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Abstract

In line with the recent developments on the statistical analysis of functional data, we develop the semi-

parametric functional autoregressive (FAR) modeling approach to the density forecasting analysis of national

inflation rates using sectoral inflation rates in the UK over the period January 1997-September 2013. The

pseudo out-of-sample forecasting evaluation and test results provide an overall support to superior perfor-

mance of our proposed models over the aggregate autoregressive models and their statistical validity. The

fan-chart analysis and the probability event forecasting exercise provide a further support for our approach in

a qualitative sense, revealing that the modified FAR models can provide a complementary tool for generating

the density forecast of inflation, and analyse the performance of the central bank in achieving announced

inflation target. As inflation targeting monetary policies are usually set with recourse to the medium-term

forecasts, our proposed work may provide policymakers with an invaluably enriched information set.
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1 Introduction

Monetary authorities around the world began to adopt inflation targeting as the monetary policy framework, by

which the bank commits to keep inflation within a narrow pre-defined level, in the 1990s. In this policy frame-

work, an inflation forecast is a key input in the decision making process of the Monetary Policy Committee

(as it is known in the UK), since it signals that a potential change in policy may be required to ensure that the

inflation rate does not move outside its target range. The importance of providing additional information on the

uncertainty surrounding forecasts of key macroeconomic variables has been increasingly recognised, e.g., Gior-

dani and Söderlind (2003). Point forecasts convey limited information and work well only in restrictive cases

(Granger and Pesaran, 2000). More generally, knowledge about the precision of forecasts enables policymakers

to motivate actions based on these forecasts, and helps in achieving a more balanced evaluation of both forecasts

and policy in the public arena (Casillas and Bessler, 2006). Monetary policy decisions should explicitly accom-

modate the uncertainty surrounding point forecasts. The BOE produces a quarterly inflation report in which this

uncertainty is conveyed using fan charts over a two-year horizon, with bands of various shades of red illustrat-

ing the range of probable outcomes (http://www.bankofengland.co.uk/publications/inflationreport/irfanch.htm).

Similarly, the European Forecasting Network and the Fed provide such forecasts for a set of key macroeconomic

variables. Although this current practice is clearly an important step toward acknowledging the significance of

forecast uncertainties in the decision making process, it is difficult for independent researchers to replicate them

due to the subjective manner in which the central bank accommodates forecast uncertainty. In this paper, using

sectoral inflation data, we use the informational contents present in cross-sectional higher order moments and

the time-variation of the cross-sectional density to develop an inflation forecasting framework.

The time-varying and non-normal distribution of inflation rates may have dramatic consequences for the op-

timal conduct of monetary policy. Accordingly, reliable forecasts have to be computed dynamically to account

for changes in the distribution. Previous studies have used the autoregressive (AR) process to model the infla-

tion rate or the autoregressive conditional heteroskedastic (GARCH) process (Engle, 1982; Bollerslev, 1986)

for modeling inflation uncertainty. A number of studies have examined the role of time-varying higher-order

moments in the analysis of financial and macroeconomic data (e.g. Hansen, 1994; Bryan et al., 1997; Harvey

and Siddique, 2000; Roger, 2000; Jondeau and Rockinger, 2003). In the case of inflation, Bryan et al. (1997)

document fat-tailed properties and Roger (2000) provides evidence of rightward skewness. It follows that analy-

sis based on aggregate data may be severely biased given the presence of informational heterogeneity across the

sectors as documented by Pesaran and Smith (1995) and Hsiao et al. (2005).

We develop a flexible framework for utilising both the informational content of the higher-order moments
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and the time-variation of the cross-sectional distribution of sectoral inflation rates. Specifically, we follow Bosq

(2000), Cardot et al. (1999, 2007), Mas (2007) and Park and Qian (2007, 2012), and develop a semi-parametric

functional autoregressive (hereafter, FAR) modeling strategy for forecasting the time-varying cross-sectional

density. In particular, the cross-sectional densities are treated as time series of the functional data and their

dynamic nature is estimated via an autoregressive model in the functional space. As the dependence of the

variations over sectors is being modeled nonparametrically, we do not impose any assumptions on the structure

of the distributions, or on the number of dimensions in which the distributions may vary over time. We then

employ the autoregressive operator to specify the time-dependence of the distribution function, thereby allowing

all the moments to depend on all the past moments in a flexible manner.

Our approach is in line with the recent developments in the statistical analysis of functional data. Bowsher

and Meeks (2008) and Kargin and Onatski (2008) employ these models for forecasting the yield curve. Notice,

however, that these existing applications focus on time variation only. Despite the FAR model being regarded

as an unusually powerful forecasting tool, we are unaware of any study that has applied this strategy explicitly

to the high profile issue of low-frequency inflation forecasting. It is here that we contribute to the literature

by developing a flexible semi-parametric FAR modeling for the construction of density forecasts of national

inflation rate on the basis of sectoral inflation data which varies across cross-section as well as over time periods.

Attempts have also been made to utilise information available at the disaggregate level by using the data from

the Survey of Professional Forecasters (SPF) (e.g., Zarnowitz and Llambros, 1987; Lahiri and Liu, 2006) and by

using the CPI confidential microdata of Bureau of Labor Statistic (BLS) (e.g., Bils and Klenow, 2004; Klenow

and Malin, 2010). The SPF data utilises inflation forecasts from different forecasters and draws the density of

the inflation rate. The density of the SPF data is reported as a histogram and thus it is not straightforward to

evaluate its higher order moments (Engelberg et al., 2009; Clements 2010). Two additional problems also arise

when working with the SPF data: heterogeneity of forecasters and changes in the composition of the panel over

time. We contribute to the existing literature by developing a flexible framework that can readily accommodate

the unbalanced nature of such datasets.

Research using the BLS data has focused on examining the distribution of prices, but no attempt has yet

been made to forecast the density of aggregate inflation. In principle, we can forecast the density function of the

national inflation rate utilising information at either the sectoral or the firm level by combining the nonparamet-

ric kernel density estimation of sectoral inflation rates, the functional autoregressive modeling of cross-sectional

densities, and the evaluation of density forecast of inflation rate via nonparametric bootstraps. Our hybrid ap-

proach is then expected to provide additional findings compared to the existing work with the BLS data.

Based on a detailed exploratory analysis of the time-varying cross-sectional moments of the UK sectoral CPI
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inflation rates over January 1997 and September 2013, we find that the first four moments are highly persistent

and interrelated. The national inflation rate is highly correlated with both relative price variability (RPV) and

relative price skewness (RPS), though the direction of the association is contingent on the location of the inflation

relative to adaptive inflation expectations (defined as a learning process through which future expectations can

be formed on the basis of what has happened in the past). The mean inflation is positively correlated with RPV

and RPS when current inflation exceeds expected inflation and negatively correlated otherwise, especially in

the pre-crisis period (1997-2007). These findings provide a partial support to Friedman (1977) and Cukierman

and Meltzer (1986), and favor the menu cost explanation of Ball and Mankiw (1995) regarding the sluggish

adjustment of prices in response to aggregate shocks only under the higher inflation regime. This implies that

firms will change the price only if the profit from the relative price adjustment is larger than the menu cost (i.e.,

the cost that accrues as a result of changing their price). On the contrary the negative association observed in

the low inflation regime supports the exogenous form of downward nominal rigidity advanced by Tobin (1972),

in which case prices of most goods and services do not change immediately following a shock to the firms’

relative prices. For the post-crisis period (2008-2013), we still observe the positive correlation between inflation

and RPV under the higher inflation regime, and a negative one under the lower inflation regime. Interestingly,

however, the post-crisis relationship between inflation rate and RPS becomes an inverse U-shape. But, the degree

of associations tends to be substantially weaker in the post-crisis period. Overall, our finding of the asymmetric

U-shaped pattern that characterises the relationship between inflation rate and RPV is generally consistent with

recent studies by Chen et al. (2008), Choi (2010) and Chaudhuri et al. (2013).

Our data spans the recent period of the global financial and the European debt crisis during which inflation

rates are found to be consistently above target at times. Therefore, to evaluate the relative performance of

our proposed methodology, we repeat the forecasting exercise for different sample periods: the pre-crisis, the

crisis and the post-crisis periods. We conduct a number of forecasting evaluation exercises by considering

different functional models. These include three basic models, namely the functional autoregressive (FAR),

the functional average (AVE) and the functional martingale (LAST) models. AVE selects the average of all

the observed distributions and LAST selects the last distribution for forecasting purpose. Following Clements

and Hendry (2002, 2006), we have considered modifications either by intercept shifting or by taking the first-

difference in order to incorporate (possible) structural breaks and the high persistence of the moments of sectoral

inflation rates. Thus, we introduce the nine additional modified models, namely, the 3-, 6-, 9- and 12-month

moving averages of FAR and AVE models (denoted as FAR3M, FAR6M, FAR9M, FAR12M, AVE3M, AVE6M,

AVE9M and AVE12M) and the differenced FAR model (DFAR). Furthermore, we have also proposed a robust

bootstrap scheme as a complementary to the standard one in order to evaluate the empirical distributions in
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a more robust manner, especially in the presence of extreme events such as the global financial crisis. This

is generally in line with the generalised extreme value distribution theory as introduced by Embrechts et al.

(1997) and applied to financial applications by Longin (2000) and McNeil and Rudiger (2000). We find that

our proposed modifications seem to handle the data for both the pre-crisis and the post-crisis periods reasonably

well, therefore justifying their application from a practical point of view.

The evaluation results of pseudo out-of-sample forecasting (e.g., Elliot and Timmermann, 2008; Faust and

Wright, 2012) reveal that the performances of unmodified models such as FAR and AVE are rather poor, and that

they are sometimes dominated by the benchmark aggregate AR and ARCH-M models. We find that modified

models, especially DFAR, FAR3M and AVE3M, are the best among the functional models, and they strongly

dominate the benchmark models. Furthermore, we have evaluated the density forecasting performance using

the probability integral transformations (PIT) proposed by Diebold et al. (1998), and accessed the accuracy of

the interval forecasting by applying the conditional coverage test developed by Christoffersen (1998). Both

test results provide an overall support to the statistical validity of our modified functional autoregressive (FAR)

modeling approach using the disaggregate data. In particular, DFAR shows strong and robust statistical evidence

and can forecast the density of the national inflation rates even during the crisis period.

