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Abstract 14 

Word count: 250 15 

When numerous treatments exist for a disease (treatments 1, 2, 3 etc.), network meta-16 

regression (NMR) examines whether each relative treatment effect (e.g. mean difference for 2 17 

vs. 1, 3 vs. 1, 3 vs. 2 etc.) differs according to a covariate (e.g. disease severity). Two 18 

consistency assumptions underlie NMR: consistency of the treatment effects at the covariate 19 

value zero and consistency of the regression coefficients for the treatment by covariate 20 

interaction. The NMR results may be unreliable when the assumptions do not hold. 21 

Furthermore, interactions may exist but are not found because inconsistency of the 22 

coefficients is masking them; for example, when the treatment effect increases as the 23 

covariate increases using direct evidence but the effect decreases with the increasing 24 

covariate using indirect evidence.  25 
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 1 

We outline existing NMR models that incorporate different types of treatment by covariate 2 

interaction. We then introduce models that can be used to assess the consistency assumptions 3 

underlying NMR for aggregate data. We extend existing node-splitting models, the unrelated 4 

mean effects inconsistency model and the design by treatment inconsistency model to 5 

incorporate covariate interactions. We propose models for assessing both consistency 6 

assumptions simultaneously and models for assessing each of the assumptions in turn to gain 7 

a more thorough understanding of consistency.  8 

 9 

We apply the methods in a Bayesian framework to trial-level data comparing anti-malarial 10 

treatments using the covariate average age, and to four fabricated datasets to demonstrate key 11 

scenarios.  12 

 13 

We discuss the pros and cons of the methods and important considerations when applying 14 

models to aggregated data.  15 

 16 

Keywords: consistency; network meta-regression; network meta-analysis; node-splitting; 17 

inconsistency models; treatment by covariate interactions. 18 

  19 
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1. Introduction 1 

Reviews often compare multiple treatments for the same condition. In such cases, network 2 

meta-analysis (NMA) can compare all treatments (e.g. treatment 1, 2, 3) in a single analysis 3 

by estimating the relative treatment effects (e.g. log odds ratios) for all treatment pairings 4 

(e.g. 2 vs. 1, 3 vs. 1, 3 vs. 2) using direct and indirect evidence (Higgins and Whitehead, 5 

1996; Lu and Ades, 2004; Lu and Ades, 2006). The key assumption underlying NMA is 6 

consistency of the treatments effects across direct and indirect evidence (Lu and Ades, 2006). 7 

Many methods have been proposed to assess the consistency assumption underlying NMA 8 

(Donegan et al., 2013a), including node-splitting models (Dias et al., 2010; Van Valkenhoef 9 

et al., 2016) and inconsistency models, such as the design by treatment (DBT) inconsistency 10 

model (Higgins et al., 2012; Jackson et al., 2014; Jackson et al., 2016; Law et al., 2016; 11 

White et al., 2012) and the unrelated mean effects (URM) inconsistency model (Dias et al., 12 

2013c). 13 

 14 

Network meta-regression (NMR) is an extension of NMA that examines whether a covariate 15 

modifies each of the relative treatment effects (Dias et al., 2013b). A covariate may modify 16 

each relative treatment effect differently, that is, each treatment comparison may have a 17 

different covariate interaction. NMR is used to explore causes of heterogeneity or 18 

inconsistency, or when known effect modifiers exist and we wish to present results for 19 

different patient groups. Covariates may be characteristics of patients (e.g. weight), 20 

treatments (e.g. additional therapy), studies (e.g. location) or methods (e.g. allocation 21 

concealment) (Thompson and Sharp, 1999; Thompson, 1994; Thompson, 2002).  22 

 23 

NMR results commonly consist of, for each comparison, one relative treatment effect 24 

estimated at the covariate value zero (or at the mean covariate value when the NMR model is 25 
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centred) and one regression coefficient for the treatment by covariate interaction. Consistency 1 

assumptions are required for both of these parameters (Cooper et al., 2009; Donegan et al., 2 

2013b; Donegan et al., 2012). For instance, for a three treatment NMR, where treatment 1 is 3 

taken as the reference, the consistency equation for the relative treatment effects can be 4 

written as, 𝑑23 = 𝑑13 − 𝑑12 where for example, 𝑑23 is the relative treatment effect for 3 vs. 2, 5 

and the consistency equation for the regression coefficients is 𝛽23 = 𝛽13 − 𝛽12 where for 6 

example, 𝛽23 is the coefficient for 3 vs. 2 (Cooper et al., 2009; Dias et al., 2013b; Donegan et 7 

al., 2012). It is possible for neither assumption to hold (i.e. inconsistent relative treatment 8 

effects and inconsistent coefficients); or for only one of the assumptions to hold (i.e. either 9 

consistent relative treatment effects or consistent coefficients), which would make the results 10 

of the NMR unreliable.  11 

 12 

Theoretically, there are eight possible scenarios that can occur when assessing whether 13 

treatment by covariate interactions exist and the consistency assumptions. Examples of the 14 

scenarios are shown in Figures 1a-1h. Each figure shows how the relative treatment effect for 15 

3 vs. 2 changes with an increasing covariate value; separate lines are displayed for direct, 16 

indirect and all evidence. For a three treatment network, the direct evidence for 3 vs. 2 would 17 

be from trials that allocated treatments 2 and 3 and the indirect evidence for 3 vs. 2 would be 18 

from the remaining trials. Note that the lines have the same intercept when the relative 19 

treatment effects at the covariate value zero are consistent (Figure 1a-1d) and the lines have 20 

the same slope when the coefficients are consistent (Figure 1a-1b and 1e-1f). In Figure 1a, no 21 

interaction is detected using NMR and both consistency assumptions are satisfied, therefore 22 

the NMR results are valid but would not be clinically useful. On the other hand, in Figure 1b, 23 

NMR shows an interaction and both assumptions hold; therefore the NMR is reliable and 24 

could be used to draw clinical inferences. Figures 1c, 1e and 1g, show scenarios where no 25 
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interaction is detected using NMR but one or more of the assumptions are not satisfied, 1 

consequently the NMR results are invalid; notably, in Figure 1c and 1g, an interaction exists 2 

when direct evidence and indirect evidence are considered separately but it is not seen when 3 

applying NMR because it is masked by the inconsistency. Lastly, in Figures 1d, 1f and 1h, an 4 

interaction is found using NMR but one or more of the assumptions do not hold so the NMR 5 

results are unreliable. The cause of inconsistency should be considered when inconsistency is 6 

found (Figures 1c-1h). 7 

 8 

Although many methodological publications have proposed NMR analyses (Cooper et al., 9 

2009; Dias et al., 2013b; Donegan et al., 2013b; Donegan et al., 2012; Jansen and Cope, 10 

2012; Jansen, 2012; Nixon et al., 2007; Salanti et al., 2009; Saramago et al., 2012; Tudur 11 

Smith et al., 2007), to the authors’ knowledge, no methods have been introduced for 12 

assessing the consistency assumptions underlying NMR. 13 

   14 

In this paper, we introduce methods for assessing the consistency assumptions underlying 15 

NMR. We extend existing node-splitting models (Dias et al., 2010; Van Valkenhoef et al., 16 

2016), the DBT inconsistency model (Higgins et al., 2012; Jackson et al., 2014; Jackson et 17 

al., 2016; Law et al., 2016; White et al., 2012) and the URM inconsistency model (Dias et al., 18 

2013c) to incorporate treatment by covariate interactions. In section 2, we specify the NMR 19 

model and propose assessment methods that can be applied to aggregate trial-level data (i.e. 20 

trial specific relative treatment effects relative to reference arm 1 and their variances) with 21 

either continuous or categorical covariates. In section 3, we apply the methods to a real 22 

dataset and fabricated datasets illustrating key scenarios under a Bayesian framework. In 23 

section 4, we discuss the proposed methods and highlight their pros and cons. 24 

 25 
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2. Methods  1 

We outline NMR models and then introduce methods for assessing consistency using the 2 

node-splitting models and one type of inconsistency model (i.e. URM model). New methods 3 

based on the alternative DBT inconsistency model are also presented in the supplementary 4 

material. All models are summarised in Table 1. 5 

 6 

To set notation, let i denote the trial where 𝑖 = 1, … … , 𝑆 and S is the number of independent 7 

trials and let k be the trial arm where 𝑘 = 1, … … , 𝐴𝑖  and 𝐴𝑖 is the number of arms in trial i. 8 

Let 𝑡𝑖𝑘 denote the treatment given in trial i in arm k where 𝑡𝑖𝑘  ∈ {1, … … , 𝑇} and T is the 9 

number of treatments in the network. Note that treatment 1 is taken to be the reference 10 

treatment. 11 

 12 

Suppose we have trial-level outcome data, where 𝑦𝑖𝑘  is the observed relative treatment effect 13 

