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Abstract 14 

A method is proposed for the subsystem identification of a composite system composing a 15 

lightweight low-frequency civil engineering structure and a human occupant. It is shown for 16 

the first time that the dynamics of the structure and the stiffness and damping of the human 17 

occupant can be determined from the frequency response functions of the composite system 18 

and the known mass of the human occupant. The advantage of the proposed approach over 19 

existing methods is not only in the simplicity of problem formulation but also in the substantial 20 

reduction of experimental complexity. Subsystem identification is demonstrated using a 21 

numerical example and two experimental case studies. In the first experimental case study, the 22 

method is applied to a laboratory bridge with a human occupant in a standing posture and 23 

frequency response functions are measured using shaker testing. In the second case study, the 24 

method is applied to a laboratory bridge with a hammer operator crouching on the bridge to 25 

perform impact hammer tests. It is demonstrated that subsystem dynamics can be accurately 26 

identified. The method is especially applicable to the correction of the effect of the hammer 27 

operator in manually operated impact hammer testing. In addition, the method can be 28 
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generalised for the compenstation of the effects of the electrodynamic shaker in shaker testing 29 

for civil engineering applications. 30 

Keywords: Human-structure interaction; subsystem identification; impact hammer testing; 31 

frequency response function. 32 

1. Introduction 33 

Human-structure interaction is a well-recognised phenomenon which involves the interplay of 34 

the dynamics of the two subsystems in human-structure systems, i.e. the human occupant(s) 35 

and the structure supporting the human occupant(s). This mechanism can lead to various 36 

modifications of the dynamic properties of the structure, including the increase [1, 2] or 37 

decrease [1-4] of natural frequencies, increase [1-4] or decrease [2] of damping ratios, and even 38 

the appearance of new modes [1, 2]. The actual change of dynamic properties and the extent of 39 

human-structure interaction are dependent upon the mass, damping and frequency ratios 40 

between the occupant(s) and the structure [2, 5]. 41 

The effect of human-structure interaction has become of major importance in vibration 42 

serviceability design of lightweight and slender structures in the last two decades [1, 6-9]. In 43 

structural design applications, the dynamics of the human body are commonly represented by 44 

a single degree of freedom (SDOF) mass-spring-damper model [10-18]. The research mainly 45 

concerns identifying human body dynamics [10-18] and predicting the dynamics of human-46 

structure systems [5, 18-22]. The human body dynamics may be identified directly by curve 47 

fitting measured driving-point apparent masses [11, 12] or derived indirectly from the known 48 

dynamics of the empty structure and the human-structure system [10, 13-18]. When the 49 

dynamics of the human occupant and the empty structure are known, the dynamic prediction 50 

of the joint system is relatively straightforward. Specifically, a spatial or modal model of the 51 

joint system is first constructed by combining the known spatial or modal model of the empty 52 

structure and the human model, based on which the dynamic prediction is performed. 53 

Manually operated impact hammer testing is another structural engineering application which 54 

involves human-structure interaction. It has been widely utilised for modal analysis of small 55 

and medium civil engineering structures thanks to its convenience, efficiency and economy [23, 56 

24]. For such testing, a hammer operator is present on the structure during the data collection. 57 
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Consequently, the identified dynamic properties are essentially those of the human-structure 58 

system rather than those of the empty structure. For some lightweight low-frequency structures, 59 

especially with frequencies close to the frequency of the human body, the influence of the 60 

human occupant can be significant [18, 25]. Unfortunately, existing system identification 61 

methods using data from impact hammer tests routinely neglect the effect of the hammer 62 

operator, which might lead to significant errors in the dynamic identification of the empty 63 

structure. Little attention has been paid to the elimination of the effect of the hammer operator 64 

in impact hammer testing. Recently, Wei and Živanović [18] stressed the importance of the 65 

effect of the hammer operator on the dynamic identification of the empty structure and 66 

presented explicit formulas for deriving the frequency response functions (FRFs) of the empty 67 

structure provided that the human body dynamics and the measured FRFs of the human-68 

structure system are both known. In addition, other methods for identifying human body 69 

dynamics [13-16] could also be used for the dynamic identification of the empty structure if 70 

the dynamics of the human body and the human-structure system are both known. However, 71 

the aforementioned methods [13-16, 18] require the identification of the dynamics of the 72 

particular hammer operator from laboratory experiments, in which the hammer operator should 73 

keep the same posture as that employed in the on-site impact hammer tests. An alternative 74 

might be to adopt existing human-body models from the literature, but this introduces errors 75 

due to inter- and intra-subject variations [11, 15, 26, 27]. 76 

This paper proposes a new method for identifying the dynamics of the human body and the 77 

empty structure in a human-structure system, based only on the measured FRFs of the 78 

composite system. A pair of eigenvalues of the empty structure are first identified using three 79 

measured direct FRFs of the structure with a human occupant at three different locations. In 80 

the next step, the human body dynamics are explicitly derived in terms of the identified 81 

eigenvalues of the empty structure and FRFs of the human-structure system. Finally, the FRFs 82 

of the empty structure are explicitly deduced in terms of the FRFs of the human-structure 83 

system and the identified human body dynamics. Therefore, the proposed method is superior 84 

to the existing methods for identifying human body dynamics [10, 13-18] which require 85 

knowledge of both the dynamics of the empty structure and the human-structure system. In 86 

addition, the proposed method is superior to the existing methods for identifying the dynamics 87 

of the empty structure which require knowledge of the human body dynamics, typically 88 

obtained from separate laboratory experiments, and the dynamics of the human-structure 89 

system. The separate laboratory experiments for identifying human body dynamics require 90 
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either a lightweight low-frequency structure by the indirect method [10, 13-18], or a shaker 91 

and a force platform directly [11]. The necessary equipment may not be available to industrial 92 

engineers and even to researchers. The proposed method, requiring only on-site experiments 93 

for obtaining the FRFs of the structure occupied by a human occupant, is more economical 94 

than existing methods and avoids the effects of the inter- and intra-subject variations caused by 95 

adopting standard human-body dynamic models from literature. The proposed method is 96 

especially applicable to the elimination of the effect of the hammer operator in manually 97 

operated impact hammer testing. Additionally, this approach can be generalised to correct the 98 

effects of the electrodynamic shaker in shaker testing. Furthermore, this paper dicusses the 99 

effects of the time delay between the response and force signal measurement on measured FRFs 100 

of the structure under test and proposes appropriate strategies for correcting these effects. This 101 

paper concerns a single human occupant interaction with lightweight low-frequency structures 102 

