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Introduction

0.1. Statement of the main result. The symbol P stands for the complex
projective space PM+1, M > 4. Hypersurfaces of degree M in P are parametrized
by the points of the projective space

F = P(H0(P,OP(M))).

Let V ⊂ P be a hypersurface of degree M . If it is irreducible, reduced, factorial and
has at most terminal singularities, then V is a Fano variety of index two:

PicV = ClV = ZH, KV = −2H,

where H is the class of hyperplane section. If P ⊂ P is a linear subspace of codimen-
sion 2, then restricting to the hypersurface V the linear projection αP :P 99K P1 from
the subspace P , we define on V a structure of a Fano-Mori fibre space πP :V 99K P1.
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Let λ:Y → S be a rationally connected fibre space, that is, a surjective morphism
of projective varieties, dimS > 1, where the fibre of general position λ−1(s), s ∈ S,
and the base S are rationally connected.

Here is the main result of the present paper.

Theorem 1. For M > 16 there is a Zariski open subset U ⊂ F , such that:

(i) every hypersurface V ∈ U is irreducible, reduced, factorial and has at most
terminal singularities;

(ii) the inequality

codim((F \ U) ⊂ F) >
1

2
(M − 11)(M − 10)− 10

holds,

(iii) for every V ∈ U and every birational map χ:V → Y onto the total space
of the rationally connected fibre space λ:Y → S over a positive-dimensional base S
we have S = P1 and for some isomorphism β:P1 → S and some subspace P ⊂ P of
codimension 2 the equality

λ ◦ χ = β ◦ πP ,

holds, that is, the following diagram commutes:

V
χ
99K Y

πP ↓ ↓ λ
P1 β→ S,

(iv) every birational map χ:V 99K V ′ from V ∈ U to a Fano variety V ′ with
Q-factorial terminal singularities and Picard number one is an isomorphism.

For a Zariski general smooth hypersurface V ⊂ P the claim (iii) of Theorem 1
was shown for M > 16 in [1]. Hypersurfaces with at least one singular point form a
divisor in the space F . Thus in the present paper we essentially improve the main
result of [1]: we extend it to hypersurfaces with bounded singularities and give an
effective estimate for the codimension of the complement to the set U of “correct”
hypersurfaces (which grows as 1

2
M2 when the dimension M grows).

Theorem 1 immediately implies the standard set of facts about birational geom-
etry of the variety V ∈ U .

Corollary 1. For every hypersurface V ∈ U the following claims are true.

(i) On the variety V there are no structures of a rationally connected fibre space
(and therefore, of a Fano-Mori fibre space) over a base of dimension > 2. In par-
ticular, on V there are no structures of a conic bundle and del Pezzo fibrations, and
the variety V itself is non-rational.

(ii) Assume that there is a birational map χ:V 99K V ′ onto the total space of a
Mori fibre space π′:V ′ → S ′, which is not an isomorphism. Then S ′ = P1 and for
some subspace P ⊂ P of codimension 2 the birational map χ−1:V ′ 99K V is the blow
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up of the subvariety V ∩P (in particular, χ−1 is regular), and for some isomorphism
β:P1 → S the following equality holds:

πP ◦ χ−1 = β−1 ◦ π′.

(iii) The groups of biregular and birational automorphisms of the variety V are
equal: BirV = AutV .

Proof of the corollary. The claim (i) follows from the part (iii) of Theorem
1, the claim (iii) follows from the part (iv) of Theorem 1. Let us consider the claim
(ii).

Since χ by assumption is not an isomorphism, the part (iv) of Theorem 1 shows
that the base S ′ is non-trivial, now by the part (iii) of Theorem 1 we conclude that
S ′ = P1 and for some (uniquely determined) subspace P ⊂ P of codimension 2 the
birational map χ transforms the fibres of the projection πP into the fibres of the
projection π′. The fact that V ′ is isomorphic to the blow up of V along V ∩ P ,
so that the projection π′ is identical to the regularization of the projection πP , is
proved in §1 (Subsection 1.4), where we introduce the notations that are needed for
that proof. Q.E.D. for the corollary.

0.2. The regularity conditions. Now we give an explicit description of the
open set Freg ⊂ F , consisting of hypersurfaces, satisfying the regularity conditions,
stated below. We will show that for U = Freg all statements of Theorem 1 are true.

Let o ∈ P be an arbitrary point, (z1, . . . , zM+1) = (z∗) a system of affine coor-
dinates with the origin at the point o and V 3 o a hypersurface of degree M . It is
defined by an equation f = 0, where

f = q1 + q2 + · · ·+ qM

is a non-homogeneous polynomial in the variables z∗, decomposed into homogeneous
components qi of degree i > 1. The regularity conditions depend on whether the
point o ∈ V is singular or non-singular, that is, whether q1 ≡ 0 or q1 6≡ 0.

First, we state the regularity conditions for a non-singular point.

(R1.1) For every linear subspace Π ⊂ CM+1 of the standard coordinate space
with the coordinates z∗, of codimension codim Π = c ∈ {0, 1, 2, 3} and such that
q1|Π 6≡ 0 (that is, Π 6⊂ ToV ), the sequence

q1|Π, q2|Π, . . . , qM−c|Π

is regular in the local ring Oo,Π, that is, the system of equations

q1|Π, = q2|Π, = . . . , = qM−c|Π = 0

defines a finite set of lines through the point o (and in the projective space P(Π) a
finite set of points).

(R1.2) The rank of the quadratic form

q2|{q1=0} = q2|ToV
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is at least 11.

(R1.3) For every linear subspace Λ ⊂ ToV of codimension 2 the system of equa-
tions

q2|Λ = q3|Λ = 0

defines an irreducible reduced closed set of codimension 2 in Λ.

Now let us consider the regularity conditions for a singular point, that is to
say, we assume that q1 ≡ 0.

(R2.1) For every linear subspace Π ⊂ CM+1 of codimension c ∈ {1, 2, 3} the
sequence

q2|Π, q3|Π, . . . , qM+1−c|Π
is regular in Oo,Π, that is, the system of equations

q2|Π, = q3|Π, = . . . , = qM+1−c|Π = 0

defines a finite set of lines through the point o.

(R2.2) The rank of the quadratic form q2 is at least 13.

(R2.3) For every linear subspace Π ⊂ CM+1 of codimension 2 the closed set

{q2|P(Π) = q3|P(Π) = 0}

in the projective space P(Π) ∼= PM−2 is irreducible, reduced factorial complete in-
tersection of type 2 · 3.

Definition 1. We say that the hypersurface V ∈ F is regular, if at every non-
singular point o ∈ V it is regular in the sense of the conditions (R1.1-3), and in
every singular point o ∈ V it is regular in the sense of the conditions (R2.1-3).

The set of regular hypersurfaces is denoted by the symbol Freg. Obviously,
Freg ⊂ F is a Zariski open subset.

The condition (R2.2) implies that the codimension of the singular set Sing V of
a regular hypersurface V is at least 12, so that V is irreducible, reduced and by
the well known theorem of Grothendieck [2], factorial. The same condition (R2.2)
implies that the singularities of a regular hypersurface V are terminal (see [3] and
also [4]; in the latter paper at the end of Subsection 2.1 it is explained that quadratic
singularities, the rank of which is bounded from below, are stable with respect to
blow ups, which, in its turn, makes it very easy to see the property of being terminal).
Therefore, for a regular hypersurface V the claim (i) of Theorem 1 is true. By what
was said, Theorem 1 is implied by the following two facts.

Theorem 2. The open set U = Freg satisfies the claim (ii) of Theorem 1.

Theorem 3. Every regular hypersurface V ∈ Freg satisfies the claims (iii) and
(iv) of Theorem 1.

0.3. The method of maximal singularities. For an arbitrary subspace
P ⊂ P of codimension 2 by the symbol |H − P | we denote the pencil of divisors
cut out on V by the pencil of hyperplanes containing P . For a better clarity of the
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exposition and in order to simplify the notations, we will prove that for any regular
hypersurface V ∈ Freg the claim (iii) of Theorem 1 is true (this is the strongest
fact, shown in the present paper). In §1 (Subsection 1.4) we show that the same
arguments give the claim (iv) of Theorem 1, too.

This said, in the notations of the part (iii) of Theorem 1 let ΣY be the λ-pull
back of some very ample linear system on the base S, and Σ its strict transform on V
with respect to χ. The linear system Σ is mobile (that is, has no fixed components)
and we may assume that for some n > 1

Σ ⊂ |2nH|

(replacing, if necessary, the very ample system on the base S by its symmetric
square). This whole set of geometric objects: the hypersurface V ∈ Freg, the ratio-
nally connected fibre space λ:Y → S, the birational map χ, the linear systems ΣY

on Y and Σ on V , and therefore, the number n > 1, is assumed to be fixed.

It is well known (see, for instance, [5, Chapter 2, Section 1], and also Subsection
1.1 of the present paper), that the mobile linear system Σ has a maximal singularity:
for some exceptional divisor E∗ over V the Noether-Fano inequality holds:

ordE∗ Σ > n · a(E∗), (1)

where a(E∗) is the discrepancy of E∗ with respect to the model V . In a different
way this can be expressed as follows: the pair (V, 1

n
D) is not canonical for a general

divisor D ∈ Σ or, even simpler, the pair (V, 1
n
Σ) is not canonical.

There are mobile linear systems with a maximal singularity on V . For in-
stance, let EP be the exceptional divisor of the blow up of the subvariety V ∩ P
of codimension 2 on V , where P ⊂ P is a linear subspace of codimension 2. Obvi-
ously, a(EP ) = 1, so that the “double pencil” |H − P |, that is, the linear system
|2H − 2P | ⊂ |2H|, has EP as a maximal singularity, since

ordEP
|2H − 2P | = 2.

Theorem 3 essentially means that any linear system Σ with a maximal singularity
is composed of a pencil |H−P |. The proof of Theorem 3 consists of two main steps.

Theorem 4. Assume that for a certain linear subspace P ⊂ P of codimension 2
the inequality

multP∩V Σ > n (2)

holds. Then Σ is composed of the pencil |H − P |, that is, every divisor D ∈ Σ is a
sum of 2n hyperplane sections from that pencil.

Theorem 5. For a linear system Σ with a maximal singularity there is a linear
subspace P ⊂ P of codimension 2 satisfying the inequality (2).

The first (and main) part of Theorem 3 obviously follows from Theorems 4 and
5. In Subsection 1.4 we will explain how to obtain the second part of Theorem 3
(that is, the claim (iv) of Theorem 1 for V ∈ Freg) from Theorem 5 and the proof of
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Theorem 4 (this is quite easy). It is the proof of Theorem 5 that is most difficult.
Proof of Theorem 2 is not hard.

0.4. The structure of the paper. In §1 we show Theorem 4. The following
fact is crucial in the proof of Theorem 4: the global log canonical threshold of every
hyperplane section of the hypersurface V is equal to 1. The equality lct(F ) = 1
for Fano hypersurfaces F ⊂ PM of degree M , satisfying certain restrictions for the
singularities and the regularity conditions at non-singular and singular points, has
been recently proven in [4], so that in this paper we just check that every hyperplane
section of the hypersurface V satisfies the requirements of [4]. Concluding that
section, we show that the claim (iv) of Theorem1 (Subsection 1.4) and the claim (ii)
of Corollary 1 (Subsection 1.5) hold for a regular hypersurface V .

In §2 we prove Theorem 2. For each of the regularity conditions we estimate
the codimension of the set of hypersurfaces which do not satisfy that condition at
at least one point. After that, by means of the technique of hypertangent divisors
we prove certain estimates, bounding the multiplicities of irreducible subvarieties of
the hypersurface V at singular points o ∈ Sing V from below. Those estimates will
be needed later.

In §3 we start the proof of Theorem 5. Following the traditional scheme of
arguments of the method of maximal singularities, we assume that there is no linear
subspace P ⊂ P of codimension 2, satisfying the inequality (2). We have to show
that under this assumption the linear system Σ has no maximal singularities at all:
this contradiction proves Theorem 5. In Subsection 3.1 we prove that the centre
B∗ of the maximal singularity E∗ is contained in the singular locus Sing V of the
hypersurface V . In order to do this, it is sufficient to check that if B 6⊂ Sing V , then
the maximal singularity E∗ is excluded by the arguments of [1].

In Subsection 3.2 for a point o ∈ B of general position (which by what we have
already proven is a quadratic singularity of the hypersurface V ) we prove that there
is, generally speaking, another singularity E of the linear system Σ, satisfying a
Noether-Fano type inequality, which is weaker than (1), but still strong enough for
our purposes. We do it by means of the inversion of adjunction [6] similar to the
arguments of [1, Subsection 4.2]. Finally, in Subsection 3.3 we recall the improved
version of the technique of counting multiplicities for a complete intersection singu-
larity [7].