(e.g. log odds ratio or mean difference) for arm 𝑘 vs. arm 1 (with 𝑘 ≥ 2) in trial i and 𝑣𝑖𝑘 is 14 

the corresponding variance. As the relative treatment effect is a continuous measure, we 15 

assume a normal likelihood 𝑦𝑖𝑘 ~𝑁(𝜃𝑖𝑘,𝑣𝑖𝑘 
) where 𝜃𝑖𝑘 is the mean relative treatment effect in 16 

trial i (with 𝑘 ≥ 2). Also, the dataset would include a study-level covariate 𝑥𝑖 for each trial 𝑖 17 

that can be a continuous variable or an indicator variable to represent dichotomous data.  18 

 19 

2.1. Network meta-regression models 20 

NMR models estimate the basic regression coefficients, which are the coefficients for each 21 

treatment vs. treatment 1 (i.e. 𝛽12, 𝛽13, … , 𝛽1𝑇), and then the remaining functional coefficients 22 

(i.e. 𝛽23, 𝛽24, ….) are calculated as linear combinations of the basic coefficients using the 23 

consistency equations. Three NMR models have been proposed previously, each making 24 

different assumptions regarding the basic coefficients (Cooper et al., 2009; Dias et al., 2013b; 25 
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Donegan et al., 2013b; Donegan et al., 2012), that is independent (model 1a), exchangeable 1 

(model 1b) and common coefficients (model 1c). The decision regarding which assumption to 2 

make can be based on model fit statistics and the estimated coefficients of the models but in 3 

practice is often determined by data availability.  4 

 5 

Model 1a can be written as  6 

 7 

𝜃𝑖𝑘 = 𝛿𝑖,1𝑘 + 𝛽𝑡𝑖1,𝑡𝑖𝑘
𝑥𝑖 8 

 9 

Where 𝛽𝑡𝑖1,𝑡𝑖𝑘
=𝛽1,𝑡𝑖𝑘

-𝛽1,𝑡𝑖1
, 𝛽𝑡𝑖1,𝑡𝑖𝑘

 is the difference in the relative treatment effect of 𝑡𝑖𝑘 vs. 10 

𝑡𝑖1 per unit increase in the covariate 𝑥𝑖, or in other words, the regression coefficient for the 11 

treatment by covariate interaction. In a random-effects model, 𝛿𝑖, 1𝑘 (with 𝑘 ≥ 2) represents 12 

the trial-specific relative treatment effect of 𝑡𝑖𝑘 vs. 𝑡𝑖1 when the covariate is zero (𝑥𝑖 = 0) and 13 

is assumed to be a realisation from a normal distribution  𝛿𝑖,1𝑘~𝑁(𝑑𝑡𝑖1,𝑡𝑖𝑘
,  𝜎2 ) with 𝑑𝑡𝑖1,𝑡𝑖𝑘

=14 

𝑑1,𝑡𝑖𝑘
− 𝑑1,𝑡𝑖1

 where 𝑑𝑡𝑖1,𝑡𝑖𝑘
 is the mean relative treatment effect of 𝑡𝑖𝑘 vs. 𝑡𝑖1 when the 15 

covariate is zero. In a fixed-effect model, we set 𝜎2 = 0 to obtain  𝛿𝑖, 1𝑘= 𝑑1,𝑡𝑖𝑘
− 𝑑1,𝑡𝑖1

. 16 

 17 

Model 1b is the same as model 1a but now 𝛽1,𝑡𝑖𝑘
~𝑁𝑜𝑟𝑚(𝐵, 𝜐2).  Model 1c is formulated by 18 

setting 𝛽1,𝑡𝑖𝑘
=  𝛽 in model 1a; note that in this model the functional coefficients are zero 19 

because of the consistency equations (e.g. 𝛽23 = 𝛽13 − 𝛽12 =  𝛽 −  𝛽 = 0) (Cooper et al., 20 

2009).  21 

 22 
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2.2. Assessing consistency by node-splitting  1 

The principle aim of node-splitting models is to assess whether there is evidence of ‘loop 2 

inconsistency’, where loop inconsistency is defined as a difference between a result from 3 

direct and indirect evidence. Node-splitting models estimate relative treatment effects and/or 4 

regression coefficients for the interaction based on direct evidence and separate estimates 5 

from indirect evidence to explore whether they agree. Multiple node-splitting models need to 6 

be applied; one model for each comparison of interest. 7 

 8 

To specify the node-splitting models, we extend the notation, such that the node being split is 9 

(�̂�, 𝑡∗) where �̂� ≠  𝑡∗ and �̂� <  𝑡∗. For example, if one wants to split the node (3, 4) then �̂� = 3 10 

and 𝑡∗ = 4.  11 

 12 

To assess both the consistency assumptions simultaneously, node-splitting models can split 13 

the relative treatment effect and coefficient to provide, for each comparison with both direct 14 

and indirect evidence, a relative treatment effect and a coefficient estimated from direct 15 

evidence and an effect and coefficient based on indirect evidence. The model that splits the 16 

relative treatment effect and coefficient and includes independent interactions (model 2.1a) is 17 

an extension of model 1a as follows: 18 

 19 

𝜃𝑖𝑘 = {
𝛿𝑖,1𝑘 +  𝛽𝑡𝑖1,𝑡𝑖𝑘

𝑥𝑖        𝑖𝑓  𝑡𝑖1 ≠  �̂� and/or 𝑡𝑖𝑘 ≠ 𝑡∗

𝛿𝑖,1𝑘 +  𝛽𝑑𝑖𝑟𝑥𝑖             𝑖𝑓  𝑡𝑖1 =  �̂� and 𝑡𝑖𝑘 = 𝑡∗
 20 

 21 

Where 𝛽𝑡𝑖1,𝑡𝑖𝑘
=𝛽1,𝑡𝑖𝑘

-𝛽1,𝑡𝑖1
, 𝛽𝑡𝑖1,𝑡𝑖𝑘

 represents the difference in the relative treatment effect of 22 

𝑡𝑖𝑘 vs. 𝑡𝑖1 per unit increase in the covariate estimated using indirect evidence, and 𝛽𝑑𝑖𝑟 23 

represents the difference in the relative treatment effect of 𝑡∗ vs. �̂� per unit increase in the 24 



10 
 

covariate estimated using direct evidence. In a random-effects model, if trial i allocated 𝑡∗and 1 

�̂�, that is, 𝑡𝑖1 = �̂� and 𝑡𝑖𝑘 = 𝑡∗, then 𝛿𝑖,1𝑘~𝑁(𝑑𝑑𝑖𝑟 ,  𝜎2 ) where  𝑑𝑑𝑖𝑟 represents the mean 2 

relative treatment effect of 𝑡∗vs. �̂� when the covariate value is zero estimated using direct 3 

evidence; whereas if trial i did not allocate 𝑡∗and �̂�, that is, 𝑡𝑖1 ≠ �̂� and/or 𝑡𝑖𝑘 ≠ 𝑡∗, then 4 

𝛿𝑖,1𝑘~𝑁(𝑑𝑡𝑖1,𝑡𝑖𝑘
,  𝜎2 ) where 𝑑𝑡𝑖1,𝑡𝑖𝑘

 represents the mean relative treatment effect of 𝑡𝑖𝑘 vs. 𝑡𝑖1 5 

when the covariate value is zero estimated using indirect evidence and 𝑑𝑡𝑖1,𝑡𝑖𝑘
= 𝑑1,𝑡𝑖𝑘

−6 

𝑑1,𝑡𝑖1
. 7 

 8 

To assess only the consistency of the relative treatment effects, node-splitting models can 9 

split the relative treatment effect alone to produce a single coefficient that is estimated using 10 

all evidence and two relative treatment effects (i.e. one estimated using direct evidence and 11 

the other estimated using the indirect evidence). The model that splits the relative treatment 12 

effect alone and includes independent interactions (model 2.2a) is  13 

 14 

𝜃𝑖𝑘 = 𝛿𝑖,1𝑘 + 𝛽𝑡𝑖1,𝑡𝑖𝑘
𝑥𝑖 15 

 16 

where  𝛽𝑡𝑖1,𝑡𝑖𝑘
 represents the difference in the relative treatment effect of 𝑡𝑖𝑘 vs. 𝑡𝑖1 per unit 17 

increase in the covariate estimated using all evidence. In this model, the trial-specific relative 18 

treatment effects, 𝛿𝑖, 1𝑘 are distributed in the same way as in model 2.1a.  19 

 20 

Likewise, to assess the consistency of the coefficients alone, a node-splitting model can split 21 

only the coefficient to estimate a single relative treatment effect using all evidence and two 22 

coefficients (i.e. one estimated from direct evidence and the other from indirect evidence). 23 