(i.e. vibration modes with natural frequencies up to about 8 Hz) with well-sperated modes. In 103 

this frequency region, the first vibration mode of the human occupant is likely to interact with 104 

the structure, and therefore the human body is modelled as a SDOF system. The effect of the 105 

uncertainty in human body dynamics on the dynamic identification of the empty structure can 106 

be investigated using the perturbation method presented in the paper [18], therefore it is not 107 

elaborated here.  108 

Following this introductory section, Section 2 introduces the theory for the identification of the 109 

dynamics of the human body and the empty structure in a human-structure system. A numerical 110 

illustration of the working of the method is presented in Section 3, whilst its experimental 111 

demonstrations are presented in Section 4. Conclusions are drawn in Section 5. 112 

2. Theory 113 

This section presents the theory for the identification of the dynamics of both the human body 114 

and the empty structure from the measured FRFs of a human-structure system. 115 

2.1. The relationship between the FRFs of the empty structure and the human-structure 116 

system 117 

The dynamics of a linear structure having 𝑛 DOFs are modified when occupied by a stationary 118 

human. The SDOF dynamics of the human body are represented by mass 𝑚 , damping 𝑐  and 119 

stiffness 𝑘 . 𝑚  is assumed to represent the physical mass of the human body in line with some 120 
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previous studies [3, 10, 18, 28-31]. Therefore, the presence of the human occupant introduces 121 

an additional DOF, denoted as the (𝑛 + 1)-th DOF. Without loss of generality, it is assumed 122 

that the human occupant is located at the 𝑝-th DOF (𝑝 ≤ 𝑛) of the structure. The stiffness and 123 

damping elements of the human body are connecting the 𝑝-th and (𝑛 + 1)-th DOFs and the 124 

mass of the human body is considered to be concentrated at the (𝑛 + 1)-th DOF. 125 

Wei and Živanović [18] showed that the direct receptance at the 𝑝-th DOF of the empty 126 

structure ℎ (𝑠)  and that of the human-structure system ℎ , (𝑠) , where 𝑠  is the Laplace 127 

variable and 𝑝  in the superscript indicates the location of the human occupant, may be 128 

expressed as 129 

 ℎ (𝑠) =
( ) , ( )

( ) ( ) , ( )
  (1) 130 

and the cross receptance between the 𝑞-th DOF (𝑞 ≤ 𝑛) and the 𝑝-th DOF of the empty 131 

structure ℎ (𝑠) and that of the human-structure system ℎ , (𝑠) are given by 132 

 ℎ (𝑠) = ℎ
, (𝑠) +

, ( )( ) , ( )

( ) ( ) , ( )
. (2) 133 

2.2. Identification of a pair of eigenvalues of the empty structure 134 

The denominator of Eq. (1) or (2) generates the characteristic equation 135 

 1 + (𝑐 𝜇 + 𝑘 ) − (𝑐 𝜇 + 𝑘 )ℎ
, (𝜇 ) = 0  (3) 136 

where 𝜇  is the 𝑖-th eigenvalue corresponding the 𝑖-th mode of the empty structure. 137 

Similarly, if the human occupant is located at the 𝑞-th DOF of the structure, then 138 

 1 + (𝑐 𝜇 + 𝑘 ) − (𝑐 𝜇 + 𝑘 )ℎ
, (𝜇 ) = 0  (4) 139 
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where ℎ , (𝑠) is the direct receptance at the 𝑞-th  DOF of the structure with the human 140 

occupant at the 𝑞-th DOF. 141 

Subtracting Eq. (4) from Eq.(3) leads to 142 

 (𝑐 𝜇 + 𝑘 ) ℎ
, (𝜇 ) − ℎ

, (𝜇 ) = 0.  (5) 143 

Since the eigenvalues of an actual underdamped stable structure are complex, 144 

 (𝑐 𝜇 + 𝑘 ) ≠ 0.  (6) 145 

Therefore, Eq. (5) is equivalent to 146 

 ℎ
, (𝜇 ) − ℎ

, (𝜇 ) = 0  (7) 147 

which indicates that the eigenvalues of the empty structure are zeros of the rational function 148 

 𝛥ℎ (𝑠) = ℎ
, (𝑠) − ℎ

, (𝑠) = 0. (8) 149 

However, 𝛥ℎ (𝑠) generally has additional zeros that are not related to the dynamics of the 150 

empty structure. The selection of correct eigenvalues for the empty structure requires additional 151 

checks. 152 

Due to relatively small changes of the human-structure system properties compared to the 153 

properties of the empty structure, the eigenvalues of any particular mode of the empty structure 154 

will be close to those of the corresponding mode of the human-structure system. Let us assume 155 

that the 𝑖-th pair of complex conjugate eigenvalues 𝜇  and �̄�  of the empty structure are the 156 

targets for identification. The 𝑖-th  pair of complex conjugate eigenvalues 𝜇  and �̄� , 157 

corresponding to the 𝑖-th mode dominated by the structural motion of the human-structure 158 

system, should be good initial guesses for 𝜇  and �̄� , respectively, when solving Eq. (8) by 159 

using algorithms for solving nonlinear equations, e.g. the trust region algorithm [32]. In the 160 

frequency range around the 𝑖-th  mode dominated by the structural motion of the human-161 

structure system, the FRF curves of ℎ , (𝑠) and ℎ , (𝑠) have at most three intersections 162 
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nearest to their peaks (under the assumption that vibration modes of the empty structure are 163 

well sperated). The zeros of 𝛥ℎ (𝑠) related to the dynamics of the empty structure can be 164 

checked since the correct eigenvalues of the empty structure should also be the zeros of 165 

𝛥ℎ (𝑠) = ℎ , (𝑠) − ℎ
, (𝑠)  and 𝛥ℎ (𝑠) = ℎ , (𝑠) − ℎ

, (𝑠)  where ℎ , (𝑠)  is the 166 

measured direct receptance at the 𝑟-th DOF of the human-structure system with the human 167 

occupant at the 𝑟-th DOF. 168 

2.3. Identification of the dynamics of the human body 169 

Let us assume that the eigenvalues 𝜇  and �̄�  of the empty structure have been identified by 170 

the proposed approach described in Section 2.2. The eigenvalues 𝜇  and �̄�  should satisfy 171 