In §4 we prove certain technical statements about the secant variety of a sub-
variety of small codimension on a quadratic hypersurface of sufficiently high rank;
those technical facts are used in §5 for exclusion of the singularity E.

§5 is the central part of the proof of Theorem 5. Depending on the type of the
singularity E (the types are defined in Subsection 3.2), it is excluded by different
methods. In accordance with the traditional scheme of the method of maximal
singularities (see [5, Chapter 2]), we consider the self-intersection Z = (D1 ◦ D2)
of the mobile linear system Σ and prove that the existence of the singularity E
imposes so strong restrictions on the singularities of the self-intersection Z, which
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can not be satisfied for an effective cycle of codimension 2 on V . Thus we prove that
the mobile linear system Σ can not have the singularity E, and therefore can not
have the maximal singularity E∗, either. This contradiction completes the proof of
Theorem 5 (and the main Theorem 1).

0.5. Historical remarks and acknowledgements. The few attempts to
study birational geometry of higher-dimensional Fano varieties of index higher than
1 are listed in the introduction to [1], see also the introduction to [4]. Here we note
that, starting from the paper [3], the results about birational rigidity of particu-
lar classes of Fano varieties become effective in the sense that an explicit effective
estimate for the codimension of the subset of non-rigid varieties in the natural pa-
rameter space of the given family is produced. Those results (see [9, 10]) are very
important because they open the way for the study of the problem of birational
rigidity for Fano fibre spaces over a base of high (ideally — arbitrary) dimension,
the fibres of which belong to a given family of Fano varieties. The first breakthrough
in that direction is the paper [4]. In the present paper the result of [1] is extended
to singular Fano hypersurfaces of index 2 and becomes effective in the sense de-
scribed above: we give an explicit effective estimate of the set of hypersurfaces, the
birational geometry of which does not satisfy the property (iii) of Theorem 1.

Recently quite a few papers were produced, proving the stable non-rationality of
various classes of Fano varieties and Fano-Mori fibre space, see, for instance, [11-19]
(the list is by no means complete). The importance of those results, obtained by
completely different methods (compared to the method of maximal singularities),
can not be overestimated. Note, however, that the stable non-rationality is shown
for a very general variety in the family. The method of maximal singularities gives
birational rigidity (or an explicit exhaustive description of birational geometry like
what is done in this paper) for a Zariski general variety, together with an effective
estimate for the codimension of the complement in the parameter space.

Note also the recent paper on the birational rigidity of singular Fano three-folds
[20], the recently published paper [25] and the papers [22, 21] on the groups of
birational automorphisms.

The author thanks The Leverhulme Trust for the financial support of the present
project (Research Project Grant RPG-2016-279).

The author is also grateful to the members of the Divisions of Algebraic Geometry
and Algebra of Steklov Mathematical Institute for the interest to this work and also
to the colleagues – algebraic geometers at the University of Liverpool for the general
support.

Finally, the author thanks the referee for their work on the paper and the helpful
remark about the statement of the main result.
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1 The pencils of hyperplane section

and the regularity conditions

In the section we prove Theorem 4. As the first step of the proof, we consider the new
model of the hypersurface V , which is obtained by blowing up the subvariety V ∩P
(Subsection 1.1). After that we get the alternative: either the claim of Theorem 4
is satisfied, or the strict transform of the linear system Σ on the new model again
has a maximal singularity (Subsection 1.2). Finally, in Subsection 1.3 we show that
the results of [4] imply that the second case does not realize, because the global log
canonical threshold of every hyperplane section of the hypersurface V is equal to 1.
This completes the proof of Theorem 4.

1.1. The structure of a Fano fibre space. Let us prove Theorem 4. Set
B = P ∩ V . Let ϕ:V + → V be the blow up of the subvariety B. Denote by the
symbol EB the exceptional divisor of this blow up. The variety V + can be seen as
the strict transform of the hypersurface V with respect to the blow up ϕP:P+ → P
of the linear subspace P , so that EB = V + ∩ EP , where EP = ϕ−1(P ). The linear
projection P 99K P1 from the subspace P extends to a PM -bundle πP:P+ → P1. Set
π = πP|V + :V + → P1.

Proposition 1.1. (i) The variety V + and every fibre Ft = π−1(t), t ∈ P1, are
factorial and have at most terminal singularities. Every fibre Ft, t ∈ P1, is a Fano
variety.

(ii) The equalities

PicV + = ZH ⊕ ZEB = ZK+ ⊕ ZF

hold, where H = ϕ∗H for simplicity of notations, K+ = KV + is the canonical class
of the variety V +, F is the class of the fibre of the projection π and

K+ = −2H + EB, F = H − EB.

Proof. The fibres of the projection πP are isomorphic to hyperplanes (containing
the subspace P ) in P, so that the fibres Ft are isomorphic to the corresponding
hyperplane sections of the hypersurface V , that is, to hypersurfaces of degree M
in PM . The conditions (R1.2) and (R2.2) imply that every hypersurface Ft ⊂ PM ,
t ∈ P1, gas at most quadratic singularities of rank at least 11. Therefore, the variety
V + also has at most quadratic singularities of rank > 11. The claim (i) follows from
here. The claim (ii) is checked by obvious computations. Q.E.D. for the proposition.

Now let us consider the strict transform Σ+ of the linear system Σ on V +. This
is a mobile linear system, and for some m ∈ Z+ and l ∈ Z we have the inclusion

Σ+ ⊂ | −mK+ + lF |.

The formulas of part (ii) of Proposition 1.1 imply that m = 2n − multB Σ and
l = 2(multB Σ − n) > 2. If m = 0, then the linear system Σ+ is composed of the
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pencil |F |, so that the system Σ is composed of the pencil |H − P |, as Theorem 4
claims. Therefore let us assume that m > 1, and show that this assumption leads
to a contradiction.

1.2. Maximal singularities of the system Σ+. The following claim is true.

Proposition 1.2. The linear system Σ+ has a maximal singularity: for some
exceptional divisor E+ over V + the Noether-Fano inequality

ordE+ Σ+ > m · a(E+, V +)

holds, that is, for a general divisor D+ ∈ Σ+ the pair (V +, 1
m
D+) is not canonical.

Proof. This is a particular case of a general well known fact, see [5, Chapter
2, Section 1]. For the convenience of the reader we give a sketch of a proof. Let

ψ: Ṽ → V + be the resolution of singularities of the birational map χ ◦ϕ:V + 99K Y ,
and Σ̃ the strict transform of the linear system Σ+ on Ṽ . Furthermore, let E be the
set of all prime exceptional divisors of the resolution Ṽ → V +. Recall that Σ̃ is the
pull back of the free linear system ΣY on Ṽ . Since divisors of the system ΣY by
assumption are pulled back from the base S, and the general fibre of the projection
λ:Y → S is rationally connected, for a general divisor D̃ ∈ Σ̃ the class

D̃ +mK̃

is not pseudoeffective (K̃ = KṼ for the brevity of writing). However,

D̃ ∼ −mK+ + lF −
∑
E∈E

(ordE Σ+)E

and
K̃ ∼ K+ +

∑
E∈E

a(E, V +)E

(for simplicity of notations the pull back of a divisor is denoted by the same symbol
as the divisor itself), so that

D̃ +mK̃ ∼ lF +
∑
E∈E

(ma(E, V +)− ordE Σ+)E.

We conclude that in the right hand side for at least one E the corresponding coeffi-
cient is negative. Q.E.D. for the proposition.

Remark 1.1. In a similar way one proves that the original linear system Σ has
a maximal singularity, see Subsection 0.3.

Let R ⊂ V + be the centre of the maximal singularity E+ on V +, so that
codim(R ⊂ V +) > 2. There are two options:

• R covers the base P1: π(R) = P1,

• π(R) is a point on P1.
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Assume that the first option takes place. Restricting the linear system Σ+ onto
the fibre Ft of general position, we obtain a mobile linear system Σt ⊂ |mHt|,
where Ht is the class of a hyperplane section of Ft ⊂ PM , and moreover, the pair
(Ft,

1
m

Σt) is not canonical (that is, Σt has a maximal singularity). In [3] it was
shown that this is impossible (under the weaker assumptions about the singularities
of the hypersurface Ft ⊂ PM and for weaker, than in the present paper, regularity
conditions at every point). Therefore we may assume that the second option takes
place: R ⊂ Ft for some t ∈ P1. Somewhat abusing the notations, we write F
instead of Ft. Since the linear system Σ+ is mobile, it can be restricted onto F and
by inversion of adjunction [6, Section 17.4] obtain an effective divisor DF ∼ mHF ,
such that the pair (F, 1

m
DF ) is not log canonical. However, this contradicts to the

following fact.

Proposition 1.3. For every divisor ∆ ∈ |mHF | the pair (F, 1
m

∆) is log canon-
ical.

Proof is given below in Subsection 1.3.

The contradiction obtained above shows that the case m > 1 is impossible. Proof
of Theorem 4 is complete. Q.E.D.

1.3. The global log canonical threshold of a fiber. The claim of Propo-
sition 1.3 is shown in [4, Theorem 1.4] under the assumption that the hypersurface
F ⊂ PM satisfies certain regularity conditions at every point o ∈ F (the conditions
of the same type that the conditions (Rα.β) of the present paper). Therefore, in
order to prove Proposition 1.3, it is sufficient to compare the conditions used in [4]
with the conditions in Subsection 0.2 of the present paper and make sure that the
latter are not weaker. In order to make the reading more convenient, we reproduce
the regularity conditions from [4] below. To avoid any misunderstanding, the condi-
tion which in [4] has number (Rα.β) (for instance, (R2.1)), will be denoted by (R∗

α.β).

So let F ⊂ PM be a hypersurface of degree M , o ∈ F an arbitrary point,
(u1, . . . , uM) a system of affine coordinates with the origin at the point o and

w = q∗1 + q∗2 + q∗3 + · · ·+ q∗M

the affine equation of the hypersurface F with respect to that system of coordinates,
decomposed into homogeneous components. Here is the list of conditions, which
should be satisfied for the hypersurface F in [4]. Let us first consider a non-singular
point o ∈ F .

(R∗ 1.1) The sequence q∗1, . . . , q
∗
M−1 is regular in Oo,PM .

This condition is satisfied because it is a particular case of the condition (R1.1)
(for c = 1).

(R∗ 1.2) The quadratic form q∗2|{q∗1=0} is of rank > 6 and the linear span of every
irreducible component of the closed set

{q∗1 = q∗2 = q∗3 = 0} (3)
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is the hyperplane {q∗1 = 0}.
The first part of this condition follows from (R1.2) (the rank of the quadratic form

q∗2|{q∗1=0} turns out to be at least 9), and the second part follows from (R1.3), since
by the condition (R1.3) the closed set (3) is irreducible, reduced and of codimension
2 in the hyperplane {q∗1 = 0}, that is, forms an irreducible and reduced complete
intersection of type 2 · 3.

(R∗ 1.3) For every hyperplane P ⊂ PM , P 3 o, P 6= ToF , the algebraic cycle of
the scheme-theoretic intersection

(P ◦ {q∗1 = 0} ◦ {q∗2 = 0} ◦ F )

is irreducible and reduced.

This condition holds in our case: a section of F by two hyperplanes is a section
of V by three hyperplanes, and therefore it has at most quadratic singularities of
rank > 7 and for that reason, (P ◦ {q∗1 = 0} ◦ F ) is a factorial hypersurface in the
projective space P ∩ {q∗1 = 0}. The restriction of the quadratic form q∗2 (that is, the
restriction of q2) onto this projective space is of rank > 7. Therefore, the condition
(R∗ 1.3) holds.

Now let us consider a singular point o ∈ F . q∗1 ≡ 0, so that the equation w
starts with q∗2.

(R∗ 2.1) For every linear subspace Π] ⊂ CM of codimension c ∈ {0, 1, 2} the
sequence

q∗2|Π]
, . . . , q∗M−c|Π]

is regular in the ring Oo,Π]
.

If the singularity o ∈ F comes from a singularity of the original hypersurface
V , then the condition (R∗ 2.1) follows from the condition (R2.1). If the singularity
o ∈ F comes from a non-singular point of the hypersurface V (that is, F is a section
of V by the hyperplane which is tangent to V at this point), then (R∗ 2.1) follows
from (R1.1). In any case the condition (R∗ 2.1) holds.

(R∗ 2.2) The quadratic form q∗2 is of rank at least 8.

In our case this rank is at least 11.

(R∗ 2.3) Considering (u1, . . . , uM) as homogeneous coordinates (u1 : · · · : uM) on
PM−1, and the quadric hypersurface {q∗2 = 0} ⊂ PM−1, let us construct the divisor
{q∗3|{q∗2=0} = 0}. This divisor should not be a sum of three (not necessarily distinct)
hyperplane sections of this quadric, taken from one linear pencil.

