − π(0)

)
(A.16)

+ (µ̂u − µu)T−1/2
T∑
t=1

(
gt − π(0)

)
(A.17)

+T−1/2
T∑
t=1

(yt−1 − µ̂u) (ĝt − gt) (A.18)

= T−1/2
T∑
t=1

(yt−1 − µu)
(
gt − π(0)

)
+ op (1) , (A.19)

in which (A.15) follows by the summation properties of the sample mean, (A.17) is op (1) because

µ̂u is consistent for µu and a CLT applies for zero mean i.i.d. process
(
πyt−1/πyt − π(0)

)
, and

(A.18) is op (1) since the treatment of (A.10) and (A.11) in the proof of Theorem 1 also applies

under Assumption 3. The summand in (A.19) is a stationary ergodic martingale difference se-

quence, which therefore satisfies a central limit theorem with limiting variance ω2 = σ2
uσ

2
g. This

is consistently estimated by ω̂2 in (5).

(ii) Since

E (yt−1 (gt − 1)) = µu

(
π(0) − 1

)
= −µuπ(1) < 0

under Assumption 3, the score with respect to β satisfies

ST,β = T−1/2
T∑
t=1

yt−1 (gt − 1)
p→ −∞.

Also

ŜT,β − ST,β = T−1/2
T∑
t=1

yt−1 (ĝt − gt)
p→ 0,

again following the treatment of (A.10) and (A.11). Thus ŜT,β
p→ −∞, giving ΨT

p→ +∞ and

Ψ+
T

p→ −∞ as required, since the variance estimator ω̂2 remains bounded in probability.

(iii) First observe that ŜT,β < 0 implies that β̃ = 0 since the log-likelihood is decreasing as β

increases through zero. Since ŜT,β
p→ −∞ implies Pr

(
ŜT,β < 0

)
→ 1, we conclude Pr

(
β̃ = 0

)
→

1, which in turn implies that Pr (WT = 0) ,Pr (ΛT = 0)→ 1. �

A.4 Proof of Lemma 1

We use aT ≈ bT to represent aT /bT → 1 as T →∞.
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Lemma A.2 Let A be any subset of N \ U (0). For any T = {t1, . . . , tk} with 1 ≤ t1, tk ≤ T ,

tj − tj−1 > 1, and Ak = {i1, . . . , ik} ⊆ A (ij not necessarily distinct)

Pr (yt1 = i1, . . . , ytk = ik and ys 6∈ A for all s 6= t1, . . . , tk)

≈

∏
i∈Ak

βTµuπi−1

 exp

(
−hβµu

∑
i∈A

πi−1

)
.

Also

Pr (yt 6∈ A for all t = 1, . . . , T ) ≈ exp

(
−hβµu

∑
i∈A

πi−1

)
. (A.20)

The proof of this Lemma is given in section B.3 of the online Appendix B.

Define U (k) =
{
i 6∈ ∪j <kU (j) : i− 1 ∈ U (k−1)

}
. This definition collects in U (k) those integers i

that are not included in the arrivals support U and that differ by k from the nearest element of

U that is less than i. Setting A = N \ U (0) in (A.20) gives

Pr
(
yt ∈ U (0) for all t = 1, . . . , T

)
≈ exp

−hβµu ∑
i∈U(1)

πi−1

 ,

since πi−1 = 0 for i ∈ U (k), k > 1, and π(1) =
∑

i∈U(1) πi−1, which shows (7).

Lemma A.2 allows the derivation of the asymptotic distribution of NT,i for any i ∈ U (1). For

a fixed non-negative integer k, set A = {i, . . . , i} in Lemma A.2 to find

Pr (NT,i = k) =
T∑

tk=k+1

tk−1∑
tk−1=k

. . .

t3−1∑
t2=2

t2−1∑
t1=1

Pr (yt1 = i, . . . , ytk = i and ys 6= i for all s 6= t1, . . . , tk)

≈ T−k
T∑

tk=k+1

tk−1∑
tk−1=k

. . .

t3−1∑
t2=2

t2−1∑
t1=1

(hβµuπi−1)k exp (−hβµuπi−1)

≈ T−k
(
T

k

)
(hβµuπi−1)k exp (−hβµuπi−1)

≈ 1

k!
(hβµuπi−1)k exp (hβµuπi−1) , (A.21)

which is the Poisson probability mass function with parameter hβµuπi−1.

