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ABSTRACT 20 

Clinical susceptibility breakpoints against Enterobacteriaceae and Pseudomonas 21 

aeruginosa for the ceftazidime-avibactam dosage regimen of 2000-500 mg every 8 22 

hours (q8h) by 2-h intravenous infusion (adjusted for renal function) have been 23 

established by the FDA, CLSI and EUCAST as susceptible, MIC ≤8 mg/L, and resistant, 24 

MIC >8 mg/L. The key supportive data from PK/PD analyses, in vitro surveillance 25 

including molecular understanding of relevant resistance mechanisms, and efficacy in 26 

regulatory clinical trials, are collated and analyzed here. 27 

Word count: 75  28 
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MANUSCRIPT 29 

Ceftazidime-avibactam is active in vitro against ESBL-, AmpC- and serine-30 

carbapenemase- (e.g. KPC-) producing Enterobacteriaceae and Pseudomonas 31 

aeruginosa, but not metallo β-lactamase (MBL) producers (1-6). Ceftazidime-avibactam 32 

clinical breakpoints of susceptible/resistant, MIC ≤8/>8 mg/L (tested with a fixed 33 

avibactam concentration of 4 mg/L (7)) have been assigned to both Enterobacteriaceae 34 

and P. aeruginosa by the United States (US) Food and Drug Administration (FDA), 35 

Clinical and Laboratory Standards Institute (CLSI), and European Committee on 36 

Antimicrobial Susceptibility Testing (EUCAST) for ceftazidime-avibactam 2000-500 mg 37 

q8h (8-10) based on three key data sources (11-13): probabilities of 38 

pharmacokinetic/pharmacodynamic (PK/PD) target attainment (PTA) analyses; 39 

multinational surveillance; and clinical trials. 40 

PK/PD targets were derived from non-clinical studies for avibactam, and from non-41 

clinical and clinical studies for ceftazidime. An established target for ceftazidime, used 42 

previously to support ceftazidime breakpoint determinations, is 50% fT>MIC per dosing 43 

interval (13-18). For avibactam to render bacteria functionally β-lactamase-negative 44 

(19), it must maintain a critical threshold concentration (CT) for 50% of the dosing 45 

interval (20). Conservative CT values for avibactam in combination with ceftazidime 46 

considered to correlate with clinical efficacy have been determined as 0.5 mg/L for up to 47 

3 log10 CFU reduction in an Enterobacteriaceae hollow-fiber model and 1 mg/L for 48 

bacteriostasis in a P. aeruginosa neutropenic mouse thigh infection model and 2 log10 49 

killing in a P. aeruginosa neutropenic mouse lung infection model (20-22). PTA 50 

analyses for both Enterobacteriaceae and P. aeruginosa used ‘joint’ PK/PD targets, 51 
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defined as simultaneous attainment of 50% fT>MIC for ceftazidime and 50% CT >1 mg/L 52 

for avibactam in each patient (20). 53 

Population PK models for ceftazidime and avibactam were developed using PK data 54 

from Phase I, II and III trials (23-25). As both drugs are excreted predominantly via the 55 

kidney, the primary covariate affecting exposure is creatinine clearance (CrCL), 56 

necessitating dosage adjustments for patients with CrCL <50 mL/min (8, 9). Exposure 57 

simulations for each compound in 5000 paired patients per indication (complicated intra-58 

abdominal infections [cIAI], complicated urinary tract infections [cUTI], and nosocomial 59 

pneumonia [NP] including ventilator-associated pneumonia [VAP]) and renal function 60 

group, incorporated Phase III patient covariate distributions appropriate to each patient 61 

population and between-subject variability; exposure for both ceftazidime and 62 

avibactam was simulated in the same (virtual) patients to evaluate joint PTA (25, 26). 63 

Representative PTA curves in cIAI patients (the most conservative indication for PTA) 64 

with normal renal function (Figures 1A and 1B) were overlaid with MIC distributions from 65 

the International Network for Optimal Resistance Monitoring (INFORM) surveillance 66 

program. The simulations yielded PTA >94% against bacteria with ceftazidime-67 

avibactam MICs ≤8 mg/L; lower PTA values were associated with MICs of 16 mg/L or 68 

