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Abstract

We study the joint credit risk in the UK banking sector using the weekly CDS spreads of global sys-

temically important banks over 2007-2015. We show that the time-varying and asymmetric dependence

structure of the CDS spread changes is closely related to the joint default probability that two or more

banks simultaneously default. We are able to flexibly measure the joint credit risk at the high-frequency

level by applying the combination of the reduced-form model and the GAS-based dynamic asymmetric

copula model to the CDS spreads. We also verify that much of the dependence structure of the CDS

spread changes are driven by the market factors. Overall, our study demonstrates that the market factors

are key inputs for the effective management of the systemic credit risk in the banking sector.
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1 Introduction

The financial crisis of 2007–2008 and EU sovereign debt crisis have caused great concern about the credit

risk of large financial institutions and sovereign entities. Both central banks and financial authorities have

paid much more attention to the supervision of the credit risk in the large financial institutions since then

(see the series of reports by Basel Committee on Banking Supervision, 2011, 2012; Bank of England, 2013,

2015) and several studies have recently focused on the credit risk of banks in the US, EU and Asia (see

Dieckmann and Plank, 2012; Huang et al, 2012; Acharya et al., 2014, among others). Moreover, the UK

voted for Brexit in 2016, which amplified uncertainty about the UK financial market as well as the global

financial market. Since the UK has significant trade and financial linkages with the Euro-zone countries and

London is one of World finance centres, banking activities in the UK and their default probabilities are not

only important for the regional financial markets but also for the international financial markets. Therefore,

studying the systemic credit risk in the UK banking sector at this point will provide important implications

for policy makers and investors to decide how to cope with the coming financial shock from a hard Brexit.

Recent empirical studies show that estimating the joint default probability plays an important role in

banking supervision (see Pianeti et al., 2012; Erlenmaier and Gersbach, 2014). This is because it can be

viewed as an efficient measure of systemic risk, as the systemic default arises from the simultaneous defaults

of multiple large banks. From the perspective of practitioners, modeling the joint default probability is also

of great interest for credit risk management. For these reasons, it is essential to study how the credit risk of

banks are contemporaneously correlated each other and how their correlation are varying over time. It will

help the risk managers of banks to get a deeper understanding of the credit risk in the banking sector and

properly model it by considering various market scenarios such as joint or conditional default.

In this paper, we employ a reduced-form model taking advantage of the CDS spread among several

methods for estimating the default probability (see Hull and White, 2000; O’Kane and Turnbull, 2003).

This is because the CDS spread is a good proxy for the credit risk of bank and contains market information

which plays an important role in predicting future credit quality (see Bank of England, 2007; European

Central Bank, 2007). Therefore, all our analyses are performed using the CDS spreads. What we intend

in this paper are as follows: First, we introduce a method of modeling the joint credit risk of banks using

the CDS spreads of the UK G-SIBs. The most important part here is the dependence structure between

the CDS spreads of banks. Thus we conduct intensive research on this part. Second, we propose a time-
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varying asymmetric copula to model the dependence structure of the CDS spreads.1 This copula combines

the generalized hyperbolic skewed t copula (hereafter GHST) with the generalized autoregressive score

(hereafter GAS) model. The GHST copula is popular in many empirical finance studies for modeling the

asymmetric dependence (see Demarta and McNeil, 2005; Smith et al, 2012; Christoffersen et al., 2012), and

the GAS model has recently been developed to model the time-varying dependence, which is increasingly

popular in many empirical finance studies due to its attractive econometric properties (see Creal et al.,

2013, 2014a; Janus et al, 2014; Lucas et al., 2014; Salvatierra and Patton, 2015). Third, we attempt an

economic analysis of what drives the dynamics of the joint credit risk in the banking sector. We will focus

on identifying the drivers of the CDS spreads comovement, motivated by the fact that the dynamics of

the joint credit risk are closely related to the comovement of the CDS spreads. In particular, we use an

economic factor model incorporating market factors to conduct further analysis on the drivers of the CDS

spreads comovement.

We make two notable contributions to the literature on credit risk in the banking sector: First, we find the

dependence structure of the CDS spread changes of UK G-SIBs is asymmetric and time-varying over time.

This is closely related to measuring the systemic credit risk of banks such as the joint default probability. In

particular, we demonstrate that the combination of the reduced-form model and the time-varying asymmetric

copula can simply and flexibly measure the systemic credit risk using banks’ CDS spreads. Unlike many

other methods, our proposed method can not only incorporate market information properly but also more

accurately model the dynamics of joint credit risk in the high-frequency level. Second, through a factor

model based analysis of the comovement of the CDS spreads, we identify economic channels that generate

the dependence structure of the CDS spread changes. So far, there have been many studies on the market

factors as the determinants of individual CDS spreads (e.g. Longstaff and Schwartz, 1995; Collin-Dufresne

et al., 2001; Ericsson et al., 2009; Liu and Zhang, 2008; Cooper and Priestley, 2011; Galil et al., 2014), but

there are few studies on how the market factors are related to the joint credit risk of banks. Our analysis

shows that the market factors can account for more than 60% of the correlation of the CDS spread changes;

thereby, they are closely related to the joint credit risk. Another important finding is that the time-varying

and asymmetric dependence of the CDS spread changes is mostly driven by the market factors.

The empirical results for the joint credit risk of the UK G-SIBs found in our study provide important

1See Oh and Patton (2016), they have recently studied the dependence structure of corporate CDS spreads using the factor
copula model.
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policy implications for the Bank of England (hereafter BoE) to supervise the systemic credit risk in the

banking sector. First, our study suggests that the stability of the systemic credit risk should be secured by

reducing the exposure of bank’s credit risk to market. Second, the asymmetric dependence structure between

banks’ CDS spread changes suggests that the systemic credit risk becomes even more serious in the regime

of market downturn. Therefore, the central bank should keep monitoring the comovement between the CDS

spreads of banks and the market factors for the effective credit risk management.

The remainder of this paper is organized as follows. Section 2 details the way how we compute the joint

default probability of the UK G-SIBs. Section 3 presents the empirical study on the joint credit risk of the

UK G-SIBs using the dataset of weekly corporate CDS spreads. Section 4 further studies on the drivers of

the joint credit risk based on a factor model analysis with various market factors. Section 5 concludes.

2 Modeling joint credit risk

In this section, we detail how we compute the joint default probability. First, we calibrate a marginal

default probability for an individual bank. We then find a corresponding value of the CDS spread change

to the calibrated default probability from its marginal probability distribution.2 Hence, it is a threshold

to determine the default of the individual bank. Second, we model the marginal probability distribution

of the CDS spread change for each bank considering its distributional characteristics. Third, we model a

dependence structure of banks’ CDS spread changes which is a key input for constructing a joint probability

distribution. Finally, we apply a Monte Carlo simulation to computing the joint default probability.

It is convenient to define the joint default probabilities mathematically before introducing each step in

detail. Given the marginal default probability, pi, t , of bank i at time t, we define the joint default probability

that two or more banks simultaneously default out of n banks:

pt = 1−P


n⋂
i=1

{
zi, t ≤ F−1

i, t

(
1− pi, t

)}︸                                ︷︷                                ︸
(A)

−

n∑
k=1

P



*.
,

n⋂
i=1, i,k

{
zi, t ≤ F−1

i, t

(
1− pi, t

)}+/
-

⋂ {
zk, t > F−1

k, t

(
1− pk, t

)}︸                                                                                  ︷︷                                                                                  ︸
(B)

(1)

2We measure the CDS spread change by the first-difference of the log CDS spread. It is not an asset return but the change of
credit risk in the bank.
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where zi, t denotes the filtered CDS spread change of bank i at time t and F−1
i, t (·) denotes its inverse cumula-

tive distribution function. The first term (A) refers to the probability that no bank will default, and (B) refers

to the probability that only one bank will default.

2.1 Calibrating marginal default probability

It is essential to obtain a reliable default probability of a single reference entity. A number of statistical and

econometric models have been proposed to obtain the term structure of default probabilities and they can

be classified into three methods: (i) Historical default rate based on the internal rating systems from rating

agencies (e.g. Moody’s publishes historical default information regularly); (ii) Structural credit pricing

models based on the option theoretical approach by Merton (1974); (iii) Reduced-form models. In our

study, we consider using the reduced-form model based on a bootstrapping method proposed by Hull and

White (2000) and O’Kane and Turnbull (2003) to calculate a risk neutral default probability for each bank

using CDS market quotes.3

Reasons for choosing this method are as follows: First, the rating information provided by the rating

agencies cannot catch the speed of the market movement. Whereas, the market information used in the

approach of Hull and White (2000) can reflect well the market agreed anticipation of evolution for the

future credit quality. Second, although the credit rating agencies such as Moody’s regularly publish short-

term and long-term credit ratings for firms, these rating information normally lacks granularity. Unlike

the information provided by the rating agencies, CDS market quotes normally have different maturities (6

month, 1-year, 2-year, 3-year, 4-year. 5-year, 7-year and 10-year) and thus can imply the full term structure

of default probability. Finally, the bootstrapping procedure is a standard method for marking CDS positions

to the market and has been widely used by the overwhelming majority of credit derivative trading desks in

financial practice (see Li, 2000; O’Kane and Turnbull, 2003). Recently, this procedure has also been applied

in empirical financial studies (see Huang et al, 2009; Creal et al., 2014b; Lucas et al., 2014).

The reduced-form model defines the default probability function of bank i at time t by

Fi (t) = P (τ ≤ t) = 1−P (τ > t) = 1−Qi (t) , (2)

3CDS is essentially a protection contract to insure against the default of a reference entity. The CDS spread can be viewed as
a more direct measure of credit risk compared to bond or loan spreads. This is because the bond or loan spread is also driven by
other factors, such as interest rate movements and firm-specific equity volatility, see Campbell and Taksler (2003).
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where τ denotes the time to default (survival time) and Qi (t) is a survival function, defined in terms of a

piecewise hazard rate by λ (t)

Qi (t) = exp
[
−

∫ tn

t

λ(s)ds
]
. (3)

See Appendix A for the detailed explanation on the hazard rate function.

In practice, we use the approximation of survival function (3) for the reference entity to time T condi-

tional on surviving to time t, defined by

Qi (t,T ) =




exp
(
−λ0,1 (τ)

)
if 0 < τ < 1

exp
(
−λ0,1,−λ1,3 (τ−1)

)
if 1 < τ < 3

exp
(
−λ0,1,−2λ1,3− λ3,5 (τ−3)

)
if 3 < τ < 5

exp
(
−λ0,1,−2λ1,3−2λ3,5− λ5,7 (τ−5)

)
if 5 < τ < 7

exp
(
−λ0,1,−2λ1,3−2λ3,5−2λ5,7− λ7,10 (τ−7)

)
if τ > 7

(4)

where τ = T − t is the survival time and λ t0, tn denotes the hazard rate from time t0 to tn . Given the market

quotes of the CDS spread, S1, ..., SN , at dates t1, ..., tN , we can calibrate the hazard rate and calculate the

default probability by inverting the CDS pricing formula in (A.9). See Appendx B and C for the details.

We construct a term structure of survival probability for a set of maturity dates using the bootstrap algo-

rithm4 proposed by Hull and White (2000), O’Kane and Turnbull (2003) and O’Kane (2008). A detailed

bootstrapping algorithm is provided in Appendix D.

2.2 Modeling CDS spread changes

Next, we need to model the CDS spread change. We model not only the univariate distribution for each

bank but also the joint one.