For the joint convergence of finite collections ofNT,i over i, consider any setA = {i1, i2, . . . ik} ⊆

U (1). Lemma A.2 immediately gives

Pr (NT,i = 0 for all i ∈ A) = Pr (yt 6∈ A for all t)

≈ exp

(
−hβµu

∑
i∈A

πi−1

)
=

∏
i∈A

exp (−hβµuπi−1) , (A.22)
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the product of marginal Poisson probabilities. Similarly

Pr (NT,i = 1 for all i ∈ A)

=

T∑
t1=1

. . .

T∑
tk=1

t1 6=... 6=tk

Pr (yt1 = i1, . . . , ytk = ik and yt 6∈ A for all s 6= t1, . . . , tk)

≈
T∑

t1=1

. . .
T∑

tk=1

|ti−tj |≥2 ∀i 6=j

Pr (yt1 = i1, . . . , ytk = ik and yt 6∈ A for all s 6= t1, . . . , tk)

= k!

T∑
tk=2(k−1)+1

tk−2∑
tk−1=2(k−2)+1

. . .

t3−2∑
t2=3

t2−2∑
t1=1

Pr (yt1 = i1, . . . , ytk = ik and yt 6∈ A for all s 6= t1, . . . , tk) ,

the approximation in the second line following because there are k!
(
T
k

)
choices of {t1, . . . , tk} from

{1, . . . , T}k such that ti 6= tj for all i 6= j in the first sum, and there are k!
(
T−k+1

k

)
choices of

{t1, . . . , tk} such that |ti − tj | ≥ 2 for all i 6= j in the second sum, and
(
T−k+1

k

)/(
T
k

)
→ 1 implying

the omitted terms in the second sum are negligible. Applying Lemma A.2 then gives

Pr (NT,i = 1 for all i ∈ A) ≈ k!T−k
(
T − k + 1

k

)(∏
i∈A

hβµuπi−1

)
exp

(
−hβµu

∑
i∈A

πi−1

)
≈

∏
i∈A

(hβµuπi−1 exp (−hβµuπi−1)) , (A.23)

again the product of marginal Poisson probabilities. Clearly the steps leading to (A.22) and

(A.23) can be combined to give

Pr (NT,i = 0 for all i ∈ A0 and NT,i = 1 for all i ∈ A1)

≈
∏
i∈A0

exp (−hβµuπi−1) ·
∏
i∈A1

(hβµuπi−1 exp (−hβµuπi−1)) ,

for disjoint finite subsets A0 and A1 of U (1). Generic values NT,i = k can also be included using

the steps leading to (A.21). This proves the joint convergence of finite collections of NT,i to

the stated independent Poisson distributions. If U (1) is infinite then the convergence of infinite

collections follows from that of the finite collections by application of Example 2.4 of Billingsley

(1999).

A.5 Proof of Theorem 4

The marginal probabilities of yt for any i can be found from

Pr (yt = i) = Pr (yt = i and ys ∈ N for all s < t)

=
∑

jt−1∈N
. . .
∑
j1∈N

∑
j0∈U(0)

pi|jT−1
. . . pjt+1|ipi|jt−1

. . . pj1|j0πj0

≈
∑

jt−1∈N
. . .
∑
j1∈N

∑
j0∈U(0)

qi|jT−1
. . . qjt+1|iqi|jt−1

. . . qj1|j0πj0 ,
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and the remainders from the approximation in the second step handled in the same way as in

Lemma A.2. Then using

∑
j∈N

 1

βT j

 πj

πj−1 − πj

′ =
 1 0

βTµu βT

 = C,

gives

Pr (yt = i) ≈
∑

jt−1∈N
. . .
∑
j1∈N

∑
j0∈U(0)

qi|jT−1
. . . qjt+1|iqi|jt−1

. . . qj1|j0πj0

=

 πi

πi−1 − πi

′Ct
 1

0


=

 πi

πi−1 − πi

′ 1 0

µu
∑t

j=1 β
j
T βtT

 1

0


= πi + βTµu (πi−1 − πi)

1− βtT
1− βT

. (A.24)

It follows that for any i ∈ YT ,

π̂i = πi +Op

(
T−1/2

)
.

Thus if i ∈ U (k), k ≥ 1, then πi = 0 and π̂i = Op
(
T−1/2

)
. We use this consistency of π̂i

throughout the following proof.

We begin with the denominator of ξ̂T , which is relatively simpler than the numerator but

illustrates the non-standard features of the limit theory under local alternatives. First we have

ȳ = µu + Op
(
T−1/2

)
and σ̂2

y = σ2
u + Op

(
T−1/2

)
as usual, but σ̂2

g requires more careful analysis.