This condition follows from (R1.3), if the point o ∈ F comes from a non-singular
point of the hypersurface V , and from (R2.3), if o ∈ F comes from a singular point
of V .

Thus we have checked that every hyperplane section of V satisfies the regularity
conditions of the paper [4]. Therefore, the global log canonical threshold of every
fibre F of the fibre space π:V + → P1 is equal to 1. The proof of Proposition 1.3 is
complete.
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1.4. Birational maps onto Fano varieties. Let us show that for a regular
hypersurface V ∈ Freg the claim (iv) of Theorem 1 holds. This refines the “rough”
birational fact about the structures of rationally connected fibre spaces on the variety
V , claimed by part (iii) of Theorem 1 (instead of the rationally connected fibre space
Y/S we could consider a fibre space, the general fibre of which has the negative
Kodaira dimension: the claim (iii) of Theorem 1 remains true and the proof works
word for word).

So let χ:V 99K V ′ be a birational map onto a Fano variety V ′ with Q-factorial
terminal singularities and Picard number one. Take a complete very ample pluri-
anticanonical system |−m′KV ′ | on V ′, m′ � 1 is high enough. Let Σ ⊂ |−nKV | be
its strict transform on V (multiplying m′ by 2, if necessary, in order for the number
n to be an integer). We get the alternative:

• either n 6 m′,

• or n > m′.

In the first case the standard arguments (for example, repeating word for word the
proof of Proposition 1.6 in [5, Chapter 2]) give the required fact: the map χ is an
isomorphism. So let us assume that the second case takes place. Now we conclude
that the linear system Σ has a maximal singularity and for that reason by Theorem
5 for some linear subspace P ⊂ P of codimension 2 the inequality (2) holds.

Note that we can not simply give a reference to Theorem 4 and obtain a contra-
diction, completing the proof of part (iv) of Theorem 1, because the linear system
Σ in the case under consideration was constructed in a different way. However, we
can argue in the word for word the same way as in Subsection 1.1 and consider the
strict transform Σ+ ⊂ | −mK+ + lF | of the system Σ on V + (where l ∈ Z+). By
construction, the system Σ can not be composed from a pencil, therefore m > 1.
Again we get the alternative:

• either m 6 m′,

• or m > m′.

In the second case the proof of Proposition 1.2 works almost word for word: the class
D̃+mK̃ is not pseudoeffective, if m > m′; no more changes are required. Therefore,
the linear system Σ+ has a maximal singularity. Now we obtain a contradiction in
the word for word the same way as in Subsection 1.2, using Proposition 1.3. This
excludes the case m > m′.

Therefore, m 6 m′. Now we argue again as in the proof of Proposition 1.6 in
[5, Chapter 2]. Since the arguments are not absolutely identical to the arguments
given in [5, Chapter 2, Section 1.2], we perform a detailed proof.

Let χ+:V + 99K V ′ be the corresponding birational map, ψ: Ṽ → V + its resolu-
tion of singularities, E the set of prime ψ-exceptional divisors. The map χ+◦ψ: Ṽ →
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V ′ is a birational morphism. By the symbol E ′ we denote the set of prime χ+ ◦ ψ-
exceptional divisors. Since ρ(V ′) = 1, we get

|E ′| = |E|+ 1. (4)

Furthermore, denoting by the symbol K̃ the canonical class KṼ and by the symbol
K ′ the canonical class KV ′ , we get

K̃ = K+ +
∑
E∈E

a(E, V +)E = K ′ +
∑
E′∈E ′

a(E ′, V ′)E ′. (5)

For simplicity we write aE for a(E, V +) and a(E ′) for a(E ′, V ′). By the construction
of the linear system Σ, we get

−m′K ′ = −mK+ + lF −
∑
E∈E

bEE,

where bE = ordE Σ+. By the arguments of Subsections 1.2, 1.3, the linear system
Σ+ has no maximal singularities, so that bE 6 maE for all E ∈ E .

Now arguing as in the proof of Proposition 1.6 in [5, Chapter 2, Section 1], after
easy transformations we get:(

1− m

m′

)
K+ +

l

m′
F =

∑
E∈E

(
bE
m′
− aE

)
E +

∑
E′∈E ′

a(E ′)E ′. (6)

Restricting this equality onto the strict transform F̃t of a fibre of general position, we
conclude that m = m′, since −K+|Ft is ample, the discrepancies a(E ′) are positive

and the divisors E|F̃t
, E ∈ E , are exceptional for the birational morphism F̃t → Ft.

Therefore, (6) implies the following equality of effective divisors:

l

m′
F +

∑
E∈E

(
aE −

bE
m′

)
E =

∑
E′∈E ′

a(E ′)E ′.

In the right hand side we see a χ+◦ψ-exceptional divisor, which can not be mobile, so
that l = 0 and all divisors E ′ ∈ E ′ are ψ-exceptional, which implies that |E ′| 6 |E|,
which in its turn contradicts the equality (4). We obtained a contradiction that
excludes the case n > m′ and completes the proof of the claim (iv) of Theorem 1.

1.5. Birational maps onto Mori fibre spaces. Let us show that for a
regular hypersurface V ∈ Freg the claim (ii) of Corollary 1 holds. Our arguments
are very close to the arguments of the previous subsection, and we use the notations
introduced there again.

So let π′:V ′ → S ′ be a Mori fibre space and χ:V 99K V ′ a birational map,
which is not an isomorphism. In Subsection 0.1 we started the proof of Corollary
1and established that S ′ = P1. Therefore, in the notations of Subsection 1.1 for a
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subspace P ⊂ P of codimension 2 the map χ extends to a fibre-wise map of Mori
fibre spaces χ+:V + 99K V ′. Let us show that χ+ is an isomorphism.

By the definition of a Mori fibre space,

PicV ′ ⊗Q = QK ′ ⊕QF ′,

where K ′ = KV ′ and F ′ is the class of a fibre of the projection π′. Let ψ: Ṽ → V +

be the resolution of singularities of the map χ+. Since ρ(V +) = ρ(V ′) = 2, in
the notations of Subsection 1.4 we have the equality |E ′| = |E|. Writing down for
simplicity of notations a divisorial class on V + or V ′ by the same symbol as its pull
back on Ṽ , we get the equality

F = F ′.

The equality (5) also holds. Let

Σ′ = | −m′K ′ + l′F ′|

be a very ample linear system on V ′, where l′ � 1, and

Σ ⊂ | −mK+ + lF |

its strict transform on V +; we may assume that l ∈ Z+ (increasing l′, if necessary).
Again we get the alternative:

• either m 6 m′,

• or m > m′.

In the second case the linear system Σ has a maximal singularity, which is impossible,
as we proved in Subsections 1.1-1.3. Therefore, m 6 m′. Writing down

−m′K ′ + l′F ′ = −mK+ + lF −
∑
E∈E

bEE,

where bE 6 maE for all E ∈ E , after easy transformations, similar to those we did
in Subsection 1.4, we get the equality(

1− m

m′

)
K+ +

l − l′

m′
F +

∑
E∈E

(
aE −

bE
m′

)
E =

∑
E′∈E ′

a(E ′)E ′. (7)

Restricting it onto a general fibre Ft, we conclude that m = m′. If l > l′, then the
equality (7) gives a contradiction: in the right hand side we see a linear combination
of χ+ ◦ ψ-exceptional divisors, and in the left hand side an effective divisor with a
non-zero mobile part. But the inequality l < l′ is impossible, either: re-writing (7)
in the form ∑

E∈E

(maE − bE)E = (l − l′)F +
∑
E′∈E ′

a(E ′)E ′,
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we see in the left hand side a linear combination of ψ-exceptional divisors, and in the
right hand side an effective divisor on Ṽ with a non-zero mobile part. Therefore,
l′ = l. We conclude that every divisor E ′ ∈ E ′ is ψ-exceptional, E ′ ⊂ E and,
therefore, E ′ = E , so that χ+:V + 99K V ′ is an isomorphism in codimension1. But
then

Σ = | −mK+ + lF |
is a very ample complete linear system. Therefore, χ+ is a biregular isomorphism.
Q.E.D. for the claim (ii) of Corollary 1.

We emphasize that in the arguments of Subsections 1.4 and 1.5 of key importance
was the description of maximal singularities of the linear system Σ and the non-
existence of maximal singularities for the linear system Σ+.

2 Regular hypersurfaces

In this section we prove Theorem 2 and its immediate geometric implications. In
Subsection 2.1 we consider all regularity conditions but the last one (R2.3). In
Subsection 2.2 we estimate the codimension for the violation of the condition (R2.3),
using a technical fact which is shown in 2.3. This completes the proof of Theorem
2. In Subsection 2.4 we prove geometric facts which follow from the regularity
conditions and will be used in the proof of Theorem 5 in Sections 3-5. For that
purpose in Subsection 2.4 we briefly recall the technique of hypertangent divisors.

2.1. Violations of the regularity conditions. Let us prove Theorem 2.
We need to estimate the number of independent conditions which are imposed on
the hypersurface V (that is, on the coefficients of the polynomial f , defining this
hypersurface) by violation of each of the six regularity conditions. Let us define the
following polynomials of one real variable:

γ1.1(t) = γ2.1(t) = 1
2
(t− 8)(t− 7)− 14,

γ1.2(t) = 1
2
(t− 11)(t− 10)− 10,

γ1.3(t) = 1
2
(t− 2)(t2 − 4t− 27),

γ2.2(t) = 1
2
(t− 11)(t− 10) + 1,

γ2.3(t) = 1
2
(t− 9)(t− 8)− 11.

Let Fα.β ⊂ F be the closed subset of hypersurfaces that do not satisfy the condition
(Rα.β) at at least one point, where α ∈ {1, 2} and β ∈ {1, 2, 3}. The following claim
is true.

Proposition 2.1. The following inequality holds:

codim(Fα.β ⊂ F) > γα.β(M). (8)

It is easy to see that for M > 16 the minimum of the values γα.β(M) is attained
for α = 1, β = 2, which implies Theorem 2.

Proof of Proposition 2.1. Let us consider each of the conditions (Rα.β)
separately.
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The case (α, β) = (1, 1). The inequality (8) for these values of α, β is shown in
[1, Proposition 2.5, Corollary 2.1] (p. 733-735).

The case (α, β) = (1, 2). This is an elementary exercise.

The case (α, β) = (1, 3). The inequality (8) for this case is shown in [1, Section
2.6] (p. 735-736).

The case (α, β) = (2, 1). Exactly the same arguments that prove the inequality
(8) for (α, β) = (1, 1), yield this inequality for (α, β) = (2, 1), either, and the
estimates turn out to be stronger, since the polynomials q2, q3, . . . are restricted
onto the linear space of a higher dimension.

The case (α, β) = (2, 2). This is an elementary exercise.

The only case which is non-trivial and was not considered in the previous papers,
is the case (α, β) = (2, 3). For that case, we give a complete detailed proof. We may
(and will) assume the condition (R2.2) to be satisfied.

For the convenience of our arguments set

γ∗2.3(t) =
1

2
(t− 7)(t− 6) + 1.

Fix a point o and a linear subspace Π ⊂ CM+1 of codimension 2. Let us consider
the closed set F2.3(o,Π) ⊂ F , consisting of hypersurfaces V , such that

• contain the point o,

• are singular at that point,

• do not satisfy the condition (R2.3) at that point for the subspace Π.

Now we reduce the global statement (8) to the corresponding local statement.

Proposition 2.2. The following inequality holds:

codim(F2.3(o,Π) ⊂ F) > γ∗2.3(M).

Taking into account that the point o runs through P, and Π varies in the 2(M−1)-
dimensional Grassmanian, and that the point o lies on V and is a singular point of
that hypersurface, by an elementary dimension count we check that Proposition 2.2
implies the inequality (8) for (α, β) = (2, 3). Q.E.D. for Proposition 2.1.