First, we need the filtered CDS spread changes for each bank to compute the default probabilities in (1).

To this end we model the individual CDS spread changes, ∆CDSi, t , by ARMA-GJR-GARCH (Glosten et

4Here, “bootstrap” is different from one used in statistics. It is an iterative process to construct the term structure of the default
probability using the CDS market quotes. This method has been widely used in financial practice because of its computational
simplicity and stability.
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al., 1993) and obtain the filtered ones,

zi, t =
∆CDSi, t − µi, t

σi, t
, i = 1, . . .,n, t = 1, . . .,T, (5)

where the conditional mean (µi, t ) is modeled by ARMA(p,q)5,

∆CDSi, t = ci + ε i, t +
p∑
j=1

ϕi j∆CDSi, t− j +

q∑
j=1

θi j ε i, t− j, ε i, t = σi, t zi, t, (6)

and the conditional volatility (σi, t ) by GJR-GARCH(p,p,q),

σ2
i, t = wi +

p∑
j=1

αi j ε
2
i, t− j +

p∑
j=1

δi j ε
2
i, t− j Ii, t−1+

q∑
j=1

βi jσ
2
i, t− j, (7)

where Ii, t−1 = 1 if ε i, t−1 ≥ 0 and Ii, t−1 = 0 if ε i, t−1 < 0. We assume that zi, t follows the univariate skewed t

distribution of Hansen (1994),

zi, t ∼ SkT (υ,η), (8)

where υ denotes a degrees of freedom and η skewness parameter.6

Second, given the modeling of the marginal probability distribution, we model the joint probability

distribution. An empirically reliable model of correlated defaults between the reference entities plays a

central role in the credit risk modeling and pricing. Various approaches have been proposed to model the

correlated defaults and those models can be roughly classified into four categories: (i) CreditMetrics; (ii)

Intensity-based models; (iii) Barrier-based firm’s value models; (iv) Copula-based correlation models. We

consider using the copula-based model in our study. A copula function has several attractive mathematical

properties in the modeling of default. First, it allows more flexibility and heterogeneity in the modeling

of the marginal probability distribution. It is straightforward and convenient to link random variables with

different marginal distributions with one copula function. Second, there are various versions of copula

function and that allows us to fit different default dependence between the reference entities.7

5We first consider all the possible models nested within the ARMA(2,2) and choose the optimal order according to the Bayesian
Information Criterion (BIC).

6 We use the skewed t distribution of Hansen (1994) for a parametric copula modeling and an empirical distribution for a
semiparametric copula modeling. See Appendix of Cerrato et al. (2016) for the details of parametric and semiparametric copula
modeling.

7Before the financial crisis of 2007-2008, the Gaussian copula was the most popular copula model in derivatives pricing,
especially the valuation of collateralized debt obligations (CDOs), because of its computational simplicity. However, many financial
media commentators believed that the abuse of the Gaussian copula was one of the major reasons triggering to this crisis, see for
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There are two notable features of the default correlation. Substantial evidences have been found to show

that the default correlation is non-Gaussian, see for instance, Christoffersen et al. (2016). Another important

feature is the time variation of the default correlation. It changes over time as firms’ credit quality is varying

over time. It also varies with systematic risk factors, such as the state of economy in the business cycle and

the financial market conditions (Crouhy et al., 2000).

The choice of copula is based on the empirical features of CDS spread changes for the UK G-SIBs in our

study. We test for the asymmetry of tail dependence (Patton, 2012). We also test for the time-varying nature

of dependence structure of CDS spread changes using structural break tests in Patton (2012). There are the

striking evidences of breaks around the credit events (e.g. the CDS big bang, the downgrading for Greek’s

credit rating, etc.) and the upper tail dependence is usually stronger than the lower one. We therefore select

a dynamic asymmetric copula for modeling the dependence structure of CDS spread changes.

Following the study of Christoffersen et al. (2012), Christoffersen and Langlois (2013) and Lucas et al.

(2014), we employ an asymmetric copula based on the generalized hyperbolic skewed t (GHST) distribution

discussed in Demarta and McNeil (2005). For z =
(
z1, t, . . ., zn, t

) ′, the GHST copula is given by

csk t (z;υ,η,Σt ) =
2(υ−2)(n−1)/2K(υ+n)/2

(√(
υ+ z∗′Σ−1

t z∗
)
η ′Σ−1

t η
)

ez∗′Σ−1
t η

Γ (υ/2) |Σ |1/2
(
υ+ z∗′Σ−1

t z∗
) (−υ+n)/2 (

1+υ−1z∗′Σ−1
t z∗

) (−υ+n)/2

×

n∏
i=1

(√(
υ+ z∗i

2
)
η2
i

)−(υ+1)/2 (
1+υ−1(z∗i )2

) (υ+1)/2

K(υ+1)/2

(√(
υ+ (z∗i )2

)
η2
i

)
ez
∗
iηi

(9)

where K , υ and η denote the modified Basel function of the third kind, the degree of freedom and the skewed

parameter vector, respectively. z∗i, t ∈ z∗ is defined as z∗i, t = SkT−1 (
ui, t

)
= SkT−1 (

SkT (zi, t ;υ,ηi )
)
, where

SkT−1 is the inverse skewed Student’s t distribution. Σt is the time-varying covariance matrix such that

Σt = Dt Rt Dt , where Dt is an identity matrix in the copula modeling and Rt is the time-varying correlation

matrix. Since the joint default is defined in the upper tails of which dependence is stronger than the lower

one, the GHST copula is able to more accurately measure the probability of joint default than a symmetric

copula.

Furthermore, the time varying dependence structure is estimated by the generalized autoregressive score

(GAS) model of Creal et al. (2013) and Lucas et al. (2014). The correlation parameter γi, j, t of Rt should be

instance, “ Recipe for Disaster: The Formula That Killed Wall Street” (Wired Magazine, 2009), “Wall Street Wizards Forgot a Few
Variables” (New York Times, 2009), and “The Formula That Felled Wall Street” (The Financial Times, 2009).
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in the range of (−1,1), so we transform it, following Patton (2012), and the transformed one is denoted by

gi, j, t :

gi, j, t = h
(
γi, j, t

)
⇔ γi, j, t = h−1

(
gi, j, t

)
, (10)

where γi, j, t =
(
1− e−gi, j, t

)
/
(
1+ e−gi, j, t

)
. Then the updating mechanism of the transformed correlation

vector gt is given by a function of a constant w, the lagged gt , and the standardized score of the copula

log-likelihood Q−1/2
t st :

gt+1 = w+ΠQ−1/2
t st +Λgt, (11)

where st ≡ ∂ logc
(
u1, t, . . .,un, t ;γt

)
/∂γt and Qt ≡ Et−1

[
sts′t

]
. Cerrato et al. (2016) demonstrate the impor-

tance of modeling the dynamic and asymmetric dependence of equity portfolio using the GAS GHST copula

in the market risk management.

2.3 Computing algorithm for joint default probability

As the final step of our proposed approach, we introduce a practical algorithm showing how we compute

the joint default probability using a Monte Carlo simulation method. The procedure is as follows: First, we

obtain the marginal default probabilities for each bank from the bootstrap based calibration procedure. We

also estimate a copula correlation at time t by γ̄i, j, t =
(
γPi, j, t +γ

S
i, j, t

)
/2, where γPi, j, t and γSi, j, t denote copula

correlations implied by the GAS-based parametric and semiparametric copula model, respectively. Second,

given the copula correlation and other parameters8, we simulate B random vectors zst =
(
zs1, t, . . ., z

s
n, t

)
from

the GAS-based GHST copula at each time t. Finally, the probability of joint default for banks i and j at time

t is calculated by counting a case that two or more banks default from B simulations.

3 Empirical analysis of joint credit risk

In this section, we study the joint credit risk of the UK G-SIBs using their weekly corporate CDS spreads.

First, we investigate the distributional stylized facts of the CDS spread change and search for the best

univariate model for the individual CDS spread change. On the other hand, we calibrate a marginal default

probability implied by the CDS pricing formula for the purpose of computing the joint probabilities. Next,

we investigate the time-varying asymmetric dependence structure of the CDS spread changes using formal

8We only allow the copula correlation to vary over time whilst fix the other parameters to be constant over time. For the GHST
copula, the degree of freedom and skewness parameter are constant.
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statistical tests. This investigation provides useful information on the choice of multivariate model for

computing the joint default probability. Finally, we estimate the joint default probabilities.

3.1 Data and descriptive analysis

We use a dataset of weekly corporate CDS spreads for five UK G-SIBs with a 5-year maturity. In this paper,

we are interested in analysing the joint credit risk at the high-frequency level. However, daily CDS data

usually suffers from the ‘scanty’ problem; e.g. Zhu (2006, see footnote 6) reports that valid daily quotes

represent only 20% of the days in his sample. Consequently, we choose weekly CDS data as the most

reliable high-frequency data. The reason for choosing the 5-year maturity among the various maturities

is because it is the most liquid CDS contract in the market and the best representative of the entire CDS

market owing to its largest market share.9 The UK G-SIBs include Barclays, HSBC Holdings (hereafter

HSBC), Lloyds Banking Group (hereafter Lloyds), Royal Bank of Scotland Group (hereafter RBS) and

Standard Chartered (hereafter Standard).10 All the CDS contracts are denominated in Euro. The London

Interbank Offered Rate (henceforth Libor) data with different maturities are also collected to calibrate the

term-structure of the marginal default probability. Our data covers the period from September 7, 2007 to

April 17, 2015.11

Table I reports the Augmented Dickey-Fuller (ADF) test for unit root for the log CDS spreads. All

the log CDS spreads and their equal-weighted average are verified to be nonstationary. Thus we use the

first-difference of the log CDS spreads rather than the level ones in our modeling. This table also reports

descriptive statistics and time-series tests for the CDS spread changes.12 The non-zero skewness and large

value of kurtosis clearly indicate the non-Gaussian features of the CDS spread changes. Autocorrelation

coefficient and ARCH LM test for residuals obtained from AR(1) regression indicate the necessity for mod-

eling the conditional mean and volatility of the CDS spread change.

[ INSERT TABLE I ABOUT HERE ]

Table II reports the linear correlation coefficients of the CDS spread changes across banks. It indicates

9However, we use all the available maturities (1-year, 2-year, 3-year, 4-year, 5-year and 7-year) for calibrating the term-structure
of the marginal default probability due to the nature of the reduced-form model.

10The first version of G-SIBs published by the Financial Stability Board in 2011 only includes Barclays, HSBC, RBS and
Lloyds. Standard Chartered has been added in this list since 2013. All these banks are also listed as “Domestic Systemically
Important Banks (D-SIBs)”, see Bank of England (2013).

11The CDS data of Standard Chartered is only available since June 27, 2008.
12Without loss of generality, the CDS spread changes denote the first-difference of the log CDS spreads in our paper.
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that banks’ CDS spread changes are highly correlated with each other. It is worth noting that the correlations

of Standard Chartered with other banks are clearly lower than those between other four banks. This is

possibly because Standard Chartered does not have a retail banking business in the UK, and about 90%

of its profit comes from Asian, African and the Middle Eastern markets according to its annual report in

2013. Although HSBC and Barclays are also multinational banking and financial services companies, the

UK market is still targeted as their home market.