Eq.(3), i.e. 172 

 
𝑐
𝑘 =

𝜇 1

�̄� 1

⎣
⎢
⎢
⎢
⎡ ,

̄

̄
,

̄ ⎦
⎥
⎥
⎥
⎤

  (9) 173 

Eq. (9) infers that the damping 𝑐  and stiffness 𝑘  of the human body can be calculated using 174 

the mass 𝑚  of the human body and the direct receptance of the human-structure system 175 

ℎ
, (𝑠) evaluated at a pair of eigenvalues 𝜇 and �̄�  of the empty structure. Eq. (9) always 176 

results in real solutions for 𝑐  and 𝑘  due to the use of the complex conjugate pair 𝜇  and �̄� .  177 

If the measured quantity is accelerance rather than receptance, an alternative form of Eq. (9)178 

should be used. It is known that the acceleration 𝒂(𝑠) and the displacement 𝒙(𝑠) are related by 179 

𝒂(𝑠) = 𝑠 𝒙(𝑠). The receptance matrix 𝑯 (𝑠) and the accelerance matrix 𝑯 (𝑠) satisfy the 180 

relationship 181 

 𝑯 (𝑠) =
𝑯 ( )

  (10) 182 

leading to the estimate of the damping and stiffness of the human from Eq. (11) 183 
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𝑐
𝑘 =

𝜇 1

�̄� 1

⎣
⎢
⎢
⎢
⎡

,
,

̄

,
,

̄ ⎦
⎥
⎥
⎥
⎤

  (11) 184 

Note that the same human body dynamics will be identified if any other direct receptance (e.g. 185 

ℎ
,  or ℎ , ) of the human-structure system is used in Eq. (9) because they are equal to each 186 

other at the eigenvalues of the empty structure. 187 

2.4. Identification of the dynamics of the empty structure 188 

The direct and cross receptances of the empty structure can be calculated using Eqs. (1) and 189 

(2), the human body dynamics and the direct and cross receptances of the human-structure 190 

system. The frequencies and damping ratios can then be obtained by solving the characteristic 191 

equation of the receptances of the empty structure. Since the human body dynamics can be 192 

identified from measured direct receptances of the human-structure system, the dynamics of 193 

the empty structure can be obtained entirely from measured direct and cross receptances of the 194 

human-structure system. 195 

3. Numerical example 196 

A numerical example was conducted based on an actual glass fibre reinforced polymer simply 197 

supported bridge [25]. A schematic of the bridge is shown in Fig. 1. The bridge model has a 198 

span of 𝐿 = 16.9 m, density 𝜌 = 1.9 × 10  kg∙m-3, area of cross section 𝐴 = 4.89 × 10  m2, 199 

longitudinal modulus of elasticity 𝐸 = 2.47 × 10  N∙m-2, second moment of area 𝐼 = 3.5 ×200 

10  m4, shear modulus 𝐺 = 3.9 × 10  N∙m-2 and shear coefficient 𝜅 = 0.08 . A human 201 

occupant having mass 𝑚 = 62 kg, natural frequency 𝑓 = 5.0 Hz and damping ratio 𝜁 =202 

37.0%, corresponding to the human model for standing posture specified in ISO 5982 [33], is 203 

assumed to stand on the bridge. The bridge systems with the human occupant located at points 204 

1, 2 and 3 are designated as the systems SH1, SH2 and SH3, respectively. 205 

A two-dimensional finite element (FE) model of the bridge was developed using an improved 206 

two-node Timoshenko beam finite element [34]. The FE model consisted of 120 elements of 207 

equal length. Proportional damping 𝑪 = 𝛼𝑴+ 𝛽𝑲 (𝛼 = 𝛽 = 0.0008) was assumed. Similarly, 208 

the FE models of the systems SH1, SH2 and SH3 were constructed.  209 
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 210 

Fig. 1 A schematic of a simply supported bridge with a human occupant and a linear chirp excitation at 211 
point 1 212 

The four FE models were first used for eigenvalue analysis, which generated the modal 213 

parameters of the corresponding actual systems. The natural frequencies and damping ratios of 214 

the first mode dominated by structural motion are summarised in Table 1. It is shown that while 215 

the relative differences of frequencies of the systems SH1, SH2 and SH3 with respect to the 216 

fundamental frequency of the empty bridge are -5.4%, -3.3% and -0.4%, respectively, the 217 

counterparts of the damping ratios are 392%, 267% and 33%, respectively. It can be seen that 218 

the presence of the human occupant can significantly modify the dynamics of the empty bridge 219 

and its effect depends upon the human occupant location.  220 

Table 1 Modal parameters of the first structural motion dominated mode 221 

System Frequency (Hz) Damping ratio (%) 
Relative difference (%) 

Frequency Damping ratio 
Empty bridge 4.85 1.2 / / 

SH1 4.59 5.9 -5.4 392 
SH2 4.69 4.4 -3.3 267 
SH3 4.83 1.6 -0.4 33 

Based on the FE model, the time-domain responses were numerically calculated for the empty 222 

bridge driven by a linear chirp excitation force (having magnitude 100 N and sweeping from 1 223 

Hz to 10 Hz) at point 1 for 112 seconds (s) and then left to return to rest over the next 8 s. The 224 

actual direct receptance ℎ (𝑠) of the empty bridge was then calculated using the excitation 225 

force and the resultant vertical displacement response at point 1. Similarly, the direct 226 

receptances of the systems SH1, SH2 and SH3, i.e. ℎ , (𝑠), ℎ , (𝑠) and ℎ , (𝑠), were 227 

calculated. In this example,  the direct receptances ℎ , (𝑠), ℎ , (𝑠) and ℎ , (𝑠) play the role 228 

of known (usually by measurement) FRFs of the systems SH1, SH2 and SH3. These three 229 

actual receptances (abbreviated to ‘Act’ in Fig. 2) are depicted by the thick solid line, thin dash-230 

dotted line and thick dashed line in Fig. 2, respectively. They exhibit different peak frequencies 231 

due to the presence of the human occupant at different locations. 232 
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(a) (b) 
Fig. 2 Direct receptances 𝒉𝟏𝟏