2.2. Violation of the condition (R2.3). Let us prove Proposition 2.2.
The symbol Pk,Π stands for the space of homogeneous polynomials of degree k
on P(Π) ∼= PM−2. The restrictions of the polynomials q2 and q3 onto P(Π) are
denoted by the symbols q̄2 and q̄3, respectively, and the set of their common zeros
{q̄2 = q̄3 = 0} ⊂ P(Π) by the symbol Z(q̄2, q̄3). It is obvious that the codimension
of the set F2.3(o,Π), which we need to estimate, is equal to the codimension of the
set B ⊂ P2,Π ×P3,Π of pairs (q̄2, q̄3), such that the set Z(q̄2, q̄3) is not an irreducible
reduced factorial complete intersection of type 2 · 3 in P(Π).
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We note at once that the quadratic form q̄2 is by the condition (R2.2) of rank
at least 9, so that the quadric {q̄2 = 0} ⊂ P(Π) is for sure factorial. It is easy to
compute that for a fixed form q̄2 of rank > 9 the set of cubic polynomials q̄3 ∈ P3,Π,
such that the divisor {q̄3|{q̄2=0} = 0} on the quadric {q̄2 = 0} is non-reduced or
reducible has codimension 1

6
M(M + 1)(M − 4) in P3,Π. Since this is much higher

than γ2.3(M), we may (and will) assume that the set Z(q̄2, q̄3) is irreducible, reduced
and of codimension 2 in P(Π). It remains to consider the condition for this set to
be factorial. Let p ∈ Z(q̄2, q̄3) be an arbitrary point and (u1, . . . , uM−2) a system of
affine coordinates on P(Π) with the origin at the point p. Let P(Π)+ → P(Π) be the
blow up of the point p with the exceptional divisor Ep ∼= PM−3, equipped with the
natural homogeneous coordinates (u1 : · · · : uM−2). The affine polynomials in the
(non-homogeneous) variables u∗, corresponding to to the homogeneous polynomials
q̄2, q̄3, we denote, somewhat abusing the notations, by the same symbols q̄2, q̄3. We
get

q̄2 = q̄2,1 + q̄2,2,

q̄3 = q̄3,1 + q̄3,2 + q̄3,3,

where q̄i,j are homogeneous of degree j. We say that the point p is a correct bi-
quadratic point of the set Z(q̄2, q̄3), if q̄2,1 ≡ q̄3,1 ≡ 0, and the closed set

{q̄2,2 = q̄3,2 = 0} ⊂ Ep

is an irreducible reduced complete intersection of codimension 2 in Ep ∼= PM−3, and
moreover,

dim Sing{q̄2,2 = q̄3,2 = 0} 6M − 9.

Let X ⊂ P2,Π × P3,Π be the set of pairs such that Z(q̄2, q̄3) is irreducible, reduced,
of codimension 2 in P(Π), and its every point p ∈ Z(q̄2, q̄3)

• either is non-singular,

• or is a quadratic singularity of rank > 5,

• or is a correct bi-quadratic point.

By Grothendieck’s theorem [2] for the pair (q̄2, q̄3) ∈ X the complete intersection
Z(q̄2, q̄3) is factorial, so that B ∩ X = ∅ and in order to prove Proposition 2.2, it is
sufficient to show that the codimension of the complement to the set X in P2,Π×P3,Π

is at least γ∗2.3(M).

Recall that rk q̄2 > 9, and the complete intersection Z(q̄2, q̄3) is irreducible and
reduced. Fix a point p ∈ Z(q̄2, q̄3). Assume first that at least one of the linear forms
q̄2,1, q̄3,1 is not identically zero, but these forms are linearly dependent. If, moreover,
q̄2,1 ≡ 0, then q̄3,1 6≡ 0 and the point p is a quadratic singularity of rank

rk q̄2,2|{q̄3,1=0} > 9− 4 = 5,
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which is what we need. If q̄2,1 6≡ 0, then there is a unique constant λ, such that
q̄3,1 = λq̄2,1. In that case p is a quadratic singularity of rank

rk(q̄3,2 − λq̄2,2)|{q̄2,1=0}.

If this rank 6 4, then for a fixed polynomial q̄2 we get 1
2
(M−7)(M−6) independent

conditions for the polynomial q̄3. Taking into account that the constant λ varies in a
1-dimensional family, there is the dependence q̄3,1 = λq̄2,1, the point p varies in PM−2

and the polynomials q̄2, q̄3 vanish at that point, we get precisely the codimension
γ∗2.3(M) for the violation of the condition about the rank of quadratic points.

It remains to consider the case q̄2,1 ≡ q̄3,1 ≡ 0 and estimate the codimension for
the violation of the condition about bi-quadratic points. For this purpose we state
and solve the following general problem. Let P2,N+1 be the space of quadratic forms
on PN , where N > 8. Let Y ⊂ P×2

2,N+1 be the set of pairs (g1, g2), such that the
closed set of common zeros

Z(g1, g2) = {g1 = g2 = 0} ⊂ PN

is an irreducible reduced complete intersection of codimension 2, and moreover,

codim(SingZ(g1, g2) ⊂ PN) > 6.

The following fact is true.

Proposition 2.3. The codimension of the complement to Y in P×2
2,N+1 is at least

1
2
(N − 4)(N − 3)− 2.

Let us complete the proof of Proposition 2.2. Setting in Proposition 2.3 N =
M − 3, we get that violation of the condition about bi-quadratic points at the fixed
point p gives the codimension 1

2
(M − 7)(M − 6)− 2. Now the standard dimension

count (taking into account that q̄2,1 ≡ q̄3,1 ≡ 0, and also the conditions p ∈ Z(q̄2, q̄3)
and the variation of the point p) completes the proof of Proposition 2.2.

2.3. Complete intersections of two quadrics. Let us prove Proposition 2.3.
Since the set of quadratic forms of rank 6 4 has codimension 1

2
(N − 3)(N − 2) in

P2,N+1, we may assume that rk gi > 5 for i = 1, 2, so that the quadric {g1 = 0}
is factorial. If the condition of irreducibility and reducedness of the set Z(g1, g2) is
violated, this imposes on g2 a lot more conditions than the required 1

2
(N − 4)(N −

3)− 2. Thus only the condition about the singularities of the set Z(g1, g2) needs to
be considered. We argue as in [9, Section 3.3], somewhat improving the estimate
obtained in that paper. The key observation (used in [9]) is that if p ∈ SingZ(g1, g2),
then for some λ1, λ2 (where (λ1, λ2) 6= (0, 0)) the point p is a singular point of the
quadric {λ1g1 + λ2g2 = 0}. In order to obtain a somewhat more precise, than in
[9], estimate for the codimension of the set of “incorrect” pairs, we have to consider
several cases. For a quadratic polynomial g ∈ P2,N+1 the symbol C(g,6 k) stands
for the cone with the vertex g, the base of which is the set of quadratic forms of
rank 6 k. The vertex can lie on the base: C(g,6 k) is the closure⋃

rkh6k

[g, h],
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where [g, h] = {λg + µh |λ, µ ∈ C}. Obviously,

codim(C(g,6 k) ⊂ P2,N+1) >
1

2
(N − k + 1)(N − k + 2)− 2.

Case 1: rk g1 = 5. We have 1
2
(N − 4)(N − 3) independent conditions for g1.

If for a fixed quadric g1 we have, into the bargain, g2 ∈ C(g1,6 6), this gives in
addition 1

2
(N − 5)(N − 4) − 2 independent conditions for g2, and we get the total

(N − 4)2− 2 independent conditions for the pair (g1, g2), which is much higher than
what we need. Therefore we may assume that g2 6∈ C(g1,6 6).

This implies that in the pencil {λ1g1 +λ2g2 = 0} all quadrics, apart from g1, are
of rank > 7. Therefore, the codimension of the set⋃

(λ1:λ2)6=(1:0)

Sing{λ1g1 + λ2g2 = 0}

in PN is at least 6. On the other hand, Sing{g1 = 0} is a (N − 5)-dimensional
subspace in PN , so that the condition

g2|Sing{g1=0} ≡ 0

gives for g2 the codimension 1
2
(N−4)(N−3) (for a fixed g1), and for the pair (g1, g2)

the codimension (N − 4)(N − 3). Removing this set of high codimension, we may
assume that

g2|Sing{g1=0} 6≡ 0,

but then the set
SingZ(g1, g2) ∩ Sing{g1 = 0}

is of dimension at most N − 6. We get finally that the codimension of the set
SingZ(g1, g2) is at least 6 in PN in the case under consideration (for the pairs
(g1, g2) ∈ P×2

2,N+1, lying outside a closed subset of high codimension).

Case 2: rk g1 = 6. Here we argue word for word as in Case 1. The only
difference is that we get somewhat fewer (1

2
(N − 5)(N − 4)) independent conditions

for g1. Together with the conditions for the form g2 we get the total codimension
of the set of pairs (g1, g2) to be much higher than we need. In this case we do not
need to exclude the option g2|Sing{g1=0} ≡ 0.

Case 3: rk g1 > 7. This is the case of general position for g1, so that no
conditions are imposed on g1. For a fixed form g1 the condition

g2 ∈ C(g1,6 5)

imposes on g2 precisely 1
2
(N − 4)(N − 3) − 2 independent conditions. This is the

estimate that we need. If g2 6∈ C(g1,6 5), then a general quadric in the pencil
{λ1g1 + λ2g2 = 0} is of rank > 7 and at most finitely many quadrics are of rank 6.
This implies that

codim(Sing(g1, g2) ⊂ PN) > 6,
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which is what we need.

Proof of Proposition 2.3 is complete. Q.E.D.

2.4. Hypertangent divisors at a singular point. The technique of hy-
pertangent divisors makes it possible to obtain very strong upper bounds for the
multiplicity of irreducible subvarieties (and thus of effective cycles) of the hypersur-
face V at a given point. For the full details of this technique for various types of
Fano varieties see [5, Chapter 3]. For a non-singular point o ∈ V see [1, Sections 2.5
and 4.1]. Here we briefly consider the case of a singular point o ∈ V and give the
estimates that will be used later.

In the notations of Subsection 0.2, let Π ⊂ CM+1 be a linear subspace of codi-
mension c ∈ {1, 2, 3}, Π ⊂ P its closure and VΠ = V ∩ Π the corresponding section
of the hypersurface V . For an irreducible subvariety Y ⊂ V the symbol

multo
deg

Y

stands for the ratio multo Y /degY , where the degree is understood in the usual sense
as the degree in the projective space P. A similar symbol will be used in the sequel
for an effective equidimensional cycle, either.

Proposition 2.4. For an irreducible subvariety Y ⊂ VΠ of codimension a, where
1 6 a 6M − c− 1, the following inequality holds:

multo
deg

Y 6
a+ 2

M + 1− c
. (9)

Remark 2.1. (i) In the case c = 0, when VΠ = V , the inequality (9) for c = 1
implies the estimate

multo
deg

Y 6
a+ 2

M

for any irreducible subvariety Y ⊂ V of codimension a, where 1 6 a 6M − 2.

(ii) If Y is a curve, that is, a = M − c − 1, then the inequality (9) is trivial:
multo Y 6 deg Y .

Proof of Proposition 2.4. We give a sketch of the arguments, which are
absolutely standard, see [5, Chapter 3]. In the notations of Subsection 0.2 set for
i = 2, . . . ,M − 1

fi = q2 + · · ·+ qi

and for every j = 2, . . . ,M − 1 construct the linear system

Λj =

{(
j∑

α=2

fαsj−α

)∣∣∣∣∣
VΠ

= 0

}
,

where sβ are homogeneous polynomials of degree β > 0 in the variables z∗, which
run through the spaces Pβ,M+1 independently of each other. The linear system Λj
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is called the j-the hypertangent linear system on VΠ at the point o. The regularity
condition (R2.1) implies that for j ∈ {2, 3, . . . ,M − c} the equality

codimo(Bs Λj ⊂ VΠ) = j − 1

holds, where the symbol codimo stands for the codimension in a neighborhood of
the point o. If Y 63 o, then the inequality (9) is trivial. Assume that Y 3 o. In that
case for a general hypertangent divisor Ta+2 ∈ Λa+2 we get:

Y 6⊂ |Ta+2|

(the vertical lines mean the support of the divisor), so that the effective cycle of
the scheme-theoretic intersection (Y ◦ Ta+2) of codimension (a + 1) on VΠ is well
defined. Since Λj ⊂ |jHΠ| (where HΠ is the class of a hyperplane section of VΠ) and
multo Λj > (j + 1), we get

multo
deg

(Y ◦ Ta+2) >
a+ 3

a+ 2
· multo

deg
Y,

whence the inequality (9) is obtained by decreasing induction on a (see Remark 2.1,
(ii)). For the details, see [5, Chapter 3]. Q.E.D. for Proposition 2.4.

The hypertangent system Λ2 is not mobile: it consists of the unique divisor
T2 = {q2|VΠ

= 0}. By the condition (R2.2) and the factoriality of VΠ, this divisor is
irreducible. For that reason, the claim of Proposition 2.4 for divisors can be made
slightly more precise.

Proposition 2.5. Let Y ⊂ VΠ be a prime divisor, and moreover, Y 6= T2. Then
the following inequality holds:

multo
deg

Y 6
8

3(M + 1− c)
. (10)

Proof. Let us apply Proposition 2.4 to the effective cycle of the intersection
(Y ◦ T2) of codimension 2 on VΠ. Q.E.D.