[ INSERT TABLE II ABOUT HERE ]

Figure 1 plots the average CDS spreads, formed by the equal-weighted average of five CDS spreads, and

the conditional volatility of the average CDS spread changes. Panel A illustrates the trend of the average

CDS spreads across five UK G-SIBs. The arrows in each figure indicate several major events in the CDS

market from 2007 to 2015. We can see that the occurrence of major credit events is always accompanied

with the skyrocketing of CDS spreads. For instance, after the S&P downgrades US sovereign debt, the

average of CDS spreads goes up to 285 in November 2011. Panel B plots the conditional volatility of the

average CDS spread changes estimated by GJR-GARCH. First, this shows that the CDS spread changes are

extraordinarily volatile during the financial crisis in 2008-2009. Second, it also indicates that the turbulence

of the CDS spread changes in the UK G-SIBs is closely related to the credit events in the global financial

market. Another worth noting fact is that the conditional volatility stabilized since the end of global and

EU financial crisis. It is significantly smaller than one during the crisis even when the average CDS spreads

increased sharply after the S&P downgraded US government debt in August 2011. This may indicate that

the CDS spreads largely fluctuate during the global financial crisis due to the high market uncertainty.

Therefore, we can infer from these two figures that market factors play important roles in determining the

dynamics of the CDS spreads.

[ INSERT FIGURE 1 ABOUT HERE ]

Table III presents the parameter estimation and the goodness-of-fit tests of univariate model for each

bank. The univariate model is specified by ARMA for the conditional mean, GJR-GARCH for the condi-

tional volatility and the skewed t distribution for the standardized residuals. First, we model the conditional

mean using the ARMA model up to order (2,2) and use Bayesian Information Criterion (BIC) to select the

optimal order. It turns out that ARMA(1,1) is the best candidate for all the banks except Standard Chartered
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for which AR(1) is the best candidate. Second, the conditional volatility is implied by the GARCH family.

We experiment with ARCH, GARCH and GJR-GARCH up to order (2,2) and choose the best model cor-

responding to a minimum BIC. It indicates that GJR-GARCH(1,1,1) provides the best fit. All the leverage

parameters of the GJR-GARCH(1,1,1) model are negative indicating the asymmetric volatility clustering,

i.e., the large positive changes of the CDS spread are more likely to be clustered than the negative changes.

This is consistent with the fact that the CDS spread increases sharply and continuously during the recent

financial crisis of 2007–2009. The bottom of Table III reports p-values of the Kolmogorov-Smirnov and

Cramer-von Mises goodness-of-fit tests for the modeling of the standardised residuals by the skewed Stu-

dent’s t distribution. The p-values are obtained using the bootstrap in Patton (2012). All the p-values are

clearly greater than 0.05, so we fail to reject the null hypothesis that the standardised residuals are well-

specified by the skewed t distribution of Hansen (1994).

[ INSERT TABLE III ABOUT HERE ]

3.2 Calibrating marginal default probability

We calibrate the reduced-from model using the market quotes of the CDS contracts with different maturities

(1-year, 2-year, 3-year, 4-year, 5-year and 7-year) at each time t, and bootstrap the term structure of the

marginal default probability following the procedure proposed by Hull and White (2000) and O’Kane and

Turnbull (2003). This mark-to-market default probability of individual bank is derived from the observed

CDS spread by inverting the CDS formula. Specifically, we use LIBOR rates with different maturities

as discount factors and assume that the recovery rate is 40% suggested by O’Kane and Turnbull (2003).

Following the recent literature, such as Huang et al (2009), Black et al. (2013), Creal et al. (2014b) and

Lucas et al. (2014), we don’t consider counter-party default risk. Given the assumption above, we are able

to obtain the intensity of default using the bootstrap algorithm in the Appendix 5. Given the default intensity,

we are also able to compute the default probabilities for different maturities as the default probability is just

the function of default intensity. Note that in this case the default probability we obtain is the risk neutral one

as the bootstrap method assumes that the present value premium leg should be exactly equal to the present

value of the protection leg. See a detailed explanation in Appendix B.

Figure 2 plots risk neutral default probabilities implied directly from the market quotes of the CDS con-

tracts. The market-implied default probabilities significantly rise after the bankruptcy of Lehman Brothers
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and the downgrade of US sovereign debt. After May 2012, they decline dramatically and remained at a low

level in the last two years. Since the default probabilities are directly implied from the CDS spreads, it is

not surprising that they exhibit the dynamic patterns which are similar to the CDS spreads. Therefore, the

market factors are likely to play important roles in determining the default probability.

[ INSERT FIGURE 2 ABOUT HERE ]

3.3 Asymmetric dependence between CDS spread changes

While asymmetric dependences in equity, currency and energy markets have been extensively studied in

empirical finance literature, very little has been done for the credit market and the banking sector. We fill

this gap and investigate whether the dependence structure among the CDS spread changes is asymmetric or

not. We test for the presence of the asymmetry by a tail dependence-based test described in Patton (2012).

Table IV reports the test results for the asymmetric dependence between the CDS spread changes. Given

the five banks, there are ten different pairwise combinations of two banks. Panel A presents the estimates

of lower and upper tail dependence coefficients for the filtered CDS spread changes based on the full para-

metric copula model. It also reports bootstrap based p-values for the test for the null hypothesis that the

dependence structure is symmetric (i.e. the upper and lower tail dependence coefficients are equal). Half

of pairs are rejected at the 5% significance level, verifying the statistical significance of the asymmetric tail

dependence of the CDS spread changes. Interestingly, different from other asset returns which exhibit a

greater correlation during the market downturn than the market upturn, the CDS spread changes have the

higher upper tail dependence than the lower tail dependence. This may be explained by the nature of the

CDS spread as a credit derivative contract to insure the protection buyer against any uncertainty on the ref-

erence name. The higher upper tail dependence of the CDS spreads may be due to the asymmetric reaction

of the CDS spreads to negative and positive market news. The CDS spread normally incorporates negative

news much faster than positive news, see for instance Lehnert and Neske (2006). Thus, when the credit mar-

ket was deteriorated sharply during the crisis, firm’s CDS spreads (insurance cost) tend to increase rapidly.

Panel B presents the estimates of lower and upper tail dependence coefficients based on the semiparametric

copula model and the results also confirm the presence of the asymmetric dependence between the CDS

spread changes.

[ INSERT TABLE IV ABOUT HERE ]
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3.4 Time-varying dependence between CDS spread changes

Several analyses have shown that the CDS spreads and the marginal default probabilities of individual banks

are influenced by market news and that they comove over time. This makes us infer that the dependence

structure of the CDS spread changes is time-varying over time. We address this important issue in this

section. We consider three tests widely used in literature: (i) A simple test that examines a structure break

in the rank correlation at some specified points in the sample period, see (see Patton, 2012); (ii) A test for

unknown break points in the rank correlation (see Andrews, 1993); (iii) A generalized break test without a

priori point (see Andrews and Ploberger, 1994).

We implement these tests for the time-varying dependence using the filtered CDS spread changes. The

test results are reported in Table V. Firstly, without a priori knowledge of breaking points, we consider

using naïve tests for breaks at arbitrary three points in the sample period from September 7, 2007 to April

17, 2015, at t∗/T ∈ {0.15,0.50,0.85}, which corresponds to the dates October 24, 2008, June 24, 2011 and

February 21, 2014, respectively. Secondly, the “Any” column reports the results of test for the dependence

break of unknown timing proposed by Andrews (1993). In order to detect whether the dependence structure

significantly changed after the US and EU crisis broke out, we use 15-Sep-2008 (the collapse of Lehman

Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points in the rank correlation. The “US”

and “EU” columns report the results for this test. Lastly, the p-values in column “QA” are based on a

generalized break test without a priori point in (Andrews and Ploberger, 1994). Overall, the test results

indicate that for all the bank pairs, except for Lloyds and Standard Chartered, the null hypothesis (that there

is no break point in the rank correlation over the sample period) is significantly rejected by at least one test

at the 5% significance level. These results are new in the literature and strongly support our reasoning.

[ INSERT TABLE V ABOUT HERE ]

3.5 Joint default probability in UK G-SIBs

Our empirical analysis verifies the asymmetric and time-varying dependence structure between the CDS

spread changes of the UK G-SIBs. It suggests that we should select a time-varying asymmetric copula

model for estimating the dependence structure of the CDS spread changes. Consequently, we select the

GAS based GHST copula for modeling the joint credit risk.

Table VI reports the estimation results for both parametric and semiparametric GAS based GHST copula

14



models. We find that their estimates are very close each other and the parametric copula model is able to

provide relatively higher log-likelihood in general. This is probably due to the better fit of univariate models

(see the skewed t distribution in Hansen (1994)). Therefore, we use the parametric model for the estimation

in our paper.

[ INSERT TABLE VI ABOUT HERE ]

For the comparison of goodness-of-fit with other copula models, we consider the GAS based Gaussian

copula model and the GAS based Student’s copula model. We compare the GAS based GHST model with

those using a log-likelihood test, Akaike Information Criterion (AIC), and Bayesian Information Criterion

(BIC). In Table VII, the GAS based GHST copula model shows better estimation results than the other

two copula models for all pairs of banks and all banks; that is, it has higher likelihood ratios and lower

information criteria than two other copula models. All the results strongly support the use of the GAS based

GHST copula for modeling the dependence structure of the CDS spread changes.

[ INSERT TABLE VII ABOUT HERE ]

Figure 3 shows the time-series plot of the equal-weighted average of the copula correlations for ten pairs

of banks. The copula correlations are implied by the GAS based GHST copula. The figure shows that the

average correlation significantly increases during the crisis. It goes up to over 0.9 during the global financial

crisis in 2008 and has a sharp decrease after 2013. Notice that the sharp decrease on June 27, 2008 is due to

the inclusion of Standard Chartered, which has a much lower average correlation with other banks.

[ INSERT FIGURE 3 ABOUT HERE ]

Given the calibrated marginal default probability for each bank and the estimated time-varying copula

correlation matrix and parameters, we can simulate the joint probability that two or more banks simultane-

ously default during the sample period. Figure 4 shows the market-implied joint default probability among

five UK G-SIBs over a five-year horizon. The arrows indicate the time points of several major events in

the global financial market. First, the joint default probability sharply rises during the crisis or after the

major credit events took place. The highest default probability happens after the S&P downgraded the US

sovereign debt. The joint default probability is also affected by the monetary policy implemented by the

BoE and European Central Bank, and gradually decreases after the cut of interest rate.
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[ INSERT FIGURE 4 ABOUT HERE ]

In summary, we have found from the descriptive analysis that the CDS spreads of the UK G-SIBs

commove over time and banks’ CDS spread changes are highly correlated each other. In addition, we have

found from the copula analysis that the tail dependence of the CDS spread changes is persistent over time

and asymmetric. These results have helped us to measure the joint credit risk of the UK G-SIBs; e.g. joint

default probability. In particular, the finding that the CDS spreads immediately respond to market news

is likely to provide crucial information for understanding the joint credit risk through studies on channels

generating the dependence structure of the CDS spread changes. For this reason, we will continue with

further study of the dependence structure of the CDS spread changes in the next section.

4 Economic analysis of drivers of CDS spreads comovement

As the CDS spreads data has been shown since 2007, the joint default risk of the UK G-SIBS is closely

related to the comovement of their CDS spreads. Therefore, identifying the driver of the CDS spreads

comovement would be the key to understanding the dynamics of the joint credit risk. The comovement of the

CDS spreads could be accessible through two channels. First, the investment portfolios of the commercial

banks are typically exposed to market risk. In general, bank’s credit risk is positively related to the market

risk; that is, when the market is booming, the CDS spread of the bank will be small, and conversely, when

the market is in a recession. We have already observed that the CDS spreads of the banks react immediately

to the market news. Second, banks’ financial structure or business are closely related to each other. In this

case, their credit risks are closely related to each other even if the effects of the market risk are excluded.

