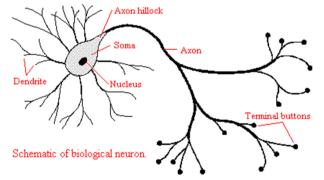
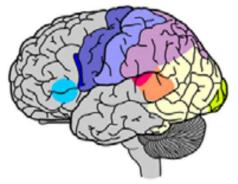
Analogue building blocks for neural-inspired circuits

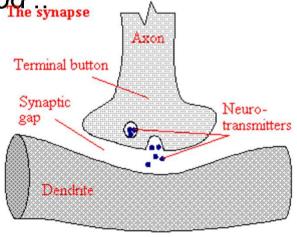
Steve Hall Dept. Electrical Engineering & Electronics s.hall@liv.ac.uk

Some facts about the brain as a PC...

- The brain has ~100 billion neurons (10^{11}) about 30µm large
 - Neuron Fan-in ~ $10^3 10^4$ (logic gates 2-4!)
 - complex dynamics includes several time constants,
 - maintains a more complex internal state
 - output is a time-series of action potentials
 or 'spikes no information in amplitude!
- Massively parallel in nature
 - Typical 10¹⁵ interconnections
 - Total computation rate of about 10¹⁶ complex operations /sec (cf 10 P-FLOPs)
- Millisecond time frame of 'events'
- Low level function: 'reasonably well understood' <u>The synapse</u>
- High level function.....???????







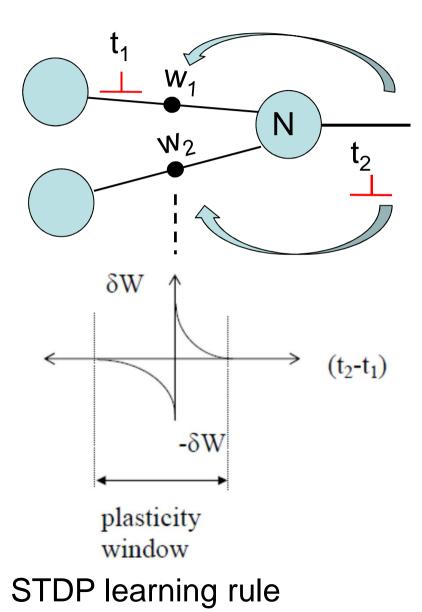
Some other brains

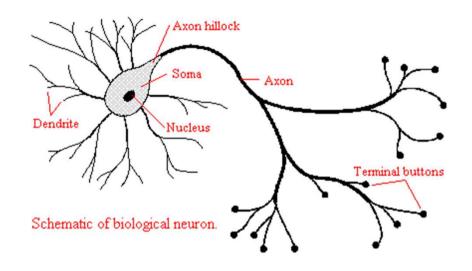
- A fly (1 grain of sugar a day to feed it!): 250 k neurons
- Honeybee (fantastic navigator!): 1 million neurons
- Rat (pretty smart animal): 55million neurons
- But how do the following work:
 - the arithmetic
 - Fault-tolerance
 - The parallelism (beat Moore's Law hands down)

This is the inspiration!

But must find a simpler, scaleable, low power approach

Synapses and neurons Spike-timing dependent plasticity





If spike, t_1 causes neuron, N to fire $(t_2 - t_1 \text{ small})$..

Weight W₁ may be increased

and W_2 etc decreased

Motivation

Create building blocks that can emulate biological functionality

Implement in mixed signal CMOS (cheap!)

Assess layout / scalability / systems functionality

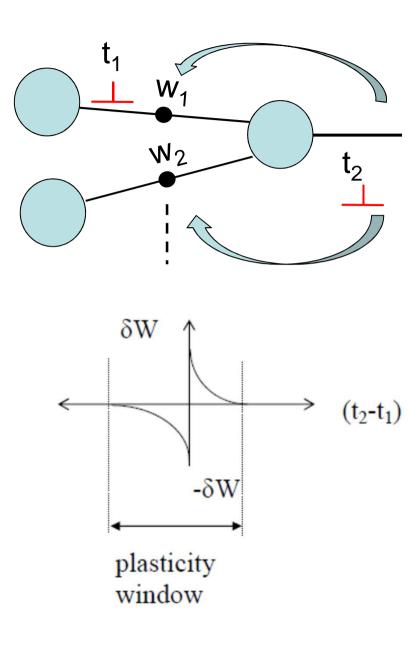
Circuits that can learn!