3 Maximal singularities of the system Σ

In this section we begin to study the maximal singularity E∗. First (Subsection 3.1)
we show that the centre B∗ of this singularity is contained in Sing V . In order to do
this, we check that the arguments of [1] exclude a maximal singularity, the centre
of which is not contained in Sing V . After that (Subsection 3.2), using inversion
of adjunction, we derive from the existence of the singularity E∗ the existence of
a, generally speaking, another singularity E of the linear system Σ, the centre of
which is a point o ∈ Sing V , and moreover, E has some good properties (which may
not be satisfied for E∗). Then we classify the types of the singularity E. Finally, in
Subsection 3.3 we recall the technique of counting multiplicities which makes use of
combinatorial invariants of the oriented graph associated with the singularity E.
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3.1. The linear system Σ at non-singular points of the hypersurface
V . Starting from this moment, we assume that the mobile linear system Σ ⊂ |2H|
satisfies the inequality

multP∩V Σ 6 n

for every linear subspace P ⊂ P of codimension 2. On the other hand, the system
Σ has the maximal singularity E∗ (see Subsection 0.3). Theorem 5 will be shown
if we derive a contradiction from this fact. We will do it in several steps, excluding
the possible types of the maximal singularity E∗ one after another. The first step
is given by the following statement.

Proposition 3.1. The centre B∗ of the maximal singularity E∗ on V is con-
tained in the singular locus Sing V .

Proof. Let us assume the converse: B∗ 6⊂ Sing V and show that the arguments
of [1] exclude this option. Let us consider separately the three cases:

Case 1. codim(B∗ ⊂ V ) = 2.

Case 2. codim(B∗ ⊂ V ) ∈ {3, 4, . . . , 9}.
Case 3. codim(B∗ ⊂ V ) > 10.

The maximal singularity is excluded in each of these three cases in a different
way. Note that the inequality multB∗ Σ > n holds.

Assume that Case 1 takes place. In this case B∗ is a maximal subvariety of the
system Σ and, arguing in a word for word the same way as in [1, Section 3.1], we
conclude that 〈B∗〉 = P (since every hyperplane section of the hypersurface V is a
factorial variety). Furthermore, in the notations of [1, Section 3.1] we conclude that
Sec(B∗) = πP(Sec(B∗)) = P, that is, the claim of [1, Proposition 3.1] is true in our
case, either.

Indeed, the proof of that claim, given in [1, Section 3.3], makes use of only one
fact, that B∗ is contained in a non-singular hypersurface, which does not contain
cones over a positive-dimensional base (that is, cones of dimension > 2). In our case
the inequality

codim(Sing V ⊂ V ) > 12

holds, which follows from the regularity condition (R2.2), so that for a general linear
subspace Π ⊂ P of dimension 12 the hypersurface VΠ = V ∩ Π is non-singular and
B∗∩Π is an irreducible subvariety of codimension 2 on VΠ. Furthermore, VΠ does not
contain cones of dimension > 2, because V does not contain any (by the conditions
(R1.1) and (R2.1), there are at most finitely many lines on V through every point
of V ). Therefore, we have Sec(B∗ ∩Π) = Π, which implies that Sec(B∗) = P, as we
claimed.

Now the arguments of [1, Sections 3.1,3.2], excluding a maximal subvariety of
codimension 2 — in our case it is denoted by B∗ — work word for word. The curves
C±, R do not touch the set Sing V for a general point x ∈ P and a general curve Γ,
see [1, Section 3.1] (p. 739-740). Therefore, Case 1 can not take place.
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Assume that Case 2 takes place. Here we argue as in the proof of [1, Lemma 4.1].
Let Z = (D1 ◦D2 be the self-intersection of the linear system Σ, where D1, D2 ∈ Σ
are general divisors. The 4n2-inequality holds:

multB∗ Z > 4n2.

Again let Π be a general linear subspace of dimension 12. Then VΠ = V ∩Π ⊂ Π ∼=
P12 is a non-singular hypersurface and B∩Π an irreducible subvariety, dimB∗∩Π >
2, and the effective cycle ZΠ = (Z◦VΠ) of codimension 2 on VΠ satisfies the inequality

multB∗∩Π ZΠ > 4n2.

However Z ∼ 4n2H2, so that ZΠ ∼ 4n2H2
Π, where HΠ is the class of a hyperplane

section of the hypersurface VΠ. Now as in the proof of [1, Lemma 4.1] the reference
to [23, Proposition 5] gives a contradiction, excluding Case 2.

Assume that Case 3 takes place. Let us check that the arguments of [1, Sections
4-6] exclude this case. Let o ∈ B∗ be a point of general position, in particular,
o 6∈ Sing V . The claims of [1, Propositions 4.1-4.3] are true: they follow from the
regularity condition which is identical to the condition (R1.1). Furthermore, the
8n2-inequality ([1, Proposition 4.4]) is a local fact and for that reason is true in our
case. Indeed, we may assume that B∗ has maximal dimension among all centres
of maximal singularities, containing the point o (since Cases 1 and 2 are already
excluded). Since for a general linear subspace R ⊂ P of dimension 11, containing
the point o, this point is an isolated centre of a non-canonical singularity of the pair
(VR,

1
n
ΣR), where VR = V ∩ R and ΣR = Σ|VR ⊂ |2nHR| is a mobile linear system

(HR means the class of a hyperplane section of the hypersurface VR). Therefore, for
a general linear subspace R1, o ∈ R1 ⊂ R, where 5 6 dimR1 6 10, by inversion of
adjunction the pair

(V ∩R1,
1

n
Σ|R1)

is not log canonical at the point o. This implies the 8n2-inequality (see [5, Chapter
2, Section 4]) and the existence of a hyperplane section P 3 o, such that

• the linear system ΣP = Σ|P ⊂ |2nHP | is mobile, (HP is the class of a hyper-
plane section of the variety P ),

• its self-intersection ZP = (Z ◦ P ) satisfies the inequality multo ZP > 8n2,

see [1, p. 753]. Furthermore, by what was said above, the claim of [1, Proposition
4.5] is true (the proof works word for word) and the subsequent arguments of [1,
Section 4.2], showing the existence of non log canonical singularities of the pairs �
and �∗ (see [1, p. 755]). The remaining part of the paper [1] (starting from Section
4.3 and up to the end) excludes these singularities of the pairs � and �∗, and the
arguments of [1] work word for word, without any modifications, except for the only

23



place: [1, Section 5.4], where formally speaking the regularity condition (R2) is used,
which requires that the rank of the quadratic form

q2|{q1=0}

is at least M − [1
2
(
√

8M + 1 − 1)]. This condition is stronger than the regularity
condition (R1.2) used in this paper. However, that condition (R2) is used in [1,
Section 5.4] only once — in the proof of Corollary 5.1, and it is easy to see from the
proof that the condition (R2) is unnecessarily strong: the inequality

M − 10 > M − rk q2|{q1=0},

which is equivalent to the condition (R1.2) of the present paper, is sufficient. Thus
all arguments of the paper [1], excluding the maximal singularity in Sections 4-6,
work without modifications in our Case 3 and exclude the maximal singularity, the
centre of which is not contained in Sing V . This completes the proof of Proposition
3.1.

3.2. The linear system Σ at singular points of the hypersurface V . Let
us fix a maximal singularity E∗, the centre B∗ of which has the maximal dimension
among all centres of maximal singularities of the linear system Σ. We have B∗ ⊂
Sing V . Let o ∈ B∗ be a point of general position. For a general 13-dimensional
linear subspace Π ⊂ P, where o ∈ Π, the pair

(VΠ,
1

n
ΣΠ),

where VΠ = V ∩ Π and ΣΠ is the restriction of Σ onto VΠ, has the point o as an
isolated centre of a non canonical singularity, that is, this pair is canonical outside
the point o in a neighborhood of that point. By inversion of adjunction for a general
proper subspace Π1 ⊂ Π, containing the point o, the pair

(V ∩ Π1,
1

n
Σ|V ∩Π1)

is not log canonical at the point o, but canonical outside that point in a neighborhood
of that point.

Let ϕP:P+ → P be the blow up of the point o with the exceptional divisor
EP ∼= PM , and ϕ:V + → V the restriction of that blow up onto the hypersurface V .
The exceptional divisor Q = V + ∩EP of the blow up ϕ is by the condition (R2.2) a
quadric hypersurface of rank at least 13, embedded in EP. The symbol HQ stands
for the class of a hyperplane section of Q. Every irreducible subvariety R ⊂ Q of
codimension 6 5 is numerically equivalent to the class

dQ(R)H
codim(R⊂Q)
Q

for some dQ(R) ∈ Z+; by linearity, the integer-valued function dQ(·) extends for all
equidimensional cycles of codimension 6 5.
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Furthermore, let R ⊂ V be an irreducible subvariety of codimension 6 5. We
get the numerical equivalence

R ∼ d(R)Hcodim(R⊂V )

for some d(R) ∈ Z+; again, this integer-valued function extends by linearity to all
equidimensional cycles of this codimension. Let R+ ⊂ V + be the strict transform
of R on V +. Obviously,

R+ ∼ ϕ∗R−m(R)H
codim(R⊂V )−1
Q ,

where H0
Q = Q and

m(R) = dQ(R+ ∩Q)

again extends to equidimensional cycles. For simplicity of notations we will often
omit the pull back symbol: for instance, we write R instead of ϕ∗R. The obvious
equalities hold:

degR = M d(R), multoR = 2 m(R).

For a general divisor D ∈ Σ set
ν = m(D),

that is, D+ ∼ D− νQ. Proposition 2.5 implies the inequality ν 6 8
3
n. Consider the

self-intersection Z = (D1◦D2) of the mobile system Σ. By construction, d(Z) = 4n2.
The singularity o ∈ V satisfies the assumptions of the main theorem of [7], therefore
the inequality

m(Z) > 4n2

holds (which, unfortunately, is insufficient for the exclusion of the maximal singu-
larity).

Let Π ⊂ P be a general 6-dimensional subspace, containing the point o, VΠ =
V ∩Π and ΣΠ = Σ|VΠ

. The symbol HΠ stands for the class of a hyperplane section
of the hypersurface VΠ. Obviously, VΠ has a unique singular point — the non-
degenerate quadratic point o. Let V +

Π be the strict transform of VΠ on V +, that
is,

ϕΠ:V +
Π → VΠ

is the blow up of the point o with the exceptional divisor QΠ = V +
Π ∩ EP, which is

a non-singular 4-dimensional quadric in Π+ ∩ EP ∼= P5. We get

Σ+
Π ⊂ |2nHΠ − νQΠ|.

Since for the discrepancy of the exceptional divisor QΠ we have the equality

a(QΠ, VΠ) = 3

and as we mentioned above, ν 6 3n and the pair (VΠ,
1
n
ΣΠ) is not log canonical at

the point o, we obtain the following fact: the pair

�Π =

(
V +

Π ,
1

n
Σ+

Π +
ν − 3n

n
QΠ

)
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is not log canonical, and moreover, the centre of every non log canonical singularity of
the pair�Π, intersecting the exceptional quadricQΠ, is contained in it. Furthermore,
the pair �Π satisfies the assumptions of the connectedness principle of Shokurov and
Kollár [6, Section 17.4] and for that reason the union LCS(�Π) of all centres of non
log canonical singularities of the pair �Π is a connected closed subset of the quadric
QΠ. We say that Case α takes place, where α ∈ {1, 2, 3, 4}, if

codim(LCS(�Π) ⊂ QΠ) = α,

where if α = 4, then LCS(�Π) is one point. For the original hypersurface V this
means that the pair

� =

(
V +,

1

n
Σ+ +

ν − 3n

n
Q

)
has a non log canonical singularity E (a certain exceptional divisor over V +),
the centre B of which is contained in the exceptional quadric Q, and moreover
codim(B ⊂ Q) = α ∈ {1, 2, 3, 4}, and if α = 4, then B ⊂ EP is a linear subspace of
dimension M − 5.

Proposition 3.2. The case α = 4 is impossible.

Proof. Indeed, the quadric of rank > 13 can not contain a linear subspace of
codimension 4 (the codimension is meant with respect to this quadric). Q.E.D. for
the proposition.

Proposition 3.3. The case α = 1 is impossible.

Proof. Assume the converse: B ⊂ Q is a prime divisor. Arguing in precisely
the same way as in the proof of [1, Proposition 4.6] (which, in its turn, repeats the
arguments in [5, Chapter 2, Section 4.1] and in [24]), and taking into account the
fact that the point o is a double point of the hypersurface V , we obtain the following
inequality for the self-intersection Z:

multo Z > 2ν2 + 2 · 4
(

3− ν

n

)
n2 = 2(ν − 2n)2 + 16n2.