The fan-chart analysis demonstrates that realised inflation rates are well within the confidence band with

forecasted mean inflation tracking actual one reasonably well during both the pre-crisis and the post-crisis period.

In particular, our fan-charts are remarkably similar to those published by the BOE quarterly bulletin in fourth

quarter of 2004 and in November 2010. Furthermore, we examine the probability of achieving the inflation target

of π < 2% and 1% < π < 3% as announced by BOE, finding that the probability event forecasting exercises can

capture the actual violations almost accurately, especially during the post-crisis period. We also evaluate the

probability forecasting performance by quadratic probability scores (QPS, Brier, 1950) and the calibration tests

(Seillier-Moiseiwitsch and Dawid, 1993; Diebold and Lopez, 1996). Both results provide an overall support

for modified functional models, especially the satisfactory performance of DFAR over the short forecasting

horizons up to 6-8 months. In sum these analyses seem to support our modeling approach in a qualitative sense,

revealing that our proposed approach is able to provide a complementary tool for generating the density forecast

for inflation and analyse the performance of the central bank in achieving announced inflation target.

Our results show that utilisation of disaggregate data using a semi-parametric model provides more useful

information in forecasting the aggregate inflation compared to an aggregate parametric model, which is likely to

result in misleading forecast. As inflation targeting monetary policies are usually set with recourse to medium-

term forecasts, our work on forecasting the time-varying distribution of sectoral inflation rates may provide

policymakers with an invaluably enriched information set.
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The rest of the paper is organised as follows. Section 2 introduces the FAR methodology. The exploratory

data analysis of the sectoral inflation rates is reported in Section 3. The main estimation and forecasting results

based on the FAR models are provided in Section 4. Section 5 concludes. Appendix provides the computation

algorithms for the semiparametric FAR model estimation and the bootstrap-based inference in details.

2 Functional Autoregressive Distribution

The statistical foundation of the FAR model is comprehensively introduced by Bosq (2000). Cardot et al. (1999,

2007) and Mas (2007) refine the asymptotic theory. The early applications are in forecasting climate patterns

such as temperatures (Besse et al., 2000) and ozone (Damon and Guillas, 2002; Aneiros-Perez et al., 2004).

Recently, the application has been adopted in finance. Laukaitis (2008) utilises the FAR model to forecast the

intraday cash flow and intensity of the transaction in a credit card payment system. Bowsher and Meeks (2008)

and Kargin and Onatski (2008) apply it to forecast a yield-curve as the function of maturity. See also Park and

Qian (2007, 2012) for forecasting the nonparametric density function of the intraday stock returns.

In line with these developments, we aim to develop the novel semiparametric FAR modeling strategy for

constructing the density forecast of the national inflation rate using the cross-sectional sectoral inflation rates

as follows: (i) The cross-sectional density of sectoral inflation rates is estimated nonparametrically at each time

period by a weighted kernel density estimator; (ii) These time-varying cross-sectional densities are then modeled

by FAR in a functional space; (iii) Finally, the empirical distribution of the forecasted national inflation rate is

generated via the nonparametric bootstrap techniques. Notice that all previous empirical studies focus on the

time variation only whereas our approach combines both cross-sectional and time variations.

Let (Ω,µ) be a measurable space where Ω denotes the set of all sectors in an economy and µ is the Lebesgue

measure on Ω. We assume that the number of sectors in Ω is either finite or infinite, but it should be denumerable

in practice (e.g. D ⊆ R). Denote xt(ω) as the inflation rate at time t in a sector, ω ∈ Ω, and ft : Ω→ R+ as

a density function, satisfying
´

Ω
ft (ω)dµ (ω) = 1, as it measures the relative weight assigned to each sector.

Then, the mean inflation, denoted πt , can be defined by

πt =

ˆ
Ω

xt (ω)︸ ︷︷ ︸
inflation rate

ft (ω)dµ (ω)︸ ︷︷ ︸
weight

. (1)

As the sectoral inflation rates and the weights associated with them are random variables, we can therefore treat

ft as a functional random variable. It is often referred to as the cross-sectional density of sectoral inflation rates.

In this regard, we can forecast the national (mean) inflation rate through (1).

Next, we define the fluctuation of the cross-sectional density, wt , as a deviation from the well-defined uncon-
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ditional expectation of the density, E [ ft ]:

wt = ft −E [ ft ] , t = 1, ...,T. (2)

We assume that this fluctuation disappears as the time period increases and this adjustment mechanism is speci-

fied by an autoregressive process. Hence, {wt}T
t=1 can be generated by an autoregressive process of order one in

the functional space:

wt = Awt−1 + εt , t = 1, . . . ,T, (3)

where A is an autoregressive operator in the Hilbert space (H) and {εt}T
t=1 is the sequence of the functional

white noise process. This model is referred to as the FAR of order one in a functional space, FAR(1) for short.

Combining (2) and (3), we get:

ft = E [ ft ]+Awt−1 + εt . (4)

This portrays that the cross-sectional density at time t consists of the unconditional expectation (E [ ft ]) and the

correction of the fluctuation at time t−1 (Awt−1).

First, at each time period, we estimate the cross-sectional density nonparametrically by the weighted kernel

density estimator (Marzio and Taylor, 2004):

f̂t(z) =
1
ht

N

∑
i=1

vitK
(

z−πit

ht

)
, t = 1, ...,T (5)

where vit is a time-varying sectoral weight, satisfying πt = ∑
N
i vitπit with ∑

N
i=1 vit = 1, K is a kernel, N is the

number of sectors, and ht is a bandwidth. One important issue lies in the selection of the appropriate kernel and

the corresponding bandwidth. Here we opt to employ the Gaussian kernel, which is most popular in empirical

studies. An optimal bandwidth is then derived by minimising a loss function and applying the cross validation

selector. In this regard, we follow the Silverman’s (1986) rule of thumb, which is the optimal bandwidth for

the Gaussian kernel given by ht = 1.06σtN−1/5, where σt is the standard deviation of the sectoral inflation rate

(πit) at time t. Given the sequence of the estimated cross-sectional density functions,
{

f̂t
}T

t=1, the sequence of

fluctuation is estimated by ŵt = f̂t − f̄ , where f̄ = 1
T ∑

T
t=1 f̂t is the consistent estimate of E [ ft ].

The autoregressive operator, A, in (3) can be estimated theoretically by A = C−1
0 C1, where C0 and C1 are

the autocovariance operator of order 0 and order 1, respectively, (see Bosq, 2000; Park and Qian, 2007, 2012).

But, the autocovariance operators are defined in the infinite dimension. To avoid this ill-posed inverse problem

in practice, we should project the autocovariance operators into a finite `-dimensional subspace by applying a

functional principal component analysis, and then estimate A consistently in the `-dimensional subspace, denoted
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by Â`, e.g. Park and Qian (2007, 2012).

Now, we can evaluate an m-step ahead forecasts of the cross-sectional density function, denoted f̂T+m|T , by

f̂T+m|T = f̄ + Âm
`

(
f̂T − f̄

)
, m = 1,2, . . . ,M, (6)

where f̂T is the estimate of the cross-sectional density at time T . It is then straightforward to evaluate the m-step

ahead forecasts of the national inflation rate by integrating out the cross-sectional density for x as follows:

π̂T+m|T =

ˆ
D

x f̂T+m|T (x)dx, (7)

where D ⊆ R is the domain of function f̂ and the integral operator is numerically approximated by the middle

Riemann sum given the grid set (see Step 1 in Appendix for details). It is clear from (7) that, when forecasting

the national inflation rate, we do not need to forecast sectoral inflation rates and the corresponding weights,

separately. We only need to forecast the functional variable, that is, the cross-sectional density.

Finally, we generate the empirical distribution of the forecasted national inflation rates
(
π̂T+m|T

)
at each

horizon, m = 1, ...,M, using the nonparametric bootstrap technique as follows: We first estimate (3), obtain

residuals, ε̂t , and collect the the pool of residuals, {ε̂1, ..., ε̂T}. Then, we draw the bth bootstrap sample of the

prediction errors,
{

ε̂
(b)
T+1|T , . . . , ε̂

(b)
T+M|T

}
with replacement from the pool, and resample the m-step ahead forecast

of the deviation by

ŵ(b)
T+m|T = ŵT+m|T +

m

∑
i=1

Âm−i
` ε̂

(b)
T+i|T , m = 1, ...,M, b = 1, ...B, (8)

where ŵT+m|T = f̂T+m|T − f̄ . The m-step ahead forecast of the cross-sectional density is then resampled by

f̂ (b)T+m|T = ŵ(b)
T+m|T + f̄ , m = 1, ...,M, b = 1, ...B, (9)

which provides the (resampled) m-step ahead forecasts of the national inflation rates by

π̂
(b)
T+m|T =

ˆ
D

x f̂ (b)T+m|T (x)dx, m = 1, ...,M, b = 1, ...B. (10)

Then, the density forecast of the national inflation rate can be obtained from the empirical distribution of{
π̂
(b)
T+m|T

}B

b=1
. In Appendix we provide the estimation algorithms for the semiparametric FAR model, the

bootstrap-based inference as well as the robust modifications to address the issues related to the presence of

structural breaks or the extreme events such as the global financial crisis.
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3 Data and Analysis of Time Varying Moments

We use a set of sectoral inflation rates (defined as the annual percentage change) based on Consumer Price Index

(CPI, 2005 =100) and their respective weights from the Office for National Statistics. In our case, sector implies

the basket of goods and services that enter in the construction of CPI. The data spans over January 1997 to

September 2013, thus giving a total of 201 monthly observations. In some sectors we have less observations as

the disaggregation has started at a later date. Sub-sector consists of 79 sectors (January 1997 - November 2000),

84 sectors (December 2000 - November 2001) and 85 sectors (December 2001 - September 2013). The mean

inflation rate in our sample (measured across sectors and over time periods) stands at 2.1% while the median is

1.8%. We observe that mean inflation rate is considerably higher at 3.1% in the post-crisis period (2008-2013)

compared to 1.5% in the pre-crisis period (1997-2007). Both domestic (e.g., changes in value-added tax) and

international factors (e.g., high oil price coupled with high food prices, rising demand from emerging economies,

and fall in the value of sterling) are responsible behind this hike. Considerable heterogeneity exists across the

sectors: Liquid Fuels experiencing the highest inflation (92.2%) and Information Processing Equipment the

lowest (-40.2%). The standard deviation ranges from 0.62% (Restaurants & Cafes) to 27.8% (Liquid Fuels). Out

of the 85 sub-sectors, inflation is positively skewed for 58 sub-sectors. The Jarque-Bera statistic is significant

at the 5% significance level for 61 sub-sectors and at the 1% significance level for 55 sub-sectors, providing a

strong evidence against the normality.