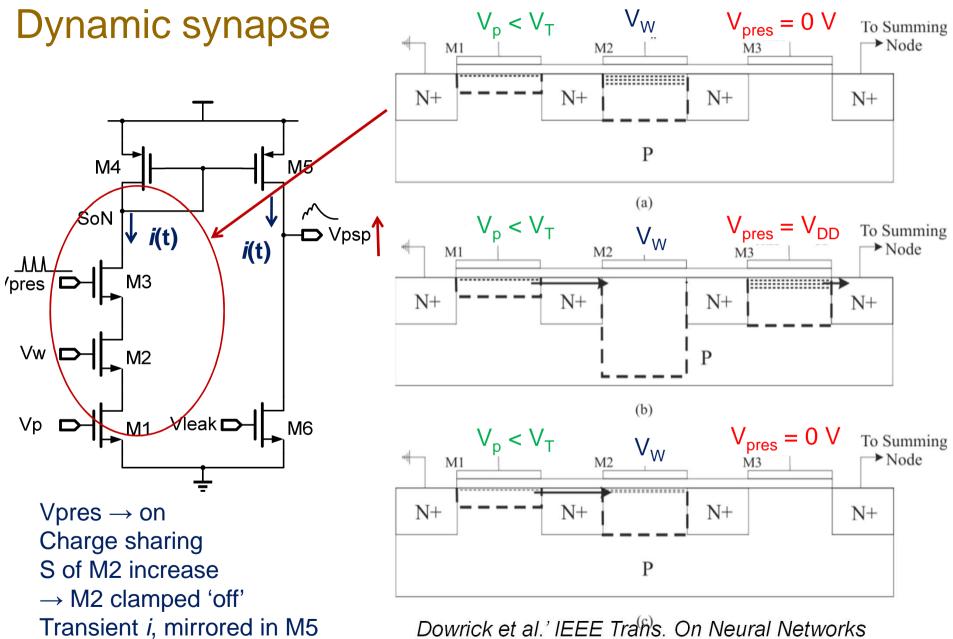
- Plasticity / decision circuits (STDP) / FG weight storage

Build large, useful electronic systems learn more about 'brain computation'

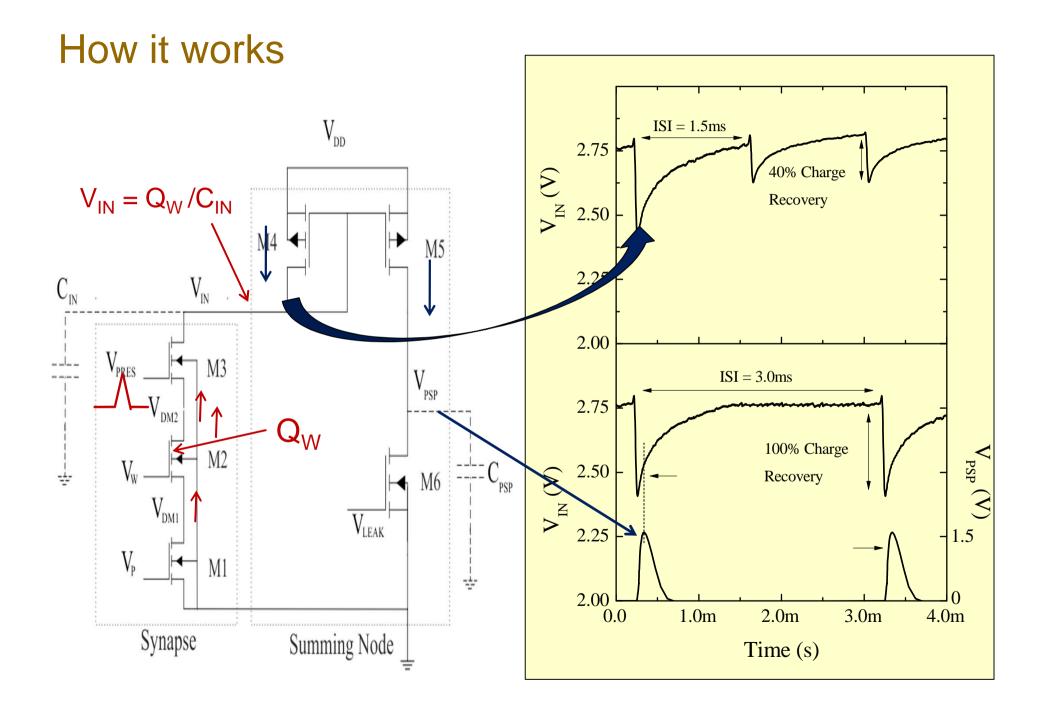
Circuit Challenges

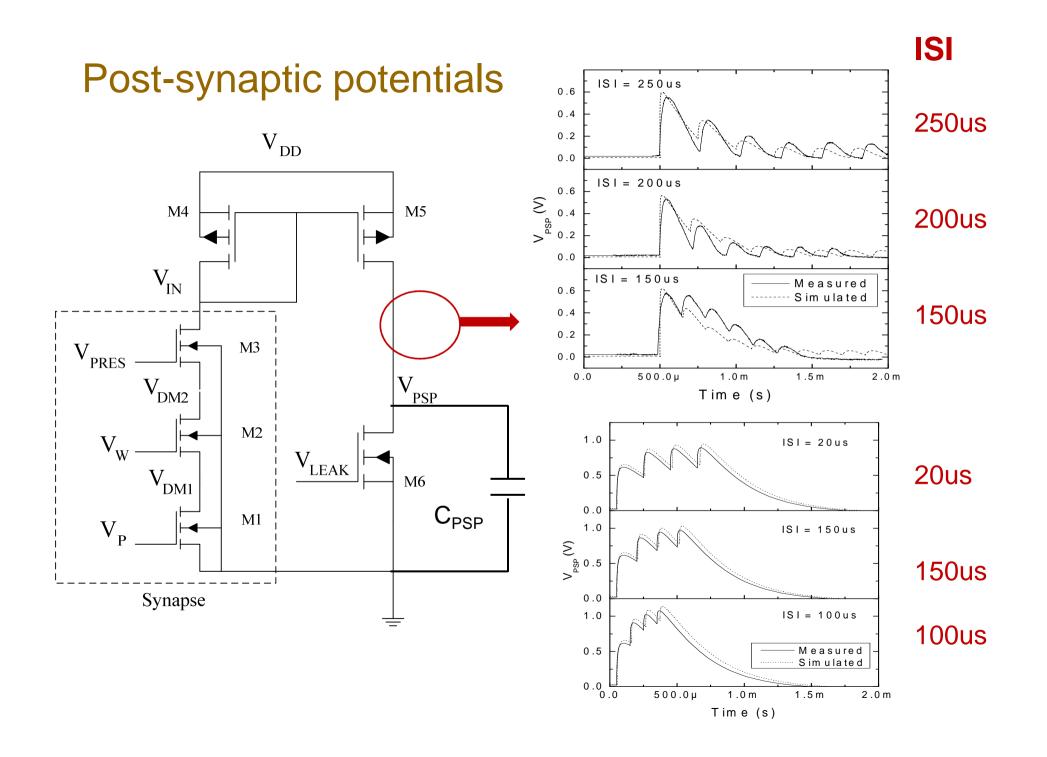
- Store and update weights
- Detect timing $(t_2 t_1)$
- Axonal delay
- Low power operation
- Scale to VLSI
- Learn!