Therefore, if one of the banks with high correlation is bankrupt, the default probability of other banks also

becomes high. Thus, if bank’s CDS spreads increase, the CDS spreads of other banks will also increase. We

have not directly observed this channel from our data, but it has already been identified during the finance

crisis of 2007-2008. Therefore, we will continue our empirical analysis of the two channels in order to better

understand the dynamics of the joint credit risk.

The common market factors have been examined in several studies on the determinants of the CDS

spreads. Thus we can be easily verify the first channel. However, there are several limitations in directly

examining the second channel. First, in our weekly frequency data, it is not easy to obtain data on bank’s

investment and financial structure. In addition, it is not easy to identify how banks are connected each other

16



in business. For these reasons, we choose a way to indirectly investigate the second channel through a

factor based regression analysis. We perform time-series regression analysis using common market factors

explaining the first channel for each bank (see Collin-Dufresne et al., 2001; Ericsson et al., 2009; Annaert

et al., 2013; Galil et al., 2014; Christoffersen et al., 2016),

∆CDSi, t = αi +

K∑
k=1

βi,kFk, t + ei, t, (12)

where ∆CDSi, t := lnCDSi, t − lnCDSi, t−1, Fk, t the k-th common market factor and ei, t the unobserved

idiosyncratic shock, respectively. We assume that variables describing the second channel are omitted from

regressors and included in the error term. Therefore, the dependence structure of the CDS spread changes of

two banks can be easily decomposed into the first- and second-channel separately in this regression model.

Of course, there is a dependence structure created by the interaction between two channels, but the influence

is normally expected to be small (or negligible).

4.1 Common market factors

For this economic analysis, we first choose market variables that can proxy market condition. Literatures

generally include the market variables that represent credit, equity, bond, and capital market. Some of

them also include variables such as foreign exchange rate, oil price, and inflation rate (see Liu and Zhang,

2008; Cooper and Priestley, 2011; Galil et al., 2014; Christoffersen et al., 2016). In our study, the oil price

hardly explains the CDS spread and the inflation rate is difficult to obtain at the weekly frequency, so only

the foreign exchange rate is included as a representative variable for the foreign exchange market. The

following are the specific definitions and the expected effects of the variables.

Credit market We use an iTraxx crossover 5-year index which is the brand name for the family of CDS

index. It is a benchmark for the credit protection seller of holding the on-the-run credit derivate transaction

with the 5-year maturity against default and used to measure changes in credit quality. We expect the credit

market condition to have a negative relationship with the CDS spreads. That is, if the credit market condition

improves (positive change of iTraxx), the CDS spreads will be generally reduced (negative changes of CDS

spreads).
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Equity market We consider two variables representing equity market condition. First, we consider the

equity market portfolio. Since bank’s credit risk is usually lower when the equity market is good, we expect

the equity market portfolio to have a negative relationship with the CDS spreads. Second, we consider

the equity market volatility and use the FTSE100 volatility index as a proxy following Collin-Dufresne et

al. (2001). The large market volatility implies a risky equity market, so it is expected to have a positive

relationship with the CDS spreads.

Bond market We consider two variables representing a bond market condition. First, we consider the

spot rate. To be consistent with the five-year maturity of the CDS contracts, we measure the spot rate using

the UK five-year Government Bond Yield.13 Longstaff and Schwartz (1995) argue that the higher spot rate

increases the future value of firm’s investment. Collin-Dufresne et al. (2001) note that the higher spot rate

reduces the probability of default. Both arguments support a negative relation between the spot rate and

the credit spreads. Second, we consider the term-structure slope measured by a difference between the

UK 10-year Government Bond Yield and the UK 2-year Government Bond Yield.14 An expected relation

between the term-structure slope and the credit spreads is inconclusive. Fama and French (1989) argue that

the increase of the term-structure slope is associated with the improved economic growth. Thus a negative

relationship is expected between the term-structure slope and the CDS spreads. On the other hand, slope

steepening may reduce the number of projects that have positive net present values for companies. This

effect increases the default probability, so the term-structure slope has a negative relationship with the CDS

spreads.

Capital market We consider the capital market liquidity to capture the capital market condition. We use

the capital markets liquidity index which is constructed based upon the total return of over 80 fixed income

securities representing the investment grade market with a maturity less than 1 year, along with large CDS,

commercial paper and banker acceptance securities. This index is collected from AMEX. The high liquidity

index means low liquidity risk in the capital market; thereby, a bank is able to easily access to the capital

market and its credit risk is lowered. Therefore, we expect the capital market liquidity to have a negative

relationship with the CDS spreads.

13Galil et al. (2014) measure the spot rate using the five-year Treasury Constant Maturity Rate obtained from the St. Louis
Federal Reserve. On the other hand, Christoffersen et al. (2016) use the 3-month US Constant Maturity Treasury index.

14Galil et al. (2014) use the differences between the 10-year Treasury Constant Maturity Rate and the 2-year Treasury Constant
Maturity Rate obtained from FRED as the term-structure slope.
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Foreign exchange market We consider a spot rate to capture the foreign exchange market condition. Note

that its positive (negative) change means ‘appreciation (depreciation)’ of the British pound. In general, the

higher the value of the British pound, the greater the confidence in UK banks, so we expect the CDS spreads

to have a negative relationship with the foreign exchange rate.

As shown in Table VIII, all the variables are verified to be nonstationary by the Augmented Deckey-

Fuller test for unit root. Thus we use the first-differenced variables rather than the level variables in the

regression analysis (see Galil et al., 2014): change of iTraxx, ∆iTraxxt = iTraxxt − iTraxxt−1, equity

market portfolio return, ReturnE
t = 100 ∗ (ln Pt − ln Pt−1), change of equity market volatility, ∆V I X t =

V I Xt −V I Xt−1, change of bond spot rate, ∆Bondt = Bondt − Bondt−1, change of term structure slope,

∆Slopet = Slopet − Slopet−1, change of capital market liquidity, ∆Liquidityt = Liquidityt − Liqudityt−1

and return on foreign exchange rate, ReturnE
t = 100 ∗ (ln St − ln St−1). All the first-differenced variables

have very small or insignificant autocorrelations, whereas residuals from the AR (1) regression have ARCH

effects.

4.2 Relationship between CDS spread changes and common market factors

In this section we empirically test for the first channel we make. Table IX presents the correlation matrix

of the average CDS spread changes and the common market factors. The average CDS spread change is

defined as the first difference of the log average CDS spread, ∆CDSt := lnCDSt − lnCDSt−1, where the

average CDS spread (CDSt ) is the equal-weighted average of five individual CDS spreads. As we can see in

the first column, all the market factors show signs that are consistent with our expectations. However, unlike

the most strong correlation coefficients, the change of term-structure slope and the change of capital market

liquidity index have weak correlations with the CDS spread changes. Interestingly, the change of credit

market performance is highly correlated with other market factors. In particular, it is strongly correlated

with the equity market portfolio returns, the change of market volatility, the change of bond spot rate and

the return on foreign exchange rate. But it would not be surprising to note that the credit market performance

is also heavily influenced by the conditions of other markets.

[TABLE IX ABOUT HERE.]

Next, we try to analyse the relationship more formally through regression analysis. we first run the time-

series regression of the CDS spread changes on the common market factors for each bank. We estimate the
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following regression model:

∆CDSi, t = αi + β1i∆iTraxxt + β2iReturnE
t + β3i∆V I Xt + β4i∆Bondt

+ β5i∆Slopet + β6i∆Liquidityt + β7iReturnF
t + ei, t, (13)

where the CDS spread change is defined as the first difference of the log CDS spread, ∆CDSi, t := lnCDSi, t −

lnCDSi, t−1. Table X shows the results of the regression analysis. The change of credit market performance

is only significant and the remaining market factors are insignificant. These results seem to be related to the

fact that the change of market performance is strongly correlated with other market factors. That is, other

market factors seem to be insignificant due to the multicollinearity problem. Overall, the common market

factors explain the CDS spread changes around 43% on average.

[TABLE X ABOUT HERE.]

We also run a time-series regression of average CDS spread changes on common market factors. We

estimate the following regression model:

∆CDSt = α+ β1∆iTraxxt + β2ReturnE
t + β3∆V I Xt + β4∆Bondt

+ β5∆Slopet + β6∆Liquidityt + β7ReturnF
t + et . (14)

The reason for using the average CDS spread change as a dependent variable is that it is advantageous to

reduce the individual effects and to analyse the common effects of the entire banks. We also estimate the

regression model with a single market factor to see its explanatory power independently. A comparison of

regression models using a single factor and full factors may give some more insight into the multicollinearity

problem that has been raised in the previous regression analysis. Table XI shows the result of the regression

analysis. As expected, all factors except the change of term structure slope and the change of capital market

liquidity are significant in the regression using a single factor. However, only the change of credit market

performance is significant in the regression using full factors. When we use the change of credit market

performance as a single factor, R2 is 0.463 which is almost the same as that of the regression using full

factors. Therefore, when all the results are taken into account, the credit market performance has already

taken into account other market conditions. Consequently, when we use them together in the regression, the
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multicollinearity problem occurs due to information redundancy and some factors are no longer significant.

These results support that the change of credit market performance alone can represent a market condition

sufficiently.

[TABLE XI ABOUT HERE.]

Table XII strongly supports our argument above. We run the time-series regression of the change of

credit market performance on the remaining market factors. We estimate the following regression model:

∆iTraxxt = α+ β1ReturnE
t + β2∆V I Xt + β3∆Bondt

+ β4∆Slopet + β5∆Liquidityt + β6ReturnF
t + et . (15)

We also estimate the regression model with a single factor. As the estimation results show, equity, bond and

foreign exchange market conditions are closely related to the credit market performance. For this reason,

we use the change of credit market performance as the only market factor to decompose the dependence

structure of the CDS spread changes in the next section.

[TABLE XII ABOUT HERE.]

In summary, bank’s CDS spreads are largely accounted for by the market factors. In particular, the credit

market performance has been found to be the most comprehensive and significant market factor. Therefore,

it is empirically verified that the first channel is the very convincing hypothesis. In the next section, we will

try to analyse the dependence structure of the CDS spread changes in more detail from different angles.

4.3 Decomposition of dependence structure of CDS spread changes

The regression analysis of the relationship between the CDS spread changes and the common market factors

suggest to use only the credit market performance as the market factor. Thus we are able to present the CDS

spread changes using the single factor:

∆CDSi, t = αi + βi∆iTraxxt + ei, t . (16)

Therefore, we can decompose the correlation of two banks’ CDS spread changes into three components
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based on the one-factor presentation in (16):
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where (A) and (B) are correlations respectively generated by the first and second channels, and (C) is one

generated by the interaction of two channels. Normally, (C) is relatively ineffective compared to the two

channels. Table XIII presents the decomposition results for the 10 pairs of two banks. It shows that the

contribution to the correlation by the first channel is the largest with 65% on average. As we have seen in

the regression analysis, it also reaffirms that the market factor plays the most important role in generating the

comovement of CDS spreads. The contribution by the second channel is 48% on average, which is smaller

than the first channel by 17%. This is not a direct approach, but the results verify that the second channel

also plays the important role in generating the comovement of the CDS spreads.

