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Abstract: It is shown, on the example of the monocyclic cyclononatetraenyl cation, C9HC9 , that

the fully-variational optimization of modern ab initio wavefunctions based on spin-coupled gene-

ralized valence bond (SCGVB) theory vindicates, in a surprising level of detail, essential features

of Heilbronner’s ideas for the electronic structure of Möbius annulenes such as the arrangement of

overlapping carbon 2p atomic orbitals along a Möbius strip, leading to a phase inversion between

the first and last orbitals. In the SCGVB description, the aromaticity of this Möbius system with

eight � electrons follows from the extensive resonance between VB structures.

Möbius annulenes are the brainchild of Edgar Heilbronner who in 1964 [1] decided to find out what

would happen if the cylindrical arrangement of overlapping 2p atomic orbitals (AOs) in a conventional

(Hückel) annulene, (CH)n, were to be replaced by an alternative arrangement along a Möbius strip

(see Figure 1). In order to obtain Hückel molecular orbital (HMO) descriptions of Möbius annulenes, Place

Figure 1

near here.
Heilbronner assumed that the resonance integral ˇ�� between a pair of 2p AOs twisted by angle !��

is related to the standard resonance integral ˇ between a pair of parallel 2p AOs through a simple

formula involving the cosine of the twist angle: ˇ�� D ˇ cos!�� . [1] The twist angles between pairs

of consecutive AOs in Heilbronner’s model of a Möbius annulene with n CH units remain constant,

!�;�C1 D �=n, except for !n;1 D � � �=n. As a result, apart from the trivial switch to “weaker”

ˇ0 D ˇ cos.�=n/ resonance integrals, the HMO secular determinant for a Möbius annulene differs

from that for its Hückel counterpart only in the signs of the resonance integrals linking centers 1 and n

(see Figure 2). Analytic orbital energy expressions are just as easy to obtain as for Hückel annulenes

and, in fact, this can be done even for Möbius annulenes with bond alternation. [2] According to the Place

Figure 2

near here.
energy expressions shown in Figure 2, Hückel annulenes are aromatic for n D 4� C 2 and antiaromatic

for n D 4�; this well-known Hückel 4� C 2=4� aromaticity rule is reversed for Möbius annulenes

in that the aromatic cycles become those with 4� CH units, while those with 4� C 2 CH units are
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antiaromatic. This is particularly well-illustrated by Zimmerman’s adaptation [3–5] of the familiar Frost-

Musulin diagrams [6] to Möbius annulenes. In general, Hückel and Möbius orbital arrays exhibit even

and odd numbers of phase changes (sign inversions), respectively; [5] the examples in Figure 1 involve

no (zero) phase changes in (a) and a single phase change in (b).

Since its inception, the concept of Möbius annulenes has continued to receive considerable attention

from both theoretical and experimental chemists. On the synthetic side, a Möbius aromatic hydrocarbon

was first reported by Herges and co-workers in 2003; [7] a comprehensive survey of pre-2005 research

on Möbius aromaticity and delocalization can be found in Rzepa’s review; [8] a very recent study shows

that Möbius orbital topology can be established even in acyclic systems such as linear cumulenes. [9] We

would also like to draw attention to a detailed analysis carried out by McKee et al. [10] of the simplifica-

tions in Heilbronner’s HMO treatment.

The aim of this communication is to investigate whether Heilbronner’s rather simplistic but con-

ceptually very powerful HMO-based ideas about the electronic structure of Möbius annulenes can be

confirmed using advanced ab initio quantum-chemical methods such as the spin-coupled generalized

valence bond (SCGVB) approach� and complete-active-space self-consistent field (CASSCF) theory.

The SCGVB approach is a modern form of VB theory based on a wavefunction which usually turns

out to be a close approximation to its CASSCF counterpart, but can be interpreted in terms of a small

number of meaningful VB resonance structures (for a review of the theory and its applications, see

reference 13). One example that can now be found in several physical and organic chemistry textbooks

is provided by the SCGVB description of benzene [14–16] (the Hückel 6-annulene), which is very different

from the delocalized orbital model obtained using conventional MO theory. The six � electrons populate

a single product of six non-orthogonal active (or, spin-coupled) orbitals, the spins of which are coupled in

all five possible ways leading to an overall singlet. The optimal SC orbitals turn out to be well-localized,

similar in shape to carbon 2p AOs but with small symmetrical protrusions towards neighboring carbons;

the optimal spin-coupling pattern, if expressed in terms of Rumer spin functions, [17] is dominated by two

equivalent Kekulé structures and has much smaller contributions from three equivalent Dewar (or para-

bonded) structures. This SCGVB picture, which features a sequence of overlapping singly-occupied

carbon 2p AO-like orbitals similar to that in Figure 1(a), reproduces the essential features of the well-

known classical VB description of benzene in terms of resonance structures and arises directly from a

good-quality wavefunction which accounts for close to 90% of the “non-dynamic” correlation energy