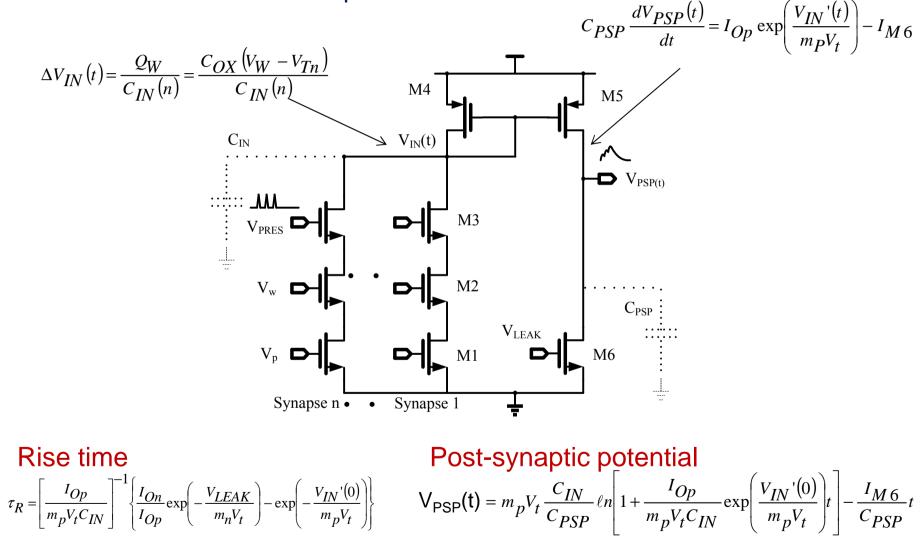
Dowrick et al.' IEEE Trans. On Neural Networks and Learning Systems, 23(10), p.1513 (2012)





Fan-in: theory

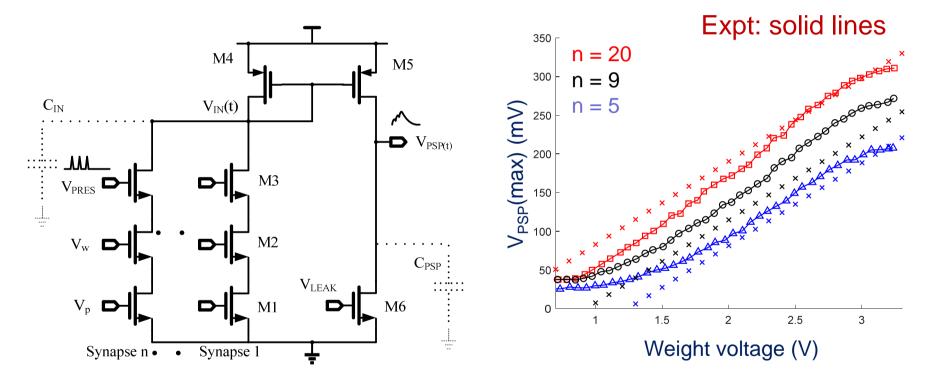
Consider transients of capacitive nodes



Dowrick et al, Neurocom., vol.314, pp.78-85, <u>https://doi.org/10.1016/j.neucom.2018.06.065</u> (2018)

Fan-in

$$V_{PSPMAX} = m_p V_t \frac{C_{IN}(n)}{C_{PSP}} \ell n \left[1 + \frac{I_{Op}}{m_p V_t C_{IN}(n)} exp\left(\frac{V_{IN}'(0)}{m_p V_t}\right) \tau_R \right] - \frac{I_{M6}}{C_{PSP}} \tau_R$$