To understand the time-varying nature along with the degree of association between the first four cross-

sectional moments, we provide their time series plots evaluated from the cross-sectional density of sectoral

inflation rates (Figure 1). The maximum mean was in September 2008 (5.3%) and the minimum in August

2000 (0.3%). In 87 out of 201 months, inflation is positively skewed. Cross-sectional uncertainty of inflation

substantially differs across time periods. It deviates 60 times by more than 1% from the 2% target over the full

sample period (1997-2013), and 37 times occur in the post-crisis period (2008 - 2013). A simple paired t-test

with unequal variance reveals that the cross-sectional mean inflation in pre-crisis period significantly differs from

that of post-crisis period. We also note that cross-sectional RPV (RPS) on an average is 5.808 (-0.369) in the

pre-crisis whereas 6.448 (0.362) in the crisis period.

[Figure 1 about here]

Figure 2 demonstrates the persistent nature of the first four cross-sectional moments for the whole sample,

the pre-crisis and the post-crisis period. For the whole period and the pre-crisis samples, the first order moment is

highly persistent. Interestingly, inflation uncertainty measured by the cross-sectional variance and skewness also
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exhibit high persistence for the whole and pre-crisis period. For the post-crisis period, however, RPV continues

to be more persistent than the other three moments.

[Figure 2 about here]

We turn to analyse the correlation patterns among the cross-sectional moments. This may provide an in-

sight to analyse the relationship between aggregate inflation and the standard deviation of relative price changes

(often termed relative price variability, RPV) and between the mean and the skewness of relative price changes

(henceforth relative price skewness, RPS). The seminal contribution by Friedman (1977) postulates that an in-

crease in inflation uncertainty exerts a dampening effect on economic efficiency and possibly on output growth.

Hence, we expect that there is a positive relationship among inflation rate, volatility and/or inflation uncertainty.

Cukierman and Meltzer (1986) posit that higher inflation uncertainty increases the inflation rate while Holland

(1995) predicts an opposite effect of uncertainty on inflation. Furthermore, the skewness could result from an

exogenous form of downward nominal rigidity in product markets (Tobin, 1972) or endogeneity as suggested

by the menu cost model (Ball and Mankiw, 1995). The former would imply a negative relation between the

national inflation rate and RPS whereas the latter a positive one. This is important as the central banks need

to differentiate between these two sources as they would exert different implications for an optimal monetary

policy formulation. For example, with downward nominal rigidity, lower inflation rates are as harmful as they

complicate the (downward) adjustment of relative prices whereas it is desirable in other case as it decreases the

costs associated with changing prices.

Figure 3 displays the scatter plots between the pair of the cross-sectional moments. The pre-crisis period

result in Panel 2 shows that the relationship between the mean and RPV and also between mean and RPS is

U-shaped whist the RPV-RPS relationship appears approximately linear. For the post-crisis period (Panel 3) we

observe that the INF-RPV relationship is still U-shaped, but the degree of association is weaker. On the other

hand, the INF-RPS relationship becomes rather the inverse U-shaped whereas the sign of slope changes for the

INF-RPK relationship from the pre-crisis to the post-crisis period. High inflation uncertainty in the post-crisis

has a negative impact on the inflation rate perhaps due to the BOE’s stabilizing policy towards the goal of long-

run price stability (reduction of average of inflation) by applying tighter monetary policy to minimise the real

costs of inflation uncertainty (Holland, 1995).

We investigate these relationships more formally using a simple two-regime threshold model, distinguishing

between high and low inflation regimes according to whether current inflation exceeds the unconditional mean.

Table 1 reports the results, showing that the impacts of RPV (RPS) on the mean inflation are measured at 0.145

and -0.106 (0.177 and -0.140), respectively, in the high- and the low-inflation-regime for the whole sample. For
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the pre-crisis period (column 2) the coefficients associated with RPV (RPS) are measured at 0.326 and -0.193

(0.288 and -0.184). But, the coefficients on RPV (RPS) are 0.085 and 0.044 (-0.022 and 0.286), in the high- and

the low-inflation-regime, respectively, for the post-crisis period (column 3). Moreover, the null of symmetry is

rejected for the INF-RPV and the INF-RPS relationship for the whole sample and the pre-crisis period, but not

for the post-crisis period. On the other hand, the null of the symmetric mean-kurtosis relationship is strongly

rejected for the whole and the post-crisis period, but not for the pre-crisis period. Interestingly, we find a positive

association between standard deviation and skewness in the whole and pre-crisis period, though the association

is stronger in the low-inflation regime.

[Figure 3 and Table 1 about here]

4 Forecasting the UK Inflation Rates

Our goal is to forecast the density of the national inflation rate utilising heterogeneous informational contents

in sectoral inflation rates by combining the nonparametric kernel density estimation and the dynamic functional

autoregressive modeling. Given our findings of persistent and interrelated moments of UK sectoral inflation

rates, we need to accurately model these features to improve the performance of the density forecasting of

the national inflation rate. This hybrid approach thus enables us to take into account the relative advantage of

parametric and nonparametric approach in a robust manner as the fully parametric specification is inappropriate

to unravel an exact relationship among higher-order cross-sectional moments.

Following Park and Qian (2007, 2012), we consider three basic models, namely FAR, AVE and LAST. For

forecasting purpose AVE utilises the average of all observed distributions while LAST uses the last observation:

AV E : ft = f̄ + εt ; LAST : ft = ft−1 + εt . (11)

In practice, however, forecasting performance may be significantly affected by the presence of structural breaks

or by the fact that inflation and its moments are highly persistent. To address these important issues, we apply

the intercept shift or the first difference modifications recommended by Clements and Hendry (2002, 2006),

and consider the additional nine modified models, referred to as FAR3M, FAR6M, FAR9M, FAR12M, AVE3M,

AVE6M, AVE9M, AVE12M and DFAR. See Appendix for further details.

4.1 Pseudo Out-of-sample Forecasting Evaluation

We conduct four exercises in a recursive manner to evaluate the forecasting performance of all the functional

models. This practice of holding out sample is called “pseudo real time” (Elliot and Timmermann, 2008) or
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“quasi-real time recursive out-of-sample” experiments (Faust and Wright, 2012).

4.1.1 Forecasting of Cross-sectional Density Function

We conduct the evaluation of the cross-sectional density forecasting by comparing the divergence criteria such

as the Hilbert norm (DH), the uniform norm (DU) and the generalised entropy (DE) defined by

DU
(

f̂t , ft
)
=

´ (
f̂t (x)− ft (x)

)2
dx´ (

f̂t (x)
2 + f̂t (x)

2
)

dx
, DH

(
f̂t , ft

)
=

supx

∣∣ f̂t (x)− ft (x)
∣∣

supx ft (x)
, DE

(
f̂t , ft

)
=

ˆ
f̂t (x)g

(
f̂t (x)
ft (x)

)
dx,

(12)

where f̂t ( ft) is the forecasted (realised) density function and g(y) = (γ−1)−1 (yγ −1) with γ > 0 and γ 6= 1.

We set γ = 1/2 (e.g. Park and Qian, 2007). If g is a natural log function, DE becomes the Kullback-Liebler

divergence measure. All three quantities are non-negative and become zero if f̂t = ft . DH is useful for evaluating

the goodness-of-fit of the model, DU is informative for comparing the closeness of the function shape, and DE

assesses the difference in information contents between the forecasted and the true density function.

We first estimate a total of 12 FAR-based models introduced above over the period January 1997 - December

2002, and compute one month-ahead forecast of cross-sectional density function for January 2003. We repeat

the process moving forward one month at a time in a recursive manner, ending with forecasts for September 2013

based on the estimated models over January 1997 - August 2013. This generates a total of 129 observations for

evaluating the closeness between one-step-ahead cross-sectional density forecasts and the actual counterparts for

each of the twelve models over the forecasting horizon January 2003 - September 2013. Further, to evaluate the

closeness measure for the pre-crisis period (2003 - 2007), and the post-crisis period (2008 - 2013), we consider

the subtotal of 60 and 69 observations, respectively.

Table 2 presents these evaluation results in terms of both mean and median. Overall we find that DFAR

and LAST have the minimum distances for almost all cases. On the other hand, the AVE has the maximum

distance for all criteria. But, modified FAR and AVE models have intermediate values with modified FAR

models displaying significantly lower values.

[Table 2 about here]

4.1.2 Point Forecasting of National Inflation Rate

This section focuses on the forecasting of the national inflation rate. As benchmark models, we consider an

AR model with a maximum lag, 12, and an ARCH-in-mean model (ARCH-M). These two models utilise only

aggregate inflation rates. In contrast our proposed models utilise the disaggregate sectoral inflation rates. We
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estimate models from January 1997 to December 2002, compute twelve-month-ahead forecasts of the national

inflation rate by (10), and recursively repeat the process moving forward one month at a time. Thus, this exer-

cise ends with forecasts for October 2012 - September 2013, based on models estimated over January 1997 -

September 2012. We obtain 118 observations from each of m-month-ahead forecast, m = 1, . . . ,12, giving a total

of 1,416 experiments. Similarly, we obtain the subtotal of 588 and 696 experiments respectively for the pre- and

the post-crisis periods.