[TABLE XIII ABOUT HERE.]

4.4 Dependence structure of residuals

We examine how the dependence structure of the CDS spread changes is characterised by two channels

using residuals obtained from the factor model in (16).

First, we test for the asymmetric dependence of the residuals using the test applied to the CDS spread

changes. The results are reported in Table XIV. Compared with Table IV, the tail dependence is significantly

reduced at both tails. We can deduce this reduction from that the market factor is the dominant contributor

to the correlation of the CDS spread changes in (17). Here we should note that the upper tail dependence

is reduced significantly more than the lower tail dependence. This would be because banks’ CDS spreads

very sensitively respond to bad market news, which increases the likelihood of outliers in the upper tail. As

a result, the null of the symmetric dependence of the residuals is not rejected for most pairs; only two pairs

are rejected at the 5% significance level. Therefore, these results verify that the asymmetric dependence of

CDS spread changes is mainly generated by the market factor.
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[TABLE XIV ABOUT HERE.]

Next, we test for the time-varying dependence of the residuals using various structural break tests applied

to the CDS spread changes. The results are reported in Table XV. The structural breaks of the dependence

structure of the CDS spread changes are detected for all pairs of banks in Table IV, but the structural breaks

of the dependence structure of the residuals are identified for only four pairs of banks. It demonstrates that

the time-varying nature of the dependence structure of the CDS spread changes is dominantly driven by the

market factor. It is not surprising given the earlier finding that information generated by market news is

transmitted into the CDS spread via the first channel.

[TABLE XV ABOUT HERE.]

Consequently, both tests, although not direct approaches, confirm that the time-varying and asymmetric

dependence structures of the CDS spread changes are mostly characterized through the first channel. It

implies that the market factors are the key inputs to understand the joint credit risk of large banks.

5 Conclusion

We have studied the joint credit risk of the UK G-SIBs from various angles using the CDS spreads and

make a conclusion based on our findings: First, we are able to flexibly measure the systemic credit risk

at the high-frequency level by applying the combination of the reduced-form model and the GAS-based

dynamic asymmetric copula model to the CDS data. Second, we find that the credit risk of UK banks

still largely relies on the market factors in spite of BoE’s effort. Our factor analysis confirms that the

comovement of the CDS spreads, a major source of the joint credit risk, is driven by the market factors.

The decomposition of the correlation of the CDS spread changes shows that the market factor is a major

contributor to the correlation. Moreover, it is verified that the time-varying and asymmetric dependence

structure of the CDS spread changes is mostly generated by the market factors. Overall, our study re-assures

“what” BoE has to manage for the stabilization of the systemic credit risk and provides the flexible way

“how to” BoE measures the systemic credit risk in the banking sector. We hope that our research will help

BoE or institutional investors prepare for the upcoming hard Brexit to cope with the systemic credit risk of

the banking sector in the UK.
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Appendix

A. Hazard rate function

The hazard rate function λ (t) is the conditional instantaneous default probability of reference entity, given

that it survived until time t.

P (t < τ ≤ t +4t | τ > t) =
F (t +4t)−F (t)

1−F (t)
≈

f (t)4t
1−F (t)

(A.1)

The association of hazard rate function λ (t) at time t with the default probability F (t) and survival proba-

bility S (t) is as follows

λ (t) =
f (t)

1−F (t)
= −

Q
′

(t)
Q (t)

(A.2)

The survival function Q (t) can be defined in terms of hazard rate function λ (t)

Q (t) = exp
(
−

∫ tn

t

λ (s) ds
)

Proof:

S
′

(t) =
d (Q (t))

dt
=

d (1−F (t))
dt

= − f (t)

λ (t) = −
d (Q (t))

dt
1

Q (t)
=

f (t)
Q (t)

= −
d log (Q (t))

d (Q (t))
·

d (Q (t))
dt

= −
d log (Q (t))

dt

Taking integral on both sides

− log (Q (t)) =
∫ tn

t

λ (s) ds

and taking exponentials of both sides, we get

Q (t) = exp
(
−

∫ tn

t

λ (s) ds
)

B. Valuing the premium leg and protection leg

The premium leg is a stream of the scheduled fee payments of CDS made to maturity if the reference entity

survives or to the time of first credit event occurs. The present value of the premium leg of an existing CDS
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contract is given by

PVpremium (t, tN ) = S0 ·RPV01 (t, tN ) (A.3)

RPV01 (t, tN ) =
N∑
n=1
∆ (tn−1, tn,B) Z (t, tn ) Q (t, tn ) (A.4)

+

N∑
n=1

∫ tn

tn−1

∆ (tn−1, s) Z (t, s) (−dQ (t, s)) , n = 1, ...,N,

where t, tn , tN denotes the effective date, the contractual payment dates, and the maturity date of the CDS

contract, respectively. S (t0, tN ) represents the fixed contractual spread of CDS with maturity date tN at time

t0, ∆ (tn−1, tn,B) represents the day count fraction between premium date tn−1 and tn in the selected day

count convention B, Z (t, tn ) is the Libor discount factor from the valuation date t to premium payment date

tn and Q (t, tn ) is the arbitrage-free survival probability of the reference entity from t to tn . O’Kane (2008)

show that in practice, the integral part can be approximated by

∫ tn

tn−1

∆ (tn−1, s) Z (t, s) (−dQ (t, s)) w
1
2
∆ (tn−1, tn ) Z (t, tn ) (Q (t, tn−1)−Q (t, tn )) (A.5)

Thus, it can be simplified as

RPV01 (t, tN ) =
1
2

N∑
n=1
∆ (tn−1, tn,B) Z (t, tn ) (Q (t, tn−1)+Q (t, tn )) (A.6)

The protection leg is the compensation that the protection seller pays to the buyer for the loss associated

to a given reference entity at the time of default. It is a contingent payment of (100%− R) on the par value

of the protection when the credit event occurs. R is the expected recovery rate of the cheapest-to-deliver

(CTD) obligation into the protection at the time of credit event. So the expected present value of protection

payment is given by

PVprotection (t, tN ) = (1− R)
∫ tN

t

Z (t, s) (−dQ (t, s)) (A.7)

The computation of the integral part is normally tedious. Nevertheless, following O’Kane and Turnbull

(2003) and O’Kane (2008), we could assume that the credit event only happens on a finite number M of

several specific discrete points per year without much loss of accuracy. We can discrete the time between t

and tN into K equal intervals, where K = int (M × (T − t)+0.5). Defining ε = (T − t) /K , we can calculate
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the approximation of expected present value of the protection payment as

PVprotection = (1− R)
K∑
k=1

Z (t, kε ) (Q (t, (k −1) ε )−Q (t, kε )) (A.8)

Clearly, more accurate results can be obtained by increasing discrete points M .

C. Relationship between market quotes and survival probability

In order to compute the survival probabilities from the market quote of CDS spread, it is important to

understand their relationship. For a fair market trade, the present value premium leg should be exactly equal

to the present value of protection leg

PVpremium=PVprotection

New quotes for CDS contracts at time t0 can be obtained by substituting and rearranging A.3 and A.8

S (t0, tN ) =
(1− R)

2

∑K
k=1 (Z (t0, tk−1)+ Z (t0, tk )) (Q (t0, tk−1)+Q (t0, tk ))

RPV01 (t0, tN )
(A.9)

where the RPV01 is given by

RPV01 (t0, tN ) =
1
2

N∑
n=1
∆ (tn−1, tn,B) Z (t0, tn ) (Q (t0, tn−1)+Q (t0, tn )) (A.10)

D. Bootstrapping a survival probability curve

The bootstrap is a fast and stable curve construction approach, which has been widely used in financial

practice as a standard method for constructing CDS survival curves. The bootstrap algorithm works by

starting with shortest maturity contract and works out to the CDS contract with the longest maturity. At

each step it uses the spread of next CDS contract to solve for the survival probability of next maturity

and to extend the survival curve (see Hull and White, 2000; O’Kane and Turnbull, 2003; Schönbucher,

2003; O’Kane, 2008, etc.). The default probability can be easily obtained by calculating the complement of

survival probability.

First, we define the market quotes of CDS as a set of maturity dates T1,T2, ...,TM and corresponding

CDS spread S1, S2, ..., SM . All the CDS quotes are sorted in order of increasing maturity. Second, we need

to extrapolate the survival curve below the shortest maturity CDS by assuming that the forward default rate
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is flat at a level of 0, and we also extrapolate the survival curve beyond the longest maturity TM by assuming

that the forward default rate is flat at its latest interpolated value.

The bootstrap algorithm to calculate the survival probability from CDS market quotes is as follows:

(i) We initialize the first point of survival curve by defining Q (T0 = 0) = 1 and m = 1. (ii) The survival

probability Q (Tm ) can be calculated by solving (A.9). Note that the no-arbitrage bound on Q (Tm ) is 0 <

Q (Tm ) ≤Q (Tm−1). (iii) Given the value of Q (Tm ) which reprices the CDS with maturity Tm , we can extend

the survival curve to time Tm . (iv) Set m =m+1 and go back and repeat step (ii) - (iv) iteratively until m ≤ M .

(v) Given M +1 points values of survival probability 1,Q (T1) ,Q (T2) , ...,Q (TM ) at time 0,T1,T2, ...,TM .

27



References

Acharya, V., Drechsler, I., & Schnabl, P. (2014). A pyrrhic victory? Bank bailouts and sovereign credit risk.

Journal of Finance, 69(6), 2689-2739.

Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point.

Econometrica 61(4), 821-856.

Annaert, J., De Ceuster, M., Van Roy, P., & Vespro, C. (2013). What determines Euro area bank CDS

spreads? Journal of International Money and Finance 32, 444-461.

Andrews, D. W., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the

alternative. Econometrica 62(6), 1383-1414.

Bank of England (2007). Financial stability report. Bank of England, London.

Bank of England (2013). A framework for stress testing the UK banking system. Bank of England, London.

Bank of England (2015). Stress testing the UK banking system: guidance on the traded risk methodology

for participating banks and building societies. Bank of England, London.

Basel Committee on Banking Supervision (2011). Globally systemically important banks: assessment

methodology and the additional loss absorbency requirement. Bank for International Settlements, Basel.

Basel Committee on Banking Supervision (2012). A framework for dealing with domestic systemically

important banks. Bank for International Settlements, Basel.

Black, L., Correa, R., Huang, X., & Zhou, H. (2013). The systemic risk of European banks during the

financial and sovereign debt crisis. FRB International Finance Discussion Paper, (1083).

Campbell, J. Y., & Taksler, G. B. (2003). Equity volatility and corporate bond yields. Journal of Finance

58(6), 2321-2350.

Cerrato, M., Kim, M., & Zhao, Y. (2016). Relation between higher order comoments and dependence struc-

ture of equity portfolio. Journal of Empirical Finance, forthcoming.

Christoffersen, P., Errunza, V., Jacobs, K., & Langlois, H. (2012). Is the potential for international diversifi-

cation disappearing? A dynamic copula approach. Review of Financial Studies 25(12), 3711-3751.

28



Christoffersen, P., & Langlois, H. (2013). The joint dynamics of equity market factors. Journal of Financial

and Quantitative Analysis 48(5), 1371-1404.

Christoffersen, P., Jacobs, K., Jin, X., & Langlois, H. (2016). Dynamic dependence and diversification in

corporate credit. Working paper, University of Toronto.