From (A.24)

Pr (NT,i > 0) ≈ 1− (1− πi)T → 1 for i ∈ U (0), (A.25)

while Lemma 1 implies that

Pr (NT,i > 0)→ 1− exp (−hβµuπi−1) for i ∈ U (1). (A.26)

Lemma 1 further implies that

Pr (NT,i > 0)→ 0 for i ∈ U (k), k > 1. (A.27)

We can represent ĝt = π̂yt−1/π̂yt as

ĝt =
∑
i∈YT

1i (yt)
π̂i−1

π̂i
=

∞∑
k=0

∑
i∈U(k):NT,i>0

1i (yt)
π̂i−1

π̂i
.

Using this representation and applying (A.25), (A.26) and (A.27) we have

T−1
T∑
t=1

ĝt =

∞∑
k=0

∑
i∈U(k):NT,i>0

π̂i−1  
∑
i∈U(0)

πi−1 +
∑

i∈U(1):Ni>0

πi−1,
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with Ni the weak limit of NT,i defined in Lemma 1. This is a random limit because the second

sum is over a random set i ∈ U (1) : Ni > 0. Similarly

ĝ2
t =

∞∑
k=0

∑
i∈U(k):NT,i>0

1i (yt)
π̂2
i−1

π̂2
i

,

so that

T−1
T∑
t=1

ĝ2
t =

∞∑
k=0

∑
i∈U(k):NT,i>0

π̂2
i−1

π̂i

≈
∑
i∈U(0)

π̂2
i−1

π̂i
+ T

∑
i∈U(1):NT,i>0

π̂2
i−1

NT,i
(A.28)

where, using (A.27), we have omitted the asymptotically disappearing terms for i ∈ U (k), k > 1

in the approximation. Since ∑
i∈U(0)

π̂2
i−1

π̂i

p→
∑
i∈U(0)

π2
i−1

πi

and ∑
i∈U(1):NT,i>0

π̂2
i−1

NT,i
 

∑
i∈U(1):Ni>0

π2
i−1

Ni
(A.29)

we see that the correct standardisation of
∑T

t=1 ĝ
2
t (i.e. T−2 or T−1) depends on whether obser-

vations remain in U (1) or not as T increases. The limit also varies, being either the fixed quantity∑
i∈U(0) π2

i−1/πi (if Ni = 0 for all i ∈ U (1)) or the random variable
∑

i∈U(1):Ni>0 π
2
t−1/Ni. That is,

we obtain the standard limit for Ni = 0 for all i ∈ U (1) but a non-standard one for Ni > 0 for any

i ∈ U (1).

This same issue with standardisation and differing limits arises in the numerator of ξ̂T . Simi-

larly to (A.28), we write the numerator in terms of its U (0) and U (1) components as:

T−1/2
T∑
t=1

(yt−1 − ȳ) (ĝt − 1) ≈ T−1/2
T∑
t=1

(yt−1 − µu)
∑
i∈U(0)

1i (yt)

(
π̂i−1

π̂i
− 1

)

+T 1/2
∑

i∈U(1):NT,i>0

T∑
t=1

(yt−1 − µu) 1i (yt)
πi−1

NT,i
. (A.30)

For the limit of the first sum of U (0) components, under local alternatives of the fast rate βT =

T−1hβ, the proof of Theorem 3 given under the null carries through with only the addition of

extra Op
(
T−1

)
remainders, giving the same result

T−1/2
T∑
t=1

(yt−1 − µu)
∑
i∈U(0)

1i (yt)

(
π̂i−1

π̂i
− 1

)
 N

(
0, σ2

uσ
2
g

)
,
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This would be the expected distribution for a statistic under alternatives that approach the null

at O
(
T−1

)
instead of the usual O

(
T−1/2

)
. However, if NT,i > 0 for any i ∈ U (1) then the second

term in (A.30) becomes dominant. We may write

∑
i∈U(1):NT,i>0

T∑
t=1

(yt−1 − µu) 1i (yt)
πi−1

NT,i
=

∑
i∈U(1):NT,i>0

πi−1

∑T
t=1 yt−11i (yt)− µuNT,i

NT,i

=
∑

i∈U(1):NT,i>0

πi−1

(
ST,i
NT,i

− µu
)
,

where

ST,i =
T∑
t=1

yt−11i (yt) .

and consider the joint convergence of ST,i, NT,i for i ∈ U (1). Both are non-decreasing in T and

therefore may be sub-martingales. To check this, consider E |NT,i| and E |ST,i|. For i ∈ U (1)

(A.24) reduces to

Pr (yt = i) ≈ βTµuπi−1,

so that

E |NT,i| =
T∑
t=1

Pr (yt = i) ≈ hβµuπi−1 <∞

and similarly

E |ST,i| =
T∑
t=1

E (yt−11i (yt)) ≤
T∑
t=1

E
(
y2
t−1

)1/2
Pr (yt = i) <∞,

since E
(
y2
t−1

)
< ∞ by Lemma 1(a) of Drost et al (2009) . Both NT,i and ST,i are therefore L1

bounded sub-martingales and, from Theorem 35.5 of Billingsley (1995), have almost sure limits

Ni and Si respectively, where E |Ni| < ∞ and E |Si| < ∞, which implies weak convergence as

well. This convergence is joint for {NT,i, ST,i} and is automatically joint across all i if U (1) is

a finite set. If U (1) is not a finite set then we again invoke Example 2.4 of Billingsley (1999).