�This approach, as introduced by Gerratt, [11] has mostly been termed spin-coupled (SC or even SCVB), with an acknow-

ledgment that the construction is equivalent to that of full generalized valence bond (full-GVB), as introduced by Goddard, [12]

or it has been called (full-)GVB, with a mention of the equivalence to SC (or SCVB). It seems to the present authors to be un-

desirable to persist with different names for essentially identical calculations. Accordingly, we use here instead the compound

term spin-coupled generalized valence bond (SCGVB) that aims to encompass both sets of names.
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incorporated in a “6 in 6” �-space CASSCF wavefunction. [16]

In its original form, [11,18] as it was applied to benzene, the SCGVB wavefunction makes use of

a “N in N ” active space, described by means of a single product of N non-orthogonal active orbitals,

multiplied by a generalN -electron spin function. The “N inM ” active spaces with different numbers of

active electrons and active orbitals which are encountered in many CASSCF applications can be handled

through an extension of SCGVB theory to “N in M ” (N ¤ M ) active spaces. [19] The SCGVB(N;M )

wavefunction retains the essential features of the original SCGVB model: It involves just the products of

non-orthogonal orbitals corresponding to all distributions of N electrons amongst M orbitals in which

the smallest number of orbitals possible, jN �M j, are doubly-occupied (for N > M ) or omitted (for

N < M ), and all other active orbitals are singly-occupied; each of these products is combined with a

flexible spin function which allows any mode of coupling of the spins of the active orbitals within the

product.

The ring system we have chosen for this study is the monocyclic cyclononatetraenyl cation, C9HC9 ,

which was shown by Mauksch et al. [20] to be Möbius-aromatic at its lowest-energy C2 geometry. In

Heilbronner’s model, the C9HC9 ring includes eight � electrons and nine carbon 2p AOs, which suggests

a “8 in 9” active space. Accordingly, we describe here the electronic structure of the cyclononatetraenyl

cation by means of SCGVB(8,9) and CASSCF(8,9) wavefunctions.

The C2 geometry of the 1 1A electronic ground state of C9HC9 was optimized at the MP2/aug-

cc-pVDZ level of theory with GAUSSIAN16 [21] using the default frozen-core (“FC”) approximation,

under the “VeryTight” convergence criteria. The optimized geometry was verified as a local minimum

through diagonalization of the MP2/aug-cc-pVDZ analytic nuclear Hessian. The lowest harmonic fre-

quency, corresponding to a normal mode of B symmetry, was obtained as 179.6 cm�1. The differences

from the B3LYP/6-311+G(d,p) geometry reported by Mauksch et al. [20] are relatively minor: As shown

in Figure 3, MP2/aug-cc-pVDZ yields slightly longer carbon-carbon bond lengths. Fully-variational Place

Figure 3

near here.
SCGVB(8,9) and CASSCF(8,9) calculations were carried out for the 1 1A electronic ground state at

the MP2/aug-cc-pVDZ optimized geometry, using the aug-cc-pVDZ and aug-cc-pVTZ basis sets. For

the SCGVB(8,9) calculations we used the CASVB algorithms [22–25] implemented in MOLPRO. [26,27]

The CASSCF(8,9) calculations were performed both with GAUSSIAN16 [21] and with MOLPRO, [26,27]

which produced identical results; additionally, the nine active space orbitals from the CASSCF(8,9)

calculations were localized using the Foster-Boys procedure [28] implemented in GAUSSIAN16. Gi-

ven that the results obtained with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were found to be very

similar, we can be confident that our model for the electronic structure of C9HC9 will remain essenti-

ally the same within even larger basis sets and that none of its features can be attributed to any sort

of basis set incompleteness. We report here only the results obtained with the aug-cc-pVDZ basis set;

3



our experience with SCGVB and CASSCF calculations suggests that all essential features of the orbital

models for C9HC9 discussed in this communication could also be reproduced with smaller basis sets,

such as cc-pVDZ or even 6-31G. As can be seen in Table 1, the SCGVB(8,9) wavefunction manages to Place

Table 1

near here.
account for a surprisingly large proportion of the non-dynamic correlation energy achievable in an “8 in

9” active space, even though it uses a much smaller number of configuration state functions (CSFs) than

the CASSCF(8,9) construction. Of course, the MP2 energy, which includes dynamic correlation effects

for all electrons, is significantly lower.