Collin-Dufresne, P., Goldstein, R. S., & Martin, J. S. (2001). The determinants of credit spread changes.

Journal of Finance 56(6), 2177-2207.

Cooper, I., & Priestley, R. (2011). Real investment and risk dynamics. Journal of Financial Economics 101,

182-205.

Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications.

Journal of Applied Econometrics 28(5), 777-795.

Creal, D., Schwaab, B., Koopman, S. J., & Lucas, A. (2014). Observation-Driven Mixed-Measurement

dynamic factor models with an application to credit risk. Review of Economics and Statistics 96(5), 898-

915.

Creal, D. D., Gramacy, R. B., & Tsay, R. S. (2014). Market-based credit ratings. Journal of Business &

Economic Statistics, 32(3), 430-444.

Crouhy, M., Galai, D., & Mark, R. (2000). A comparative analysis of current credit risk models. Journal of

Banking & Finance 24(1), 59-117.

Das, S. R., Duffie, D., Kapadia, N., & Saita, L. (2007). Common failings: How corporate defaults are

correlated. Journal of Finance 62(1), 93-117.

Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. International Statistical Review,

73(1), 111-129.

Dieckmann, S., & Plank, T. (2012). Default risk of advanced economies: An empirical analysis of credit

default swaps during the financial crisis. Review of Finance, 16(4), 903-934.

Erlenmaier, U., & Gersbach, H. (2014). Default Correlations in the Merton Model. Review of Finance 18(5),

1775-1809.

29



Ericsson, J., Jacobs, K., & Oviedo, R. (2009). The determinants of credit default swap premia. Journal of

Financial and Quantitative Analysis 44(1), 109-132.

European Central Bank. (2007). Financial stability review. European Central Bank, Frankfurt

Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal

of Financial Economics 25, 23-49.

Galil, K., Shapir, O. M., Amiram, D., & Ben-Zion, U. (2014). The determinants of CDS spreads. Journal of

Banking & Finance 41, 271-282.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the

volatility of the nominal excess return on stocks. Journal of Finance 48(5), 1779-1801.

Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review 35(3),

705-730.

Huang, X., Zhou, H., & Zhu, H. (2009). A framework for assessing the systemic risk of major financial

institutions. Journal of Banking & Finance 33(11), 2036-2049.

Huang, X., Zhou, H., & Zhu, H. (2012). Assessing the systemic risk of a heterogeneous portfolio of banks

during the recent financial crisis. Journal of Financial Stability, 8(3), 193-205.

Hull, J. C., & White, A. D. (2000), Valuing Credit Default Swaps I: No Counterparty Default Risk, Journal

of Derivatives 8, 29-40.

Janus, P., Koopman, S. J., & Lucas, A. (2014). Long memory dynamics for multivariate dependence under

heavy tails. Journal of Empirical Finance 29, 187-206.

Jones, S. (2009). The formula that felled Wall Street. The Financial Times, 22(04).

Lehnert, T., & Neske, F. (2006). On the relationship between credit rating announcements and credit default

swap spreads for European reference entities. Journal of Credit Risk 2(2), 83-90.

Li, D. X. (2000). On default correlation: A copula function approach. Journal of Fixed Income 9(4), 43-54.

Liu, L. X., & Zhang, L. (2008). Momentum profits, factor pricing, and macroeconomic risk. Review of

Financial Studies 21, 457-475.

30



Longstaff, F. A., & Schwartz, E. S. (1995). A simple approach to valuing risky fixed and floating rate debt.

Journal of Finance 50(3), 789-819.

Lucas, A., Schwaab, B., & Zhang, X. (2014). Conditional euro area sovereign default risk. Journal of

Business & Economic Statistics 32(2), 271-284.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of

Finance 29(2), 449-470.

Lohr, S. (2009). Wall Street’s math wizards forgot a few variables. New York Times 13, 3Pritchard.

Oh, D. H. and A. Patton (2016). Time-varying systemic risk: Evidence from a dynamic copula model of

CDS spreads. Journal of Business & Economic Statistics, forthcoming.

O’Kane, D., & Turnbull, S. (2003). Valuation of credit default swaps. Lehman Brothers Quantitative Credit

Research Quarterly, 2003, Q1-Q2.

O’Kane, D. (2008). Modelling single-name and multi-name credit derivatives (Vol. 573). John Wiley &

Sons.

Patton, A. (2012). Copula methods for forecasting multivariate time series. Handbook of Economic Fore-

casting 2, 899-960.

Pianeti, R., Giacometti, R., & Acerbis, V. (2012). Estimating the joint probability of default Using credit

default swap and bond data. Journal of Fixed Income 21(3), 44-58.

Salmon, F. (2009). Recipe for disaster: The formula that killed Wall Street. Wired Magazine 17(3), 17-03.

Salvatierra, I. D. L., & Patton, A. J. (2015). Dynamic copula models and high frequency data. Journal of

Empirical Finance 30, 120-135.

Schönbucher, P. J. (2003). Credit derivatives pricing models: models, pricing and implementation. John

Wiley & Sons.

Smith, M. S., Gan, Q., & Kohn, R. J. (2012). Modelling dependence using skew t copulas: Bayesian infer-

ence and applications. Journal of Applied Econometrics 27(3), 500-522.

31



Zhu, H. (2006). An empirical comparison of credit spreads between the bond market and the credit default

swap market. Journal of Financial Services Research 29, 211-235.

32



Table I: Descriptive statistics of CDS spread changes

This table presents the Augmented Dickey-Fuller (ADF) test for unit root for the log CDS spreads of the
UK G-SIBs from September 7, 2007 to April 17, 2015, which correspond to a sample of 398 observations
for Barclays, HSBC, Lloyds and RBS and a sample of 356 Standard Chartered available from June 27,
2008. “Average” denotes the equal-weighted average of five CDS spreads. The ADF test includes five
lagged differenced terms and reports p-values with a test static in [·]. This table also presents descriptive
statistics for the first difference of log CDS spreads. The statistics include mean, median, standard deviation,
skewness, kurtosis and time-series characteristics include autocorrelation (AC(1)) and ARCH LM test. Note
that mean, median and standard deviation are reported in %. The ARCH LM test is applied to residuals
obtained from the AR(1) regression and includes five lagged terms. The p-values are reported in [·] with the
test statistic. *, ** and *** indicate the significance levels of AC(1) at 10%, 5% and 1%, respectively.

Barclay HSBC Lloyds RBS Standard Average

ADF test -3.040 -3.748 -2.743 -3.294 -2.744 -3.380
[0.031] [0.004] [0.067] [0.015] [0.067] [0.012]

Mean 0.079 0.201 0.256 0.211 0.060 0.186
Median -0.243 -0.012 0.141 0.432 0.000 0.081
Std. Dev. 11.857 10.466 10.872 11.968 9.208 10.561
Skewness -0.176 0.122 0.287 -0.055 0.748 0.110
Kurtosis 6.443 5.305 6.112 8.783 8.979 6.517

AC(1) -0.094 -0.038 -0.021 -0.090 -0.094 -0.060
ARCHLM 53.162 48.817 43.422 49.633 24.966 55.366

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
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Table II: Correlation of CDS spread changes

This table presents the correlation matrix for the CDS spread changes of the UK G-SIBs from September 7,
2007 to April 17, 2015, which correspond to a sample of 398 observations for Barclays, HSBC, Lloyds and
RBS and a sample of 356 Standard Chartered available from June 27, 2008.

Barclay HSBC Lloyds RBS Standard

Barclay 1.000
HSBC 0.841 1.000
Lloyds 0.876 0.830 1.000
RBS 0.875 0.823 0.869 1.000
Standard 0.762 0.804 0.711 0.781 1.000
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Table III: ARMA-GJR-GARCH estimation of CDS spread changes

This table presents the estimated parameters from the ARMA(1,1) model for the conditional mean,

∆CDSi, t = ci + ε i, t +ϕi∆CDSi, t−1+ θiε i, t−1, ε i, t = σi, t zi, t,

and GJR-GARCH(1,1,1) model for the conditional variance of CDS spread changes,

σ2
i, t = wi +αiε

2
i, t−1+ δiε

2
i, t−1Ii, t−1+ βiσ

2
i, t−1.

We assume that zi, t follows the skewed Student’s t distribution, SkT (υ,η), where υ denotes a degrees
of freedom and η skewness parameter, respectively. We estimate all parameters using the sample from
September 7, 2007 to April 17, 2015, which correspond to a sample of 398 observations for Barclays,
HSBC, Lloyds and RBS and a sample of 356 for Standard Chartered available from June 27, 2008. The
values in parenthesis represent the standard errors of the parameters estimates. We also report the p-values
of two goodness-of-fit tests for the skewed Student’s t distribution: Kolmogorov-Smirnov test and Cramer-
von Mises test. *, ** and *** indicate the significance levels at 10%, 5% and 1%, respectively.

Barclays HSBC Lloyds RBS Standard

ARMA specification
ϕ -0.671** -0.848** -0.794** -0.697** -0.094*

(0.238) (0.114) (0.173) (0.203) (0.053)
θ 0.580** 0.791** 0.757** 0.593**

(0.261) (0.132) (0.187) (0.228)
GJR-GARCH specification
ω 3.168** 3.28** 2.663** 3.361** 7.089**

(0.099) (1.761) (1.683) (1.599) (0.149)
α 0.096** 0.101* 0.078 0.067 0.106**

(0.026) (0.047) (0.040) (0.036) (0.000)
δ -0.096** -0.080 -0.027 -0.044 -0.107**

(0.031) (0.054) (0.059) (0.049) (0.007)
β 0.916** 0.894** 0.905** 0.915** 0.850**

(0.022) (0.041) (0.036) (0.033) (0.003)
SkT specification
υ 5.511** 7.385** 7.179** 5.269** 3.159*
η 0.017* 0.079** 0.001 -0.012 0.016

Kolmogorov-Smirnov test [0.83] [0.94] [0.22] [0.23] [0.16]
Cramer-von Mises test [0.58] [0.91] [0.15] [0.41] [0.25]
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Table IV: Tests of asymmetric dependence

This table presents the coefficient of lower tail dependence (“Lower”), the coefficient of upper tail depen-
dence (“Upper”) and their difference for each pair of banks. We estimate the tail dependence from Student’s
t copula using the sample from September 7, 2007 to April 17, 2015, which correspond to a sample of 398
observations for Barclays, HSBC, Lloyds and RBS and a sample of 356 for Standard Chartered available
from June 27, 2008. We use both parametric and semiparametric estimation methods developed in Patton
(2012). The p-values of testing a zero difference are computed by a bootstrapping with 500 replications and
reported in [·].