𝒔𝒉,𝟏(𝒔), 𝒉𝟐𝟐
𝒔𝒉,𝟐(𝒔) and 𝒉𝟑𝟑

𝒔𝒉,𝟑(𝒔): (a) Magnitude, (b) Phase 233 

The following demonstrates how to identify the subsystem dynamics from the known 234 

receptances ℎ , (𝑠), ℎ , (𝑠) and ℎ , (𝑠). ℎ , (𝑠) was curve fitted in the frequency range 235 

from 3 Hz to 7 Hz using the rational fraction polynomial method [35], which resulted in an 236 

analytical expression 237 

 ℎ , =   (12) 238 

Where 𝑎 = 2.7933 × 10  s4, 𝑎 = −5.2539 × 10  s3, 𝑎 = 6.5769 × 10  s2, 𝑎 =239 

−1.9874 × 10  s, 𝑎 = 6.3407 × 10 , 𝑎 = 1.7085 × 10  s-1, 𝑎 = 0.0277  s-2, 𝑏 =240 

24.1786 N∙s2∙m-1, 𝑏 = 82.3920 N∙s∙m-1 and 𝑏 = 2.0072 × 10  N∙m-1. It should be noted 241 

that the rational expression of  ℎ , (𝑠) shown in Eq. (12) is improper and cannot be state-242 

space realisable. Extra numerator polynomial terms in Eq. (12) are used for the compensation 243 

of the residual effects of out-of-band modes such that a good fit is achieved. More information 244 

about the use of this technique in modal parameter identification applications can be found 245 

elsewhere [35]. Its characteristic equation generated the eigenvalue pair 𝜇 ,
, = −1.7038 ±246 

28.7617i s-1 for the first mode dominated by the structural motion of the system SH1. The 247 

analytical expressions for ℎ , (𝑠) and ℎ , (𝑠) were obtained by the same method. Using 248 

𝜇 ,
,  as the initial guesses, a pair of eigenvalues of the empty bridge was identified as 𝜇 , =249 

−0.3735 ± 30.4551i s-1 , i.e. the roots 𝑠 = 𝜇 ,  of the function 250 

 𝛥ℎ (𝑠) = ℎ , (𝑠) − ℎ , (𝑠) = 0  (13) 251 
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𝜇 ,  were also found to be the zeros of 𝛥ℎ (𝑠) and 𝛥ℎ (𝑠), which confirms 𝜇 ,  were the 252 

eigenvalues of the empty structure. The corresponding natural frequency and damping ratio 253 

were then calculated to be 4.85 Hz and 1.2%, which agree with the actual modal parameters of 254 

the empty bridge given in Table 1. While the magnitude curves of ℎ , (𝑠) , ℎ , (𝑠) 255 

and ℎ , (𝑠) , shown in Fig. 2(a), do not exhibit their intersections at 𝜇 ,  because the 256 

intersections are located away from the imaginary axis, their phase curves, shown in Fig. 2(b), 257 

indicate the intersections.  258 

 259 

Fig. 3 The magnitude of 𝜟𝒉𝟏𝟑(𝒔) against frequency and damping ratio. 260 

In addition, the initial guesses for the solultions to Eq. (13) can be predicted graphically. Fig. 261 

3 shows the contour map of the magnitude of 𝛥ℎ (𝑠) against frequency and damping ratio, 262 

which indicates that values around 4.85 Hz and 1.2% are good initial guesses for the frequency 263 

and damping ratio of the empty structure, respectively, around which 𝛥ℎ (𝑠)  is at its 264 

minimum. Note that such a contour map is suggested to be plotted around the eigenvalues of 265 

the human-structure system since the eigenvalues of any particular mode of the empty structure 266 

will be close to those of the corresponding mode of the human-structure system. 267 

Based on the human body mass, 𝑚 = 62 kg, the analytical expression ℎ , (𝑠) described by 268 

Eq. (12) and the identified eigenvalues 𝜇 ,  of the empty bridge, the damping and stiffness of 269 

the human body were calculated as 270 

 
𝑐
𝑘 =

𝜇 1

𝜇 1

( )

( ) , ( )

( )

( ) , ( )

= 1.47 × 10 𝑁 ⋅ 𝑠 ⋅ 𝑚
6.14 × 10 𝑁 ⋅ 𝑚

. 271 
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The corresponding frequency and damping ratio of the human body were then calculated as 272 

𝑓 = 5.0 Hz and 𝜁 = 37.0%, which are exactly the properties of the actual human occupant 273 

stated at the outset. 274 

(a) (b) 
Fig. 4 Direct receptances of SH1 and the empty structure: (a) Magnitude, (b) Phase 275 

The direct receptance at point 1 of the empty bridge was then synthesised using Eq.(1), denoted 276 

as Syn ℎ (𝑠) and shown by the thick dashed curve in Fig. 4. The synthesised receptance is in 277 

good agreement with its actual counterpart (abbreviated to ‘Act’ and depicted by the thin solid 278 

curve in Fig. 4). By solving the characteristic equation for Syn ℎ (𝑠)  the fundamental 279 

frequency and damping ratio of the empty bridge were found to be 4.85Hz and 1.2%, which 280 

agree with the actual counterparts of the empty bridge. Similarly, the receptances ℎ (𝑠) and 281 

ℎ (𝑠) of the empty structure were also obtained. The three direct receptances of the empty 282 

structure exhibited the same peak frequency after the elimination of the effect of the human 283 

occupant. 284 

4. Experimental case studies 285 

This section presents two experiments for verifying the theory of subsystem identification. The 286 

first experiment aims to identify the dynamics of the subsystems of a steel-concrete composite 287 

bridge with a human occupant in a standing posture. In this experiment, FRFs were measured 288 

by using shaker testing. The second experiment demonstrates how to eliminate the effect of the 289 

hammer operator in manually operated impact hammer testing performed on the same bridge. 290 

The experiments were approved by the Biomedical and Scientific Research Ethics Committee 291 

at the University of Warwick. 292 
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4.1. Subsystem identification using measured FRFs from shaker testing 293 

A steel-concrete composite bridge situated in the Structures Laboratory at the University of 294 

Warwick (Fig. 5) with a human occupant  in a standing posture was considered for subsystem 295 

identification. The bridge is 19.9 m long and 2 m wide and sits on two meccano frames with 296 

1.78 m overhang at each end. The bridge and the human occupant weigh 16,500 kg and 100 297 

kg, respectively.  298 

4.1.1. Shaker testing 299 

The accelerances of the empty bridge and the human-bridge system were measured using 300 

shaker testing. The test points (TPs) are shown in Fig. 6. An electrodynamic shaker of mass 301 