The model that splits only the coefficient and includes independent interactions (model 2.3a) 24 
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is the same as model 2.1a except the trial-specific relative treatment effects, 𝛿𝑖, 1𝑘 are 1 

distributed as 𝛿𝑖,1𝑘~𝑁(𝑑𝑡𝑖1,𝑡𝑖𝑘
,  𝜎2 ) where  𝑑𝑡𝑖1,𝑡𝑖𝑘

 represents the mean relative treatment 2 

effect of 𝑡𝑖𝑘 vs. 𝑡𝑖1 when the covariate value is zero estimated using all evidence.  3 

 4 

Node-splitting models can be adapted to include exchangeable (models 2.1b, 2.2b, 2.3b) or 5 

common (models 2.1c 2.2c, 2.3c) interactions as described in section 2.1. Note that model 6 

2.1c and 2.3c fix each functional coefficient based on indirect evidence (i.e. 𝛽𝑡𝑖1,𝑡𝑖𝑘
when 𝑡𝑖1 ≠7 

1) to be zero whereas the corresponding result from direct evidence (𝛽𝑑𝑖𝑟) is not. 8 

 9 

The level of consistency can be assessed, by comparing the model fit of the NMR (model 1(a, 10 

b, or c)) with that of the node-splitting models (models 2.1(a, b, or c), 2.2(a, b, or c), and 11 

2.3(a, b, or c)); inconsistency is indicated if a node-splitting model is an improved fit. 12 

Moreover, if the between trial variance is lower in the node-splitting models as compared to 13 

the NMR, inconsistency may exist. Also, for each treatment comparison, the size, direction, 14 

and precision of the relative treatment effect estimated using direct evidence can be compared 15 

with that estimated using indirect evidence. Such comparisons are subjective and when 16 

results are presented graphically and compared, care must be taken because the scale and 17 

shape of the plots can affect how different the results appear to be. Furthermore, when using 18 

Bayesian methods, for each comparison, the probability that the direct and indirect evidence 19 

differs can be calculated. For each treatment pairing, the inconsistency estimate (IE), that is 20 

the difference between the relative treatment effect from direct evidence and indirect 21 

evidence can be calculated at each iteration of the chain, and the number of iterations for 22 

which 𝐼𝐸 ≥ 0 is counted. It is then possible to calculate the probability (prob) that the 23 

relative treatment effect from direct evidence exceeds the relative treatment effect from 24 

indirect evidence, by dividing the number of counted iterations by the total number of 25 
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iterations of the chain. Lastly, assuming that the posterior distribution of the difference (IE) is 1 

symmetric and unimodal, the probability that the direct and indirect evidence agree is given 2 

by 𝑃 = 2 × 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑝𝑟𝑜𝑏, 1 − 𝑝𝑟𝑜𝑏) (Dias et al., 2010; Marshall and Spiegelhalter, 3 

2007). Likewise, the regression coefficients from direct and indirect evidence can be 4 

compared in the same way. 5 

 6 

2.3.  Assessing consistency using URM models. 7 

URM models assess global consistency, which is inconsistency somewhere in the treatment 8 

network, by comparing the results from an NMR model with those from an URM model 9 

(Dias et al., 2013c).  10 

 11 

The URM model that assesses the consistency of the relative treatment effects and 12 

coefficients and includes independent interactions (model 3.1a) is the same as the NMR 13 

model (model 1a) but it does not incorporate the consistency equations (i.e.  𝑑𝑡𝑖1,𝑡𝑖𝑘
= 𝑑1,𝑡𝑖𝑘

−14 

𝑑1,𝑡𝑖1
 and   𝛽𝑡𝑖1,𝑡𝑖𝑘

=𝛽1,𝑡𝑖𝑘
-𝛽1,𝑡𝑖1

), and as such, the model parameters are estimated using direct 15 

evidence only. Model 3.1a is equivalent to fitting separate pair-wise meta-regressions, except, 16 

model 3.1a assumes the between trial variance (𝜎2 ) is equal across comparisons but the pair-17 

wise meta-regressions would not.   18 

 19 

The URM model that assesses only consistency of the relative treatment effects and includes 20 

independent interactions (model 3.2a) is the same as model 3.1a but incorporates the 21 

consistency equation for the coefficients. Likewise, the UMR model that assesses only 22 

consistency of the coefficients with independent interactions (model 3.3a) is same as model 23 

3.1a but includes the consistency equation for the relative treatment effects.  24 

 25 
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Exchangeable (models 3.1b, 3.2b, 3.3b) or common (models 3.1c, 3.2c, 3.3c) interactions can 1 

be included. However, it is worth noting that the independent, exchangeable or common 2 

assumptions are slightly different to those specified for the NMR models (models 1a, 1b and 3 

1c). In the NMR models, we assume the basic regression coefficients (i.e. 𝛽12, 𝛽13, … , 𝛽1𝑇) are 4 

independent, exchangeable or common. However, when the consistency equation for the 5 

coefficients is not used in the URM model (i.e. models 3.1(a, b, or c) and 3.3(a, b, or c)), we 6 

can assume that all regression coefficients, that is basic and functional coefficients, are 7 

independent, exchangeable (i.e. 𝛽𝑡𝑖1,𝑡𝑖𝑘
~𝑁𝑜𝑟𝑚(𝐵, 𝜐2)) or common (i.e. 𝛽𝑡𝑖1,𝑡𝑖𝑘

=  𝛽). In 8 

particular, this means that when including common interactions, the functional coefficients in 9 

the NMR model (model 1c) are forced to be zero but this is not so in the URM model (models 10 

3.1c and 3.3c). 11 

 12 

To determine consistency, the model fit of the NMR model (model 1(a, b, or c)) and the fit of 13 

the URM models (models 3.1(a, b, or c), 3.2(a, b, or c) and 3.3(a, b, or c)) can be compared; 14 

when an URM model is an improved fit, inconsistency may be present. Also, differences 15 

between the relative treatment effects and regression coefficients produced from the NMR 16 

model and those from the URM models may suggest inconsistency. 17 

 18 

2.4. Including multi-arm trials 19 

The models can be applied to datasets including multi-arm trials providing that the 20 

correlation between the observed relative treatment effect (𝑦𝑖𝑘 ) and the trial-specific relative 21 

treatment effects (𝛿𝑖, 1𝑘) is taken into account. For each multi-arm trial i with m arms, the 22 

observed relative treatment effects and the trial-specific relative treatment effects are 23 

assumed to follow multivariate normal distributions 24 
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(
𝑦𝑖2  

⋮

𝑦𝑖𝑚  

) ~𝑁 ((
𝜃𝑖2

⋮
𝜃𝑖𝑚

) , (

𝑣𝑖2 
… 𝑐𝑜𝑣(𝑦𝑖2 , 𝑦𝑖𝑚)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑦𝑖2 , 𝑦𝑖𝑚) … 𝑣𝑖𝑚 

)) 1 

and 2 

(

𝛿𝑖, 12 

⋮

𝛿𝑖, 1𝑚 

) ~𝑁 ((

𝑑1,𝑡𝑖2
− 𝑑1,𝑡𝑖1

⋮
𝑑1,𝑡𝑖𝑚

− 𝑑1,𝑡𝑖1

) , (
𝜏2 … 𝜏2/2
⋮ ⋱ ⋮

𝜏2/2 … 𝜏2
)). 3 

 4 

Furthermore, there is an extra consideration when fitting node-splitting models (Dias et al., 5 

2010; Van Valkenhoef et al., 2016).  If one wants to split node (𝑡𝑖1, 𝑡𝑖𝑘) then a multi-arm trial 6 

will contribute direct evidence to the relative treatment effect (𝑑𝑑𝑖𝑟) as required because �̂� =7 

𝑡𝑖1. However, the multi-arm trial would not contribute direct evidence to the estimation of the 8 

relative treatment effect, 𝑑𝑑𝑖𝑟, if one splits another node (e. g.  𝑡𝑖2, 𝑡𝑖3) because �̂� ≠ 𝑡𝑖1. 9 

Therefore, to overcome this problem, when a multi-arm trial compared the two treatments 𝑡∗ 10 

and �̂�, in addition to other treatments, treatment �̂� is taken to be the baseline treatment 𝑡𝑖1 for 11 

that study.  12 



15 
 

Note that for URM models including multi-arm trial data, the URM model is not the same as 1 

fitting separate pair-wise meta-regressions because the correlation in multi-arm trials is taken 2 

into account but would not be in pair-wise analyses; also, the URM model only uses 𝑡𝑖1 as the 3 

baseline treatment so direct evidence for some pairwise comparisons would not be used 4 

whereas pairwise meta-regression could utilise all direct evidence.   5 

 6 

3. Application to datasets 7 

3.1. Datasets  8 

Here, the methods proposed in section 2 are applied to a real dataset and four fabricated 9 

datasets that have been manipulated to demonstrate specific scenarios.  10 

 11 

3.1.1. Malaria dataset 12 

Two Cochrane reviews and the corresponding trials were used to construct the malaria 13 

dataset; reviews compared artemether (AR), quinine (QU) and artesunate (AS) (Esu et al., 14 