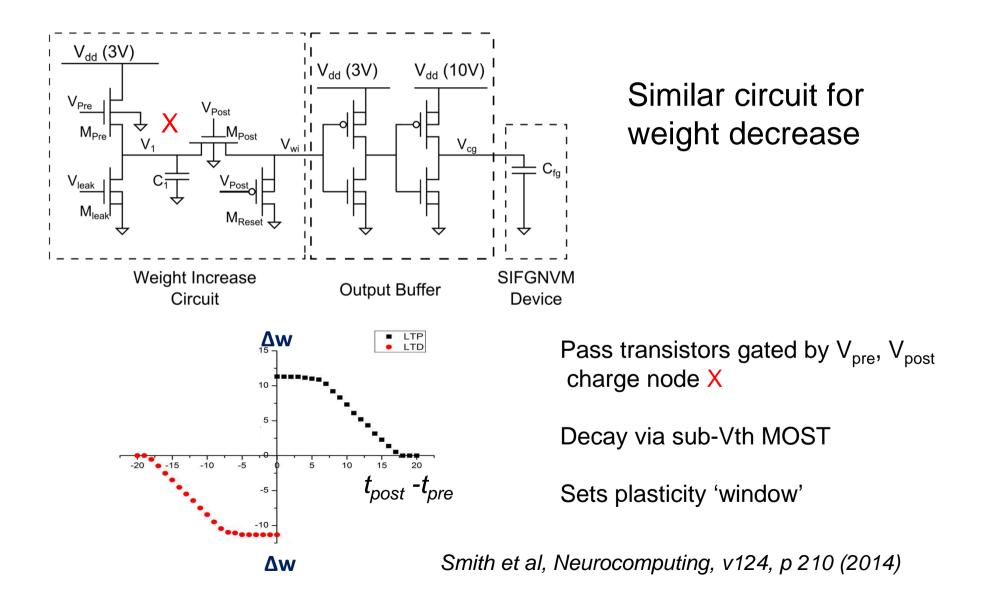


Conclusion: Fan-in intrinsic limit > 10⁵ ! Practical limit is set by layout / interconnect

Dowrick et al, Neurocom., vol.314, pp.78-85, <u>https://doi.org/10.1016/j.neucom.2018.06.065</u> (2018)

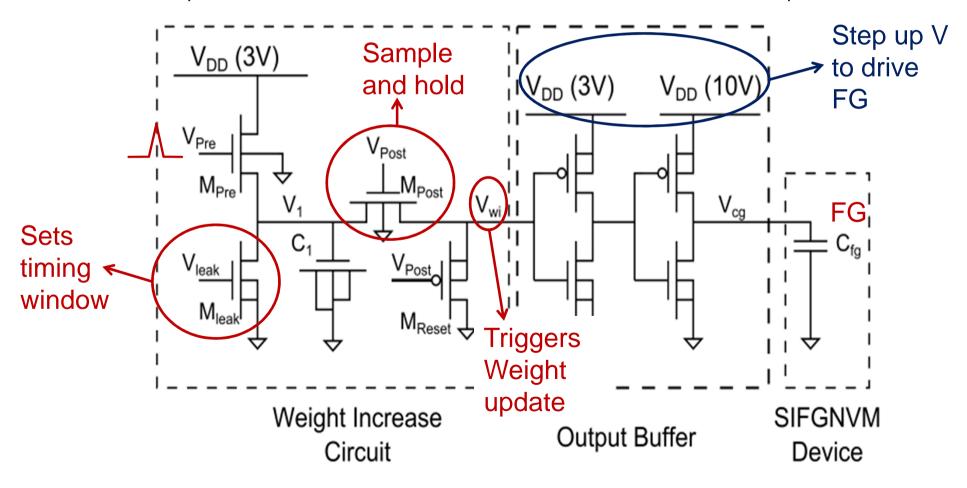
Compact decision circuits (STDP)