105.5 kg (Model APS 400), as shown in Fig. 5, was placed sequentially at TPs 1, 2 and 3 on 302 

the deck to excite the bridge. The generated force was indirectly measured using an 303 

accelerometer (Honeywell QA750, nominal sensitivity 1300 mV/g) attached to the moving 304 

armature. Another three accelerometers of the same type were placed at TPs 1, 2 and 3 to 305 

measure the vibration responses of the unoccupied bridge and the human-bridge systems in the 306 

vertical direction. The data acquisition system consisted of a laptop, a 16-channel data logger 307 

(SignalCalc Mobilyser by Data Physics), a signal conditioner and a power amplifier (Model 308 

APS 145). A chirp excitation force in the frequency range 1 - 9 Hz was applied to the structure 309 

for 64 seconds. A data acquisition window was set to 128 seconds. The sampling frequency 310 

was 512 Hz. Four averages were used to minimise the effects of noise. No window was used 311 

since the vibration responses returned to the ambient vibration level at the end of the acquisition 312 

window. The typical standing posture of the human is shown in Fig. 7. 313 

 314 
Fig. 5 The bridge with the shaker at TP1 315 
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 316 
Fig. 6 Bridge deck geometry and test points 317 

 318 
Fig. 7 The bridge with the shaker and the human occupant at TP1 319 

The bridge systems with the exciter (shaker) located at TPs 1, 2 and 3 are designated as the 320 

systems SE1, SE2 and SE3, respectively. The bridge systems with the human occupant and the 321 

shaker at TPs 1, 2 and 3 are designated as the systems SHE1, SHE2 and SHE3, respectively. 322 

The bridge systems with the human occupant at TPs 1, 2 and 3 are designated as the systems 323 

SH1, SH2 and SH3, respectively. 324 

The systems SE1, SE2, SE3, SHE1, SHE2 and SHE3 were excited at three different force levels. 325 

The maximum accelerations at TP1 of SE1, TP2 of SE2 and TP3 of SE3 ranged from 0.30 m∙s-326 
2 to 0.70 m∙s-2, from 0.22 m∙s-2 to 0.50 m∙s-2 and from 0.14 m∙s-2 to 0.32 m∙s-2, respectively. 327 

The maximum accelerations at TP1 of SHE1, TP2 of SHE2 and TP3 of SHE3 ranged from 328 

0.27 m∙s-2 to 0.68 m∙s-2, from 0.21 m∙s-2 to 0.49 m∙s-2 and from 0.13 m∙s-2 to 0.28 m∙s-2, 329 

respectively. The frequencies and damping ratios of SE1 showed negligible variation with the 330 

response level. The same conclusion was drawn for SE2, SE3, SHE1, SHE2 and SHE3. These 331 

findings suggest that the systems SE1, SE2, SE3, SHE1, SHE2 and SHE3 exhibited linear 332 

behaviour in the observed amplitude range. Therefore, it is reasonable to assume that the human 333 

body exhibited linear behaviour during the testing as well. The force level when excited at TP2 334 

of SHE2 chosen for presentation in this paper is shown in Fig. 8 whilst the corresponding 335 

vibration response at TP2 is shown in Fig. 9. 336 
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Fig. 8 Excitation force at TP2 of SHE2 Fig. 9 Acceleration at TP2 of SHE2 

While the direct accelerances at TP1 of SE1, TP2 of SE2 and TP3 of SE3, denoted as ℎ ,
, , 337 

ℎ ,
,  and ℎ ,

, , respectively, are shown in Fig. 10, the cross accelerances of SE1, excited at 338 

TP1 and measured at TP3, and of SE3, excited at TP3 and measured at TP1, denoted as ℎ ,
,  339 

and ℎ ,
, , respectively, are shown in Fig. 11. The direct accelerances at TP1 of SHE1, TP2 of 340 

SHE2 and TP3 of SHE3, denoted as ℎ ,
, , ℎ ,

,  and ℎ ,
,  respectively, are shown in Fig. 341 

12. Fig. 10 and Fig. 11 show that the presence of the shaker on the deck slightly modifies the 342 

dynamics of the bridge under test, i.e. it shifts the natural frequency and affects the reciprocity 343 

check. Therefore, the effect of the shaker should be first eliminated from the measured 344 

accelerences shown in Fig. 12 before they are used to identify the dynamics of the human body 345 

and the empty bridge. 346 

  

(a) (b) 
Fig. 10 Measured direct accelerances of the bridge with shaker: (a) Magnitude; (b) Phase 347 



16 

  

(a) (b) 
Fig. 11 Measured cross accelerances of the bridge with shaker: (a) Magnitude; (b) Phase 348 

  

(a) (b) 
Fig. 12 Measured direct accelerances of the bridge with human occupant and shaker: (a) Magnitude; (b) 349 

Phase 350 

4.1.2. The elimination of the effect of the electrodynamic shaker 351 

The electrodynamic shaker concentrates the majority of its mass on its base (79 kg), while the 352 

moving mass is only 26.5 kg. In this research, the shaker is modelled as a mass block of 105.5 353 

kg. By using Eqs. (21) and (22) from Appendix A, the effect of the shaker on the measured 354 

accelerences of the empty bridge can be eliminated. Fig. 13 shows the corrected cross 355 

accelerances ℎ ,  (thin solid curve) and ℎ ,  (thick dashed curve) of the empty bridge, which 356 

indicate that the principle of reciprocity is now satisfied. In addition, the natural frequency and 357 

damping ratio identified from the corrected accelerances of the empty bridge agree well with 358 

the measured counterparts from impact hammer testing in which the hammer operator stood 359 

next to the bridge.  360 



17 

(a) (b) 
Fig. 13 Corrected cross accelerances of the empty bridge: (a) Magnitude; (b) Phase 361 

Similarly, the effect of the shaker embedded in the measured accelerances ℎ ,
, , ℎ ,

, , ℎ ,
, , 362 

ℎ ,
,  and ℎ ,

,  can be eliminated. For instance, the measured accelerance of SHE1 ℎ ,
,  363 

was first curve fitted using the rational fraction polynomial method [35]. Good agreement 364 

between the curve-fitted accelerance (thick dashed curve) and its measured counterpart (thin 365 

solid curve) is demonstrated in Fig. 14. The analytical expression of the curve-fitted 366 

accelerance is 367 

 ℎ ,
, (𝑠) =   (14) 368 

where 𝑎 = 2.4738 × 10 , 𝑎 = −1.2842 × 10  s-1, 𝑎 = −1.6082 × 10  s-2, 𝑏 =369 

1.8417 N∙s2∙m-1, 𝑏 = 0.1967 N∙s∙m-1  and 𝑏 = 413.4934 N∙m-1. 370 

(a) (b) 
Fig. 14 Comparison between measured and curve-fitted accelerenaces 𝒉𝒂,𝟏𝟏