2014; Sinclair et al., 2012). Randomised controlled trials including patients with severe 15 

malaria were eligible. Age was considered to be an effect modifier because the clinical 16 

features of malaria differ by age and thus all treatment recommendations are stratified by age 17 

in the reviews and WHO treatment guidelines (World Health Organisation, 2015).  Event 18 

rates for the primary outcome, death, and the covariate, average age of patients in each trial, 19 

was extracted. Two studies with missing covariate data were deleted from the dataset. Using 20 

the event rates, trial-specific log odds ratios and their standard deviations were calculated in 21 

R. Table S1 displays the data. Figure 2 shows the network diagram. 22 

 23 

3.1.2. Fabricated datasets  24 
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Four fabricated datasets were constructed by manipulating the malaria dataset to illustrate key 1 

scenarios: (1) no interaction present and the relative treatment effects and regression 2 

coefficients are consistent (Figure 1a); (2) interaction exists and the relative treatment effects 3 

and coefficients are consistent (Figure 1b) (3) interaction exists and the relative treatment 4 

effects are consistent but the coefficients are inconsistent (Figure 1d); (4) no interaction 5 

present and the relative treatment effects are consistent but the coefficients are inconsistent 6 

(Figure 1g). Example R code to generate the datasets is given in the supplementary material. 7 

 8 

Analogous to the malaria dataset, each dataset compared three treatments (AS, AR, QU), 9 

there was direct evidence for each possible comparison, no multi-arm trials contributed, and a 10 

dichotomous outcome and continuous covariate was of interest. Ten trials contributed direct 11 

evidence to each comparison. For each study, a continuous covariate was taken to be a 12 

realisation from Normal distribution (i.e. 𝑁(17, 102)) truncated at zero to ensure the 13 

covariate values were similar to those observed in the malaria dataset.  14 

 15 

The log odds ratios and regression coefficients were chosen to be similar to those estimated 16 

in the original dataset. For each dataset, the log odd ratio at zero covariate of trials comparing 17 

treatments AR and AS was 0.2, trials comparing treatments QU and AS was 0.23, and trials 18 

of treatments QU and AR was 0.03. For dataset one, the coefficient for each comparison was 19 

zero. For dataset two, the coefficient for trials comparing treatments AR and AS was 0.02, 20 

trials comparing treatments QU and AS was 0.02, and trials of treatments QU and AR was 0. 21 

For dataset three, the coefficient for trials comparing treatments AR and AS was 0.01, trials 22 

of treatments QU and AS was 0.04, and trials comparing treatments QU and AR was 0. For 23 

dataset four, the coefficient for trials comparing treatments AR and AS was -0.04, trials of 24 

treatments QU and AS was 0.04, and trials of treatments QU and AR was 0.  25 



17 
 

 1 

The trial-specific observed log odds ratios were estimated from the values of log odds ratio at 2 

zero covariate, the coefficients, and the covariates. The between trial variance was zero. The 3 

standard error of the observed log odds ratio was 0.2 for each trial. 4 

 5 

3.2. Implementation  6 

All models were fitted to the datasets using WinBUGS 1.4.3 and the R2WinBUGS package 7 

in R. Example code is provided as supplementary material. For the malaria dataset, all 8 

models in Table 1 were fitted. For the fabricated datasets, only fixed-effect versions of 9 

models 1a, 2.1a, 3.1a and 4.1a were applied because the between trial variance was zero and 10 

the coefficients differed across comparisons. See Table S2 for the parameterisation of the 11 

DBT models. The covariates were centred at their mean. All parameters were given non-12 

informative normal prior distributions (i.e. 𝑁(0, 100000)) except the between-trial standard 13 

deviation that was assumed to follow a non-informative uniform distribution (i.e. 𝑈𝑛𝑖(0, 10)) 14 

and a weakly informative prior distribution (i.e. 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0, 2)) was specified for the 15 

standard deviation of the exchangeable regression coefficients. Three chains with different 16 

initial values were run for 300,000 iterations. The initial 100,000 draws were discarded and 17 

chains were thinned such that every fifth iteration was retained. Convergence of the chains 18 

was assessed by inspecting trace plots of the draws.   19 

 20 

Model fit and complexity of models was assessed using the deviance information criterion 21 

(DIC) defined as 𝐷𝐼𝐶 = �̅� + 𝑝𝐷 where �̅� is the posterior mean of the residual deviance and 22 

𝑝𝐷 is the effective number of parameters (Spiegelhalter et al., 2002). A model with a smaller 23 

DIC was preferable to a model with a larger DIC but differences of less than three units were 24 
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not considered meaningful. When models had little difference in DIC, the simplest model 1 

was chosen.   2 

 3 

3.3. Results 4 

Results from NMR, node-splitting and URM models are presented here. The results from 5 

DBT models are presented in supplementary material. 6 

  7 

3.3.1. Malaria dataset 8 

NMR models 9 

Comparing fixed-effect and random-effect NMR models (models 1a, 1b, 1c), the DICs from 10 

all NMR models variations are similar (DICs 24.93-26.76 in Table S3). Also, the estimated 11 

regression coefficients for the treatment by average age interactions were quite similar for 12 

each model variation (Table S4). Therefore, results from the simplest model, the fixed-effect 13 

NMR with common interactions (model 1c) are presented. 14 

 15 

The results of model 1c show that there is evidence of a small interaction between relative 16 

treatment effect and average age for AR vs. AS and QU vs. AS; the posterior median of the 17 

common regression coefficient for AR vs. AS and QU vs. AS is 0.0132 with 95% credibility 18 

interval (CrI) (0.0018, 0.0244) (Table S4). There is no interaction for QU vs. AR because the 19 

model fixes the coefficient to be zero. However, before using these results to draw clinical 20 

inferences, the underlying consistency assumptions must be assessed. 21 

 22 

Node-splitting models 23 

Table 2 shows model fit assessment results for fixed-effect node-splitting models with 24 

common interactions (models 2.1c, 2.2c, 2.3c). The DIC of the NMR model (DIC=25.29) is 25 
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similar to those of the node-splitting models (DICs 23.75-27.95) indicating that the model is 1 

not improved by splitting each node, lending support to the consistency assumptions.  2 

 3 

The results from node-splitting are displayed in Table 3. In the model that assesses 4 

consistency of both the log odds ratio and the coefficient (model 2.1c), the log odds ratios for 5 

AR vs. AS (-2.3540 95% CrI (-6.7650, 2.0530)) and QU vs. AS (0.4316 95% CrI (0.2833, 6 

0.5797)) based on direct evidence differs with those from indirect evidence (i.e. 0.1985 95% 7 

CrI (-0.0815, 0.4782) and -2.1000 95% CrI (-6.4180, 2.4430) respectively) because only two 8 

trials contribute direct evidence for AR vs. AS and therefore the results are influenced by the 9 

vague prior distribution. A similar, but less pronounced, inconsistency is also seen for the 10 

corresponding coefficients. Yet, the probability of agreement between direct and indirect 11 

evidence is low for the coefficient for QU vs. AR (P=0.06) but not remarkably low for other 12 

comparisons or the log odds ratios (Ps 0.24-0.77). Similar conclusions are drawn from 13 

models that split either the log odds ratio or the regression coefficient only (models 2.2c and 14 

2.3c). The consistency of the direct and indirect evidence is also supported graphically in 15 

Figure 3, which displays the posterior distributions of the centred log odds ratios and 16 

regression coefficients and in Figure 4, where the log odds ratio versus average age is plotted. 17 

 18 

URM models 19 

Table 2 also displays model fit assessment results for fixed-effect URM models with 20 

common interactions (models 3.1c, 3.2c, 3.3c). The DIC of the NMR model (DIC=25.29) is 21 

similar to those from the URM models the assess consistency of both the log odds ratio and 22 

coefficient (DIC=23.94) or the log odds ratio alone (DIC= 27.27) (models 3.1c and 3.2c) but 23 

is slightly higher than that from the model that assesses the coefficient alone (DIC=21.96) 24 

(model 3.3c) indicating a possible inconsistency on a coefficient.  25 
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 1 

See Table 4 for the results from the NMR model and URM models. The results from the 2 