≥32 mg/L. Sensitivity analyses for higher PK-PD targets produced PTAs >90% at joint 69 

exposure targets up to 60% fT>MIC (for ceftazidime-avibactam MICs ≤8 mg/L) and 60% 70 

CT>1 mg/L (Figure 1C). Ceftazidime-avibactam dosage adjustments for varying degrees 71 

of renal impairment also demonstrated high (>98%) PTA at MICs ≤8 mg/L (27). 72 

Individual predicted exposures in Phase III patients showed no clinically relevant impact 73 

on joint target attainment associated with disease severity, obesity, advanced age, or 74 
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CrCL >150 mL/min (25, 26). Hence, a susceptible breakpoint of ≤8 mg/L is consistent 75 

with PTA values yielded by the recommended dosage regimens.  76 

A key consideration in setting the clinical breakpoint for an antibacterial agent tested 77 

against a particular species or group of species is where the putative breakpoint is 78 

located on the MIC frequency distribution. The breakpoint should encompass the great 79 

majority of the MICs of the drug against contemporary isolates (11) and should not fall 80 

on a “peak” in the MIC distribution (13). The clinical breakpoint of ≤8 mg/L for 81 

ceftazidime-avibactam vs P. aeruginosa straightforwardly fit these criteria as follows. 82 

Against 7,062 P. aeruginosa isolates collected globally (ex-US) in INFORM 2012–14 83 

(Figure 1B), 92.0% were susceptible to ceftazidime-avibactam (MIC90 8 mg/L) (5); more 84 

recent analyses, including from the US, have reported equivalent susceptibility rates 85 

(28-34). Of note, 8 mg/L is at the upper end of the ceftazidime-avibactam MIC 86 

distribution, which (as stated above) is an important attribute for the clinical breakpoint 87 

(12, 35). 88 

In the case of Enterobacteriaceae, the analysis was not as straightforward, because the 89 

breakpoint of ≤8 mg/L supported by PK/PD target attainment analyses was higher than 90 

the MIC90 (0.5 mg/L) by several doubling dilutions. The global (excluding the US) 91 

INFORM program analyzed 34,062 Enterobacteriaceae isolates collected during 2012–92 

14 (Figure 1A); 99.5% were inhibited by ≤8 mg/L ceftazidime-avibactam (MIC90 0.5 93 

mg/L) (3), with equivalent susceptibility rates reported from recent analyses, including 94 

the US (29, 31-34, 36). The argument might be made therefore that a breakpoint of ≤0.5 95 

or ≤1 mg/L at the upper end of the mode of MICs would be suitable for the 96 

Enterobacteriaceae. However, the following analyses of ceftazidime-avibactam MICs 97 
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against genotypically- and phenotypically-characterized antibiotic-resistant sub-98 

populations among the Enterobacteriaceae countered that idea. Figure 1A includes 99 

meropenem-nonsusceptible isolates (3), and multi-drug-resistant (MDR: resistant to ≥3 100 

classes of antibacterial agent) isolates (6), including 816 MBL-negative meropenem-101 

nonsusceptible isolates. The 90th percentile ceftazidime-avibactam MIC for these 102 

isolates was 4 mg/L, with 97.7% inhibited by ≤8 mg/L (3), and the MIC distribution was 103 

right-shifted compared to the whole distribution, with an upper cut-off of 4–8 mg/L i.e., 104 

the susceptible breakpoint was at the upper end of, and did not divide, the MIC 105 

distribution against this critical phenotypically- and genotypically-defined sub-population. 106 

The 34,062 Enterobacteriaceae isolates (Figure 1A) also included 2,739 MDR Klebsiella 107 

pneumoniae and 82 MDR Klebsiella oxytoca. The ceftazidime-avibactam MIC was ≤2 108 

mg/L against 90% of these isolates, and ≤8 mg/L against 96.6% (6); again, the MIC 109 

distribution was right-shifted compared with the overall distribution, and the susceptible 110 

breakpoint was at the upper end of, but did not divide, that distribution. From these 111 

analyses, it is clear that a breakpoint of ≤8 mg/L is necessary to encompass important 112 

antibiotic resistant sub-populations such as carbapenem-resistant or MDR strains. 113 