Weight Increase, WI, Circuit Block, Output Buffers and SIFGNVM Device

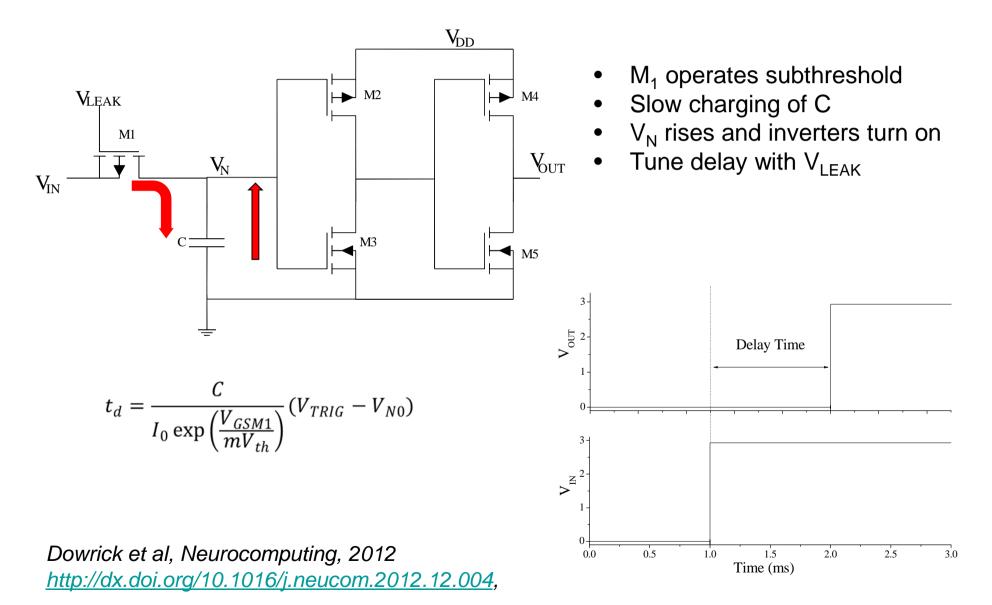


How it works: WI Block Operation Pre-Post Spiking Event

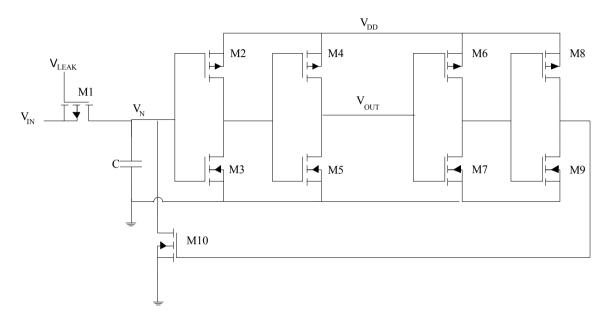
- When a presynaptic spike occurs (V_{Pre})
 - V_1 is pulled up to 3V- $V_{TMpre}(V_1)$, C_1 charges via M_{pre}
 - C₁ Slowly discharges via sub-threshold M_{leak}
 - V_{post} triggers the sample/hold as some time, t after V_{pre}



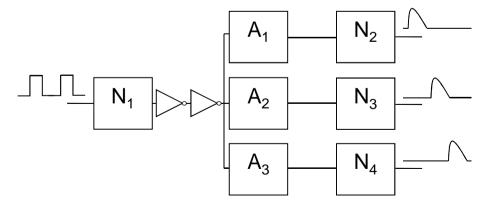
Axonal delay



Pulse burst creation

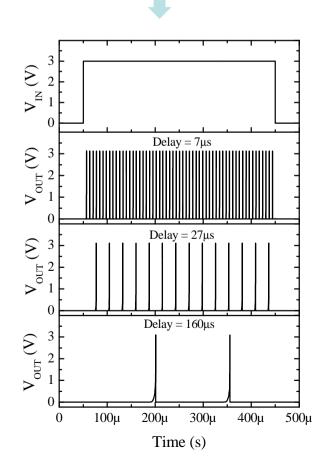


Integrate axon delays (A) into paths



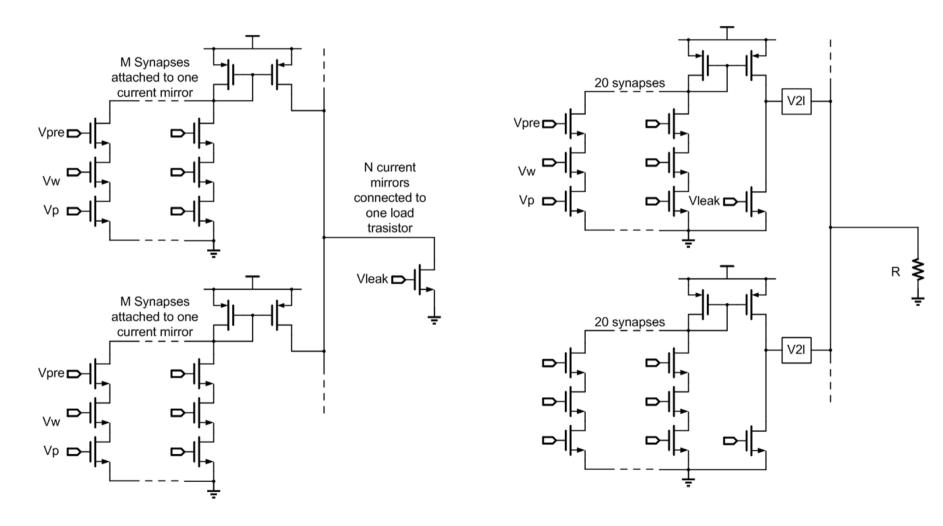
Dowrick et al, Neurocomputing, 2012 http://dx.doi.org/10.1016/j.neucom.2012.12.004,

Add feedback (M₁₀) Define pulse trains



Scaling

• Two solutions: sum voltages or sum currents

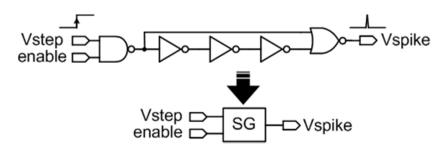


Scaleability: easier to sum currents 20 synapses V2I M5 M4 Vpre D $_{Vw}$ D **1** Ib M6 Μ7 lps¢ Vpsp Vp 🗩 Ъ Vpsp _► Ipsp M1 M3 M2 R≸ 20 synapses linear voltage-to-current converter (V2I) V2I

Transmit voltage steps and re-create spikes for long interconnect

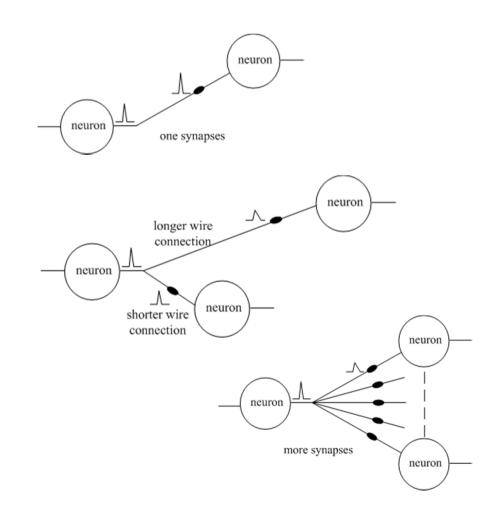
But added complexity!