URM models are quite similar to those from the NMR model with the exception of the 3 

regression coefficient for QU vs. AR. This difference in the coefficient for QU vs. AR is 4 

because of the different assumptions underlying the two models; the NMR model sets the 5 

regression coefficients for AR vs. AS and QU vs. AS to be identical (i.e. 0.0132 95% CrI 6 

(0.0018, 0.0244)) and the coefficient for QU vs. AR to be zero, whereas all three coefficients 7 

are set to be identical in the URM model (i.e. 0.0145 95% CrI (0.0044, 0.0247)). 8 

 9 

Overall, there is evidence of an interaction from the NMR but also evidence of inconsistency; 10 

the node-splitting models show evidence of loop inconsistency for the coefficient of QU vs. 11 

AR and the URM models support this showing a possible inconsistency of the coefficients.  12 

 13 

3.3.2. Fabricated datasets 14 

Dataset 1: no interaction and consistency. 15 

The DICs from each model (models 1a, 2.1a, 3.1a) are similar (8.01-12.00) therefore there is 16 

no obvious sign of inconsistency (Table 5). Using the results from node-splitting (model 17 

2.1a), the log odds ratios and coefficients based on direct and indirect evidence are very 18 

similar and the probabilities of agreement between direct and indirect evidence are practically 19 

one (Table 6). The results from the NMR model are also similar to those from the URM 20 

model (model 3.1a) (Table 7) indicating consistency. Overall, the NMR model does not show 21 

that a treatment by average age interaction exists (Table 7) and there is no evidence of loop 22 

inconsistency using node-splitting, or global inconsistency using the URM model. Figure 5, 23 

which shows the results from the NMR model and node-splitting models, supports this 24 

conclusion. 25 
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 1 

Dataset 2: interaction and consistency. 2 

The DICs from the models (models 1a, 2.1a, 3.1a) are again similar (8.00-11.99) indicating 3 

consistent evidence (Table 5). From node-splitting (model 2.1a), the log odds ratios and the 4 

coefficients based on direct and indirect evidence are almost identical and the probabilities of 5 

agreement of direct and indirect evidence are practically one (Table 6); Figure 5 shows the 6 

results graphically. The URM model (model 3.1a) also gives comparable results to the NMR 7 

model (Table 7). In conclusion, the NMR model shows that an interaction exists for AR vs. 8 

AS (0.0200 95% CrI (0.0074, 0.0327)) and QU vs. AS (0.0200 95% CrI (0.0080, 0.0321)) 9 

(Table 7) and there is no loop inconsistency using node-splitting, or global inconsistency 10 

using the URM model. 11 

 12 

Dataset 3: interaction and inconsistency. 13 

The DIC from the NMR model (model 1a) (DIC=47.14) is much higher than those from 14 

node-splitting (model 2.1a) and the URM model (model 3.1a) (11.97-11.99) suggesting 15 

inconsistency (Table 5). From node-splitting, the log odds ratios based on direct and indirect 16 

evidence are comparable but the coefficients for AR vs. AS (0.0100 95% CrI (-0.0039, 17 

0.0241)) and QU vs. AS (0.0400 95% CrI (0.0298, 0.0503)) and QU vs. AR (0.0000 95% CrI 18 

(-0.0125, 0.0126)) from direct evidence differ from those from indirect evidence (i.e. 0.0400 19 

95% CrI (0.0237, 0.0562), 0.0099 95% CrI (-0.0088, 0.0289), and 0.0300 95% CrI (0.0127, 20 

0.0474) respectively); the probabilities of agreement of direct and indirect evidence are very 21 

high (Ps 0.9982-0.9990) for the log odds ratios and very low for the coefficients (Ps 0.0057-22 

0.0062) (Table 6). The URM model also gives results that differ somewhat from those of the 23 

NMR model (see Table 7). To summarise, the NMR model shows that an interaction exists 24 

for AR vs. AS (0.0187 95% CrI (0.0082, 0.0292)), QU vs. AS (0.0335 95% CrI (0.0244, 0.0425)) 25 
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and QU vs. AR (0.0147 95% CrI (0.0047, 0.0248)) (Table 7) but there is also loop inconsistency 1 

in the size of the underlying coefficients based on direct and indirect evidence that is seen 2 

using node-splitting (Figure 5); the URM model identifies global inconsistency. 3 

 4 

Dataset 4: no interaction and inconsistency. 5 

The DIC from the NMR model (model 1a) (DIC=188.36) is much higher than those from 6 

node-splitting (model 2.1a) and the URM model (model 3.1a) (11.99-12.00) indicating 7 

inconsistency (Table 5). Similar to dataset 3, in node-splitting models, the log odds ratios 8 

based on direct and indirect evidence are comparable but the coefficients for AR vs. AS (-9 

0.0400 95% CrI (-0.0553, -0.0246)) and QU vs. AS (0.0400 95% CrI (0.0273, 0.0529)) and 10 

QU vs. AR (0.0000 95% CrI (-0.0115, 0.0116)) from direct evidence differ from those from 11 

indirect evidence (i.e. 0.0399 95% CrI (0.0227, 0.0574), -0.0400 95% CrI (-0.0591, -0.0208), 12 

and 0.0800 95% CrI (0.0600, 0.1000) respectively); the probabilities of agreement of direct 13 

and indirect evidence are very high for log odds ratios (Ps 0.9976-1.000) and zero for the 14 

coefficients (Table 6). Also, results from the URM model are different from those of the 15 

NMR model (see Table 7). Overall, the NMR model shows that no interaction exists (Table 16 

7) but there is inconsistency in the direction of the underlying coefficients based on direct and 17 

indirect evidence and this trend can be seen using node-splitting (Figure 5); the URM model 18 

suggests global inconsistency respectively but these models cannot show the underlying 19 

trend. 20 

 21 

4. Discussion 22 

We have shown that node-splitting and inconsistency models can be useful for assessing the 23 

underlying consistency assumptions of NMR when using aggregate data. Once consistency 24 

has been assessed, the analyst must decide which results to present. If the direct and indirect 25 
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evidence are consistent, the results from the NMR should be reliable. However, the level of 1 

heterogeneity (from the NMR or standard pair-wise analyses) and goodness of fit of the NMR 2 

should be considered when drawing conclusions from the results. If there is inconsistency, 3 

the results from the NMR are questionable and the causes of inconsistency should be 4 

considered. In some scenarios, for example, when inconsistency masks an interaction, as 5 

shown in Figure 1c and 1g, the results would not be useable. If the original purpose of the 6 

NMR was to explore causes of heterogeneity or inconsistency in an NMA and there is no 7 

interaction and no inconsistency masking interactions in the NMR, then analysts could 8 

proceed by exploring other potentially relative treatment effect modifying covariates or 9 

reconsidering the eligibility criteria. 10 

 11 

Each of the proposed methods has different pros and cons. DBT models assess design and 12 

loop consistency and can assess global inconsistency, while node-splitting assesses loop 13 

consistency and URM models assess global inconsistency; loop inconsistency is well 14 

recognised in the methodological literature but design consistency is a newer concept 15 

(Higgins et al., 2012; White et al., 2012). Furthermore, the DBT model requires 16 

parameterisation by the analyst therefore, the analyst needs to have a good understanding of 17 

the model and parameters. Key advantages of the DBT model and node-splitting is that 18 

inconsistency estimates and the probability that direct and indirect evidence agree can be 19 

obtained; however, the URM model does not provide such results. Moreover, concerns 20 

regarding multiple testing may apply to node-splitting and the DBT models where 21 

probabilities are calculated, particularly when a Frequentist approach is taken; therefore, it is 22 

important to compare model fit statistics across models, and also to be cautious in 23 

interpreting ‘p-values’ making sure to allow for multiple testing. One disadvantage of node-24 

splitting is that, as one model is fitted for every comparison with contributing direct and 25 
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indirect evidence, many models may need to be fitted which is computationally demanding; 1 

whereas only one inconsistency model would need to be applied.  2 

 3 

Ideally, all three approaches (i.e. node-splitting, DBT model, URM model) would be applied 4 

to provide a thorough assessment of consistency. However, in practice, the reviewer may 5 

select their preferred approach depending on the ease of application in software etc. We 6 

recommend that at least one of the global tests (i.e. inconsistency models) and also node-7 

splitting are performed. Our preference is node-splitting because estimates from direct and 8 

indirect evidence can be found.  9 

 10 

We proposed and applied methods to trial-level aggregated data in this article. However, it is 11 

straightforward to adapt the models to accommodate any type of arm-level outcome data, that 12 

is, a summary of the outcome data for each arm of each trial and a covariate value for each 13 

trial. To adapt the models, a suitable link function would be chosen and nuisance parameters 14 

are included in the model to represent the effect of the baseline treatment in arm 1 of trial i. 15 