Therefore, since d(Z) = 4n2, the inequality

multo
deg

Z >
4

M

holds, which contradicts the estimate (9) for a = 2, c = 1 (see Remark 2.1 (i)). This
contradiction proves Proposition 3.3. Q.E.D.

So the codimension α can take at most two values: 2 and 3. In order to exclude
these options as well, let us consider one more characteristic of the subvariety B. For
a pair of distinct points p, q ∈ B the symbol [p, q] denotes the line in EP, joining the
points p and q, provided that this line is contained in Q. If this line is not contained
in Q, then set [p, q] = ∅. Now set:

Sec(B ⊂ Q) =
⋃

(p,q)∈B×B\∆B

[p, q],

26



where ∆B ⊂ B ×B is the diagonal. Since B ⊂ Sec(B ⊂ Q), we have

codim(Sec(B ⊂ Q) ⊂ Q) 6 codim(B ⊂ Q).

We say that the case α.β takes place, where α ∈ {2, 3} and 0 6 β 6 α, if codim(B ⊂
Q) = α and

codim(Sec(B ⊂ Q) ⊂ Q) = β.

Proposition 3.4. Let X ⊂ PN be an irreducible subvariety of codimension 2
and N > 3. Then Sec(X) = 〈X〉, that is, one of the three options takes place:

• Sec(X) = PN ,

• X is a hypersurface of degree dX > 2 in some hyperplane in PN ,

• X is a linear subspace of codimension two.

Proof: this is obvious. Q.E.D.

In the case α = 2 we apply Proposition 3.4 to the intersection B ∩ Π, where
Π ⊂ Q is a general linear subspace of maximal dimension. We get the following list
of options. For a proof, see Subsection 4.2.

Case 2.0. Sec(B ⊂ Q) = Q.

Case 2.1. Sec(B ⊂ Q) is a hyperplane section of the quadric Q, on which the
subvariety B is cut out by a hypersurface of degree Sec(B) > 2.

Case 2.2. Sec(B ⊂ Q) = B is a section of the quadric Q by a linear subspace
of codimension 2.

For α = 3 we can claim the following.

Case 3.0. Sec(B ⊂ Q) = Q.

Case 3.1. Sec(B ⊂ Q) is a divisor on the quadric Q.

Case 3.2. Sec(B ⊂ Q) is a section of the quadric Q by a linear subspace of
codimension 2, on which the subvariety B is cut out by a hypersurface of degree
Sec(B) > 2.

Case 3.3. Sec(B ⊂ Q) = B is a section of the quadric Q by a linear subspace
of codimension 3.

In the description of the cases 3.β given above, the only not quite obvious state-
ment is the description of the case 3.2, which is based on an analog of Proposition
3.4 for a subvariety of codimension 3. This analog is stated and proven in Section 4
(the proof is very simple).

Remark 3.1. Let us sum up what has been done so far. Assuming the existence
of a maximal singularity E∗ of the linear system Σ (and the non-existence of maximal
subvarieties of the form P ∩ V , where P ⊂ P is a linear subspace of codimension 2),
we proved the existence of another singularity E of the linear system Σ, the centre
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of which is a double point o ∈ V . This singularity E “looks like a maximal one” in
the sense that it satisfies the Noether-Fano type inequality

ordE Σ > n · (3 ordE Q+ a(E, V +)) (11)

(in the brackets we could have added +1, since the pair � is not log canonical,
but we do not need this). That inequality is weaker than the standard Noether-
Fano inequality, but this is compensated by a high dimension of the centre B of the
singularity E on V +. We will show below that in each of the cases α.β listed above,
the existence of the singularity E leads to a contradiction. Thus, the existence of the
original maximal singularity E∗ leads to a contradiction, either. This will complete
the proof of Theorem 5.

3.3. Resolution of the singularity E. Let us consider the standard procedure
of resolving the singularity E. Let ϕi,i−1:Vi → Vi−1 be the blow up of the centre
Bi−1 of the singularity E on Vi−1, where V0 = V , so that B0 = o and V1 = V +.
The exceptional divisor of the blow up ϕi,i−1 is denoted by the symbol Ei, so that
E1 = Q. The sequence of these blow ups terminates: for some i = K the exceptional
divisor EK is the centre of E on VK , and there is nothing more to blow up. The
varieties Vi have, generally speaking, uncontrollable singularities, however, at the
general point of the subvariety Bi the variety Vi is non-singular for i > 1, and this
is the only property that we need for all computations. For i > j the composition
of blow ups

Vi → Vi−1 → · · · → Vj

is denoted by the symbol ϕi,j. For all details, see [5, Chapter 2, Subsection 1.2].

On the set 1, . . . , K of indices, numbering the exceptional divisors, we introduce
the structure of an oriented graph, setting i→ j, if i > j and the centre of the blow
up Bi−1 is contained in the strict transform Ei−1

j ⊂ Vi−1 of the exceptional divisor
Ej on Vi−1. In particular, we always have (i+ 1)→ i. By the symbol pij we denote
the number of paths in the just constructed oriented graph from the vertex i to the
vertex j, if i 6= j; by definition, pii = 1. For i < j, obviously, pij = 0. In order to
simplify the notations, we write pi instead of pKi. For i = 1, . . . , K we define the
numbers νi ∈ Z+ (the “elementary multiplicities”), taking a general divisor D ∈ Σ
and writing down

Di = ϕ∗i,i−1(Di−1)− νiEi,

where the upper index j denotes, as usual, the operation of taking the strict trans-
form on Vj (see [5]). Now

ordE Σ =
K∑
i=1

piνi

and

ordE Q = p1, a(E, V +) =
K∑
i=2

piδi,
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where δi = codim(Bi−1 ⊂ Vi−1) − 1 is the “elementary discrepancy”. Now the
Noether-Fano type inequality (11) can be explicitly re-written in the form of the
estimate

K∑
i=1

piνi > n ·

(
3p1 +

K∑
i=2

piδi

)
. (12)

Since from the definition of the numbers pi = pKi we have the obvious equality
a > i:

pai =
∑
a→j

pji,

we conclude that if νK 6 δKn, then for some K1 < K the estimate

K1∑
i=1

pK1iνi > n ·

(
3pK11 +

K1∑
i=2

pK1iδi

)
holds. For this reason we may (and will) assume that νK > δKn. Furthermore, we
break the set of vertices {1, . . . , K} of the constructed oriented graph into the lower
part {1, . . . , L} and the upper part (which can be empty) {L + 1, . . . , K}, setting
i 6 L, if and only if δi > 2. Finally, we use the well known procedure of erasing
arrows in the constructed graph: let us remove all arrows i → 1, going from the
vertices of the upper part (i > L + 1). Recall that by Proposition 3.3 we have
L > 2, so that at least the vertex 2 lies in the lower part. The procedure of erasing
arrows may decrease p1, but does not change the numbers pi for i > 2, therefore the
inequality (12) can only get stronger. For this reason we assume that in the oriented
graph there are no arrows from the vertices of the upper part to the vertex 1. Set

Σ+
0 =

∑
i>2,δi=3

pi, Σ1 =
∑
δi=2

pi, Σ2 =
∑
δi=1

pi

and Σ0 = p1 + Σ+
0 . The procedure of erasing arrows gives the following fact.

Proposition 3.5. The following inequality holds:

p1 6 Σ+
0 + Σ1.

Proof. Indeed, every path from the vertex K to the vertex 1 is of the form

K → · · · → a→ 1,

where a 6 L. Therefore,

p1 = pK1 =
∑
a→1

pKa 6 Σ+
0 + Σ1,

which what we need. Q.E.D. for the proposition.

Now let us consider the self-intersection Z = (D1 ◦ D2) of the system Σ. Set
m1 = m(Z) = 1

2
multo Z and for i = 2, . . . , L

mi = multBi−1
Zi−1
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(the definition makes sense, because for i 6 L the subvariety Bi−1 ⊂ Vi−1 is of
codimension > 3, whereas the strict transform Zi−1 of the cycle Z on Vi−1 is an
effective cycle of codimension 2). Writing down

(D1
1 ◦D1

2) = Z1 + Z1,

where Z1 is an effective divisor on the quadric Q = E1, we obtain the equality

m1 = ν2 + dQ(Z1),

whence, arguing as in [7] and in [5, Chapter 2], we obtain by means of the technique
of counting multiplicities the following estimate:

L∑
i=1

pimi >
K∑
i=1

piν
2
i , (13)

wherem1 > m2 > · · · > mL and ν1 > ν2 > · · · > νK . (Note that the first inequalities
in both expressions, that is, m1 > m2 and ν1 > ν2, are non-trivial, although for the
quadric Q their proof is very simple; for the general case see [7, Proposition 2]). If
there is no additional information about the multiplicities νi, then we estimate the
minimum of the quadratic form in the right hand side of the inequality (13) on the
hyperplane, the equation of which is obtained from the inequality (12) by replacing
the > sign by =, and get the estimate

L∑
i=1

pimi >
(3p1 + 3Σ+

0 + 2Σ1 + Σ2)2

p1 + Σ+
0 + Σ1 + Σ2

n2.

Replacing the left hand side of this inequality by

p1m1 +m2

L∑
i=1

pi

(which can only make the inequality sharper), we get finally:

p1m1 + (Σ+
0 + Σ1)m2 >

(3p1 + 3Σ+
0 + 2Σ1 + Σ2)2

p1 + Σ+
0 + Σ1 + Σ2

n2. (14)

Estimating the left hand side from above by the expression (Σ0 + Σ1)p1, we get the
4n2-inequality m1 > 4n2, mentioned above (as it was done in [7]). However, we can
say more.

Proposition 3.6. The following inequality holds:

m1 +m2 > 8n2.

Proof. For a fixed value of the linear form p1m1 +(Σ+
0 +Σ1)m2 (in the variables

m1 > m2 > 0) the minimum of the expression m1 + m2 is attained for m1 = m2
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(recall that p1 6 Σ+
0 + Σ1). In that case m1 = m2 > 4n2, which proves Proposition

3.6. Q.E.D.

For certain types of the singularity E there is some additional information about
the multiplicities mi and νi, which makes it possible to make the estimates for m1

and m2 sharper. In order to obtain such information, we need some facts about the
secant variety Sec(B ⊂ Q). These questions are dealt with in the next section.

4 Subvarieties of the quadric Q

The aim of this section is to prove the classification of options given in Subsection
3.2. First we consider the problem of irreducibility of the intersection of an irre-
ducible subvariety X ⊂ Q of a small codimension with a general linear subspace
P ⊂ Q of maximal dimension (Subsection 4.1). On this basis it is easy to prove
our classification, that is, the description of the cases 2.1, 2.2 and 3.2, 3.3 (Sub-
section 4.2). In Subsection 4.3 we discuss non-degenerate subvarieties X ⊂ PN of
codimension 3, the secant variety Sec(X) of which are strictly smaller than PN .

4.1. Irreducibility of the intersection with a linear subspace. Let L be
a closed algebraic set, parameterizing linear subspaces of maximal dimension on the
quadric Q, that is, of dimension M − p1

2
rkQq. Depending on whether the rank

of the quadric is odd or even, the set L can be irreducible variety or a union of
two irreducible varieties. For a subspace P ∈ L by the symbol πP we denote the
projection PM from the subspace P . For a subspace Λ ⊂ PM , such that Λ ⊃ P and
dim Λ = dimP+1 (that is, a fibre of the projection πP ) we have Q∩Λ = P∪Q(P,Λ),
where Q(P,Λ) ∈ L. If P ∈ L is a subspace of general position and Λ a general fibre
of the projection πP , then Q(P,Λ) is also a subspace of general position.

Proposition 4.1. Let X ⊂ Q be an irreducible subvariety of codimension 6 3
and P ∈ L a linear subspace of general position. Then X ∩ P is an irreducible
subvariety of codimension codim(X ⊂ Q) in the projective space P .

Proof. The equality

codim((X ∩ P ) ⊂ P ) = codim(X ⊂ Q)

is obvious, we only need to show the irreducibility. Assume that

X ∩ P =
⋃
i∈I

Xi(P ),

where |I| > 2. Then for any general P ∈ L we have a similar picture with the same
value of |I|. For a fibre Λ of the projection πP the intersection

PΛ = P ∩Q(P,Λ)

is a hyperplane in P , and moreover, it is easy to check that varying Λ, we obtain
the complete family of hyperplanes in P , containing the vertex space of the quadric
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Q. For that reason for a general space Λ ⊃ P the closed space

Xi(P ) ∩ PΛ

is irreducible for all i ∈ I, and we may assume that all sets Xi(P ) ∩ PΛ, i ∈ I,
are distinct, so that the components Xi(P ) are identified by the intersections with
the hyperplane PΛ. However, our construction is symmetric with respect to the
subspaces P and Q(P,Λ), so that for a general fibre Λ of the projection πP there is
a bijective correspondence between irreducible components of the intersection X∩P
and the components of the intersection X∩Q(P,Λ), which makes it possible to write
down

X ∩Q(P,Λ) =
⋃
i∈I

Xi(Q(P,Λ)).