The shapes of the nine non-orthogonal SC orbitals from the SCGVB(8,9) wavefunction are supe-

rimposed in Figure 3(a). Despite the twisted structure of C9HC9 , all of these orbitals are very similar

in appearance. Clearly, they closely resemble the distorted carbon 2p AOs with small symmetrical pro-

trusions towards neighboring carbons that are familiar from the SCGVB description of benzene. [14–16]

It is important to emphasize that the SCGVB(8,9) wavefunction for the monocyclic cyclononatetrae-

nyl cation was optimized without any symmetry or other constraints which could have influenced the

shapes of the SC orbitals. Comparison of Figure 3(a) to Figure 1(b) shows that the SC orbitals for C9HC9

closely reproduce the sequence of twisted carbon 2p AOs arranged along a Möbius strip; in this way,

the SCGVB(8,9) model of C9HC9 provides a convincing vindication of Heilbronner’s ideas about the

electronic structure of Möbius annulenes. It should be mentioned that the SC orbitals  1– 9 need not

emerge from the SCGVB(8,9) calculation with their phases aligned as shown in Figure 3(a). Instead,

each of these orbitals is determined up to an arbitrary sign factor so that changing the sign factor of one

orbital introduces two phase changes between that orbital and its two neighboring orbitals, retaining the

overall parity of the phase changes within the orbital array. The position of the phase change within the

orbital array is arbitrary, just as in Heilbronner’s model, where it depends on the choice of the first and

last orbitals in the numbering scheme. With the choice of orbital phases shown in Figure 3(a), the SC

orbitals transform under the OC2 rotation as OC2 1 D � 9, OC2 2 D  8, OC2 3 D  7, OC2 4 D  6 and

OC2 5 D � 5.

The close correspondence between Heilbronner’s ideas and the SCGVB(8,9) description of the

monocyclic cyclononatetraenyl cation is confirmed by the overlap integrals between the SC orbitals

from Figure 3(a). As can be seen from Table 2, the overlap integrals between consecutive SC orbitals

around the ring, h �j �C1i, are all positive with the exception of h 1j 9i, which is negative as a

result of the phase inversion. Due to the small size of the C9HC9 ring and its twisted structure, some

overlap integrals between non-neighboring SC orbitals also have relatively large magnitudes, such as

h 1j 3i D h 7j 9i D �0:429. The 16 most important VB structures (non-orthogonal CSFs) included Place

Table 2 and

Figure 4

near here.

in the SCGVB(8,9) wavefunction for C9HC9 are shown in Figure 4. These 16 VB structures occur as 8

symmetry-related pairs, connected through the OC2 rotation. For example, the first VB structure and its
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symmetry partner (not shown in Figure 4) can be written down (in unnormalized form) as

OC2 OA
�
(54) 2 3 4 5 7 8 9 1.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/

�
D OA

�
(54) 2 3 5 6 7 8 9 1.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/.˛ˇ � ˇ˛/

�
where “(54)” stands for the 54 core electrons, accommodated in 27 doubly-occupied optimized orbitals.

We report both Chirgwin-Coulson weights, [29] which are the most usual choice in applications of VB

theory, and also inverse-overlap Gallup-Norbeck weights, [30] which have the advantage of always being

non-negative. Despite the fact that the individual weights of the 16 VB structures are relatively low

(none of these exceeds 6%), the sums of these weights are ca. 55% and ca. 60% for the Chirgwin-

Coulson and Gallup-Norbeck weights, respectively. This is an indication that these 16 VB structures

account for the majority of the SCGVB(8,9) wavefunction. (Any other VB structure has a Chirgwin-

Coulson weight under 2%.) Each of the 16 VB structures shown in Figure 4 involves singlet couplings

of three pairs of SC orbitals involved in shorter carbon-carbon bonds, . 1;  2/, . 2;  3/, . 4;  5/,

. 5;  6/, . 7;  8/ and . 8;  9/. This situation is reminiscent of the resonance between Kekulé and

Dewar (or para-bonded) structures in benzene and strongly suggests that the electronic ground state of

the monocyclic cyclononatetraenyl cation is aromatic. Just two of these 16 VB structures involve singlet

coupling of SC orbitals  1 and  9; this is an indication that the most appropriate choice for the phase

change location is between those two orbitals, as shown in Figure 3(a).