𝒔𝒉𝒆,𝟏: (a) Magnitude; (b) Phase 371 
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According to Eq. (21) from Appendix A, the direct accelerance at TP1 of SH1 ℎ ,
,  may be 372 

synthesised as 373 

 ℎ ,
, (𝑠) =   (15) 374 

where 𝑎 = 2.4765 × 10 , 𝑎 = −1.2855 × 10  s-1, 𝑎 = −1.6099 × 10  s-2, 𝑏 =375 

1.8176 N∙s2∙m-1, 𝑏 = 0.1983 N∙s∙m-1  and 𝑏 = 413.9403 N∙m-1. 376 

Similarly, the accelerances ℎ ,
, , ℎ ,

, , ℎ ,
,  and ℎ ,

,  were synthesised. The corrected 377 

acelerances ℎ ,
, , ℎ ,

,  and ℎ ,
,  are shown in Fig. 15, in which the peak shift was induced by 378 

the presence of the human occupant at different locations only. 379 

(a) (b) 
Fig. 15 Comparison of corrected 𝒉𝒂,𝟏𝟏

𝒔𝒉,𝟏 , 𝒉𝒂,𝟐𝟐
𝒔𝒉,𝟐  and𝒉𝒂,𝟑𝟑

𝒔𝒉,𝟑 : (a) Magnitude; (b) Phase 380 

4.1.3. The identification of the dynamics of the human body and the empty structure 381 

A pair of eigenvalues of the human-bridge system SH1 may be obtained as 𝜇 ,
, = −0.0545 ±382 

15.0910𝑖 s-1 by solving the characteristic equation of ℎ ,
, . Using 𝜇 ,

,   or the points around 383 

the minimum point in Fig. 16 as the initial guesses for the zeros of 𝛥ℎ (𝑠) = ℎ ,
, (𝑠) −384 

ℎ ,
, (𝑠), a pair of eigenvalues may be obtained as 𝜇 , = −0.0351 ± 15.2338i s-1, which were 385 

also found to be zeros of 𝛥ℎ (𝑠) and 𝛥ℎ (𝑠). This confirms that 𝜇 ,  were the eigenvalues 386 

of the empty bridge. The corresponding frequency and damping ratio were calculated to be 387 
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2.42 Hz and 0.23%, which agree well with the measured counterparts from impact hammer 388 

testing in which the hammer operator stood next to the bridge. 389 

 390 

Fig. 16 The magnitude of 𝜟𝒉𝟏𝟑(𝒔) against frequency and damping ratio 391 

Based on the analytical expression of ℎ ,
,  given by Eq.(15), the identified eigenvalues of the 392 

empty bridge and the human mass (𝑚 = 100 kg), the damping and stiffness of the human 393 

body were calculated as 394 

 
𝑐
𝑘 =

𝜇 1

𝜇 1

( )

,
, ( )

( )

,
, ( )

= 1.75 × 10 𝑁 ⋅ 𝑠 ⋅ 𝑚
7.21 × 10 𝑁 ⋅ 𝑚

  (16) 395 

from which the corresponding frequency and damping ratio were calculated to be 𝑓 = 4.27 396 

Hz and 𝜁 = 33%, respectively. These results are in the ranges of natural frequency and 397 

damping ratio for a human body in a standing posture availabe in the literature [20]. 398 

Based on the corrected accelerances ℎ ,
, , ℎ ,

, , ℎ ,
, , ℎ ,

,  and ℎ ,
, , the identified human 399 

body dynamics and Eqs. (1) and (2), the direct accelerances ℎ , , ℎ ,  and ℎ ,  and the cross 400 

accelerances ℎ ,  and ℎ ,  of the empty bridge can be synthesised, which are shown in Fig. 401 

17 and Fig. 18. As can be seen from Fig. 17, the three direct accelerances of the empty bridge 402 

exhibit the same frequency. Fig. 18 implies that the principle of structural reciprocity is 403 

satisfied. In addition, the accelerances obtained by eliminating the effect of the shaker from the 404 

measured accelerances of the bridge with the shaker agree well with those obtained by 405 

eliminating the effects of the shaker and human occupant from the measured accelerances of 406 
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the bridge with the human occupant and shaker. These suggest that the effects of the human 407 

occupant and shaker have been eliminated correctly. 408 

(a) (b) 
Fig. 17 Synthesised direct accelerances 𝒉𝒂, 𝟏𝟏

𝒔 , 𝒉𝒂, 𝟐𝟐
𝒔  and 𝒉𝒂, 𝟑𝟑

𝒔  of the empty bridge: (a) Magnitude; (b) 409 
Phase 410 

(a) (b) 
Fig. 18 Synthesised cross accelerances 𝒉𝒂,𝟏𝟑

𝒔  and 𝒉𝒂,𝟑𝟏
𝒔  of the empty bridge: (a) Magnitude; (b) Phase 411 

4.2. The elimination of the effect of hammer operator in manually operated impact 412 

hammer testing 413 

The same steel-concrete composite bridge used in Section 4.1 was considered again, but with 414 

3.41 m overhang at each end, i.e. a span length of 13.08 m. The accelerances of the empty 415 

bridge and the hammer operator-bridge system were measured using manually operated impact 416 

hammer testing. The TPs are shown in Fig. 19. 417 
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4.2.1. Manually operated impact hammer testing 418 

To obtain the accelerances of the empty bridge, the hammer operator stood next to the bridge 419 

to impact sequentially at TPs 1, 2 and 3 on the deck using an instrumented sledge hammer 420 