We evaluate the forecasting performance of the FAR models by comparing forecasting errors quantitatively

and statistically. Quantitatively, we compare an absolute forecasting error loss by mean absolute error (MAE):

MAE = N−1
N

∑
t=1
|π̂t −πt | . (13)

Further, we statistically test the equality of forecasting accuracy using the testing procedure developed by

Diebold and Mariano (1995) (hereafter, DM test) based on MAE. (Notice that we have obtained qualitatively

similar results when using the mean square error, which are not reported here to save space.)

First, we compare MAE for a total of fourteen models: twelve functional models and two benchmark models

respectively for the whole sample, the pre- and the post-crisis period. Table 3 reports the results for the whole

sample. We find that DFAR and LAST have the smallest values compared to the AR and ARCH-M model for

all the forecasting horizons (except for the 1-month ahead forecast compared to the ARCH-M model). The

performance of AVE is worse than the AR model for all forecast horizons and that of the ARCH-M model for

the first six months. The intercept shift models of FAR and AVE (FAR3M-FAR12M and AVE3M-AVE12M)

have intermediate values: the MAE is lower compared to the benchmark AR model for all the forecast horizons

except for 2-3-month horizons for AVE9M and AVE12M. For the pre-crisis period, the superior performance of

DFAR is again pronounced, see Table 4. The modified FAR and the AVE models dominate the AR and ARCH-

M models for almost all of the forecasting horizons. Furthermore, from Table 5, we observe qualitatively similar

results for the post-crisis period. The MAEs for FAR3M, AVE3M, DFAR and LAST models are significantly

lower than those for AR and ARCH-M models.

Next, we formally test the equality of forecasting accuracy of each of functional models against the bench-

mark models using the DM test. Specifically, we test the validity of the null hypothesis that the MAE of the

functional model is equal to that of benchmark model against the alternative that the former is less than the

latter. The DM statistic follows the standard normal distribution under the null asymptotically. To evaluate it, we

have to estimate the long-run variance of the difference between two forecasting error losses. Here we employ

the Newey and West (1987) method with Bartlett window, denoted w j,T = 1− j/(qT +1), where qT equals to
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the integer part of 4(T/100)2/9. For the whole sample, we confirm that DFAR and LAST (and other modified

functional models such as FAR3M and AVE3M) convincingly beat the AR at the short forecasting horizons

and the ARCH-M for all horizons except for one month ahead. In particular, the pre-crisis sample portrays the

superior performance of the DFAR model against the benchmark models for all forecast horizons, though the

post-crisis gains are much less clear than those for the pre-crisis.

[Tables 3, 4 and 5 about here]

The results reported in Tables 3, 4 and in 5 clearly demonstrate the superior performances of the modified

FAR models, especially DFAR, in forecasting the national inflation rates. The models incorporating the intercept

shift modifications, such as the FAR3M and the AVE3M, also outperform the AR and ARCH-M models. By

contrast, the performance of (unmodified) FAR and AVE models is rather poor and dominated even by the AR

model. This clearly highlights an importance of applying the proposed modifications to improve the forecasting

performance of the functional model in practice. Combining the forecasting evaluation results for both the cross-

sectional density and the mean national inflation together, we come to a conclusion that the use of aggregate data

is likely to result in misleading forecasts as it ignores the underlying dynamics of the heterogeneous micro units,

(Pesaran and Smith, 1995; Hsiao et al., 2005).

4.1.3 Density Forecasting of National Inflation Rate

In this section we evaluate the density forecasting performance of national inflation rate for each of the twelve

functional models, using the probability integral transformations (PIT) proposed by Diebold et al. (1998) and

widely employed in the literature (e.g., Clements, 2004; Mitchell and Hall, 2005). Table 6 reports the Kolmogorov-

Smirnov (KS) test results for testing the null hypothesis that the forecasted and the actual density functions are

equal. Using the same recursive estimation procedure as in Subsection 4.1.2, we have obtained the total of 129

PIT observations for the full forecasting period (2003 -2013) in Column 1. To construct the PITs associated with

the density forecasts of national inflation we employ the bootstrap schemes as described in Step 4 in Appendix.

Similarly, we report the test results in Columns 2-4 for the three subperiods using 60 PIT observations over the

pre-crisis period (2003-2007), 48 PIT observations over the crisis period (2008-2011), and 45 PIT observations

over the post-crisis period (2010-2013). Moreover, in order to mitigate the potentially detrimental impact on

the KS test results of the crisis period and investigate how the functional models perform during the post-crisis

period, we now analyse the crisis (2008-2011) and the post-crisis (2010-2013) period, separately. In doing so

the overlapping of 2010 and 2011 is made inevitable due to the minimum sample requirement for evaluating the

KS test statistics.
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We conduct the analysis using both the standard bootstrap with h = 1 and the robust bootstrap with h = 3

(see (A10) in Appendix for details). Panel A in Table 6 reports the test results obtained with h = 1. We find

that the null hypothesis is not rejected only for LAST and AVE3M over the full forecasting period. Turning to

the three subperiods, we establish that the null is not rejected for modified FAR models (e.g. FAR3M, AVE3M

and DFAR) as well as for LAST during both the pre- and the post-crisis period. During the crisis period,

however, the null hypothesis is strongly rejected for all the models. This may not be surprising as the empirical

density evaluated by the standard bootstrap is likely to severely underestimate the realised ones, especially in the

presence of extreme events such as the global financial crisis. To explicitly address this issue we next examine

the test results with robust bootstrap presented in Panel B. The overall performance of the PIT test is shown

to be improved with the robust bootstrap. The null is not rejected for most modified FAR models over the full

forecasting period as well as during the pre- and the post-crisis period. During the crisis period, however, the null

is not rejected for DFAR only. This also displays an importance of applying the robust bootstrap modification.

[Table 6 about here]

In sum our results as reported in Tables 2, 3, 4, 5 and in Table 6 reveal that DFAR, FAR3M, AVE3M and

LAST generally outperform the other models in forecasting both the cross-sectional density of sectoral inflation

rates and the density of the national inflation rate.

Next, we evaluate the accuracy of the interval forecasting for these four better performing functional models

(FAR3M, AVE3M, LAST and DFAR) by constructing an interval from the empirical distribution given the

coverage probability, 95%. To this end we apply the conditional coverage test (hereafter, CC test) developed by

Christoffersen (1998). The CC test uses an indicator function taking unity for the case that a realised national

inflation rate is covered by the interval for each of forecasting horizons, and 0 otherwise. Then, it tests if the

conditional expectation of the binary random variable generated by the indicator function is equal to the coverage

probability. Christoffersen (1998) shows that it is equivalent to testing if the sequence of the binary random

variable is identically and independently distributed Bernoulli with parameter p, coverage probability. Hence,

the LR statistic simultaneously tests if the unconditional coverage probability is p (unconditional coverage test)

and the the binary random variable is independent (independent test). It follows the chi-squared distribution with

two degrees-of-freedom under the null hypothesis.

As with the PIT-based tests, we construct the empirical distribution of the national inflation rate using the

same bootstrap schemes as described above, and report the test results with the standard bootstrap (h = 1) and

with the robust bootstrap (h = 3) respectively in Panel A and B of Table 7. In turn, each panel contains the three

sub-panels corresponding to the pre-crisis period (January 2003-December 2007), the crisis period (January
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2008-December 2011) and the post-crisis period (January 2010-September 2013).

For the pre-crisis period we estimate models from January 1997 to December 2002, compute twelve-month-

ahead forecasts of cross-sectional density, and recursively repeat the process moving forward one month. This

exercise ends with forecasts for the period, January 2007 - December 2007, based on models estimated over

January 1997 - December 2006. This produces 48 observations from each of m-month-ahead forecast, m =

1, . . . ,12, giving a total of 576 experiments. The pre-crisis period results reported in Panel A.1 of Table 7 show

that the CC test is not rejected for DFAR and LAST for all forecasting horizons whereas it is not rejected for

AVE3M and FAR3M up to 6 - 8 month ahead forecasts. Turning to Panel B.1 of Table 7 that reports the pre-

crisis period test results with the robust bootstrap, we find that the CC tests do not reject the null hypothesis for

FAR3M, DFAR, and LAST for all forecasting horizons.

For the post-crisis period, we conduct two experiments. First, we start estimating models from January 1997

to December 2007, and compute twelve-month-ahead forecast of cross-sectional density, recursively. We thus

obtain 36 observations from each of m-month-ahead forecast, m = 1, . . . ,12, giving a total of 432 experiments.

As expected, all models are convincingly rejected for all forecasting horizons even with the robust bootstrap

during this crisis period (2008 - 2011) (see Panels A.2 and B.2 in Table 7). Second, we start estimating models

from January 1997 to December 2009, compute twelve-month-ahead forecast of cross-sectional density in the

same recursive manner, and obtain 33 observations from each of m-month-ahead forecast, m = 1, . . . ,12, giving

a total of 396 experiments. The test results with the standard bootstrap reported in Panel A.3, indicate that the

CC test is not rejected only for the shorter horizons. The performance of the CC test is improved with the robust

bootstrap, especially for DFAR and LAST models, both of which are not rejected for almost all forecasting

horizons (see Panel B.3 of Table 7).

[Table 7 about here]

Given the results for the cross-sectional distribution, mean inflation, density evaluation and interval forecast-

ing performance, we are able to justify the statistical validity of our modified FAR modeling approach using the

disaggregate data even in the presence of the crisis period (albeit not perfectly).

4.2 Fan Chart Analysis and Probability Event Forecasting

Given the success with forecasting evaluation exercises, we extend to augment the forecasting exercise in two im-

portant ways: the national inflation rate forecasting with uncertainty bands, similar to the fan-chart provided by

the BOE quarterly inflation report available from the BOE’s website (publications/inflationreport/irfanch.htm),

and the probability event forecasting of inflation targets. Some central banks adopting the inflation-targeting tend
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to describe the uncertainty relating to their forecasts verbally. However, since its introduction by BOE in 1996,

the majority of the central banks convey the forecast uncertainty by fan charts. Fan-charts represent the most

likely future development and thus help to improve communication amongst practitioners and policymakers by

laying more emphasis on the risks of the inflation forecast and their direction.