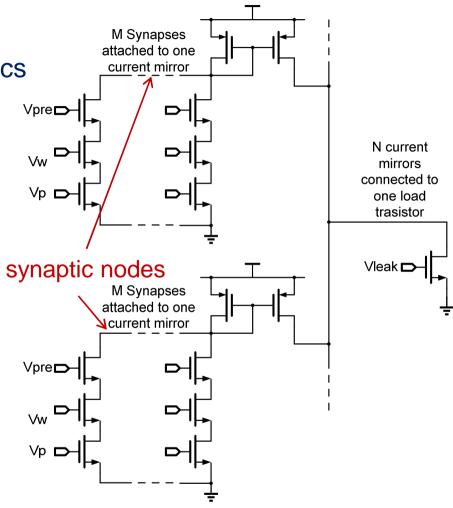
Ъ



Scaling: circuit issues

Large synapse fan-out problem: non uniform spike inputs due to parasitics non-linearities occur in currents





Hope it all comes out in the wash! Nature is messy as well

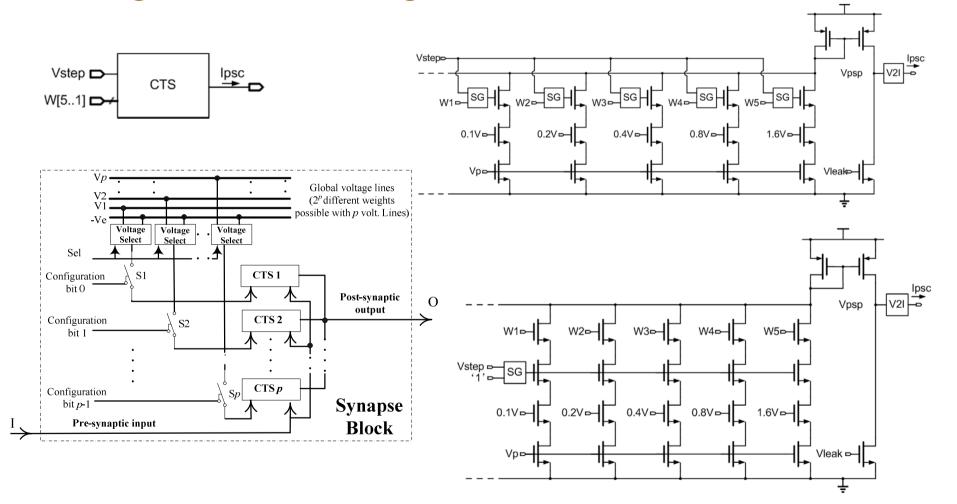
Ex. Spikes (V) Inhibitory Synapses lth Inh1 Inh2 Vin_p D lpsc_p Inh. Spikes (V) CTS p W_p[5..1] 200-JEPSCI (H) 150 EPSC (IIA) EPSC (IIA) excite Vin_q D lpsc_q CTS_q 50.0 W_q[5..1] (IPSC+Ith) R≹ inhibite ÷ Excitatory 100-Neuron State (uA) 2000-000 Synapses D Vout lpsc_m Vin m 🗗 CTS_m W_m[5..1] Step Output (V) $\sum_{m..n} Ipsc_{ex} - \sum_{p..q} Ipsc_{inh} - Ith \ge 0$ Spike outpu lpsc_n Vin n D Spike Output (N) CTS_n W_n[5..1] ┏₩ R≹ .250 .500 .750 Ó 1.0 time (ms)

Neurons with excitatory and inhibitory synapses

Programmable weights

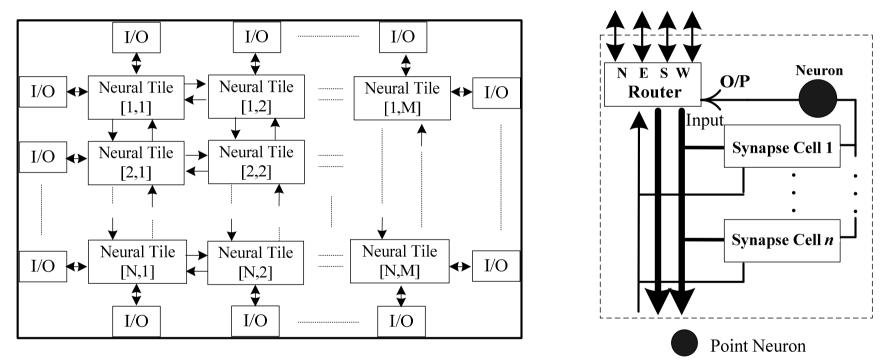
- Analog weight
 - Good: Continuous weight value, compact analog storage circuit
 - Bad: Inaccurate, require bias reference circuit and complex control circuit for high resolution, also require high voltage rail and undocumented
 - technology feature
- Digital weight
 - Good: accurate, mature digital memory technology, easy to program
 - Bad: discrete quantitative weight, require more space

Programmable weight



Embrace: an alternative approach

- Network-on-chip address the issues of scalability and connectivity between components.
- Low-area/power spiking neuron cells with associated training provides neural computing capability.