(Dytran Model 5803A, sensitivity 0.231 mV/N). Three accelerometers (Honeywell QA750, 421 

nominal sensitivity 1300 mV/g) were placed at TPs 1, 2 and 3 to measure the vibration 422 

responses of the empty bridge in the vertical direction. The data acquisition system consisted 423 

of a laptop, a 16-channel data logger (SignalCalc Mobilyser by Data Physics) and a signal 424 

conditioner. The sampling frequency was chosen to be 1024 Hz and the data acquisition 425 

window was set to 64 seconds. Four averages were used to minimise the effects of noise. No 426 

window was used since the vibration responses returned to the ambient vibration level at the 427 

end of the acquisition window. The accelerance measurement of the hammer operator-bridge 428 

system was performed in the same way. The only difference was that the hammer operator 429 

crouched on the deck (sequentially close to at TPs 1, 2 and 3) to perform the impact hammer 430 

testing. The typical crouching posture of the hammer operator is shown in Fig. 20. The hammer 431 

operator and the hammer weigh 62 kg and 5.5 kg, respectively. The bridge systems with the 432 

hammer operator crouching at TPs 1, 2 and 3 are designated as the systems SH1, SH2 and SH3, 433 

respectively. 434 

 435 

Fig. 19 Bridge deck geometry and test points 436 

 437 
Fig. 20 The bridge with the hammer operator crouching at TP2 438 
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The measured cross accelerances ℎ ,  and ℎ ,  of the empty bridge are compared in Fig. 21. 439 

It can be seen that the reciprocity holds for the empty bridge, which indicates that the dynamic 440 

behaviour of the bridge was linear in the response range of the tests. The bridge with the 441 

hammer operator crouching at TPs 1, 2 or 3 was also found to behave linearly by using shaker 442 

testing. The response range of the shaker tests covers the range of the responses, bandpass 443 

filtered with cutoff frequencies 2 Hz and 6 Hz, of the impact hammer tests. Therefore, it is 444 

reasonable to assume that the dynamics of the hammer operator is linear during the testing. Fig. 445 

22 shows that the cross accelerance ℎ ,
,  of the system SH1 did not agree with the cross 446 

accelerance ℎ ,
,  of the system SH3. This is due to the change in location of the hammer 447 

operator. 448 

  

(a) (b) 
Fig. 21 Measured cross accelerances 𝒉𝒂,𝟏𝟑

𝒔  and 𝒉𝒂,𝟑𝟏
𝒔  of the empty bridge: (a) Magnitude; (b) Phase 449 

  

(a) (b) 
Fig. 22 Measured cross accelerances 𝒉𝒂,𝟑𝟏

𝒔𝒉,𝟏  and 𝒉𝒂,𝟏𝟑
𝒔𝒉,𝟑 : (a) Magnitude; (b) Phase 450 
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4.2.2. The elimination of the effect of the time delay of the measurement system 451 

Fig. 21(b) and Fig. 22(b) show that there was a phase shift at low frequencies (below 8 Hz) in 452 

the measured accelerances of the empty bridge and the hammer operator-bridge systems, 453 

indicating a time delay in the acceleration measurement compared to the impulse force 454 

measurement. By contrast, there was no time delay observed in the accelerance measurement 455 

in the shaker testing presented in Section 4.1.1. It is noted that three QA750 accelerometers 456 

were used for the response measurement in both the impact hammer testing and the shaker 457 

testing. While a load cell (an integral piezoelectric force sensor of low impedance voltage mode 458 

type) at the tip of an hammer Dytran Model 5803A was used for impulse force measurement, 459 

a QA750 accelerometer was used in the shaker testing to measure the excitation force. The 460 

time delay in the low frequency range in measured accelerances from the impact hammer 461 

testing was mainly due to the difference between the time constant of the load cell for force 462 

measurement and that of the accelerometer for response measurement [36]. In the shaker 463 

testing, these two time constants are equal, and therefore they do not affect measured 464 

accelerances [36]. Appendix B demonstrates that this time delay affects the estimation of actual 465 

accelerances of the system under test but not eigenvalues. The effect of the time delay must be 466 

corrected for accurate subsystem identification since the proposed theory for the dynamic 467 

identification of the human body (i.e. Eq.(9)) and the empty structure (i.e. Eqs. (1) and (2)) 468 

requires the estimation of actual accelerances of the human-structure system. 469 

Eq. (26) in Appendix B shows that measured accelerances should be multiplied by 𝑒 , where 470 

𝜏 (s) is the time delay of the measurement system. For the data acquisition system used in the 471 

impact hammer testing, an averaged time delay around the first mode may be approximately 472 

estimated as 473 

 𝜏 =   (17) 474 

where 𝜃 (degree) is the averaged delayed phase angle and 𝑓  (Hz) is the natural frequency of 475 

the first mode. For example, the averaged delayed phase angle for the measured accelerance 476 

ℎ ,  of the empty bridge was 19 degrees. The natural frequency was estimated to be 3.22 Hz. 477 

The time delay was calculated as 0.0164 s using Eq. (17). The comparison of the measured 478 

accelerance ℎ ,  (thin solid line) and its phase corrected counterpart (thick dashed line) is 479 

displayed in Fig. 23. It can be seen that the phase has been corrected such that the phase angle 480 
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is almost 180 degrees before the phase drop at the fundamental frequency, while there are no 481 

changes of the eigenvalues and magnitude of the FRF. In addition, it is reasonable to assume 482 

that all the measured accelerances had the same time delay since the same measurement system 483 

was used throughout the impact hammer testing. 484 

(a) (b) 
Fig. 23 Comparison of the measured accelerance 𝒉𝒂,𝟏𝟏

𝒔  and its phase corrected counterpart: (a) 485 
Magnitude; (b) Phase 486 

4.2.3. The identification of the dynamics of the hammer operator and the empty bridge 487 

After phase correction, the measured direct accelerance ℎ ,
,  was curve fitted around the first 488 

mode using the rational fraction polynomial method [35]. The estimated eigenvalues were 489 

𝜇 ,
, = −0.1930 ± 20.0834i s-1 (the corresponding natural frequency and damping ratio were 490 

3.20 Hz and 0.96%), and the corresponding analytical expression was 491 

 ℎ ,
, (𝑠) =   (18) 492 

where 𝑎 = 1.4493 × 10 , 𝑎 = −3.1393 × 10  s-1, 𝑎 = −0.0101  s-2, 𝑏 = 1.1569 493 

N∙s2∙m-1, 𝑏 = 0.4466 N∙s∙m-1  and 𝑏 = 466.6605 N∙m-1. 494 

Similarly, the phase corrected ℎ ,
,  was curved fitted and the eigenvalues were identified to be 495 

𝜇 ,
, = −0.1030 ± 20.2371i  s-1 (natural frequency and damping ratio were 3.22 Hz and 496 