Phenotypical/genotypical sub-population analyses of P. aeruginosa were less helpful 114 

than analyses of Enterobacteriaceae sub-populations, possibly because in 115 

approximately 30% of ceftazidime-non-susceptible P. aeruginosa the ceftazidime-116 

resistance was not β-lactamase-mediated, not being reversed by combination with 117 

avibactam (5). 118 
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Ceftazidime-avibactam MIC distributions against Enterobacteriaceae and P. aeruginosa 119 

isolates from clinical trials in cIAI, cUTI or NP patients (Figure 2) were consistent with 120 

global INFORM data, apart from a greater proportion of ceftazidime-avibactam-resistant 121 

P. aeruginosa, possibly because a relatively high proportion of trial patients were in 122 

Eastern Europe, where MBL-producing P. aeruginosa are comparatively common (37, 123 

38). Across the trials, clinical and microbiological response rates were generally 124 

comparable, and similar for ceftazidime-avibactam and comparator treatments. Per-125 

pathogen responses were generally similar across indications (39-44); against P. 126 

aeruginosa, clinical cure (but not favorable microbiological response) rates were notably 127 

lower for ceftazidime-avibactam vs meropenem in the NP trial (44). Among patients who 128 

received ceftazidime-avibactam, favorable microbiological response rates were 129 

generally high for infections by Enterobacteriaceae and more variable for P. aeruginosa 130 

with ceftazidime-avibactam MICs ≤8 mg/L, including ceftazidime non-susceptible 131 

isolates (Tables 1 and 2). However, consistent with other investigations (45, 46), 132 

response rates by MIC did not reveal any trends, possibly because few clinical trial 133 

isolates had ceftazidime-avibactam MICs >8 mg/L, and because MIC:outcome 134 

correlations may be complicated in cIAI through surgical intervention, and in cUTI 135 

because of the concentration of some drugs (including ceftazidime and avibactam) in 136 

urine. 137 

The low rate of clinical failures is a key limitation in interpreting the PK/PD targets used 138 

for PTA analyses; however, the overall high clinical/microbiological success rates are 139 

broadly consistent with the PK/PD analyses using joint target attainment criteria in 140 

supporting the assigned ceftazidime-avibactam susceptible breakpoint (≤8 mg/L) 141 
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against both Enterobacteriaceae and P. aeruginosa. Moreover, surveillance data 142 

confirm that the MIC cutoff of ≤8 mg/L separates ceftazidime-avibactam resistant MBL-143 

carrying isolates from those without known ceftazidime-avibactam resistance 144 

mechanisms (3, 47, 48). These breakpoints define ≥90% of Enterobacteriaceae and P. 145 

aeruginosa from contemporary global surveillance, including key antibiotic resistant sub-146 

populations, as susceptible to ceftazidime-avibactam (3-6, 28-34).  147 
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Table 1. Patients with favorable per-pathogen microbiological response† at test of 378 

cure pooled across one Phase II and five Phase III prospective clinical trials, 379 

analyzed by ceftazidime-avibactam MIC 380 

 Patients with favorable response, n/N (%) 

MIC, mg/L 
Citrobacter  

freundii 

Enterobacter 

cloacae 

Escherichia  

coli 

Klebsiella 

pneumoniae 

Pseudomonas 

aeruginosa 

≤0.03 1/1 (100.0) 1/1 (100.0) 66/73 (90.4) 6/6 (100.0) - 

0.06 8/8 (100.0) 2/2 (100.0) 234/257 (91.1) 28/32 (87.5) - 

0.12 8/8 (100.0) 10/12 (83.3) 163/191 (85.3) 50/58 (86.2) - 

0.25 4/6 (66.7) 17/19 (89.5) 53/59 (89.8) 19/22 (86.4) - 

0.5 5/6 (83.3) 3/5 (60.0) 16/17 (94.1) 28/35 (80.0) 2/2 (100.0) 