4.2.1 Fan Chart

We provide fan-charts for five different periods: January 2003-December 2004, January 2005-December 2006,

January 2007-December 2008, January 2009-December 2010, and January 2011-December 2012 for the four

better performing models (FAR3M, AVE3M, DFAR and LAST). To construct these figures, for example, for

the first period (January 2003-December 2004), we estimate the four functional models over January 1997-

December 2002, and compute one- to twenty-four-month-ahead forecasts of mean inflation rates. The confidence

bands are then evaluated using the bootstrap schemes employed in Section 4.1. We apply the same method to

other sample periods for obtaining the 24-month-ahead forecasts of mean inflation rates with confidence bands,

though we have used all the available observations in constructing the conditional forecasts, e.g., we estimate the

models over January 1997-December 2010 for the last forecasting period (January 2011-December 2012). Here,

we only report the results for the robust bootstrap (h = 3) in Figure 4 to save space, though the results for the

standard bootstrap (h = 1) are qualitatively similar. In each one of these figures, the dash-line presents in-sample

national inflation forecast and the solid line shows the actual national inflation. The confidence bands (shades)

present 12 intervals from 2.5th percentiles (bottom) to 97.5th percentiles (top) out of empirical distribution{
π̂
(b)
T+m|T

}B

b=1
for each horizon, m = 1, ...,24.

We find from the first and the second columns of Figure 4 that realised inflation is well within the confidence

band with forecasted mean inflation tracking actual one reasonably well. The mean is being projected at 1.64%,

1.30%, 1.35% and 1.57% respectively during January 2003-December 2004 for FAR3M, AVE3M, LAST and

DFAR models. The band widens with the horizon, indicating increasing uncertainty about inflation. The fan-

chart for the January 2005-December 2006 period (especially for DFAR) is strikingly similar with the one

published by the BOE quarterly bulletin in fourth quarter of 2004 for the next 24-months.

The third column presents the results for the crisis period (January 2007-December 2008), and depicts that

actual inflation rates lie outside the band only during July-October in 2008. This period reflects the intensification

of the subprime mortgage crisis followed by the Lehman Brother’s bankruptcy in September 2008. During this

period inflation expectations had drifted upwards as market participants viewed monetary authorities focusing

mainly on softening the impact of financial instability on the real economy and less on the commitment to fighting

inflation. The projected mean inflation of 24-month-ahead forecast is stable at 2.59%, 2.74%, 2.60% and 2.62%
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for FAR3M, AVE3M, DFAR and LAST, with the uncertainty band lying between 0.5% to 4.35% for the DFAR

model. This shows greater uncertainty surrounding the point forecasts. Next, during the forecasting period

(January 2009-December 2010, the fourth column), we observe that actual inflation rate was surprisingly low

at 0.98% in September 2009, mainly due to deflation scare with the forthcoming launch of the unprecedented

policy of asset purchases financed by central bank, the so-called Quantitative Easing (QE). This observation

still lies within the band of DFAR and LAST models, showing that the generated uncertainty band from our

proposed models is also able to incorporate this extreme low inflation. The BOE quarterly bulletin in the third

quarter of 2011 reports that the QE may have increased inflation by 0.75% to 1.5%, and these were economically

significant. We believe that our fan-chart analysis also tracks this increase quite well. The final column displays

the results for the last forecasting period (2011-2012), and shows that the actual inflation rates lie well within the

confidence band for all the four models. Notice that the in-sample national inflation rate forecast (dash-line) is

always above the target of 2% inflation which is line with the opening remarks at Press Conference in November

2010 by the Governor of BOE stating that inflation is likely to remain above the 2% target throughout 2011. We

also note the fan-charts in this period especially from the FAR3M and DFAR models is remarkably similar with

that of BOE fan-charts published in November 2010 report.

[Figure 4 about here]

In sum, the fan-chart analysis seems to support our modeling approach in a qualitative sense and thus provide

in probability terms the uncertainty inherent to any point forecast. The forecasting exercise highly depends on

the state of the economy, especially during the crisis. Our framework thus acts as a complementary tool for

generating the density forecast for inflation in a flexible manner without the inherent subjectivity associated with

the fan-charts reported by the BOE.

4.2.2 Probability Event Forecasting

We examine the probability of achieving the target of π < 2% (thereafter referred to as the first target) and

1% < π < 3% (the second target) as announced by BOE in its inflation targeting framework using the probability

forecasting results for the four models (FAR3M, AVE3M, DFAR and LAST) along with the actual national

inflation for the same five different periods as analysed above. This is an interesting exercise because many

economic agents are likely to judge the performance of the central bank in relation to realised outcomes rather

than largely unobservable forecast outcomes. Hence, one may think of our inflation forecasts as predictions of

the public perception of the success or failure of the central bank in achieving inflation stabilization. Here we

have also used the same recursive estimation and bootstrap scheme.
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Figure 5 shows that the probability of achieving the first target is large (around 70%) for the first two pre-

crisis forecasting periods (2003-2004 and 2005-2006). With the second target, the probabilities decrease slowly

with the horizon but stay around 65-70%. For the crisis period (2007-2008), the probability of keeping the first

target increases slowly as the horizon rises, but stays fairly low (25% for DFAR) over the two-year horizon;

whereas the probability of keeping the second target almost remains at 60% (see the third column). The actual

data reveals that during this period, the two targets of π < 2% and 1% < π < 3% are violated 88% and 42%

of times, respectively. Therefore, we believe that our probability event forecasting exercise is able to capture

the violations almost accurately. The fourth period (2009-2010) analysis shows that the probability of keeping

the first target is fairly low (10%-16%) whereas for the second target the average probability remains around

40% for DFAR. Over this period, the two targets are violated 83% and 54% of times, respectively. For the last

period (2011-2012), the average probability of keeping the first target ranges from around 5% (FAR3M) to 10%

(DFAR). Turning to the second target, we observe that the probability increases slowly with horizon but remains

low from 20% (AVE3M) to 35% (DFAR). The actual data reveals that the first target is violated always whereas

the second target is being violated 67% of times, respectively.

[Figure 5 about here]

In the analysis of the probability event forecasts, it would be good to complement the discussion with more

formal measures of probability forecast performance, such as probability score measures (e.g. quadratic proba-

bility score or QPS; Brier, 1950) and assessment of the probability forecasts’ calibration, e.g. Diebold and Lopez

(1996) and Lopez (2001). QPS tracks the average squared divergence between the probability forecast and the

realised outcome of an event with the smaller value indicating more accurate forecast. There are alternative

scoring rules such as logarithmic and spherical probability scores. The calibration of probability forecasts is de-

fined as the degree of equivalence between the forecasted probabilities and observed frequencies within subsets

of the unit interval. Under the null hypothesis of their equivalence, the calibration test statistic asymptotically

converges a standard normal distribution (Seillier-Moiseiwitsch and Dawid, 1993).

Table 8 and 9 report the probability scores (QPS) and the associated calibration test results, respectively. We

conduct this analysis for three periods: the full-sample (2003-2013), the pre-crisis (2003-2007) and the post-

crisis (2008-2013). For the full-sample we estimate models from January 1997 to December 2002, compute 24-

month-ahead forecasts of cross-sectional density, recursively. This exercise ends with forecasts for the period,

October 2011-September 2013, based on models estimated over January 1997-September 2011. This produces

106 observations for evaluating QPS and the calibration test statistics for each of m-month-ahead forecasts,

m = 1, . . . ,24. Similarly, we obtain 37 and 46 test sample observations for the pre-crisis and the post-crisis.
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[Tables 8 and 9 about here]

Consider the results for the first event (π < 2%). Over the full-sample period (2003-2013), DFAR produces

the lowest QPS over the shorter horizons (up to 6 month), followed by AVE3M and FAR3M over the longer

horizons. Turning to the calibration test results in Table 9, we find that the null hypothesis is not rejected for

all the four models over the shorter horizons (up to 2 to 4 months), though the null is rejected over the longer

horizons. This mainly reflects uncertainty significantly growing with the forecast horizon as is evident with the

fan-chart analysis in Figure 4. The pre-crisis period (2003-2007) analysis shows a rather mixed result: QPS is the

smallest for DFAR over 1 month horizon, for AVE3M over 2-3 month horizons and for FAR3M over 4-12 month

horizons. Despite growing uncertainty, the null of the calibration test is not rejected for all four models over the

entire forecasting horizons except for AVE3M over the longer horizons (7-12 months). For the post-crisis period

(2008-2013), DFAR produces lower probability scores over the shorter horizons (up to 6 month horizons), and

then AVE3M over the remaining horizons. The calibration test results confirm that the null is not rejected for

all four models only over the shorter 1-2 month horizons. However, the null is not rejected for AVE3M over the

entire horizons.

Next, we turn to the analysis of the second event (1% < π < 3%). Over the full-sample (2003-2013), DFAR

produces lower probability scores over the first 9-month horizons and then FAR3M over 10-12 months. The

calibration test results reveal that the null is not rejected for all four models over the short horizons (up to 6

month) except for AVE3M over 1 month horizon. In particular we do not reject the null for DFAR over the

entire horizons. For the pre-crisis period we obtain the similar patterns of QPS to the full sample case: QPS

is the lowest for DFAR over the first 7-month horizons, and then for FAR3M over the remaining horizons.

However, the calibration tests reject the null for all four models over the whole forecasting horizons except for

FAR3M and DFAR marginally over 1-month horizon. This strong rejection may reflect the extreme difficulty

associated with forecasting rare events (the actual frequency is 97% during the pre-crisis period), especially

when forecasting uncertainty grows significantly with the horizon. Nevertheless, it is still encouraging to find

out that the four models are able to produce the probability forecasts higher than 90% over the shorter horizons

up to 3-month. Finally, for the post-crisis period (2008-2013), DFAR produces the smaller QPS over the entire

horizons, except over 2 month horizon for LAST and over 10-11 month horizons for FAR3M. Moreover, the null

of the calibration test is not rejected for all four models over the shorter (up to 3 month) and the longer (8-12

month) horizons.