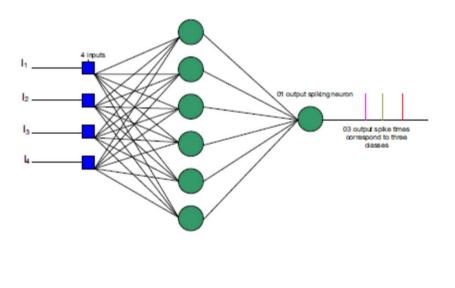


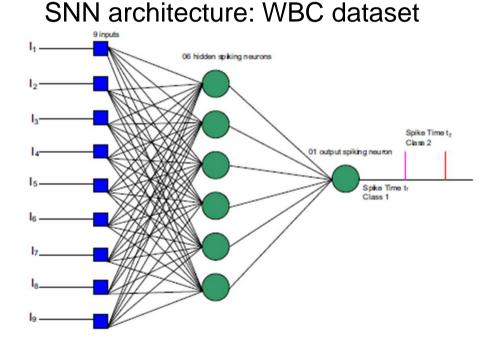
- 2-dimensional array of interconnected neural tiles + I/O blocks.
- Neural tiles connected in North, East, South and West.
- Tile can be programmed to realise neuron-level functions.

Harkin et al, Int. Jnl of Reconfigurable Computing, doi:10.1155/2009/908740 (2009) Slide courtesy of Jim Harkin

Evaluation

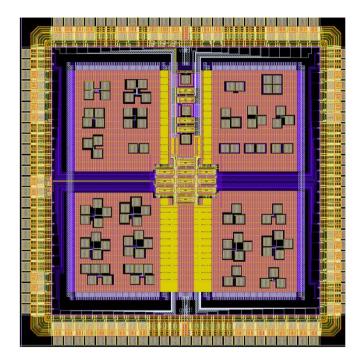
- Learning in software (calculate weight values)
 - Fit the experimental synapse results
- Solve benchmark problems
 - Wisconsin breast cancer (WBC) dataset
 - IRIS dataset
- Temporally encoded input values

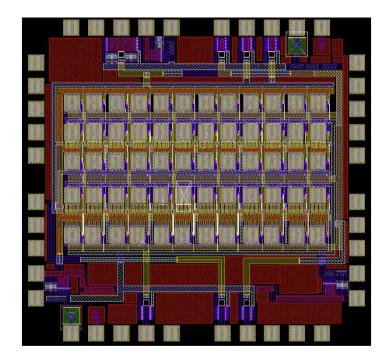


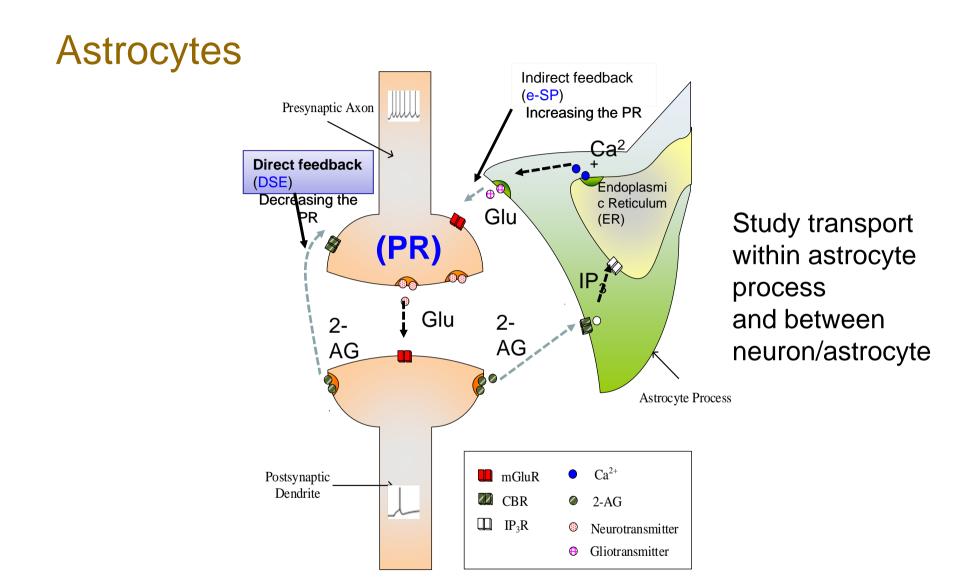


Ghani at al, Neurocomputing, 83 (2012) pp.188–197 (2011)