A. Parametric estimation B. Semiparametric estimation
Lower Upper Diff [p-value] Lower Upper Diff [p-value]

B-H 0.379 0.509 -0.130 [0.315] 0.279 0.390 -0.111 [0.468]
B-L 0.287 0.543 -0.255 [0.015] 0.428 0.661 -0.233 [0.045]
B-R 0.328 0.647 -0.319 [0.002] 0.274 0.598 -0.324 [0.004]
B-S 0.299 0.220 0.079 [0.462] 0.305 0.282 0.023 [0.867]
B-L 0.217 0.239 -0.022 [0.869] 0.339 0.341 -0.002 [0.992]
H-R 0.217 0.537 -0.320 [0.002] 0.257 0.606 -0.349 [0.013]
H-S 0.511 0.153 0.358 [0.003] 0.559 0.171 0.389 [0.015]
L-R 0.312 0.538 -0.226 [0.037] 0.242 0.698 -0.457 [0.001]
L-S 0.233 0.300 -0.066 [0.673] 0.200 0.453 -0.253 [0.109]
R-S 0.291 0.167 0.125 [0.244] 0.220 0.186 0.035 [0.747]
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Table V: Structural break test for time-varying dependence structures

This table presents the p-values of structural break tests for time-varying dependence between CDS spread
changes of a pair of banks. “B”, “H”, “L”, “R” and “S” denote Barclays, HSBC, Lloyds, RBS and Standard
Charted, respectively. Without a priori knowledge of breaking points, we consider a naïve test for breaks at
three points in the sample period from September 7, 2007 to April 17, 2015; thereby, t∗/T ∈ {0.15,0.50,0.85}
correspond to the dates October 24, 2008, June 24, 2011 and February 21, 2014, respectively. “Any” denotes
a test for the dependence break at unknown timing proposed by Andrews (1993). In order to detect whether
the dependence structure significantly changed after the US/EU crisis broke out, we use 15-Sep-2008 (the
collapse of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points in a rank
correlation. “QA” denotes a generalized break test without a priori knowledge of breaking points proposed
by Andrews and Ploberger (1994).

Naïve break test
(0.15 0.5 0.85) Any US EU QA

B-H 0.053 0.310 0.369 0.110 0.035 0.360 0.020
B-L 0.040 0.106 0.296 0.080 0.019 0.282 0.152
B-R 0.021 0.087 0.190 0.040 0.014 0.250 0.030
B-S 0.837 0.767 0.357 0.500 0.951 0.247 0.048
H-L 0.026 0.154 0.485 0.020 0.015 0.226 0.595
H-R 0.024 0.227 0.407 0.070 0.012 0.225 0.005
H-S 0.542 0.403 0.571 0.720 0.806 0.161 0.048
L-R 0.043 0.062 0.320 0.090 0.013 0.241 0.010
L-S 0.721 0.965 0.540 0.460 0.945 0.319 0.521
R-S 0.993 0.840 0.280 0.240 0.883 0.490 0.014
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Table VI: Estimation of the GAS based GHST copula model

This table presents estimation results of parametric and semiparametric GAS based bivariate GHST copula
model. “B”, “H”, “L”, “R” and “S” denote Barclays, HSBC, Lloyds, RBS and Standard Charted, respec-
tively. The sample period is from September 7, 2007 to April 17, 2015. w, Π andΛ denote the parameters of
GAS model, η−1 and λ denote the inverse of degree of freedom and the skewness parameter of GHST copula,
and log L denotes the log-likelihood of estimated copula model. The “Joint” reports the estimates of param-
eters for high-dimensional copula models with five banks. Notice that we estimate this high-dimensional
copula following the method described in Lucas et al. (2014).

B-H B-L B-R B-S H-L H-R H-S L-R L-S R-S Joint

A. Parametric estimation
w 0.390 0.402 0.406 0.269 0.364 0.382 0.285 0.380 0.269 0.330 0.348
Π 0.047 0.072 0.038 0.026 0.060 0.142 0.199 0.192 0.155 0.168 0.109
Λ 0.866 0.858 0.840 0.854 0.852 0.890 0.908 0.871 0.825 0.890 0.867
η−1 0.210 0.200 0.185 0.164 0.192 0.190 0.168 0.177 0.192 0.165 0.184
λ 0.122 0.216 0.120 -0.043 0.105 0.117 -0.179 0.104 0.138 -0.119 0.127
log L 298 343 341 174 279 281 210 361 180 163 1412

B. Semiparametric estimation
w 0.390 0.396 0.410 0.281 0.364 0.373 0.284 0.380 0.274 0.320 0.348
Π 0.090 0.073 0.039 0.199 0.069 0.194 0.199 0.192 0.155 0.166 0.137
Λ 0.860 0.857 0.858 0.841 0.851 0.836 0.851 0.875 0.852 0.886 0.857
η−1 0.210 0.209 0.185 0.165 0.199 0.190 0.163 0.177 0.206 0.165 0.187
λ 0.119 0.177 0.141 -0.050 0.115 0.132 -0.198 0.100 0.141 -0.136 0.125
log L 296 351 340 171 282 287 208 358 183 168 1390
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Table VII: Log-likelihood, AIC and BIC for model comparisons

This table presents the comparisons for three dynamic bivariate copula models: GAS based Gaussian copula
model (GAS-G), GAS Student’s t copula model (GAS-T) and GAS based GHST copula (GAS-GHST). “B”,
“H”, “L”, “R” and “S” denote Barclays, HSBC, Lloyds, RBS and Standard Charted, respectively. The sam-
ple period is from September 7, 2007 to April 17, 2015. Panel A reports the log-likelihood and the p-values
of likelihood ratio test for GAS-T and GAS-GHST. Panel B and C report the values of Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC). All the copula models are parametrically esti-
mated. The “Joint” reports the estimates of parameters for high-dimensional copula models with five banks.
Notice that we estimate this high-dimensional copula following the method described in Lucas et al. (2014).

B-H B-L B-R B-S H-L H-R H-S L-R L-S R-S Joint

A. Log-likelihood
GAS-G 259 309 317 149 249 250 181 338 143 140 1238
GAS-T 268 318 324 155 256 257 190 350 155 154 1296
GAS-GHST 298 343 341 174 279 281 210 361 180 163 1412
LR test [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

B. Akaike Information Criterion (AIC)
GAS-G -509 -610 -626 -290 -490 -493 -354 -668 -277 -272 -2449
GAS-T -527 -627 -638 -300 -503 -505 -369 -690 -299 -298 -2565
GAS-GHST -584 -674 -670 -335 -545 -550 -408 -710 -348 -315 -2793

C. Bayesian Information Criterion (BIC)
GAS-G -493 -594 -610 -274 -475 -477 -338 -652 -261 -256 -2398
GAS-T -507 -607 -618 -280 -483 -485 -349 -670 -279 -279 -2509
GAS-GHST -560 -650 -646 -311 -521 -526 -384 -686 -324 -291 -2733

39



Table VIII: Descriptive statistics of common market factors

This table presents the Augmented Dickey-Fuller (ADF) test for unit root for level variables and the de-
scriptive statistics for first-differenced variables of common market factors: iTraxx, equity market portfolio
(ln P), equity market volatility (V I X ), bond spot rate (Bond), term structure slope (Slope), capital market
liquidity (Liquidity) and foreign exchange rate (ln S). The ADF test includes five lagged differenced terms
and reports p-values with test statistic in [·]. It also presents descriptive statistics including mean, median,
standard deviation, skewness, kurtosis and time-series characteristics including autocorrelation (AC(1)) and
ARCH LM test for first-difference variables: change of iTraxx (∆iTraxx), equity market portfolio return(

ReturnE
)
, change of market volatility (∆V I X ), change of bond spot rate (∆Bond), change of term struc-

ture slope (∆Slope), change of capital market liquidity
(
∆Liquidity

)
and return on foreign exchange rate(

ReturnF
)
. The ARCH LM test is applied to residuals from the AR(1) regression and includes five lagged

terms. The p-value is reported in [·] with the test statistic. *, ** and *** denote the significance of AC(1) at
10%, 5% and 1% significance level.

iTraxx ln P V I X Bond Slope Liquidity ln S

ADF test -2.346 1.069 -1.483 -3.191 -3.158 -2.343 -2.593
[0.158] [0.995] [0.542] [0.021] [0.023] [0.159] [0.094]

∆iTraxx ReturnE ∆V I X ∆Bond ∆Slope ∆Liquidity ReturnF

Mean 0.210 0.026 -0.015 -0.007 0.004 1.012 -0.075
Median 0.232 0.193 -0.074 -0.015 0.002 0.515 -0.066
Std. Dev. 1.565 2.856 3.814 0.131 0.112 17.936 1.405
Skewness -0.517 -1.426 1.358 0.410 0.027 1.635 -0.783
Kurtosis 4.772 16.494 27.244 4.597 8.484 22.160 7.923

AC(1) -0.102 -0.123* -0.133* -0.048 -0.013 -0.011 -0.028
ARCH LM 9.518 20.844 44.297 8.473 24.873 91.222 95.537

[0.090] [0.001] [0.000] [0.132] [0.000] [0.000] [0.000]
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Table IX: Correlation of average CDS spread changes and common market factors

This table presents a correlation matrix of average CDS changes
(
∆CDS

)
and common market fac-

tors: change of iTraxx (∆iTraxx), equity market portfolio return
(
ReturnE

)
, change of market volatility

(∆V I X ), change of bond spot rate (∆Bond), change of term structure slope (∆Slope), change of capital
market liquidity

(
∆Liquidity

)
and return on foreign exchange rate

(
ReturnF

)
. See Section 4 for the details

of variable definition. Note that ∆CDSt := lnCDSt − lnCDSt−1, where CDS is the equal-weight average
of individual CDS spreads.

∆CDS ∆iTraxx ∆ReturnE ∆V I X ∆Bond ∆Slope ∆Liquidity ReturnF

∆CDS 1.000
∆iTraxx -0.682 1.000
ReturnE -0.403 0.642 1.000
∆V I X 0.332 -0.588 -0.810 1.000
∆Bond -0.337 0.405 0.326 -0.278 1.000
∆Slope -0.095 0.089 0.011 0.000 0.190 1.000
∆Liquidity 0.012 -0.052 -0.078 0.060 -0.243 -0.065 1.000
ReturnF -0.220 0.283 0.267 -0.206 0.069 -0.166 -0.009 1.000
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Table X: Regression analysis of a relationship between CDS spread changes and common market factors

This presents a time-series regression of CDS spread changes on common market factors: change of iTraxx
(∆iTraxx), equity market portfolio return

(
ReturnE

)
, change of market volatility (∆V I X ), change of

bond spot rate (∆Bond), change of term structure slope (∆Slope), change of capital market liquidity(
∆Liquidity

)
and return on foreign exchange rate

(
ReturnF

)
. We estimate the following regression model

for each bank:

∆CDSi, t = αi + β1i∆iTraxxt + β2iReturnE
t + β3i∆V I Xt + β4i∆Bondt

+ β5i∆Slopet + β6i∆Liquidityt + β7iReturnF
t + ei, t, (18)

where ∆CDSi, t := lnCDSi, t − lnCDSi, t−1. All the standard errors reported in (·) are obtained by the Newey-
West method with 5 lags. *, ** and *** denote the significance of estimate at 10%, 5% and 1% significance
level. See Section 4 for the details of variable definition.
Variable Barclay HSBC Lloyd RBS Standard

∆iTraxx -0.052*** -0.045*** -0.045*** -0.047*** -0.038***
(0.005) (0.004) (0.005) (0.005) (0.004)

ReturnE 0.001 -0.003 -0.002 0.000 -0.001
(0.003) (0.002) (0.003) (0.003) (0.003)

∆V I X -0.003 -0.004 -0.004 -0.002 -0.003
(0.004) (0.003) (0.003) (0.003) (0.003)

∆Bond -0.099* -0.057 -0.046 -0.075 0.002
(0.052) (0.044) (0.047) (0.061) (0.045)

∆Slope -0.082 0.023 -0.058 -0.009 -0.035
(0.075) (0.057) (0.078) (0.083) (0.035)

∆Liquidity 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

ReturnF -0.003 -0.004 -0.002 -0.005 -0.005
(0.005) (0.004) (0.005) (0.005) (0.004)