0.51%). Its analytical expression was 497 

 ℎ ,
, (𝑠) =   (19) 498 
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Where 𝑎 = 2.9953 × 10 , 𝑎 = −1.1264 × 10  s-1, 𝑎 = −0.0581  s-2, 𝑏 = 8.0321 499 

N∙s2∙m-1, 𝑏 = 1.6684 N∙s∙m-1  and 𝑏 = 3289.7 N∙m-1. 500 

With 𝜇 ,
,  or the points around the minimum point shown in Fig. 24 as the initial guesses, 501 

𝜇 , = −0.0868 ± 20.2622i s-1 were found to be the common zeros of 𝛥ℎ (𝑠), 𝛥ℎ (𝑠) and 502 

𝛥ℎ (𝑠) , which confirms that 𝜇 ,  were the eigenvalues of the empty bridge. The 503 

corresponding natural frequency and damping ratio of the empty bridge were found to be 3.22 504 

Hz and 0.43%, which agree with those identified from accelerances directly measured on the 505 

empty bridge. 506 

 507 

Fig. 24 The magnitude of 𝜟𝒉𝟏𝟑(𝒔) against frequency and damping ratio 508 

By using the eigenvalues 𝜇 , , 𝑚 = 62 + 5.5 = 67.5 kg, Eq. (11) and Eq.(18), the human 509 

body dynamics were identified as  510 

 
𝑐
𝑘 =

𝜇 1

𝜇 1

( )

,
, ( )

( )

,
, ( )

= 8.86 × 10 𝑁 ⋅ 𝑠 ⋅ 𝑚
3.71 × 10 𝑁 ⋅ 𝑚

  (20) 511 

from which the natural frequency and damping ratio of the human occupant operating a 512 

hammer in a crouching posture were calculated to be 3.73 Hz and 28%. 513 

With the identified human body dynamics and the analytical expression of the phase corrected 514 

ℎ ,
, (𝑠) given by Eq.(18), Eq. (1) gives the direct accelerance at TP1 of the empty structure. 515 

Fig. 25 shows that the synthesised accelerance ℎ , (𝑠) (thick dashed line) agrees reasonably 516 
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well with the measured counterpart of the empty bridge with phase corrected (thin solid line). 517 

The comparison of the identified frequencies and damping ratios of the hammer operator-518 

bridge systems and the empty bridge indicates that the presence of the hammer operator causes 519 

the decrease of the natural frequency of the empty bridge and the increase of the damping ratio. 520 

This also explains the difference between the phase corrected accelerance of the hammer-521 

operator system (thin dash-dotted line) and that of the empty bridge shown in Fig. 25. Similarly, 522 

other accelerances of the empty bridge can be synthesised by eliminating the effect of the 523 

hammer operator. 524 

(a) (b) 
Fig. 25 Comparison of the synthesised accelerance of the empty bridge and the phase corrected 525 

accelerances measured on the empty bridge and the human-bridge system: (a) Magnitude; (b) Phase 526 

5. Conclusions 527 

A novel method for subsystem identification in a human-structure system has been proposed. 528 

It enables the identification of the dynamic properties of the human body and the empty 529 

structure from measured FRFs of the human-structure system. The proposed theory is verified 530 

by a numerical example and two experimental case studies. The method is especially relevant 531 

to the elimination of the effect of the hammer operator in manually operated impact hammer 532 

testing on lightweight civil engineering structures. In addition, the method can be generalised 533 

to compensate for the effects of the shaker in shaker testing. Furthermore, the time delay 534 

between the force and response signals on the measured FRFs of the structure under test are 535 

discussed, and appropriate strategies for their correction are proposed. The proposed method, 536 

which focuses on the presence of a single human occupant on lightweight low-frequency 537 

structures (up to 8 Hz) in this paper, will be extended to the crowd-structure interaction in the 538 

future work. 539 
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 540 

Appendix A: The elimination of the effect of shaker on measured FRFs of the empty 541 

structure 542 

The method for the elimination of the effect of a human occupant on the dynamic identification 543 

of the empty structure presented in the paper [18] can be extended to the elimination of the 544 

effect of shaker on measured FRFs. Under the assumption that a shaker is a mass block of the 545 

total mass 𝑚 , the resultant formulas are the same as those used for the elimination of 546 

transducer mass loading effects in some studies [37, 38]. Hence, the derivation of the formulas 547 

is not presented here, instead they are shown in the final form. 548 

Namely, the direct receptance at the 𝑝-th DOF (𝑝 ≤ 𝑛) of the empty structure ℎ (𝑠) and that 549 

of the structure with the shaker at the 𝑝-th DOF ℎ , (𝑠) are related by 550 

 ℎ (𝑠) =
, ( )

, ( )
  (21) 551 

Similarly, the cross receptance between the 𝑞-th DOF (𝑝 ≤ 𝑛) and the 𝑝-th DOF of the empty 552 

structure ℎ (𝑠) and that of the structure with the shaker at the 𝑝-th DOF ℎ , (𝑠) are related 553 

by 554 

 ℎ (𝑠) =
, ( )

, ( )
  (22) 555 

Appendix B: The effect of the time delay of the measurement system on measured FRFs 556 

The equation of forced vibration of a linear structure having 𝑛 DOFs may be written in the 557 

Laplace domain as 558 

 𝒙 (𝑠) = 𝑯 (𝑠)𝒇 (𝑠)  (23) 559 

where 𝑯 (𝑠) is the receptance matrix, 𝑠 is the Laplace variable, whilst 𝒙 (𝑠) and 𝒇 (𝑠) are the 560 

Laplace transforms of displacement and force vectors. 561 
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In the modal testing of the above system, if the measurement system is an ideal system but 562 

there is a time delay, 𝜏 , between the response and force signal measurement, then the 563 

measurement system FRF can be expressed as 𝑒 . The equation of forced vibration of the 564 

structure combined with the measurement system then becomes 565 

 𝒙 (𝑠) = 𝑯 (𝑠)𝑒 𝒇 (𝑠)  (24) 566 

where 𝒙 (𝑠) is the Laplace transform of the measured output of the structure combined with 567 

the measurement system. 568 

The measured receptance then becomes 569 

 𝑯 (𝑠) =
𝒙 ( )

𝒇 ( )
= 𝑯 (𝑠)𝑒   (25) 570 

which shows that the actual receptance of the structure may be obtained by correcting the 571 

measured receptance by 572 

 𝑯 (𝑠) = 𝑯 (𝑠)𝑒   (26) 573 
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