But then for each i ∈ I
Xi =

⋃
Λ∈U

Xi(Q(P,Λ))

(the union is taken over a non-empty Zariski open subset U ⊂ PM−1−dimP ) is an
irreducible component of the original set X, which contradicts the assumption about
its irreducibility. Q.E.D. for the proposition.

Remark 4.4. We stated and proved Proposition 4.1 in the form in which it will
be used. The proof given above works word for word for the case of an irreducible
subvariety of codimension [1

2
rkQ− 1].

4.2. Secant subvarieties on the quadric Q. We will not consider the
problem of reducibility of the secant subvariety Sec(B ⊂ Q). In order to prove
the classification of options given in Subsection 3.2, it is sufficient to consider the
component Sec∗(B ⊂ Q), defined by the following condition: for a general subspace
P ∈ L the set Sec∗(B ⊂ Q) contains the secant variety

Sec(B ∩ P ) ⊂ P.

Obviously, dim Sec∗(B ⊂ Q) = dim Sec(B ⊂ Q). In order not to make the nota-
tions too complicated, by the secant variety Sec(B ⊂ Q) we will mean that very
component of the maximal dimension.

Now let us consider the classification of possible cases given in Subsection 3.2.
Assume first that codim(B ⊂ Q) = 2. Then for a general subspace P ∈ L we have

codim((B ∩ P ) ⊂ P ) = 2,

where B ∩ P is an irreducible subvariety of degree dQ(B) in the projective space
P . If Sec(B ⊂ Q) has codimension 2, then by Proposition 3.4 B ∩ P is a linear
subspace of codimension 2 in P . Therefore, dQ(B) = 1 and degB = 2. But then B
is contained in a linear subspace Π ⊂ PM of dimension dimB + 1 = M − 2 and for
that reason B = Q ∩ Π, just as the case 2.2 claims.
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If Sec(B ⊂ Q) is of codimension 1 in Q, then for a general subspace P ∈ L

codim((B ∩ P ) ⊂ P ) > 1.

Taking into account the previous case, we can claim that the last inequality is an
equality. According to Proposition 3.4, in this case

Sec(B ⊂ Q) ∩ P

contains a hyperplane in P , and for that reason by Proposition 4.1 is a hyperplane in
P . Then dQ(Sec(B ⊂ Q)) = 1, so that deg Sec(B ⊂ Q) = 2. Therefore, Sec(B ⊂ Q)
is a hyperplane section of the quadric Q, which is itself a factorial quadric. Since

dQ(B) > 2 (if dQ(B) = 1, then we are in the case 2.2), we obtain precisely the
description of the case 2.1. The description of the case 2.0 requires no proof.

Assume now that codim(B ⊂ Q) = 3. If Sec(B ⊂ Q) has codimension 3, then
we argue as above in the case 2.2 and obtain the description of the case 3.3. If
Sec(B ⊂ Q) has codimension 2, then we argue as above in the case 2.1, using the
following simple fact.

Proposition 4.2. Let X ⊂ PN be an irreducible subvariety of dimension
dimX > 2, and moreover, dim Sec(X) = dimX + 1. Then Sec(X) is a linear
subspace and X is a hypersurface of degree dX > 2 in that subspace.

Proof. For a point p ∈ X of general position consider the cone C(p,X) with the
vertex p and the base X (the closure of the union of all lines [p, q], where q ∈ X\{p}).
This is an irreducible subvariety of some degree d > 1 and dimension dimX + 1, so
that Sec(X) = C(p,X). Therefore,

multp Sec(X) = d = deg Sec(X)

for all points p ∈ X, that is, for every point p ∈ X the subvariety Sec(X) is a cone
with the vertex at the point p. Since X is a subvariety of codimension 1 in Sec(X),
it is easy to see that d = 1. Q.E.D. for the proposition.

The proposition proven above implies the description of the case 3.2. The cases
3.1 and 3.0 require no proof: in those two cases we just note the codimension of the
set Sec(B ⊂ Q). This completes the proof of the list of options given in Subsection
3.2.

4.3. A remark on the secant variety. In [1, Section 3] it was shown that if
B ⊂ V is a subvariety of codimension 2 on a general smooth hypersurface V ⊂ P
of degree M and B is not contained in a hyperplane (that is, 〈B〉 = P), then
Sec(B) = P. Since in that case codim(B ⊂ P) = 3, it is natural to ask: what is an
analog of Proposition 3.4 for subvarieties of codimension 3?

Let X ⊂ PN be an irreducible subvariety of codimension 3. If dim〈X〉 6 N −
1, then applying Proposition 3.4 to the projective space 〈X〉, we get a complete
classification of options. Assume therefore that 〈X〉 = PN .

Example 4.1. Let Γ ⊂ P4 be a non-degenerate curve. Obviously, Sec(Γ) is a
hypersurface in P4. Considering the cone over Γ ⊂ P4 ⊂ PN with a vertex subspace
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of dimension N − 5, we obtain an irreducible subvariety X ⊂ PN , for which Sec(X)
is a hypersurface in PN . We say that a subvariety X, obtained in this way, is a cone
over a non-degenerate curve in P4. The following fact takes place.

Proposition 4.3. Let X ⊂ PN be a non-degenerate irreducible subvariety of
codimension 3 and assume that

Sec(X) 6= PN .

Then X is a cone over a non-degenerate curve in P4.

We do not give a proof here, because we do not use this fact. The proof follows
the same scheme of arguments as in [1, Section 3]. A close look at that proof shows
that the condition B ⊂ V was used only to claim that for every point p ∈ B there
are at most finitely many lines on B passing through this point.

The proof given in [1, Section 3] can be improved to a proof of Proposition 4.3.

5 Exclusion of the maximal singularity

In this section we prove Theorem 5. First we exclude the case 3.3 (Subsection 5.1),
then the case 3.2 (Subsection 5.2). These are the most difficult cases, requiring
considerable efforts; the remaining five cases are excluded in Subsection 5.3. This
completes the proof of Theorem 5.

5.1. Exclusion of the case 3.3. First of all, let us recall certain notations
which we will use in this section (in Subsections 5.1 – 5.3). There is a fixed point
o ∈ V , a quadratic singularity of rank > 13. Its blow up in the projective space
P is denoted by the symbol ϕP:P+ → P, and the exceptional divisor ϕ−1

P (o) — by
the symbol EP. The strict transform on P+ is denoted by adding the upper index
+, for instance, ϕ:V + → V is the blow up of the point o on the variety V , where
Q = EP ∩ V + is the exceptional quadric. Furthermore, B ⊂ Q is the centre of the
singularity E on V + (see §3). The self-intersection (D1 ◦ D2) of the mobile linear
system Σ ⊂ |2nH| is denoted by the symbol Z. Hypertangent divisor at the point
o are denoted by the symbols Ti, where Ti ∈ Λi (see §2).

Assume that the case 3.3 takes place. Our aim is to obtain a contradiction. By
Proposition 3.6 the inequality

m(Z) + multB Z
+ > 2 d(Z)

holds. This inequality is linear in Z. For that reason we may assume that Z is an
irreducible subvariety of codimension 2. By Proposition 2.4 we have m(Z) 6 2 d(Z),
so that Z+ contains B and thus Z 6⊂ T2 (by the regularity condition (R2.1)).

Set Π ⊂ P to be the uniquely determined subspace of codimension 3, containing
the point o and “cutting out B on Q”, that is,

Π
+ ∩Q = B.
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The corresponding section V ∩ Π is denoted by the symbol ∆ (in Subsection 2.4 it
was denoted by the symbol VΠ). So ∆+∩Q = B. Consider the linear system |H−∆|
of hyperplane sections of the hypersurface V , containing ∆. Let R1 ∈ |H − ∆| be
a general divisor. Since B 6⊂ T+

2 , we have ∆ 6⊂ T2, which implies that none of the
irreducible components of the effective cycle (Z ◦R1) of codimension 3 is contained
in T2.

Since Bs |H −∆| = ∆, and Bs |H −∆|+ = ∆+ (in the scheme-theoretic sense),
the following equalities hold:

m(Z ◦R1) = m(Z), multB(Z ◦R1)+ = multB Z
+.

Besides, d(Z ◦R1) = d(Z). Write down

(Z ◦R1) = a∆ + Z],

where a ∈ Z+ and the effective cycle Z] does not contain ∆ as a component. Since

d(∆) = 1, m(∆) = 1 and multB ∆+ = 1, we obtain the inequality

m(Z]) + multB Z
+
] > 2 d(Z]).

Let us consider one more general divisor R2 ∈ |H − ∆|. Obviously, none of the
components of the cycle Z] is contained in R2, so that the effective cycle (Z] ◦ R2)
is well defined. It has codimension 4 in V , 3 in R1 and 2 in R1 ∩R2. The following
inequality holds:

m(Z] ◦R2) > m(Z]) + multB Z
+
] > 2 d(Z]).

Since d(Z]) = d(Z] ◦R2), there is an irreducible component Y of the cycle (Z] ◦R2),
satisfying the inequality

m(Y ) > 2 d(Y ). (15)

Lemma 5.1. Y is not contained in T2.

Proof. Assume the converse: Y ⊂ T2. By construction, Y is an irreducible
component of the intersection of the divisor R2 with one of the irreducible compo-
nents of the cycle Z], which, as we know, is not contained in T2. Therefore, Y is
an irreducible component of the effective cycle (Z] ◦ T2), which is contained in R2.
The cycle (Z] ◦ T2) is of codimension 3 in R1. Since that cycle does not depend on
R2, and R2 ∈ |H −∆| by assumption is a general divisor of this linear system, we
conclude that Y ⊂ ∆.

So Y is a prime divisor on ∆. By the condition (R2.1) the divisor (T2 ◦ ∆) on
∆ is irreducible and reduced, so that we obtain the equality Y = (T2 ◦∆). But this
is impossible: by the condition (R2.1) we have m(T2 ◦∆) = 3. Since d(T2 ◦∆) = 2,
we get a contradiction with the inequality (15). Q.E.D. for the lemma.

Now let us consider the effective cycle (Y ◦ T2) of codimension 3 on R1 ∩R2). It
satisfies the inequality

multo
deg

(Y ◦ T2) >
6

M
,
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which contradicts the inequality (9) for c = 2 (Proposition 2.4), since

6

M
>

5

M − 1

already for M > 6. This contradiction completes the exclusion of the case 3.3.

5.2. Exclusion of the case 3.2. Assume that the case 3.2 takes place. Again
our aim is to obtain a contradiction. Now by the symbol ∆ we denote the section
of the hypersurface V by the uniquely determined subspace Π ⊂ P of codimension
2, such that

Π
+ ∩Q = Sec(B ⊂ Q).

(Recall that Sec(B ⊂ Q) is the section of the quadric Q ⊂ EP = PM by the linear
subspace 〈B〉 ⊂ PM of codimension 2.) Therefore,

∆+ ∩Q = Sec(B ⊂ Q).

We continue to assume that the self-intersection Z is an irreducible subvariety of
codimension 2. Since d(∆) = 1 and m(∆) = multB ∆+ = 1, we have Z 6= ∆.
Consider the pencil of hyperplane sections |H−∆|, containing ∆, and take a general
divisor R ∈ |H − ∆|. By construction, Z 6⊂ R, so that the effective cycle ZR =
(Z ◦ R) of codimension 2 on the hyperplane section R is well defined. Setting for
the convenience of notations ∆Q = ∆+ ∩Q, let us write down

(Z+ ◦R+) = Z+
R + a∆Q,

where a ∈ Z+. Such a writing is possible, because ∆Q = Bs |H −∆|+Q. Now we get

m(ZR) = m(Z) + a and a + multB Z
+
R > multB Z

+, since obviously multB ∆Q = 1.
From there we obtain the inequality

m(ZR) + multB Z
+
R > 2 d(Z) = 2 d(ZR). (16)

By the linearity of this inequality in ZR we may assume that ZR = Y is an irreducible
subvariety of codimension 2 (with respect to R).

We know that B is a prime divisor on the quadric ∆Q ⊂ 〈B〉 = PM−2, cut out
on this quadric by a hypersurface of degree dQ(B) > 2. The effective cycle (Y + ◦Q)
of dimension dimB contains B with multiplicity > multB Y

+. Since

m(Y ) = dQ(Y + ◦Q),

this implies the inequality

m(Y ) > dQ(B) ·multB Y
+.

Now we have to consider two cases:

(1) Y ⊂ ∆ is a prime divisor,
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(2) Y is not contained in ∆.

Lemma 5.2. In the case (1) the equality dQ(B) = 2 holds.