Further details regarding arm-level network meta-analysis models are given by Dias et al 16 

(Dias et al., 2013a) 17 

 18 

Moreover, collection and use of individual patient data is generally advantageous over 19 

aggregate data when studying patient-level covariates because they avoid ecological biases 20 

(Riley et al., 2008; Riley and Steyerberg, 2010). Yet, it is more common to explore patient-21 

level covariates (e.g. patient age) using study-level covariate summaries (e.g. average age of 22 

patients) in meta-regression such as in the malaria dataset. However, when using aggregate 23 

data, the possibility of confounding and ecological biases should be considered when patient-24 

level covariates are explored. 25 
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 1 

There are a number of issues that can arise when applying the methods, particularly with 2 

aggregate data. Parameter estimation can be a problem with limited data, such that models 3 

cannot be fitted at all, interactions exist but cannot be detected, or inconsistency exists but is 4 

not found. For instance, when all the trials that contribute to the estimation of a regression 5 

coefficient have the same covariate value or when only one trial contributes to a coefficient, 6 

this would preclude the use of models with independent interactions but analysts may be able 7 

to apply an model with exchangeable or common interactions providing studies that 8 

contribute to another basic coefficient have different covariate values. For example, when 9 

exploring an interaction between relative treatment effect and study location (i.e. continent), 10 

studies that contribute to results for comparison 2 vs. 1 may all be carried out on the same 11 

continent provided that studies that contribute to comparison 3 vs. 1 are located on different 12 

continents. Parameter estimation may particularly be a problem when fitting the DBT model 13 

because the inconsistency estimates would be imprecise when the number of trials in one or 14 

more designs is limited; to overcome this one could assume exchangeability of the 15 

inconsistency factors or use informative prior distributions. Similarly, if direct evidence is 16 

limited for some comparisons (i.e. few trials or covariate values), the URM model and node-17 

splitting models would produce imprecise results and informative prior distributions may 18 

need to be used. Ideally any informative prior distributions would be evidence-based by 19 

eliciting them from similar meta-analyses or experts’ beliefs. Finally, it is also worth 20 

emphasising that no evidence of inconsistency does not automatically imply there is 21 

consistency; inconsistency may exist but cannot be detected when data are limited and results 22 

are imprecise and therefore arguably the consistency assumptions and the NMR results are 23 

questionable. In the same way, in such cases, no evidence of a treatment by covariate 24 

interaction does not imply there is truly no interaction. 25 
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 1 

Conversely, with abundant data, additional modelling extensions may be feasible. For 2 

example, in node-splitting models, we have assumed the between trial variance is the same 3 

for direct evidence and indirect evidence, yet it is possible to incorporate two variances, one 4 

of each type of evidence. Also, the models could be adapted to include more than one 5 

covariate or other variance structures (Lu and Ades, 2009).  6 

 7 

In conclusion, consistency of the assumptions underlying NMR must be assessed when NMR 8 

is applied, even when no treatment by covariate interactions are detected. It is possible that 9 

inconsistency is masking an interaction. Furthermore, results of an NMR should not be 10 

reported without assessing the underlying assumptions to determine whether the results are 11 

valid and reliable. 12 
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Models including 

independent treatment by 

covariate interactions 

Models including 

exchangeable treatment by 

covariate interactions 

Models including common 

treatment by covariate 

interactions 

NMR models Model 1a Model 1b Model 1c 

Node-

splitting 

models 

Models splitting the relative 

treatment effect and the regression 

coefficient for the interaction. 

Model 2.1a Model 2.1b Model 2.1c 

Models splitting the relative 

treatment effect only. 
Model 2.2a Model 2.2b Model 2.2c 

Models splitting the regression 

coefficient for the interaction only. 
Model 2.3a Model 2.3b Model 2.3c 

URM 

models 

Models assessing consistency of the 

relative treatment effect and the 

regression coefficient for the 

interaction. 

Model 3.1a Model 3.1b Model 3.1c 

Models assessing consistency of the 

relative treatment effect only. 
Model 3.2a Model 3.2b Model 3.2c 

Models assessing consistency of the 

regression coefficient for the 

interaction only. 

Model 3.3a Model 3.3b Model 3.3c 

DBT 

models  

Models assessing consistency of the 

relative treatment effect and the 

regression coefficient for the 

interaction. 

Model 4.1a Model 4.1b Model 4.1c 

Models assessing consistency of the 

relative treatment effect only. 
Model 4.2a Model 4.2b Model 4.2c 

Models assessing consistency of the 

regression coefficient for the 

interaction only. 

Model 4.3a Model 4.3b Model 4.3c 

Table 1: Proposed model variations. 
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DBT: design by treatment; NMR: network meta-regression; URM: unrelated mean effects. 
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Model 
Mean residual 

deviance 
pD DIC 

NMR model (model 1c) 22.29 3.00 25.29 

Node-splitting model splitting the log odds ratio and regression coefficient: AR vs. AS (model 

2.1c) 
22.97 4.99 27.95 

Node-splitting model splitting the log odds ratio and regression coefficient: QU vs. AS (model 

2.1c) 
22.96 4.98 27.93 

Node-splitting model splitting the log odds ratio and regression coefficient: QU vs. AR (model 

2.1c) 
20.65 5.00 25.65 

Node-splitting model splitting the log odds ratio only: AR vs. AS (model 2.2c) 23.27 4.01 27.27 

Node-splitting model splitting the log odds ratio only: QU vs. AS (model 2.2c) 23.27 4.01 27.29 

Node-splitting model splitting the log odds ratio only: QU vs. AR (model 2.2c) 23.27 4.01 27.27 

Node-splitting model splitting the regression coefficient only: AR vs. AS (model 2.3c) 23.19 4.01 27.19 

Node-splitting model splitting the regression coefficient only: QU vs. AS (model 2.3c) 23.19 4.01 27.19 

Node-splitting model splitting the regression coefficient only: QU vs. AR (model 2.3c) 19.74 4.01 23.75 

URM model assessing consistency of the log odds ratio and regression coefficient (model 3.1c) 19.93 4.01 23.94 

URM model assessing consistency of the log odds ratio only (model 3.2c) 23.27 4.01 27.27 

URM model assessing consistency of the regression coefficient only (model 3.3c) 18.96 3.00 21.96 

Table 2: Model fit assessment results for fixed-effect models with common treatment by average age interactions for the malaria dataset. 

Number of data points: 24 

AR: artemether; AS: artesunate; DIC: deviance information criterion; QU: quinine; NMR: network meta-regression; URM: unrelated mean 

effects. 
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Model type Parameter Evidence 
Posterior median (95% credibility interval), P 

AR vs. AS QU vs. AS QU vs. AR 

Splitting the 

log odds 

ratio and 

regression 

coefficient 

(model 2.1c) 

Log odds ratio 

(centred) 

Direct -2.3540 (-6.7650, 2.0530)* 0.4316 (0.2833, 0.5797) 0.2882 (0.0449, 0.5315) 

Indirect 0.1985 (-0.0815, 0.4782) -2.1000 (-6.4180, 2.4430)* 0.1825 (-0.4751, 0.8419) 

IE, P 
-2.5510 (-6.9740, 1.8710), 

P=0.26 

2.5330 (-2.0150, 6.8540), 

P=0.26 

0.1055 (-0.5990, 0.8089), 

P=0.77 

Regression coefficient 

for the interaction 

Direct 0.1738 (-0.0974, 0.4451) 0.0126 (0.0006, 0.0245) 0.0191 (-0.0008, 0.0387) 

Indirect 0.0126 (0.0007, 0.0245) 0.1728 (-0.1048, 0.4376) Fixed at zero 

IE, P 
0.1613 (-0.1100, 0.4327), 

P=0.25 

-0.1603 (-0.4253, 0.1173), 

P=0.24 

0.0191 (-0.0008, 0.0387), 

P=0.06 

Splitting the 

log odds 

ratio only 

(model 2.2c) 

Log odds ratio 

(centred) 

Direct 0.2495 (-0.3804, 0.8815) 0.4320 (0.2837, 0.5804) 0.2328 (-0.0031, 0.4700) 

Indirect 0.1994 (-0.0821, 0.4787) 0.4824 (-0.1946, 1.1600) 0.1816 (-0.4797, 0.8403) 

IE, P 
0.0512 (-0.6481, 0.7515), 

P=0.89 

-0.0499 (-0.7523, 0.6552), 

P=0.89 

0.0521 (-0.6518, 0.7545), 

P=0.89 

Regression coefficient 

for the interaction 
All 0.0129 (0.0011, 0.0248) 0.0129 (0.0011, 0.0248) Fixed at zero 

Splitting the 

regression 

coefficient 

only 

(model 2.3c) 

Log odds ratio 

(centred) 
All 0.1890 (-0.0918, 0.4673) 0.4283 (0.2793, 0.5747) 0.2746 (0.0469, 0.5033) 

Regression coefficient 

for the interaction 

Direct 0.0195 (-0.0210, 0.0603) 0.0126 (0.0007, 0.0245) 0.0188 (-0.0007, 0.0385) 

Indirect 0.0125 (0.0007, 0.0245) 0.0194 (-0.0210, 0.0601) Fixed at zero 

IE, P 
0.0070 (-0.0358, 0.0500), 

P=0.75 

-0.0068 (-0.0498, 0.0357), 

P=0.76 

0.0188 (-0.0007, 0.0385), 

P=0.06 

Table 3: Results from fixed-effect node-splitting models including common treatment by average age interactions for the malaria 

dataset. 