Combined together, we find that both QPS and calibration test results provide an overall support for modified

functional models, especially the satisfactory performance of DFAR over the short horizons. In particular, we

note that DFAR produces the smallest QPS in 38 times and then FAR3M in 21 times out of a total of 72 cases
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combining the two event forecasts.

Our results from the fan-chart and probability event forecasting exercise reveals: we are able to provide a

complementary tool for generating the complete density forecast for inflation in a flexible manner and analyse

the performance of the central bank in achieving announced inflation target. We conclude that a thorough

examination of the time-varying cross-sectional distribution provides satisfactory performance based on pseudo

out-of-sample forecasting exercises. Clements (2004) provides evidence that the MPC current and next quarter

forecasts performs better based on mean squared forecast error compared to no-change forecasts (based on

Gaussian density with mean given by the actual inflation rate in the last period), but not the year-ahead density

forecasts. Our proposed model offers more in this direction. We can forecast the mean inflation rate as well as the

probability event forecasting of inflation targets. The results from the pseudo out-of-sample forecasting exercise

of cross-sectional density, mean inflation, density evaluation, and interval forecasting indicate the statistical

validity of our modified FAR modeling approach using the disaggregate data even in the presence of the crisis

period. On the other hand, the fan-chart and probability event forecasting exercise provides a complementary

tool for generating the complete density forecast for inflation without the inherent subjectivity associated with

the BOE’s fan-chart analysis.

5 Conclusion

In this paper, we use the semi-parametric functional autoregressive approach to model the time-varying distri-

bution of the UK monthly inflation rate over the period January 1997-September 2013 using sectoral CPI data.

Our approach exhibits several novel features. First, our model is parsimonious in nature and provides addi-

tional information in forecasting the national inflation rate and the associated uncertainty by allowing for (rather

complex) cross-sectional dependence and exploiting the variation across sectors. Second, our approach can eas-

ily provide the time-varying cross-sectional moments obtained at each period which enables us to analyse the

stylised descriptive features amongst all the moments. Third and importantly, our nonparametric modeling of

the time-varying density of inflation rates across sectors does not impose any assumptions on the structure of

the distribution or on the number of cross-sectional units. Finally, our approach is much simpler as compared

to the large-scale simultaneous equation macroeconometric models developed by the Fed and the BOE and the

system-based cointegrating VAR approach of Garratt et al. (2006), and thus provides a complementary tool for

generating the complete density forecast for inflation in a flexible manner. Thus, our framework provides an

alternative for use by the independent researchers to the forecasts made by the central bank, and allows us to

incorporate complex dynamic responses by the policymakers to the disaggregate sectoral shocks.

There is broad agreement that high inflation is qualitatively different from low and stable inflation while at
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the same time there are concerns about excessively low inflation due to the implications of the zero lower bound

on nominal interest rates for the conduct of monetary policy (e.g., Greenwood-Nimmo et al., 2012). The use

of the semi-parametric FAR approach in forecasting the density of inflation rates clearly helps us to evaluate

the probability forecasting of inflation lying within a particular range at any given horizon. This will naturally

provide valuable information for policy makers in advance of their rate setting decisions.

Our findings have an important policy implication as an inflation targeting central bank may face a trade-off

between low inflation on the one hand and increased volatility and (absolute) skewness on the other hand. The

policy reaction of the central bank would therefore differ depending on the nature of the shock and the regime. A

shock originating in the high RPV sector may shift the distribution of this sector rightward (leftward) and thereby

would increase (decrease) the mean inflation. Here, the low RPV sector could follow the distribution of the high

RPV sector due to wage indexation. With a rightward shift of the distribution, to maintain overall low inflation,

the central bank would follow an aggressive policy intervention to prevent the movement of the low inflation

sector towards the high inflation sector. However, if the distribution of this variance sector shifts leftward, the

central bank may remain passive in terms of policy intervention as long as it does not create a deflationary

environment. As inflation targeting monetary policies are usually set with recourse to inflation forecasts, our

proposed work on forecasting the time-varying distribution of sectoral inflation rates may provide policymakers

with an invaluably enriched information set.

Although our work is limited to the UK data, this approach can be easily applied to any country with com-

parable data. A few issues remain to be resolved for future research. Firstly, to deal with the structural breaks

and/or regime switching events, one can construct a mixed model; first, the slowly-varying local trend level of

inflation rates are modeled separately using the regime-switching type models or obtained as the long-run survey

expectations interpreted as representing agents’ perceptions of the long-run inflation target; then we apply the

FAR modeling to the filtered residuals, and forecast uncertainty by bootstraps. Secondly, our proposed method-

ology can easily be applied to the SPF data or any other survey data such as published by Livingston Survey

or Consensus Economics Incorporation or even to the BLS data. Finally, one can extend our framework in a

multi-dimensional context by adding some other macroeconomic and financial variables. One feasible approach

is to combine the marginal distributions of each series forecasted by the FAR model using the Copula approach.

This would enable one to perform several multi-dimensional tasks, which would enhance our understanding

of a range of macroeconomic stylised facts, and provide us an invaluably enriched information set to improve

forecasting performance.
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Appendix: Estimation and Forecasting Procedure in Details

We describe a detailed estimation and forecasting procedure for national inflation rates using the FAR approach.

Disaggregate inflation rates, πit , consist of N sectors over T periods. For simplicity, we consider the following

balanced panel data (as highlighted in Introduction, our approach can be easily applied to the unbalanced panels):

Π =


π11 π21 · · · πN1

...
...

. . .
...

π1T π2T · · · πNT


T×N

.

Step 1: The kernel density estimation of cross-sectional density of inflation rates We set a p× 1 vector

of grids, z = (z1, . . . ,zp)
′ , which covers the range of realised inflation rates. In an empirical analysis we set

p = 1,024. We estimate a cross-sectional density of inflation by the weighted kernel density estimator:

ĝt(z j) =
1
ht

N

∑
i=1

vitK
(

z j−πit

ht

)
, j = 1, . . . , p; t = 1, ...,T, (A.1)

where K is a kernel, N the number of sectors, and ht a bandwidth. Following Silverman (1986), we use a

Gaussian kernel with an optimal bandwidth given by ht = 1.06σ̂tN−1/5, where σ̂t is the cross-sectional standard

deviation of πit . Then, we normalise the estimated density function by

f̂t (z j) =
ĝt (z j)

RSUM (ĝt)
, (A.2)
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where RSUM (ĝt) is a numerical middle Riemann sum of ĝt = (ĝt (z1) , . . . , ĝt (zp))
′ given by

RSUM (ĝt) =
1
2

[
p−1

∑
j=1

ĝt (z j)(z j+1− z j)+
p

∑
j=2

ĝt (z j)(z j− z j−1)

]

=
1
2

[
p−1

∑
j=1

ĝt (z j)+
p

∑
j=2

ĝt (z j)

]
∆, ∆ = z j− z j−1 for j = 2, . . . , p.

Next, we construct the matrix of the cross-sectional densities,

F =
[
f̂1, f̂2, . . . , f̂T

]
=


f̂1 (z1) f̂2 (z1) · · · f̂T (z1)

...
...

. . .
...

f̂1 (zp) f̂2 (zp) · · · f̂T (zp)


p×T

.

We then estimate an unconditional mean function by

f̄ =


T−1

∑
T
i=1 f̂i (z1)

...

T−1
∑

T
i=1 f̂i (zp)


p×1

, (A.3)

and generate the matrix of fluctuations around the unconditional mean function by

W = [ŵ1, ŵ2, . . . , ŵT ] =


ŵ1 (z1) ŵ2 (z1) · · · ŵT (z1)

...
...

. . .
...

ŵ1 (zp) ŵ2 (zp) · · · ŵT (zp)


p×T

, ŵt = f̂t − f̄.

Step 2: The estimation of FAR model We estimate an autocovariance operators of order 0 and 1 by

Ĉ0 = T−1
T

∑
t=1

ŵtŵ′t , Ĉ1 = (T −1)−1
T

∑
t=2

ŵtŵ′t−1.

Then, we estimate the pair of eigenvalue (λ j) and eigenfunction (v j) of Ĉ0 by

λ =


λ1

...

λp


p×1

,V =

[
v1 · · · vp

]
=


v11 v21 · · · vp1

...
...

. . .
...

v1p v2p · · · vpp


p×p

.
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We choose ` eigenvalues, (λ1,λ2, . . . ,λ`) , and eigenfunctions, (v1, . . . ,v`), and then approximate the inverse of

Ĉ0 in an `-dimensional subspace by

Ĉ+
0,` =

`

∑
k=1

λ
−1
k vkv′k. (A.4)

The choice of ` is guided by applying a functional principal component analysis (FPCA) and a cross valida-

tion (CV). FPCA explains the variation of the fluctuation and CV chooses an optimal dimension `(≤ `max) by

minimising the following criterion:

Ncv

∑
i=1

RSUM
([

ŵ`
T−i+1− ŵT−i+1

]2
)
,

where Ncv is the number of the last observations used in CV and ŵ`
T−i+1 the in-sample forecasts of wT−i+1 on

the `-dimensional subspace. In our empirical analysis we set `max = 20, and find that CV selects the optimal

value of ` ranging between 5 and 10. The autoregressive operator A in (3) is now consistently estimated in the

`-dimensional subspace by

Â` = Ĉ1Ĉ+
0,`.

Step 3: The density forecasting of national inflation rates An m-step ahead forecasts of the cross-sectional

density is evaluated by

f̂T+m|T = f̄+ Âm
` ŵT for m = 1, ...,M,

where ŵT is the estimate of the fluctuation at time T . Next, the m-step ahead forecasts of the national inflation

are obtained by integrating out the cross-sectional density for z as follows:

π̂T+m|T = RSUM
(

z� f̂T+m|T

)
for m = 1, . . . ,M,

where � stands for an element-by-element multiplication operator.