Proof. Assume the converse: dQ(B) > 3. We have the inequality m(Y ) >
3 multB Y

+. Combining it with the inequality (16) for ZR = Y , we obtain the
estimate

m(Y ) >
3

2
d(Y ).

From the regularity conditions we deduce that Y 6= (T2 ◦∆). Indeed, the quadratic
form q2|Π is of rank > 9, the variety ∆ is factorial, so that the divisor (T2 ◦ ∆)
is irreducible and reduced. By the condition (R2.1) this divisor has multiplicity
precisely 6 at the point o and for that reason the equality

m(T2 ◦∆) =
3

2
d(T2 ◦∆)

holds, from which we get that Y 6= (T2◦∆)). So we obtain the following well defined
effective cycle

(Y ◦ (T2 ◦∆))

of codimension 2 on ∆, satisfying the inequality

m(Y ◦ (T2 ◦∆)) >
9

4
d(Y ◦ (T2 ◦∆)),

which can be re-written in the form

multo
deg

(Y ◦ (T2 ◦∆)) >
9

2M
.

This contradicts the inequality (9) for a = c = 2, since for M > 9

9

2M
>

4

M − 1
.

The just obtained contradiction proves Lemma 5.2.

Lemma 5.3. The case (2) is impossible.

Proof. Assume the converse: the case (2) takes place. Since dQ(B) > 2, the
estimate m(Y ) > 2 multB Y

+ holds. Let us consider the effective cycle (Y ◦ ∆) =
(Y ◦∆)R of the scheme-theoretic intersection of Y and the divisor ∆ on the variety
R. We get

m(Y ◦∆) > m(Y ) + dQ(B) multB Y
+ > m(Y ) + 2 multB Y

+.

Recall that for ZR = Y the inequality (16) holds. It is easy to check that the
minimum of the function s+ 2t of the real variables s, t on the set

{s+ t > 2, s > 2t} ⊂ R2
+
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is attained at the point (4
3
, 2

3
) and equal to 8

3
. Therefore,

m(Y ◦∆) >
8

3
d(Y ◦∆)

(∆ is a hyperplane section of R, so that d(Y ◦∆) = d(Y )). The last inequality can
be re-written in the form of the estimate

multo
deg

(Y ◦∆) >
16

3M
,

which contradicts the inequality (9) for c = a = 2. We obtained a contradiction
which proves the lemma. Q.E.D.

By Lemmas 5.2 and 5.3, is the case 3.2 takes place, then on ∆ there is a prime
divisor Y , satisfying the inequality

m(Y ) + multB Y
+ > 2 d(Y ),

and moreover, dQ(B) = 2 and m(Y ) > 2 multB Y
+, so that m(Y ) > 4

3 d(Y ). In order
to exclude that last option, we use the condition (R2.3). Denote the subvariety that
is cut out on the quadric ∆Q by the equation q3|∆Q

= 0, by the symbol G. It is easy
to see that G belongs to the family of varieties, which are irreducible, reduced and
factorial by the condition (R2.3). Therefore, G is a factorial complete intersection
of type 2 · 3 in PM−2. For that reason the kernel of the surjective restriction map

res:H0(PM−2,OPM−2(2))→ H0(G,OG(2))

is one-dimensional and is generated by the quadratic form q2|P(Π). The irreducible
subvariety B is cut out on the quadric ∆Q by a quadratic equation β = 0, where
β 6∈ 〈q2|P(Π)〉. Therefore, the equation β|G = 0 defines an effective divisor on G.

Lemma 5.4. The divisor {β|G = 0} is irreducible and reduced.

Proof. By the factoriality of the complete intersection G, reducibility or non-
reducedness of this divisor means that it is a sum of two hyperplane sections. There-
fore, if the divisor {β|G = 0} were reducible or non-reduced, for some linear forms
l1, l2 on PM−2P(Π) we would have had the equality

β = l1l2 + λq2|Π,

where λ ∈ C is some constant. But then the divisor B ⊂ ∆Q, given by the equation
β = 0, would have been reducible or non-reduced. Q.E.D. for the lemma.

Therefore, B∩G = {β|G = 0} is an irreducible reduced subvariety of codimension
4 on Q, and moreover

B ∩G ∼ 6H4
Q,

that is, dQ(B ∩G) = 6.

Now let us come back to the prime divisor Y on ∆. If Y + does not contain B,
then the inequality

m(Y ) > 2 d(Y )
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holds, which is excluded by the proof of Lemma 5.2 (where we proved that m(Y ) 6
3
2 d(Y )). So Y + must contain B.

Since G = (T+
2 ◦∆Q) = T+

2 ∩∆Q does not contain the subvariety B, we conclude
that Y 6⊂ T2. Therefore, the effective cycle Y∗ = (Y ◦ T2) of codimension 2 on ∆ is
well defined. The divisor Y + on ∆+ can, generally speaking, contain the subvariety
G ⊂ ∆Q. For that reason, write down

(Y + ◦ T+
2 ) = bG+ Y +

∗

for some b ∈ Z+. Such a writing is possible, because (∆ ◦ T+
2 ) by construction is

precisely G. Since multB∩GG = 1 and dQ(G) = 3, we get

m(Y∗) = 3 m(Y ) + 3b,

where we have
multB∩G Y

+
∗ > multB Y

+ − b.

Therefore, the inequality

m(Y∗) + 3 multB∩G Y
+
∗ > 6 d(Y )

holds. Since d(Y∗) = 2 d(Y ), the last inequality can be re-written in the form

m(Y∗) + 3 multB∩G Y
+
∗ > 6 d(Y∗). (17)

Besides, as we pointed out above, m(Y ) > 4
3 d(Y ), which implies the inequality

m(Y∗) >
3

2
· 4

3
d(Y∗) = 2 d(Y∗), (18)

which will be used later.

Consider again the irreducible reduced subvariety B ∩G. It can be viewed as a
complete intersection of type 2 · 2 · 3 in P(Π) = PM−2. Therefore B ∩ G is cut out
in the scheme-theoretic sense by cubic hypersurfaces. Let

|3HΠ −B ∩G|

be the system of cubic hypersurfaces, containing B ∩G. Then Bs |3HΠ −B ∩G| =
B ∩G. Furthermore, let

C(|3HΠ −B ∩G|)

be the corresponding linear system of cones in the projective space Π ∼= PM−1, that
is, a cubic hypersurface W ∈ C(|3HΠ − B ∩ G|) if and only if W is a (cubic) cone
with the vertex at the point o and

W+ ∩ EP ∈ |3HΠ −B ∩G|.

Obviously, BsC(|3HΠ −B ∩G|) = C(B ∩G) is a cone with the vertex at the point
o, consisting of lines L 3 o such that L+ ∩ EP ∈ B ∩G.
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By the regularity condition C(B∩G) 6⊂ ∆ (through the point o there are finitely
many lines on V ). The cone C(B ∩G) is irreducible, so that for the restriction

C(|3HΠ −B ∩G|)∆

of the linear system C(|3HΠ −B ∩G|) on ∆ we have:

codim(BsC(|3HΠ −B ∩G|)∆ ⊂ ∆) = 3

and for that reason for a general divisor W ∈ C(|3HΠ − B ∩ G|) none of the com-
ponents of the support of the cycle Y∗ of codimension 2 in ∆ is contained in W , so
that the effective cycle (Y∗◦W ) of their scheme-theoretic intersection is well defined.
This is a cycle of codimension 3 on ∆. For this cycle we get the estimate

multo(Y∗ ◦W ) > 3 multo Y∗ + 12 multB∩G Y
+
∗

(since degB ∩G = 12), which we re-write in the form

multo(Y∗ ◦W ) > 6(m(Y∗) + 2 multB∩G Y
+
∗ ).

Obviously, d(Y∗ ◦ W ) = 3 d(Y∗). Taking into account that the minimum of the
function s+ 2t of real variables s, t on the set

{s+ 3t > 3, s > 2} ⊂ R2
+

is attained at the point (2, 1
3
) and is equal to 8

3
, we get by the inequalities (17) and

(18):

multo(Y∗ ◦W ) > 6 · 8

3
d(Y∗) =

16

3
d(Y∗ ◦W ),

that is, the inequality
multo
deg

(Y∗ ◦W ) >
16

3M

holds. This contradicts the inequality (9) for c = 2, a = 3 when M > 16. We
obtained a contradiction which completes the exclusion of the case 3.2.

5.3. Exclusion of all remaining cases. Assume that one of the following
four cases takes place:

3.1, 3.0, 2.1, 2.0.

Let us consider the self-intersection Z of the mobile system Σ.

Lemma 5.5. The following inequality holds:

m(Z) > 2 multB Z
+.

Proof. In the notations of §4 let P ∈ L be a general subspace of maximal
dimension on the quadric Q, ZP = (Z+ ◦ P ) an effective cycle of codimension 2.
Assume the converse:

m(Z) < 2 multB Z
+.

40



Then ZP is an effective cycle of degree m(Z) (recall that by definition, m(Z) =

dQ(Z+ ◦Q)), which satisfies the inequality

degZP < 2 multB∩P ZP .

Let p, q ∈ B ∩ P be a pair of distinct points and [p, q] ⊂ P the line through them.
Furthermore, let Θ ⊃ [p, q] be a two-dimensional plane of general position in P ,
containing the line [p, q]. By the symbol |ZP | we denote the support of the cycle ZP .
If the intersection Θ ∩ |ZP | were zero-dimensional, we would have got the following
chain of equalities and inequalities, where all intersection numbers are meant to be
in the projective space P :

degZP = (ZP ·Θ) =
∑

x∈Θ∩|ZP |

(ZP ·Θ)x >

> (ZP ·Θ)p + (ZP ·Θ)q > multp ZP + multq ZP > 2 multB∩P ZP > degZP ,

which is impossible. Therefore, the set Θ ∩ |ZP | is positive-dimensional. Since the
plane Θ is arbitrary, we conclude that [p, q] ⊂ |ZP |. Therefore, the support |ZQ|
of the cycle ZQ = (Z+ ◦ Q) contains the secant subvariety Sec(B ⊂ Q). However,
codim(|ZQ| ⊂ Q) = 2, whereas by assumption we are in one of the four cases when

codim(Sec(B ⊂ Q) ⊂ Q) 6 1.

This contradiction proves the lemma. Q.E.D.

Now let us use the technique of counting multiplicities (Subsection 3.3). In the
notations of Subsection 3.3 Lemma 5.5 claims that m1 > 2m2.

Lemma 5.6. The following inequality holds:

m1 > 8n2.

Proof. Assume the converse: m1 6 8n2. Then m2 6 4n2. From the inequality
(14) we get:

(8p1 + 4(Σ+
0 + Σ1))(p1 + Σ+

0 + Σ1 + Σ2) > (3p1 + 3Σ+
0 + 2Σ1 + Σ2)2.

It is easy to bring the last inequality to the following form:

0 > (p1 − Σ2)2 + (6p1 + 5Σ+
0 + 4Σ1 + 2Σ2)Σ+

0 .

The contradiction proves the lemma. Q.E.D.

Thus in each of the four cases under consideration the self-intersection Z satisfies
the inequality

multo
deg

Z =
2

M
·

m(Z)

d(Z)
>

4

M
.

This contradicts Proposition 2.4 (see Remark 2.1 (i)). The cases 3.1, 3.0, 2.1 and
2.0 are excluded.

41



The only remaining case is the case 2.2. Assume that this case takes place.
Recall that B in this case is a section of the quadric Q by a linear subspace of
codimension 2 in EP ∼= PM . Let ∆ be the section of the hypersurface V by the
uniquely determined subspace of codimension 2 in P, such that ∆+ ∩Q = B. Then
m(∆) = d(∆) = multB ∆+ = 1. Write down

Z = a∆ + Z1,

where a ∈ Z+ and the cycle Z1 does not contain ∆ as a component. Since d(Z) =
4n2, from Proposition 3.6 (and the equalities for ∆, written above) we obtain:

m(Z1) + multB Z
+
1 > 2 d(Z1).

By the linearity of this inequality we may assume that Z1 = Y is an irreducible
subvariety of codimension 2, and moreover, Y 6= ∆. Consider a general hyperplane
section R ⊃ ∆. Since Y 6⊂ R, the effective cycle (Y ◦ R) of codimension 2 on R is
well defined. This cycle satisfies the inequality

m(Y ◦R) = m(Y ) + multB Y
+ > 2 d(Y ) = 2 d(Y ◦R),

which is equivalent to the estimate

multo
deg

(Y ◦R) =
2 m(Y ◦R)

M d(Y ◦R)
>

4

M
,

contradicting the inequality (9) for c = 1, a = 2. This contradiction excludes the
case 2.2 and completes the proof of Theorem 5.
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