AR: artemether; AS: artesunate; IE: inconsistency estimate; P: probability of agreement between direct and indirect evidence; QU: quinine. 

*Results are influenced by the vague prior distribution and can be considered to be ‘not estimable’. 
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Model Parameter 
Posterior median (95% credibility interval) 

AR vs. AS QU vs. AS QU vs. AR 

NMR model (model 1c) 

Log odds ratio (centred) 
0.2080  

(-0.0441, 0.4592) 

0.4350  

(0.2923, 0.5772) 

0.2268  

(0.0051, 0.4516) 

Regression coefficient for the 

interaction 

0.0132  

(0.0018, 0.0244) 

0.0132  

(0.0018, 0.0244) 
Fixed at zero. 

URM model assessing consistency of the 

log odds ratio and regression coefficient 

(model 3.1c) 

Log odds ratio (centred) 
0.2229  

(-0.4006, 0.8471) 

0.4365  

(0.2891, 0.5832) 

0.2743  

(0.0363, 0.5136) 

Regression coefficient for the 

interaction 

0.0145  

(0.0044, 0.0247) 

0.0145  

(0.0044, 0.0247) 

0.0145  

(0.0044, 0.0247) 

URM model assessing consistency of the 

log odds ratio only 

(model 3.2c) 

Log odds ratio (centred) 
0.2497  

(-0.3819, 0.8806) 

0.4317  

(0.2831, 0.5794) 

0.2328  

(-0.0031, 0.4700) 

Regression coefficient for the 

interaction 

0.0128  

(0.0011, 0.0248) 

0.0128  

(0.0011, 0.0248) 
Fixed at zero. 

URM model assessing consistency of the 

regression coefficient only 

(model 3.3c) 

Log odds ratio (centred) 
0.1725  

(-0.0811, 0.4257) 

0.4402  

(0.2978, 0.5822) 

0.2676  

(0.0416, 0.4959) 

Regression coefficient for the 

interaction 

0.0148  

(0.0048, 0.0246) 

0.0148  

(0.0048, 0.0246) 

0.0148  

(0.0048, 0.0246) 

Table 4: Results from fixed-effect NMR and URM models with common treatment by average age interactions for the malaria dataset. 

AR: artemether; AS: artesunate; NMR: network meta-regression; QU: quinine; URM: unrelated mean effects. 
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Dataset Model 

Mean 

residual 

deviance 

pD DIC 

Dataset 1: No interaction and 

consistency 

NMR model (model 1a) 4.00 4.00 8.01 

Node-splitting model: AR vs. AS (model 2.1a) 6.00 6.00 12.00 

Node-splitting model: QU vs. AS (model 2.1a) 5.99 5.99 11.98 

Node-splitting model: QU vs. AR (model 2.1a) 5.99 5.99 11.98 

URM model (model 3.1a) 5.99 5.99 11.97 

Dataset 2: Interaction and 

consistency 

NMR model (model 1a) 4.00 4.00 8.00 

Node-splitting model: AR vs. AS (model 2.1a) 6.00 6.00 11.99 

Node-splitting model: QU vs. AS (model 2.1a) 5.99 5.99 11.99 

Node-splitting model: QU vs. AR (model 2.1a) 5.99 5.99 11.97 

URM model (model 3.1a) 5.98 5.98 11.97 

Dataset 3: Interaction and 

inconsistency 

NMR model (model 1a) 43.14 3.99 47.14 

Node-splitting model: AR vs. AS (model 2.1a) 5.99 5.99 11.99 

Node-splitting model: QU vs. AS (model 2.1a) 6.00 6.00 11.99 

Node-splitting model: QU vs. AR (model 2.1a) 5.98 5.98 11.97 

URM model (model 3.1a) 5.99 5.99 11.97 

Dataset 4: No interaction and 

inconsistency 

NMR model (model 1a) 184.36 4.00 188.36 

Node-splitting model: AR vs. AS (model 2.1a) 6.00 6.00 12.00 

Node-splitting model: QU vs. AS (model 2.1a) 5.99 5.99 11.99 

Node-splitting model: QU vs. AR (model 2.1a) 6.00 6.00 11.99 

URM model (model 3.1a) 5.99 5.99 11.98 

Table 5: Model fit assessment results for fixed-effect models assessing consistency of both the log odds ratio and regression coefficient 

with independent treatment by average age interactions for the fabricated datasets.  

Number of data points: 30 

AR: artemether; AS: artesunate; DIC: deviance information criterion; QU: quinine; NMR: network meta-regression; URM: unrelated mean 

effects. 

  



37 
 

Dataset Parameter Evidence 
Posterior median (95% credibility interval), P 

AR vs. AS QU vs. AS QU vs. AR 

Dataset 1:  
No interaction 

and 
consistency 

Log odds ratio 
(uncentred) 

Direct 0.1997 (-0.0948, 0.4949) 0.2302 (-0.0566, 0.5139) 0.0298 (-0.2356, 0.2937) 
Indirect 0.2001 (-0.1865, 0.5902) 0.2306 (-0.1642, 0.6265) 0.0297 (-0.3799, 0.4398) 

IE, P 
-0.0007 (-0.4870, 0.4894), 

P=0.9974 
-0.0004 (-0.4879, 0.4875), 

P=0.9986 
-0.0002 (-0.4891, 0.4886), 

P=0.9990 

Regression 
coefficient for the 

interaction 

Direct 0.0000 (-0.0107, 0.0109) 0.0000 (-0.0135, 0.0136) 0.0000 (-0.0115, 0.0116) 
Indirect 0.0000 (-0.0178, 0.0178) 0.0000 (-0.0158, 0.0158) 0.0000 (-0.0174, 0.0174) 

IE, P 
0.0000 (-0.0210, 0.0208), 

P=0.9980 
0.0000 (-0.0208, 0.0209), 

P=0.9980 
0.0000 (-0.0208, 0.0209), 

P=0.9982 

Dataset 2: 
Interaction 

and 
consistency 

Log odds ratio 
(uncentred) 

Direct 0.1992 (-0.1284, 0.5285) 0.2300 (-0.0268, 0.4852) 0.0301 (-0.3372, 0.3941) 
Indirect 0.1998 (-0.2432, 0.6460) 0.2304 (-0.2614, 0.7213) 0.0299 (-0.3886, 0.4447) 

IE, P 
-0.0007 (-0.5528, 0.5534), 

P=0.9980 
-0.0001 (-0.5549, 0.5537), 

P=0.9998 
-0.0003 (-0.5542, 0.5548), 

P=0.9996 

Regression 
coefficient for the 

interaction 

Direct 0.0200 (0.0049, 0.0352) 0.0200 (0.0069, 0.0333) 0.0000 (-0.0239, 0.0240) 
Indirect 0.0200 (-0.0073, 0.0473) 0.0199 (-0.0084, 0.0485) 0.0000 (-0.0200, 0.0201) 

IE, P 
0.0000 (-0.0313, 0.0312), 

P=0.9974 
0.0001 (-0.0315, 0.0313), 

P=0.9954 
0.0000 (-0.0311, 0.0313), 

P=1.0000 

Dataset 3: 
Interaction 

and 
inconsistency 

Log odds ratio 
(uncentred) 

Direct 0.2000 (-0.1389, 0.5372) 0.2301 (-0.0208, 0.4796) 0.0301 (-0.2355, 0.2937) 
Indirect 0.1999 (-0.1619, 0.5649) 0.2304 (-0.1985, 0.6584) 0.0299 (-0.3924, 0.4492) 

IE, P 
0.0003 (-0.4955, 0.4950), 

P=0.9990 
-0.0006 (-0.4948, 0.4955), 

P=0.9982 
-0.0004 (-0.4971, 0.4983), 

P=0.9986 

Regression 
coefficient for the 

interaction 

Direct 0.0100 (-0.0039, 0.0241) 0.0400 (0.0298, 0.0503) 0.0000 (-0.0125, 0.0126) 
Indirect 0.0400 (0.0237, 0.0562) 0.0099 (-0.0088, 0.0289) 0.0300 (0.0127, 0.0474) 