α 0.011*** 0.011*** 0.012*** 0.011** 0.009**
(0.004) (0.004) (0.004) (0.005) (0.004)

adj .R2 0.465 0.460 0.410 0.391 0.406
N 398 398 398 398 398
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Table XI: Regression analysis of a relationship between average CDS spread changes and common market
factors

This presents a time-series regression of average CDS spread changes
(
∆CDS

)
on common market fac-

tors: change of iTraxx (∆iTraxx), equity market portfolio return
(
ReturnE

)
, change of market volatility

(∆V I X ), change of bond spot rate (∆Bond), change of term structure slope (∆Slope), change of capital
market liquidity

(
∆Liquidity

)
and return on foreign exchange rate

(
ReturnF

)
. We estimate the following

regression model:

∆CDSt = α+ β1∆iTraxxt + β2ReturnE
t + β3∆V I Xt + β4∆Bondt

+ β5∆Slopet + β6∆Liquidityt + β7ReturnF
t + et, (19)

where ∆CDSt := lnCDSt − lnCDSt−1, where CDS is the equal-weight average of individual CDS spreads.
We also estimate the regression model with a single variable to see its explanatory power independently. All
the standard errors reported in (·) are obtained by the Newey-West method with 5 lags. *, ** and *** denote
the significance of estimate at 10%, 5% and 1% significance level. See Section 4 for the details of variable
definition.
Variable M1 M2 M3 M4 M5 M6 M7 ALL

∆iTraxxt -0.046*** -0.047***
(0.004) (0.004)

ReturnE -0.015*** -0.001
(0.005) (0.002)

∆V I X 0.009** -0.003
(0.004) (0.003)

∆Bond -0.272*** -0.069
(0.056) (0.049)

∆Slope -0.089 -0.025
(0.073) (0.062)

∆Liquidity 0.000 0.000
(0.000) (0.000)

ReturnF -0.017*** -0.003
(0.004) (0.004)

α 0.012*** 0.002 0.002 0.000 0.002 0.002 0.001 0.011***
(0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004)

adj .R2 0.463 0.160 0.108 0.112 0.007 -0.002 0.103 0.471
N 398 398 398 398 398 398 398 398

43



Table XII: Regression analysis of a relationship between iTraxx and other common market factors

This presents a time-series regression of iTraxx change (∆iTraxx) on common market factors: equity mar-
ket portfolio return

(
ReturnE

)
, change of market volatility (∆V I X ), change of bond spot rate (∆Bond),

change of term structure slope (∆Slope), change of capital market liquidity
(
∆Liquidity

)
and return on

foreign exchange rate
(
ReturnF

)
. We estimate the following regression model:

∆iTraxxt = α+ β1ReturnE
t + β2∆V I Xt + β3∆Bondt + β4∆Slopet + β5∆Liquidityt + β6ReturnF

t + et,
(20)

We also estimate the regression model with a single variable to see its explanatory power independently. All
the standard errors reported in (·) are obtained by the Newey-West method with 5 lags. *, ** and *** denote
the significance of estimate at 10%, 5% and 1% significance level. See Section 4 for the details of variable
definition.
Variable M1 M2 M3 M4 M5 M6 ALL

ReturnE 0.352*** 0.208***
(0.049) (0.044)

∆V I X -0.241*** -0.080*
(0.044) (0.041)

∆Bond 4.846*** 2.585***
(0.729) (0.580)

∆Slope 1.243 0.978
(1.249) (0.822)

∆Liquidity -0.005 0.004
(0.007) (0.003)

ReturnF 0.315*** 0.154***
(0.058) (0.045)

α 0.201*** 0.207*** 0.246*** 0.206*** 0.215*** 0.234*** 0.227***
(0.054) (0.064) (0.068) (0.076) (0.074) (0.070) (0.049)

adj .R2 0.411 0.344 0.162 0.005 0.000 0.078 0.481
N 398 398 398 398 398 398 398
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Table XIII: Decomposition of correlation of CDS spread changes

This table presents a decomposition of correlation of CDS spread changes relying on a factor model:

∆CDSi, t = αi + βi∆iTraxxt + ei, t,

where ∆CDSi, t := lnCDSi, t − lnCDSi, t−1. We only include a single market factor: change of iTraxx
(∆iTraxx), since it has been verified that the most relevant market factor in Table X - XII. From the single
factor model, it is straightforward to decompose the correlation of two banks’ CDS spread changes into
three components:

Cov
(
∆CDSi, t,∆CDS j, t

)
√

V ar
(
∆CDSi, t

)
V ar

(
∆CDS j, t

) = βi β jV ar (∆iTraxxt )√
V ar

(
∆CDSi, t

)
V ar

(
∆CDS j, t

)
︸                                        ︷︷                                        ︸

(A)

+
Cov

(
ei, t, e j, t

)
√

V ar
(
∆CDSi, t

)
V ar

(
∆CDS j, t

)
︸                                        ︷︷                                        ︸

(B)

+
βiCov

(
∆iTraxxt, e j, t

)
+ β jCov

(
∆iTraxxt, ei, t

)√
V ar

(
∆CDSi, t

)
V ar

(
∆CDS j, t

)
︸                                                             ︷︷                                                             ︸

(C )

.

(A) and (B) are correlations respectively generated by our first and second hypothetical channels, and (C) is
a correlation generated by the interaction of two channels. Normally, (C) is relatively ineffective compared
to the two channels. (·) represents the relative influence by each component in percentage.

Correlation coefficient (A) (B) (C)

Corr (Barclay,HSBC) 0.841 0.613 0.381 -0.153
(73%) (45%) (-18%)

Corr (Barclay, Lloyds) 0.876 0.563 0.446 -0.133
(64%) (51%) (-15%)

Corr (Barclay,RBS) 0.875 0.561 0.465 -0.151
(64%) (53%) (-17%)

Corr (Barclay, Standard) 0.762 0.489 0.332 -0.059
(64%) (44%) (-8%)

Corr (HSBC, Lloyds) 0.830 0.569 0.389 -0.127
(69%) (47%) (-15%)

Corr (HSBC,RBS) 0.823 0.567 0.402 -0.146
(69%) (49%) (-18%)

Corr (HSBC, Standard) 0.804 0.494 0.363 -0.053
(61%) (45%) (-7%)

Corr (Lloyds,RBS) 0.869 0.520 0.475 -0.127
(60%) (55%) (-15%)

Corr (Lloyds, Standard) 0.711 0.454 0.300 -0.043
(64%) (42%) (-6%)

Corr (RBS, Standard) 0.781 0.452 0.387 -0.058
(58%) (50%) (-7%)
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Table XIV: Tests of asymmetric dependence of residuals

This table presents the coefficient of lower tail dependence (“Lower”), the coefficient of upper tail depen-
dence (“Upper”) and their difference for each pair of banks using the residuals from a factor model:

∆CDSi, t = αi + βi∆iTraxxt + ei, t,

where ∆CDSi, t := lnCDSi, t − lnCDSi, t−1. We estimate the tail dependence from Student’s t copula using
the sample from September 7, 2007 to April 17, 2015, which correspond to a sample of 398 observations
for Barclays, HSBC, Lloyds and RBS and a sample of 356 for Standard Chartered available from June 27,
2008. We use both parametric and semiparametric estimation methods developed in Patton (2012). The
p-values of testing a zero difference are computed by a bootstrapping with 500 replications and reported in
[·].

A. Parametric estimation B. Semiparametric estimation
Lower Upper Diff [p-value] Lower Upper Diff [p-value]

B-H 0.255 0.270 -0.015 [0.810] 0.226 0.292 -0.067 [0.358]
B-L 0.332 0.389 -0.057 [0.356] 0.319 0.403 -0.084 [0.268]
B-R 0.232 0.290 -0.058 [0.470] 0.310 0.439 -0.129 [0.325]
B-S 0.178 0.137 0.042 [0.642] 0.300 0.181 0.119 [0.313]
H-L 0.201 0.210 -0.009 [0.910] 0.265 0.339 -0.074 [0.350]
H-R 0.193 0.359 -0.167 [0.007] 0.208 0.456 -0.248 [0.013]
H-S 0.161 0.175 -0.013 [0.863] 0.150 0.165 -0.016 [0.843]
L-R 0.204 0.257 -0.052 [0.491] 0.159 0.279 -0.120 [0.239]
L-S 0.265 0.306 -0.041 [0.698] 0.145 0.387 -0.243 [0.040]
R-S 0.228 0.102 0.127 [0.059] 0.206 0.195 0.011 [0.920]
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Table XV: Structural break test for time-varying dependence structures of residuals

This table presents the p-values of structural break tests for time-varying dependence between residuals of
a pair of banks. The residuals are from a factor model:

∆CDSi, t = αi + βi∆iTraxxt + ei, t,

where ∆CDSi, t := lnCDSi, t − lnCDSi, t−1. “B”, “H”, “L”, “R” and “S” denote Barclays, HSBC, Lloyds,
RBS and Standard Charted, respectively. Without a priori knowledge of breaking points, we consider a
naïve test for breaks at three points in the sample period from September 7, 2007 to April 17, 2015; thereby,
t∗/T ∈ {0.15,0.50,0.85} correspond to the dates October 24, 2008, June 24, 2011 and February 21, 2014,
respectively. “Any” denotes a test for the dependence break at unknown timing proposed by Andrews (1993).
In order to detect whether the dependence structure significantly changed after the US/EU crisis broke out,
we use 15-Sep-2008 (the collapse of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two
break points in a rank correlation. “QA” denotes a generalized break test without a priori knowledge of
breaking points proposed by Andrews and Ploberger (1994).

Naïve break test
(0.15 0.5 0.85) Any US EU QA

B-H 0.362 0.856 0.898 0.630 0.163 0.458 0.000
B-L 0.160 0.213 0.733 0.530 0.083 0.123 0.412
B-R 0.135 0.196 0.743 0.570 0.085 0.145 0.067
B-S 0.880 0.644 0.641 1.000 0.615 0.892 0.023
H-L 0.072 0.163 0.823 0.220 0.017 0.030 0.746
H-R 0.190 0.656 0.905 0.500 0.071 0.239 0.787
H-S 0.800 0.582 0.678 0.840 0.904 0.697 0.431
L-R 0.163 0.110 0.760 0.350 0.053 0.082 0.516
L-S 0.638 0.772 0.652 0.920 0.518 0.374 0.508
R-S 0.506 0.933 0.329 0.940 0.353 0.545 0.000
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A. Average CDS spreads
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B. Conditional volatility of average CDS spread changes
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Figure 1: Dynamics of CDS spread
This figure shows the equal-weighted average of CDS spreads of five UK G-SIBs and the conditional volatil-
ity of average CDS spread changes from September 7, 2007 to April 17, 2015. The conditional volatility of
average CDS spread changes is estimated by the GJR-GARCH(1,1,1) of Glosten et al. (1993). The arrows
in each figure indicate several major events in CDS market during the sample period.
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Figure 2: CDS-implied marginal risk neutral default probabilities
This figure plots risk neutral marginal probabilities of default for five UK G-SIBs. These probabilities
are directly inferred from CDS spreads with different maturities using bootstrap algorithm described in
Appendix 5. The sample period is from September 7, 2007 to April 17, 2015.
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Figure 3: Average copula correlation implied by GAS over time
This figure shows the average copula correlation implied by the GAS GHST copula from September 7, 2007
to April 17, 2015. The average copula correlation is obtained by the equal-weighted average of estimated
copula correlations of 10 pairs of banks.
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