To construct the empirical density forecasts of national inflation rates, π̂T+m|T for m = 1, ...,M, we conduct

the nonparametric bootstrap by drawing the prediction errors,
{

ε̂
(b)
T+1|T , . . . , ε̂

(b)
T+M|T

}
for b = 1, . . . ,B, with re-

placement from the pool of the sample residuals, {ε̂1, . . . , ε̂T}, where ε̂t = ŵt − Â`ŵt−1. Then, the m-step ahead

forecasts of the fluctuation and of the cross-sectional density are re-sampled respectively by (8) and (9), which

we denote by ŵ(b)
T+m|T and f̂(b)T+m|T . Then, π̂

(b)
T+m|T is easily obtained by

π̂
(b)
T+m|T = RSUM

(
z� f̂(b)T+m|T

)
for b = 1, . . . ,B.
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Step 4: Robust modifications In practice, forecasting performance of the FAR models may be significantly

affected either by the presence of structural breaks or by the fact that inflation and its moments are highly

persistent. To address these important issues, we consider two modifications.

Firstly, we follow Clements and Hendry (2006), who identify structural instability as a key factor behind

poor forecasting performance, and consider the intercept shift modification by allowing the time-varying mean,

E [ ft ] in FAR, where E [ ft ] is estimated by 3-, 6-, 9-, 12-month moving averages of ft . These modified FAR

models, referred to as FAR3M, FAR6M, FAR9M and FAR12M, are given by

FARjM : wt = A jwt−1 + εt , j = 3,6,9,12, (A.5)

where wt = ft − f̄ jM and f̄ jM = 1
j ∑

j−1
i=0 ft−i. Similarly, the modified AVE models (AVE3M, AVE6M, AVE9M

and AVE12M) are given by

AVEjM : ft = f̄ jM + εt , j = 3,6,9,12 (A.6)

Alternatively, we consider the differenced version of the FAR model, denoted as DFAR, given by

wt = Bwt−1 + vt , (A.7)

where wt = ft − ft−1. By construction DFAR removes E [ ft ]. Notice that this is a similar strategy as recom-

mended by Clements and Hendry (2002), who suggest to employ the double-differencing of the VAR model for

avoiding the forecasting difficulties, see also Kapetanios et al. (2007).

Secondly, the empirical distributions evaluated by the standard bootstrap described in Step 3, will be likely to

severely underestimate the realised ones, especially in the presence of extreme events. To address this issue we

follow the Generalised Extreme Value Distribution Theory introduced by Embrechts et al. (1997). In particular,

Longin (2000) demonstrates that the approach based on extreme values can cover market conditions ranging

from the usual environment to extraordinary periods such as the financial crises, especially when outliers may

be present in the data. We now propose the robust resampling scheme as follows: We set the block size to h, and

collect the non-overlapping sequence of residuals by

{{ε̂1, . . . , ε̂h} ,{ε̂h+1, . . . , ε̂2h} , . . . ,{ε̂T−h+1, . . . , ε̂T}} . (A.8)
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We then select the functional residuals such that they achieve a maximum for each block as follows:

max
{ε̂h(τ−1)+i}h

i=1

∣∣∣∣ˆ ∞

−∞

xε̂h(τ−1)+i (x)dx
∣∣∣∣ , τ = 1, . . . ,T (h) , (A.9)

Then, we draw the b-th bootstrap sample of prediction errors, denoted
{

ε̂
(b)
(h)T+1|T , . . . , ε̂

(b)
(h)T+M|T

}
, from the pool

of residuals obtained from (A.9): {
ε̂(h)1, ε̂(h)2, . . . , ε̂(h)T (h)

}
. (A10)

In our empirical analysis we consider h = 1 and 3, which are referred to as the standard- and the robust-

bootstrap, respectively. There is no optimal rule for selecting h available in the literature, though, theoretically,

the selection period should be long enough to guarantee the asymptotic validity of the extreme value theory.

In principle, we may conduct the pseudo out-of-sample interval forecasting, and select h by minimising the

predictive quantile loss function (e.g., Koenker and Bassett, 1978), as it can be regarded as the predictive quasi-

likelihood (e.g., Bertail et al., 2004). Another practically important issue is that too high value of h shrinks the

sample size significantly such that no meaningful inference can be made, see also the practical guide discussed

by Longin (2000). For our monthly inflation data, the sample size for testing will be only 10 and 20 respectively

for h = 12 and 6. Hence, our selection of h = 3 would make a balance between theory and practice. We note in

passing that the results with h = 2 or 4 are qualitatively similar to those reported with h = 3.
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Figure 1: Time-varying moments of sectoral inflation rates.

Note: All moments are computed from the estimated cross-sectional density of the sectoral inflation rates by the
middle Riemann sum.
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Figure 2: Persistence of cross-sectional moments: autocorrelation function.

(1) Jan. 1997 - Sep. 2013 (2) Jan. 1997 - Dec. 2007 (3) Jan. 2008 - Sep. 2013
Panel A. INF

Panel B. RPV

Panel C. RPS

Panel D. RPK
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Figure 3: The scatter plots between moments of sectoral inflation rates.

(1) Jan. 1997 - Sep. 2013 (2) Jan. 1997 - Dec. 2007 (3) Jan. 2008 - Sep. 2013
Panel A. INF-RPV

Panel B. INF-RPS

Panel C. INF-RPK

Panel D. RPV-RPS
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Table 1: Asymmetric relationships between cross-sectional moments.

(1) Jan. 1997 - Sep. 2013 (2) Jan. 1997 - Dec. 2007 (3) Jan. 2008 - Sep. 2013
β− β+ H0 : β− = β+ β− β+ H0 : β− = β+ β− β+ H0 : β− = β+

Panel A. INFt =
(
α−+β−RPV−t

)
+
(
α++β+RPV+

t
)
+ εt

-0.106 0.145 11.310 -0.193 0.326 97.810 -0.022 0.085 1.620
(0.052) (0.053) [0.000] (0.027) (0.045) [0.000] (0.044) (0.072) [0.208]

Panel B. INFt =
(
α−+β−RPS−t

)
+
(
α++β+RPS+t

)
+ εt

-0.140 0.177 12.770 -0.184 0.288 107.630 0.286 0.044 1.690
(0.049) (0.073) [0.000] (0.036) (0.028) [0.000] (0.100) (0.157) [0.198]

Panel C. INFt =
(
α−+β−RPK−t

)
+
(
α++β+RPK+

t
)
+ εt

0.021 -0.055 8.490 0.028 0.058 1.020 0.030 -0.131 21.000
(0.012) (0.023) [0.004] (0.011) (0.027) [0.314] (0.021) (0.028) [0.000]

Panel D. RPVt =
(
α−+β−RPS−t

)
+
(
α++β+RPS+t

)
+ εt

0.679 0.623 0.100 0.798 0.615 2.210 -0.066 1.401 9.770
(0.092) (0.148) [0.749] (0.112) (0.051) [0.139] (0.265) (0.387) [0.003]

Note: We decompose moments into those under the high and the low inflation regimes and apply a threshold
regression. INF , RPV , RPS and RPK denote the inflation rate (mean), the relative price variability (standard
deviation), the relative price skewness (skewness) and the relative price kurtosis (kurtorsis) of the cross-sectional
density of sectoral inflation rates. The high (+) and the low (-) inflation regimes are defined for the case that
a mean inflation rate is over and under the overall mean inflation rate: 2.1% (Jan. 1997 - Sep. 2013), 1.5%
(Jan. 1997 - Dec. 2007), and 3.1% (Jan. 2008 - Sep. 2013). Figures in (·) and [·] denote the standard errors of
coefficients and the p-value of F-test for the null of symmetry, respectively.
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Table 2: Cross-sectional density forecasting performance of FAR models

Mean Median
Model DH DU DE DH DU DE

Panel A. Jan. 2003 - Sep. 2013
FAR 0.0054 0.0971 0.0120 0.0030 0.0784 0.0099
FAR3M 0.0037 0.0821 0.0093 0.0025 0.0714 0.0068
FAR6M 0.0036 0.0804 0.0096 0.0022 0.0731 0.0071
FAR9M 0.0039 0.0844 0.0102 0.0024 0.0744 0.0074
FAR12M 0.0045 0.0897 0.0108 0.0025 0.0767 0.0087
AVE 0.0239 0.1963 0.0359 0.0134 0.1680 0.0271
AVE3M 0.0046 0.0907 0.0110 0.0032 0.0775 0.0080
AVE6M 0.0067 0.1088 0.0152 0.0049 0.1008 0.0112
AVE9M 0.0091 0.1260 0.0189 0.0059 0.1152 0.0163
AVE12M 0.0115 0.1427 0.0226 0.0071 0.1287 0.0184
LAST 0.0034 0.0774 0.0082 0.0023 0.0687 0.0059
DFAR 0.0035 0.0783 0.0085 0.0022 0.0649 0.0060

Panel B. Pre-crisis: Jan. 2003 - Dec. 2007
FAR 0.0029 0.0764 0.0071 0.0019 0.0689 0.0051
FAR3M 0.0025 0.0717 0.0068 0.0016 0.0653 0.0046
FAR6M 0.0024 0.0690 0.0066 0.0016 0.0640 0.0051
FAR9M 0.0025 0.0723 0.0067 0.0017 0.0677 0.0049
FAR12M 0.0026 0.0733 0.0070 0.0018 0.0709 0.0052
AVE 0.0079 0.1225 0.0158 0.0052 0.1131 0.0164
AVE3M 0.0030 0.0789 0.0078 0.0021 0.0708 0.0057
AVE6M 0.0036 0.0859 0.0097 0.0023 0.0709 0.0071
AVE9M 0.0044 0.0968 0.0115 0.0035 0.0924 0.0093
AVE12M 0.0052 0.1070 0.0133 0.0044 0.1096 0.0115
LAST 0.0022 0.0654 0.0058 0.0015 0.0604 0.0046
DFAR 0.0023 0.0676 0.0059 0.0016 0.0615 0.0040