IE, P 
-0.0300 (-0.0515, -0.0088), 

P=0.0059 
0.0301 (0.0085, 0.0514), 

P=0.0062 
-0.0300 (-0.0515, -0.0086), 

P=0.0057 

Dataset 4: 
No interaction 

and 
inconsistency 

Log odds ratio 
(uncentred) 

Direct 0.2002 (-0.0926, 0.4908) 0.2300 (0.0222, 0.4360) 0.0297 (-0.2260, 0.2863) 
Indirect 0.2000 (-0.1290, 0.5298) 0.2300 (-0.1569, 0.6178) 0.0301 (-0.3279, 0.3866) 

IE, P 
-0.0003 (-0.4376, 0.4397), 

P=0.9990 
-0.0007 (-0.4393, 0.4399), 

P=0.9976 
0.0000 (-0.4398, 0.4398), 

P=1.0000 

Regression 
coefficient for the 

interaction 

Direct -0.0400 (-0.0553, -0.0246) 0.0400 (0.0273, 0.0529) 0.0000 (-0.0115, 0.0116) 
Indirect 0.0399 (0.0227, 0.0574) -0.0400 (-0.0591, -0.0208) 0.0800 (0.0600, 0.1000) 

IE, P 
-0.0799 (-0.1031, -0.0571), 

P=0.0000 
0.0800 (0.0568, 0.1030), 

P=0.0000 
-0.0800 (-0.1031, -0.0569), 

P=0.0000 

Table 6: Results from fixed-effect node-splitting models splitting both the log odds ratio and regression coefficient including 

independent treatment by average age interactions (model 2.1a) for the fabricated datasets. 

Posterior median (95% credibility interval) presented.  
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AR: artemether; AS: artesunate; IE: inconsistency estimate; P: probability of agreement between direct and indirect evidence; QU: quinine. 
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Dataset Model Parameter 
Posterior median (95% credibility interval) 

AR vs. AS QU vs. AS QU vs. AR 

Dataset 1: 

No 

interaction 

and 

consistency 

NMR model 

(model 1a) 

Log odds ratio (uncentred) 0.2002 (-0.0305, 0.4281) 0.2302 (0.0014, 0.4587) 0.0306 (-0.1911, 0.2517) 

Regression coefficient for the 

interaction 
0.0000 (-0.0090, 0.0091) 0.0000 (-0.0102, 0.0102) 0.0000 (-0.0096, 0.0096) 

URM model 

(model 3.1a) 

Log odds ratio (uncentred) 0.2002 (-0.0947, 0.4926) 0.2301 (-0.0556, 0.5148) 0.0303 (-0.2340, 0.2937) 

Regression coefficient for the 

interaction 
0.0000 (-0.0108, 0.0108) 0.0000 (-0.0135, 0.0136) 0.0000 (-0.0116, 0.0116) 

Dataset 2: 

Interaction 

and 

consistency 

NMR model 

(model 1a) 

Log odds ratio (uncentred) 0.2006 (-0.0539, 0.4514) 0.2302 (0.0043, 0.4558) 0.0298 (-0.2223, 0.2828) 

Regression coefficient for the 

interaction 
0.0200 (0.0074, 0.0327) 0.0200 (0.0080, 0.0321) 0.0000 (-0.0147, 0.0147) 

URM model 

(model 3.1a) 

Log odds ratio (uncentred) 0.2000 (-0.1289, 0.5266) 0.2301 (-0.0264, 0.4856) 0.0302 (-0.3364, 0.3948) 

Regression coefficient for the 

interaction 
0.0200 (0.0049, 0.0351) 0.0200 (0.0068, 0.0332) 0.0000 (-0.0240, 0.0240) 

Dataset 3: 

Interaction 

and 

inconsistency 

NMR model 

(model 1a) 

Log odds ratio (uncentred) 0.2081 (-0.0390, 0.4523) 0.1654 (-0.0503, 0.3808) -0.0421 (-0.2636, 0.1801) 

Regression coefficient for the 

interaction 
0.0187 (0.0082, 0.0292) 0.0335 (0.0244, 0.0425) 0.0147 (0.0047, 0.0248) 

URM model 

(model 3.1a) 

Log odds ratio (uncentred) 0.2003 (-0.1374, 0.5353) 0.2301 (-0.0201, 0.4795) 0.0303 (-0.2340, 0.2938) 

Regression coefficient for the 

interaction 
0.0100 (-0.0040, 0.0240) 0.0400 (0.0297, 0.0503) 0.0000 (-0.0125, 0.0125) 

Dataset 4: 

No 

interaction 

and 

inconsistency 

NMR model 

(model 1a) 

Log odds ratio (uncentred) 0.0877 (-0.1296, 0.3034) 0.3389 (0.1566, 0.5214) 0.2515 (0.0472, 0.4567) 

Regression coefficient for the 

interaction 
-0.0098 (-0.0211, 0.0017) -0.0001 (-0.0105, 0.0103) 0.0097 (-0.0002, 0.0195) 

URM model 

(model 3.1a) 

Log odds ratio (uncentred) 0.2004 (-0.0911, 0.4899) 0.2302 (0.0231, 0.4372) 0.0305 (-0.2259, 0.2854) 

Regression coefficient for the 

interaction 
-0.0400 (-0.0553, -0.0247) 0.0400 (0.0272, 0.0529) 0.0000 (-0.0115, 0.0116) 

Table 7: Results from fixed-effect NMR and URM models assessing consistency of both the log odds ratio and regression coefficient with 

independent treatment by average age interactions for the fabricated datasets. 

AR: artemether; AS: artesunate; NMR: network meta-regression; QU: quinine; URM: unrelated mean effects. 
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Figure legends 

 

Figure 1. Graphs showing how the relative treatment effect (e.g. log odds ratio) for treatment 3 vs. treatment 2 could change with a 

covariate value with separate lines representing direct evidence (from trials that allocated treatments 2 and  3), indirect evidence (from 

the remaining trials), and all evidence in various scenarios: (a) there is no treatment by covariate interaction based on all evidence and 

the relative treatment effects at zero covariate are consistent and the regression coefficients for the treatment by covariate interaction 

are consistent; (b) there is an interaction based on all evidence and the relative treatment effects at zero covariate are consistent and the 

coefficients are consistent; (c) there is no interaction based on all evidence and the relative treatment effects at zero covariate are 

consistent and the coefficients are inconsistent; (d) there is an interaction based on all evidence and the relative treatment effects at zero 

covariate are consistent and the coefficients are inconsistent; (e) there is no interaction based on all evidence and the relative treatment 

effects at zero covariate are inconsistent and the coefficients are consistent; (f) there is an interaction based on all evidence and the 

relative treatment effects at zero covariate are inconsistent and the coefficients are consistent; (g) there is no interaction based on all 

evidence and the relative treatment effects at zero covariate are inconsistent and the coefficients are inconsistent; and (h) there is an 

interaction based on all evidence and the relative treatment effects at zero covariate are inconsistent and the coefficients are 

inconsistent. 

Direct, indirect and all evidence is overlapping in plots (a) and (b). 

 

Figure 2: Network diagram for the malaria dataset. 

Number of trials (number of patients) displayed. 

AR: artemether; AS: artesunate; QU: quinine. 

 

Figure 3: Posterior distributions for the log odds ratios (centred) and regression coefficients for the interaction from fixed-effect node-

splitting models with common treatment by average age interactions for the malaria dataset.  

Results in figures a-f are from models 2.1c and 1c. Results in figures g-i are from models 2.2c and 1c. Results in figures j-l are from models 2.3c 

and 1c. In figures f and i, the coefficient from indirect evidence and from all evidence is forced to be zero.  

AR: artemether; AS: artesunate; QU: quinine. 

 

Figure 4: Log odds ratio versus average age for direct and indirect from fixed-effect node-splitting models and for all evidence from the 

fixed-effect NMR model with common treatment by average age interactions for the malaria dataset.  

Results in figures a-c are from models 2.1c and 1c. Results in figures d-f are from models 2.2c and 1c. Results in figures g-i are from models 2.3c 

and 1c. 
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AR: artemether; AS: artesunate; QU: quinine. 

 

Figure 5: Log odds ratio versus average age for direct and indirect from fixed-effect node-splitting models (model 2.1a) and for all 

evidence from the fixed-effect NMR model (model 1a) with independent treatment by average age interactions for the fabricated 

datasets.  

AR: artemether; AS: artesunate; QU: quinine. 

 

 