1 1/1 (100.0) 7/7 (100.0) 3/4 (75.0) 27/29 (93.1) 10/15 (66.7) 

2 - 1/1 (100.0) 8/9 (88.9) 6/6 (100.0) 34/51 (66.7) 

4 - 1/3 (33.3) 1/1 (100.0) 0/2 (0) 14/20 (70.0) 

8 - - 4/4 (100.0) - 10/15 (66.7) 

16 - - - - 1/3 (33.3) 

32 - - - - 3/3 (100.0) 

>32 - 0/1 (0) - 0/1 (0) 6/9 (66.7) 

† Patients could have >1 pathogen. Microbiological outcomes were categorized as eradication or presumed 381 

eradication of the baseline pathogen (i.e. favorable response); persistence or persistence with increasing MIC (i.e. 382 

unfavorable response); or indeterminate. 383 

Data pooled from the ceftazidime-avibactam arms of the microbiologically evaluable (ME) population of the Phase II 384 

trial in patients with cIAI (NCT00752219) (39) and the extended ME (eME) populations of the Phase III trials in 385 

patients with cIAI (RECLAIM 1&2; NCT01499290, NCT01500239, and RECLAIM 3; NCT01726023) (40, 43), cUTI 386 

(RECAPTURE 1&2; NCT01595438, NCT01599806) (41), cIAI or cUTI caused by ceftazidime non-susceptible 387 

pathogens (REPRISE; NCT01644643) (42) and NP including VAP (REPROVE; NCT01808092) (44). Intra-abdominal 388 

cultures require an invasive procedure, and were obtained only if clinically indicated; therefore, microbiological 389 
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responses for patients with cIAI were presumed based on clinical outcomes. n: number of favorable responses; N: 390 

total number of patients for whom MIC data were available. The dashed line shows the approved ceftazidime-391 

avibactam susceptible clinical breakpoint of MIC ≤8 mg/L applied to both Enterobacteriaceae and P. aeruginosa (8, 392 

9). 393 
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Table 2. Patients with favorable per-pathogen microbiological response† at test of 394 

cure for ceftazidime non-susceptible pathogens pooled across one Phase II and 395 

five Phase III prospective clinical trials, analyzed by ceftazidime-avibactam MIC 396 

 Patients with favorable response, n/N (%) 

MIC, mg/L 
Citrobacter 

 freundii 

Enterobacter 

cloacae 

Escherichia  

coli 

Klebsiella 

pneumoniae 

Pseudomonas 

aeruginosa 

≤0.03 - - 3/4 (75.0) 1/1 (100.0) - 

0.06 - - 8/8 (100.0) 0/1 (0.0) - 

0.12 1/1 (100.0) - 40/48 (83.3) 15/17 (88.2) - 

0.25 1/1 (100.0) 6/6 (100.0) 27/30 (90.0) 11/12 (91.7) - 

0.5 5/6 (83.3) 2/4 (50.0) 12/12 (100.0) 25/30 (83.3) - 

1 1/1 (100.0) 7/7 (100.0) 3/4 (75.0) 27/29 (93.1) - 

2 - 1/1 (100.0) 5/5 (100.0) 6/6 (100.0) - 

4 - 1/3 (33.3) 1/1 (100.0) 0/2 (0.0) 1/4 (25.0) 

8 - - 4/4 (100.0) - 7/9 (77.8) 

16 - - - - 1/3 (33.3) 

32 - - - - 3/3 (100.0) 

>32 - 0/1 (0.0) - 0/1 (0.0) 6/9 (66.7) 

† Patients could have >1 pathogen. Microbiological outcomes were categorized as eradication or presumed 397 

eradication of the baseline pathogen (i.e. favorable response); persistence or persistence with increasing MIC (i.e. 398 

unfavorable response); or indeterminate. 399 

Data pooled from the ceftazidime-avibactam arms of the microbiologically evaluable (ME) population of the Phase II 400 

trial in patients with cIAI (NCT00752219) (39) and the extended ME (eME) populations of the Phase III trials in 401 

patients with cIAI (RECLAIM 1&2; NCT01499290, NCT01500239, and RECLAIM 3; NCT01726023) (40, 43), cUTI 402 