Therefore we can conclude in (A.30) that∑
i∈U(1):NT,i>0

πi−1

(
ST,i
NT,i

− µu
)
 

∑
i∈U(1):Ni>0

πi−1

(
Si
Ni
− µu

)
. (A.31)

While the distribution of Ni is known (i.e. Poisson), the distribution of Si depends on Π and hβ

in a more complicated way and a known form has not been found. It is evident, however, that Si

and Ni can be expected to be positively dependent since, for given Π, larger values of NT,i (i.e.

larger numbers of t for which 1i(yt) = 1) imply additional non-negative terms in the sum ST,i.

Unreported simulations for several choices of Π are consistent with this dependence. Therefore

(A.31) can be taken as a well-defined representation of a non-degenerate limiting distribution,
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but one which remains dependent on nuisance parameters and reliant on simulation for further

exploration of its properties.

Define the indicator random variable QT = 1
(
NT,i > 0 for any i ∈ U (1)

)
and its limit random

variable Q = 1
(
Ni > 0 for any i ∈ U (1)

)
. The probability Pr (Q = 1) = 1 − exp

(
−hβµuπ(1)

)
follows directly from (A.26).

Then we can write

ξ̂T =
T−1/2

∑T
t=1 (yt−1 − ȳ) (ĝt − 1)

σ̂yσ̂g

≈
T−1/2

∑T
t=1 (yt−1 − µu)

∑
i∈U(0) 1i (yt)

(
π̂i−1

π̂i
− 1
)

σu

(∑
i∈U(0)

π̂2
i−1

π̂i
−
(∑

i∈U(0) π̂i−1

)2)1/2

+

∑
i∈U(1):NT,i>0

∑T
t=1 (yt−1 − µu) 1i (yt)

π̂i−1

NT,i

σu

(∑
i∈U(1):NT,i>0

π̂2
i−1

NT,i

)
= ξ̂T,0 + ξ̂T,1

Considering ξ̂T,1, if Q = 0 there are no elements in U (1) asymptotically and hence ξ̂T,1 disap-

pears. On the other hand if Q = 1 and there are elements in U (1), ξ̂T,1 automatically stabilises

itself, with matching behaviour in the numerator and denominator using (A.31) and (A.29). Thus

ξ̂T,1 converges to

X =
1

σu

 ∑
i∈U(1):Ni>0

π2
i−1

Ni

−1/2 ∑
i∈U(1):Ni>0

πi−1

(
Si
Ni
− µu

)

under Q = 1. Thus ξ̂T,1  XQ where XQ = 0 if Q = 0 and XQ = X if Q = 1.

Considering ξ̂T,0, if Q = 0 then ξ̂T,0 converges to Z ∼ N (0, 1) (as in the null case) under the

fast rate of the alternatives. If Q = 1, ξ̂T,0 converges to zero in probability due to the explosive

nature of σ̂g (again using (A.29)). Thus ξ̂T,0  ZQ where ZQ = Z if Q = 0 and ZQ = 0 if Q = 1.

Putting together these limits for ξ̂T,0 and ξ̂T,1 gives the conclusion of the theorem

ξ̂T  ZQ +XQ

as stated. This representation is not canonical in the sense that the random variables involved

are not all independent or standard. Nevertheless, jointly
{
Q,
(
Ni, Si, i ∈ U (1)

)}
is a well defined

asymptotic distribution and hence so is ZQ +XQ. �

39


	Introduction
	Efficient testing with standard support
	The effective score test
	The Wald, LR and score tests
	Comparison with an autocorrelation test

	Extension to General Support
	Asymptotic Properties under the Null when U=N
	Asymptotic Local Power U=N

	Finite Sample Properties
	U=N
	U=N 
	A Hybrid Test

	Testing with known or partially known support
	Known support
	Partially known support
	Finite sample properties

	Conclusion
	Proofs of Main Results
	Proof of Theorem 1
	Proof of Theorem 1: The LAN Property
	Proof of Theorem 1: The infeasible effective score test
	Proof of Theorem 1: The feasible effective score test

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Theorem 4