Foster-Boys localization of the active space orbitals from the CASSCF(8,9) wavefunction for C9HC9

produces a set of localized orbitals which, when phase-aligned in a similar fashion to the SC orbitals

(vide supra), look very similar to the set of SC orbitals for this system, as demonstrated by Figures 3(a)

and (b). While this can be viewed as an alternative and perhaps more straightforward way of verifying

Heilbronner’s ideas, the SCGVB picture offers important additional insights. An examination of more

detailed pictures of the two types of orbital, such as those for  5, shown as  5 D ˙0:03 isosurfaces in

Figure 3(c), and the corresponding localized CASSCF(8,9) active-space orbital, shown in Figure 3(d),

reveals that the non-orthogonal SC orbitals spread out more over adjacent atomic centers. This allows

the establishment of the meaningful orbital overlap pattern reported in Table 2, whereas the more com-

pact localized CASSCF(8,9) orbital needs to have inversed-phase “tails” on adjacent atomic centers so

as to ensure its orthogonality to neighboring localized orbitals. Furthermore, the localization of the

active space orbitals from the CASSCF(8,9) wavefunction for C9HC9 does not provide any help with the

analysis of the physical relevance of the thousands of CSFs included in this wavefunction.

We have demonstrated in this communication, on the example of the monocyclic cyclononatetrae-

nyl cation, C9HC9 , how the fully-variational optimization of modern ab initio wavefunctions based on

SCGVB theory vindicates, in a surprising level of detail, essential features of Heilbronner’s ideas [1] for

the electronic structure of Möbius annulenes.
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Tables and Figures

Table 1. Total HF, SCGVB(8,9), CASSCF(8,9) and MP2 energies (in Eh) of the 1 1A electronic ground

state of C9HC9 , percentages of recovered CASSCF(8,9) correlation energy (in brackets), and numbers of

CSFs included in the SCGVB(8,9) and CASSCF(8,9) wavefunctions (aug-cc-pVDZ basis, MP2/aug-cc-

pVDZ geometry, frozen-core MP2).

Wavefunction CSFs Total Energy

HF 1 �345:727 326 .0:0%/

SCGVB(8,9) 126 a �345:833 582 .93:4%/

CASSCF(8,9) 5292 a �345:841 151 .100:0%/

MP2 �346:957 966

a Without taking symmetry into account. There are 64 symmetry-unique

non-orthogonal CSFs (VB structures) and 2676 A symmetry CSFs in the

1 1A SCGVB(8,9) and CASSCF(8,9) wavefunctions, respectively.
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Table 2. Overlap integrals h �j �i between the SC orbitals from the SCGVB(8,9)/aug-cc-pVDZ

wavefunction for C9HC9 . Positive and negative overlap integrals between neighboring SC orbitals high-

lighted in blue and red, respectively.

 1  2  3  4  5  6  7  8  9

 1 1:000 0:332 �0:429 �0:338 0:066 0:300 0:300 0:044 �0:495

 2 1:000 0:413 �0:202 �0:085 0:074 �0:006 0:029 0:044

 3 1:000 0:419 �0:077 �0:233 �0:186 �0:006 0:300

 4 1:000 0:404 �0:331 �0:233 0:074 0:300

 5 1:000 0:404 �0:077 �0:085 0:066

 6 1:000 0:419 �0:202 �0:338

 7 1:000 0:413 �0:429

 8 1:000 0:332

 9 1:000
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Figure 1. Conventional (Hückel) 12-annulene (a) and Möbius 12-annulene (b). Note the phase change

between the two leftmost 2p orbitals in (b).
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Figure 2. HMO secular determinants and orbital energy expressions for Hückel and Möbius n-

annulenes.
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Figure 3. Center: MP2/aug-cc-pVTZ optimized C2 geometry of the 1 1A electronic ground state of

C9HC9 with carbon-carbon bond lengths, B3LYP/6-311+G(d,p) bond lengths [20] in brackets, all in Å. SC

orbitals  1– 9 from the SCGVB(8,9)/aug-cc-pVTZ wavefunction (a) and Foster-Boys localized active

space orbitals from the CASSCF(8,9)/aug-cc-pVTZ wavefunction (b) as isovalue surfaces at  � D

˙0:1. SC orbital  5 (c) and corresponding Foster-Boys localized active space orbital (d) as isovalue

surfaces at  � D ˙0:03.
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Figure 4. 16 VB structures with highest weights included in the SCGVB(8,9) wavefunction for C9HC9 ,

shown as 8 symmetry-related pairs. The numbers correspond to the numbering of the SC orbitals in

Figure 3(a); a double line denotes singlet pairing of the spins of the respective orbitals. Chirgwin-

Coulson weights and Gallup-Norbeck weights (in brackets) in %. For further details, see text.
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Does the Electronic Structure of Möbius Annulenes Follow Heilbronner’s Ideas?

Was Heilbronner right? In 1964 Heilbronner came up with the idea of a congugated cycle twisted

in a Möbius ring and described it using simple Hückel molecular orbitals. Advanced spin-coupled

generalized valence bond (SCGVB) calculations on C9HC9 provide a surprisingly clear vindication of

this intuitive and very useful concept, showing a set of overlapping single-electron orbitals with a single

negative overlap (see picture).
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