Panel C. Post-crisis: Jan. 2008 - Sep. 2013
FAR 0.0076 0.1152 0.0157 0.0042 0.0890 0.0139
FAR3M 0.0047 0.0910 0.0112 0.0033 0.0762 0.0081
FAR6M 0.0047 0.0904 0.0119 0.0031 0.0780 0.0098
FAR9M 0.0051 0.0949 0.0129 0.0035 0.0811 0.0102
FAR12M 0.0060 0.1040 0.0138 0.0039 0.0839 0.0115
AVE 0.0378 0.2605 0.0514 0.0347 0.2495 0.0483
AVE3M 0.0060 0.1009 0.0136 0.0039 0.0811 0.0114
AVE6M 0.0093 0.1287 0.0194 0.0059 0.1088 0.0168
AVE9M 0.0131 0.1514 0.0247 0.0088 0.1344 0.0220
AVE12M 0.0171 0.1737 0.0297 0.0114 0.1516 0.0255
LAST 0.0045 0.0878 0.0100 0.0029 0.0760 0.0073
DFAR 0.0045 0.0875 0.0105 0.0032 0.0766 0.0079

Note: We consider Hilbert norm (DH), uniform norm (DU) and entropy (DE) as divergence criteria, respectively,
for mean and median. We estimate models from Jan. 1997 to Dec. 2002, and construct one-month-ahead
forecast of cross-sectional density function for Jan. 2003. We repeat this process moving forward one-month
at a time in a recursive manner, ending with one-month-ahead density forecast for Sep. 2013 constructed using
the estimation results over the period Jan. 1997 – Aug. 2013. This generates a total of 129 observations for
evaluating the closeness between one-step-ahead cross-sectional density forecasts and the actual counterparts
for each of the twelve models over the forecasting horizon Jan. 2003 - Sep. 2013. Furthermore, we have used
60 and 69 observations in order to evaluate the closeness for the pre-crisis period, Jan. 2003 - Dec. 2007, and
the post-crisis period, Jan. 2008 - Sep. 2013.
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Table 8: Probability event forecasting of FAR models: QPS

Model 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
Panel A. π < 2%
1. Full period: 2003–2013

FAR3M 0.130 0.176 0.222 0.265 0.290 0.312 0.325 0.332 0.328 0.331 0.350 0.359
AVE3M 0.151 0.198 0.238 0.274 0.295 0.312 0.317 0.324 0.327 0.336 0.349 0.360
LAST 0.126 0.174 0.226 0.260 0.294 0.320 0.335 0.347 0.349 0.362 0.379 0.397
DFAR 0.116 0.170 0.213 0.247 0.279 0.303 0.319 0.345 0.355 0.360 0.386 0.405

2. Pre-crisis: 2003 – 2007
FAR3M 0.085 0.122 0.146 0.181 0.201 0.209 0.237 0.276 0.305 0.330 0.366 0.365
AVE3M 0.098 0.120 0.140 0.183 0.221 0.253 0.273 0.312 0.337 0.369 0.410 0.443
LAST 0.086 0.131 0.150 0.185 0.224 0.249 0.276 0.310 0.330 0.360 0.386 0.410
DFAR 0.070 0.133 0.148 0.190 0.229 0.248 0.265 0.309 0.349 0.366 0.424 0.450

3. Crisis & Post-crisis: 2008–2013
FAR3M 0.071 0.101 0.150 0.206 0.244 0.283 0.298 0.305 0.300 0.295 0.308 0.314
AVE3M 0.089 0.145 0.196 0.237 0.253 0.271 0.276 0.276 0.275 0.275 0.272 0.274
LAST 0.069 0.104 0.160 0.195 0.232 0.268 0.291 0.306 0.314 0.329 0.339 0.356
DFAR 0.053 0.102 0.155 0.186 0.218 0.254 0.284 0.316 0.327 0.335 0.346 0.361

Panel B. 1% < π < 3%
1. Full period: 2003–2013

FAR3M 0.179 0.253 0.301 0.331 0.358 0.371 0.385 0.434 0.464 0.477 0.498 0.507
AVE3M 0.207 0.250 0.306 0.355 0.384 0.416 0.432 0.468 0.501 0.526 0.537 0.540
LAST 0.166 0.223 0.286 0.310 0.348 0.370 0.392 0.433 0.476 0.502 0.519 0.523
DFAR 0.158 0.220 0.263 0.285 0.321 0.333 0.355 0.406 0.452 0.483 0.510 0.518

2. Pre-crisis: 2003 – 2007
FAR3M 0.032 0.050 0.057 0.067 0.078 0.087 0.097 0.106 0.114 0.126 0.138 0.148
AVE3M 0.060 0.069 0.083 0.099 0.115 0.130 0.148 0.163 0.176 0.192 0.207 0.222
LAST 0.051 0.074 0.089 0.107 0.122 0.143 0.157 0.174 0.193 0.206 0.226 0.247
DFAR 0.031 0.035 0.049 0.056 0.067 0.078 0.093 0.105 0.117 0.125 0.140 0.155

3. Crisis & Post-crisis: 2008–2013
FAR3M 0.331 0.464 0.544 0.586 0.587 0.584 0.581 0.654 0.685 0.685 0.710 0.730
AVE3M 0.368 0.445 0.535 0.616 0.633 0.654 0.638 0.667 0.689 0.712 0.718 0.721
LAST 0.275 0.381 0.499 0.517 0.554 0.564 0.578 0.628 0.686 0.714 0.725 0.715
DFAR 0.274 0.397 0.473 0.502 0.536 0.535 0.545 0.609 0.672 0.700 0.721 0.710

Note. We evaluate the probability event forecasting of model by QPS by Brier (1950). Bold font indicates the smallest
QPS among four functional models.
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Table 9: Probability event forecasting of FAR models: Calibration test

MODEL 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
Panel A. π < 2%
1. Full period: 2003–2013

FAR3M -1.21 -1.84 -2.07* -2.19* -2.30* -2.37* -2.47* -2.77* -2.86* -3.16* -3.43* -3.33*
AVE3M -1.39 -1.62 -1.89 -2.32* -2.55* -2.76* -2.96* -3.18* -3.31* -3.75* -4.02* -4.38*
LAST -1.46 -1.59 -1.93 -2.16* -2.22* -2.55* -2.89* -3.02* -3.19* -3.49* -3.80* -4.15*
DFAR -1.50 -1.63 -1.77 -1.92 -2.20* -2.44* -2.63* -2.79* -3.16* -3.38* -3.57* -3.84*

2. Pre-crisis: 2003 – 2007
FAR3M 0.84 0.19 0.42 0.21 -0.02 -0.15 -0.31 -0.63 -0.85 -1.25 -1.57 -1.45
AVE3M 0.24 -0.13 -0.13 -0.72 -1.24 -1.63 -2.02* -2.51* -2.88* -3.42* -3.94* -4.53*
LAST 0.79 0.22 0.40 0.29 0.15 -0.15 -0.59 -0.61 -0.87 -1.17 -1.51 -1.83
DFAR 0.48 0.13 0.50 0.38 0.02 -0.23 -0.47 -0.70 -0.97 -1.27 -1.56 -1.86

3. Crisis & Post-crisis: 2008–2013
FAR3M -1.93 -2.08* -2.11* -2.01* -2.05* -2.03* -1.96* -2.09* -1.98* -2.05* -2.12* -2.07*
AVE3M -1.56 -1.59 -1.37 -1.47 -1.30 -1.30 -1.24 -1.18 -1.20 -1.30 -1.18 -1.23
LAST -1.90 -1.69 -1.78 -1.98* -2.02* -2.07* -2.16* -2.25* -2.33* -2.42* -2.53* -2.66*
DFAR -1.78 -1.95 -2.02* -2.08* -2.11* -2.23* -2.23* -2.29* -2.44* -2.56* -2.59* -2.71*

Panel B. 1% < π < 3%
1. Full period: 2003–2013

FAR3M 1.64 1.59 1.52 1.53 1.46 1.42 1.77 1.98* 2.15* 2.09* 2.17* 2.11*
AVE3M 2.03* 1.75 1.75 1.81 1.67 1.59 1.87 2.01* 2.14* 2.04* 2.05* 1.99*
LAST 1.63 1.81 1.86 1.75 1.79 2.06* 2.11* 2.41* 2.69* 2.68* 2.61* 2.52*
DFAR 1.44 1.15 1.25 1.22 1.13 1.17 1.49 1.75 1.94 1.80 1.80 1.79

2. Pre-crisis: 2003 – 2007
FAR3M 1.99* 2.33* 2.49* 2.67* 2.86* 3.04* 3.13* 3.23* 3.28* 3.39* 3.53* 3.69*
AVE3M 2.56* 2.67* 2.87* 3.18* 3.29* 3.40* 3.54* 3.65* 3.78* 4.00* 4.13* 4.28*
LAST 2.34* 2.82* 3.01* 3.08* 3.28* 3.68* 3.71* 3.88* 4.01* 4.15* 4.37* 4.43*
DFAR 2.06* 2.17* 2.39* 2.61* 2.71* 2.84* 3.07* 3.24* 3.32* 3.39* 3.55* 3.78*

3. Crisis & Post-crisis: 2008–2013
FAR3M -0.94 -1.44 -1.94 -2.17* -2.19* -2.27* -1.98* -1.50 -1.02 -0.72 -0.28 0.18
AVE3M -0.95 -1.32 -1.62 -1.99* -1.86 -1.86 -1.64 -1.19 -0.76 -0.45 0.04 0.41
LAST -1.15 -1.49 -1.99* -2.37* -2.20* -2.14* -2.23* -1.89 -1.56 -1.14 -0.87 -0.46
DFAR -0.88 -1.59 -1.81 -2.26* -2.29* -2.06* -2.13* -1.82 -1.32 -0.89 -0.51 -0.13

Note. We evaluate the probability event forecasting of model using the calibration test by Diebold and Lopez (1996). *
denotes that the test is rejected at the 5% significance level.
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