Circuits fabricated in AMS 0.35, mixed signal CMOS



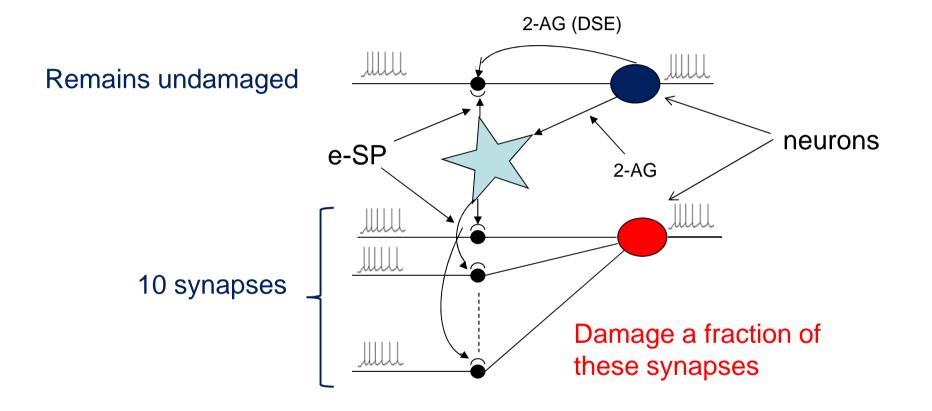




Breslin et al, PLoS Computational Biology, doi.org/10.1371/journal.pcbi.1006151, May (2018)

Slide courtesy of Professor Liam McDaid

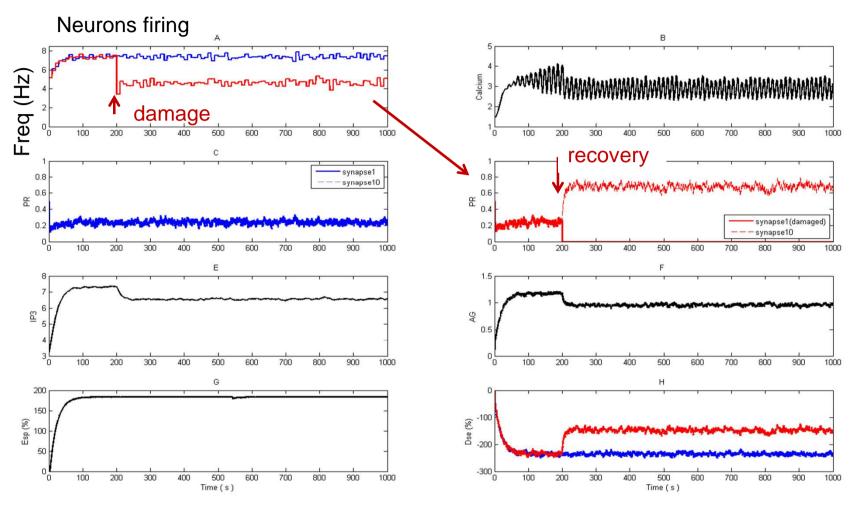
Endocannabinoid Mediated Self-Repair



Wade, McDaid et al, Frontiers in computational neuroscience, v6, Art 76 (2012)

Slide courtesy of Professor Liam McDaid

Astrocytes mediate self-repair



- Astrocyte 'forces' undamaged neurons to 'work harder'
- Opens up STDP window restarts learning

Slide courtesy of Professor Liam McDaid

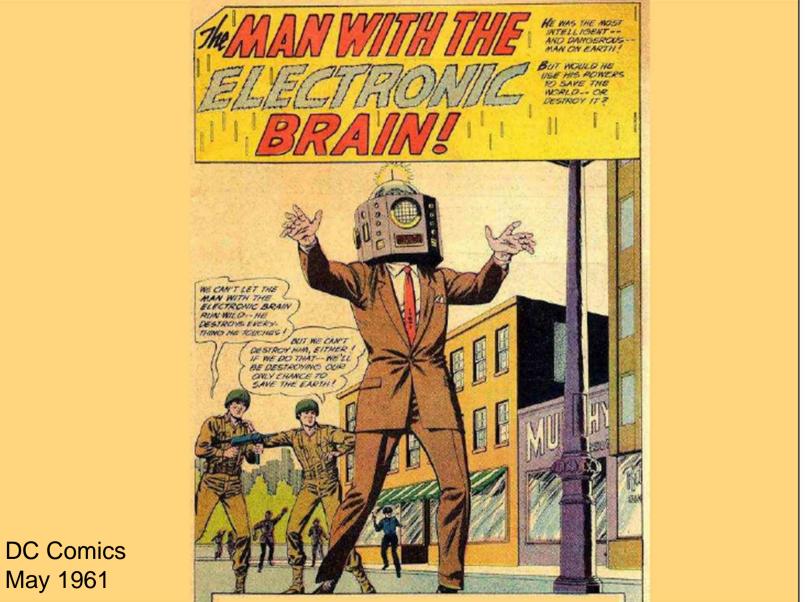
Wade, McDaid et al, Frontiers in computational neuroscience, v6, Article 76 (2012)

What we learnt..

- Can build compact analogue circuits that emulate aspects of biology with a degree of success (better than in software? – potentially much faster)
- Getting them to learn is another matter..
 - Need feedback
 - Weight update
 - Starts to get very complicated...
- A lot of redundancy once the circuit has 'learnt'
- Scaling soon results in a huge amount of interconnect

Need software/hardware combination – learning in software

Still some way to go before....



Thanks to

LJ McDaid (*lj.mcdaid*@ulster.ac.uk) J Harkin (*jg.harkin*@ulster.ac.uk)

T Dowrick (PhD) A Smith (PhD) S Chen (PhD) S Zhang (post-doc) A Ghani (post-doc)

Funding: EPSRC, NAP, EPSRC-DTA awards, Dorothy Hodgkin scholarship