(RECAPTURE 1&2; NCT01595438, NCT01599806) (41), cIAI or cUTI caused by ceftazidime non-susceptible 403 

pathogens (REPRISE; NCT01644643) (42) and NP including VAP (REPROVE; NCT01808092) (44). Intra-abdominal 404 

cultures require an invasive procedure, and were obtained only if clinically indicated; therefore, microbiological 405 
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responses for patients with cIAI were presumed based on clinical outcomes. n: number of favorable responses; N: 406 

total number of patients for whom MIC data were available. The dashed line shows the approved ceftazidime-407 

avibactam susceptible clinical breakpoint of MIC ≤8 mg/L applied to both Enterobacteriaceae and P. aeruginosa (8, 408 

9).  409 
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FIGURE LEGENDS  410 

Figure 1. Joint PTA† for patients with cIAI and normal renal function receiving 411 

ceftazidime-avibactam 2000-500 mg q8h plotted as a function of ceftazidime-412 

avibactam MIC (A) overlaid with the ceftazidime-avibactam MIC distributions 413 

against Enterobacteriaceae (n=34,062) from the INFORM global surveillance 414 

program, 2012–2014; (B) overlaid with the ceftazidime-avibactam MIC 415 

distributions against Pseudomonas aeruginosa (n=7,062) from the INFORM global 416 

surveillance program, 2012–2014; (C) sensitivity analysis of PTA at different joint 417 

PK-PD targets 418 

† Defined as simultaneous attainment of 50% fT>MIC of ceftazidime-avibactam for ceftazidime and 50% fT>CT of 1 419 

mg/L for avibactam, with both targets having to be achieved for a simulated patient to be categorized as achieving the 420 

joint target. Ceftazidime-avibactam MICs were evaluated with avibactam tested at a fixed concentration of 4 mg/L. 421 

PTA was evaluated for ceftazidime-avibactam MIC values of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 mg/L. 422 

The values above the bars are the numbers of isolates tested at each MIC. The arrows show the position of the 423 

approved ceftazidime-avibactam susceptible clinical breakpoint of MIC ≤8 mg/L (8, 9). This set of isolates of 424 

Enterobacteriaceae was also the source of analyses of phenotypically- and genotypically-defined resistant sub-425 

populations (3, 4, 6) as discussed in the text. The isolates of P. aeruginosa have been presented and analyzed in 426 

detail elsewhere (5).  427 
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Figure 2. Distributions of ceftazidime-avibactam MICs† against (A) 428 

Enterobacteriaceae (n=2615) and (B) Pseudomonas aeruginosa (n=276) across 429 

one Phase II and five Phase III prospective clinical trials 430 

† The ranges of MICs tested were up to 32 mg/L in the Phase II trial, and up to 256 mg/L in the Phase III trials. The 431 

upper limit plotted here was >128 mg/L, for comparability with Figure 1. Three isolates of Enterobacteriaceae and one 432 

isolate of P. aeruginosa from the Phase II trial tested with ceftazidime-avibactam MIC >32 mg/L and are excluded 433 

from these frequency distributions. 434 

Data pooled from the microbiological modified intent-to-treat (mMITT) populations of the following trials: Phase II cIAI 435 

(NCT00752219) (39), Phase III cIAI (RECLAIM 1&2; NCT01499290, NCT01500239, and RECLAIM 3; 436 

NCT01726023) (40, 43), Phase III cUTI (RECAPTURE 1&2; NCT01595438, NCT01599806) (41), Phase III cIAI and 437 

cUTI caused by ceftazidime non-susceptible pathogens (REPRISE; NCT01644643) (42) and NP including VAP 438 

(REPROVE; NCT01808092) (44). Ceftazidime-avibactam MICs were evaluated with avibactam tested at a fixed 439 

concentration of 4 mg/L. The values above the bars are the numbers of isolates tested at each MIC. The arrows show 440 

the position of the approved ceftazidime-avibactam susceptible clinical breakpoint of MIC ≤8 mg/L (8, 9). 441 
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