Pore-scale behaviors of the Darcy flow in static and dynamic porous media
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Lattice-Boltzmann numerical simulations were conducted to explore the pore-scale flow behavior
inside modelled porous media over the Darcy regime. We used static (fixed) and dynamic (rotating)
particles to form the porous media. The pore flow behavior (tortuosity) was found to be constant
in the static medium within the Darcy range. However, the study revealed distinctively different
flow structures in the dynamic case depending on the macroscopic Darcy flow rate and the level
of internal energy imposed to the system (via the angular velocity of particles). With small Darcy
flow rates, tortuous flow develops with vortices occupying a large portion of the pore space but
contributing little to the net flow. The formation of the vortices is linked to spatial fluctuations of
local pore fluid pressure. As the Darcy flow rate (and hence the global fluid pressure gradient across
the medium) increases, the effect of local pressure fluctuations diminishes and the flow becomes more
channelized. Despite the large variations of the pore-scale flow characteristics in the dynamic porous
media, the macroscopic flow satisfies Darcy’s law with an invariant permeability. To our knowledge,
it is the first time that the applicability of Darcy’s law is proved for an internally disturbed flow
through porous media. The results raise questions concerning the generality of the models describing
the Darcy flow as being channelized with constant (structure-dependent) tortuosity and how the

internal sources of energy imposed to the porous media flow are considered.

I. INTRODUCTION

Fluid flow in porous media has been studied exten-
sively across a wide range of disciplines, from mechan-
ical, civil, environmental, chemical and petroleum engi-
neering to agricultural, food, material and biomedical sci-
ence [1, 2]. Numerous natural and artificial systems are
controlled or affected by flow in various porous media:
for example, seepage flow in soil, multi-phase flow of oil-
gas-water in oil reservoirs, contaminant transport within
groundwater and solute movement through biological tis-
sues [3-7] as well as ion transport in fuel cells, and fluid
flow in building materials, tablets, textiles, foams, papers
and filters [8-10]. The well-known Darcy’s law presents a
general method for quantifying the flow in porous media
under conditions of small Reynolds numbers (Re), which
relates linearly the macroscopic flow velocity, V to the
fluid pressure gradient across the medium, VP,
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with x and p being permeability of the porous medium
and dynamic viscosity of the fluid, respectively (note that
in equation 1, the effect of gravity is not included [11]).
This law, however, provides no insight into the micro-
scale (pore-scale) flow behavior, which may affect signif-
icantly solute and heat transport processes in the porous
medium. Several permeability models have been devel-
oped to account for the influence of the porous medium’s
properties. The classical Kozeny-Carman (KC) equation
[12-15] is the most widely used one as given below
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where c is the KC constant (¢ = ¢/T? with ¢’ being a con-
stant and T', the flow tortuosity), ¢ is medium’s porosity,
and S is specific surface area, equal to the ratio of the
total interstitial surface area to the volume of solids [11].
The KC equation was derived from the consideration of
a simple capillary model, which translates the complex
structure of porous media to a set of capillary tubes with
a certain length (equal to tortuosity times as the direct
length of the medium). This equation implies a constant
flow tortuosity for a given porous medium (of constant ¢



and S) undergoing flow in the Darcy regime (with con-
stant k). Consequently, the current conceptualizations
dealing with the flow behavior at the pore-scale have as-
sumed the invariant flow patterns (hence the constant
tortuosity), when Darcy’s law applies. Experimental [16],
analytical [17], theoretical [18], and numerical [19] mod-
els have been developed to relate the tortuosity of flow
to the porosity of the porous media (see the review in
[20] and [21]), but not to the flow rate. However, exper-
imental investigations using nuclear magnetic resonance
velocimetry [22-31] and optical imaging techniques [32—-
38] have demonstrated extensive variations of pore-scale
fluid velocity in porous media.

As important features affecting the transport proper-
ties of porous media, dead-end and closed pore structures
have been investigated for several decades [39, 40]. More-
over, stagnant zones in porous systems, such as eddies
or low-speed regions among the preferential flow paths
have been numerically observed, either at low or high
Reynold’s numbers [41-43]. However, the results have
always been linked to the medium’s structure. Possi-
ble variations of these stagnant zones (shape and loca-
tion) and local flow patterns have not been thoroughly
explored.

This study aims to examine systematically the flow
structures at the pore scale over the Darcy regime with
a focus on the flow tortuosity. A static porous medium
composed of fixed spherical particles (with no-slip bound-
aries) is employed. We also investigate the flow behavior
in dynamic porous media. In this case, we are interested
in active porous structures in which the porosity remains
constant (e.g. exothermic porous media [44]), eliminat-
ing the effects of porosity variation on the permeability.
Such an active condition is obtained by using the parti-
cles constantly spinning with different angular velocities
around fixed axes.

Fluid flow due to rotating spheres is of intrinsic interest
in fluid dynamics, meteorology, astrophysics, and many
other fields. It has received much attention theoretically,
numerically and experimentally [45-47]. Here, we inves-
tigate pore fluid structures in a pack of rotating spheres
that also undergoes a general flow crossing the medium.
Rotation of spheres may appear in certain conditions, for
example under Quincke effects [48]. The rotating sphere
pack is generally considered as an example of dynamic
media. Fluid flow in dynamic porous media could have
prospective applications in physics and industry, for ex-
ample, dynamic contaminant mobilization in soils [49]
or groundwater flow through dynamically loaded sites,
e.g. via vehicles, piling construction or machinery foun-
dations.

Apart from that, we examine the validity of Darcy’s
law where the fluid is subject to internal sources of en-
ergy from the medium (as a disturbance energy), and
yet the net flow is driven by the macroscopic pressure
gradient (or body force). To the best knowledge of the
authors, it is for the first time that the macroscopic lin-
earity as per Darcy’s law is tested in presence of highly

variable microscopic flow behavior. The findings have im-
plications for the ‘universality’ of the concept of constant
(structure-dependent) flow tortuosity within the Darcy
regime, which is the implicit assumption lying at the
root of the models that describe flow (and transport) in
porous media. We are interested in the portion of pore
space that contributes to the flow of the passing-through
fluid (the Darcy flux). The mechanism underlying the
pore-scale flow behavior is also investigated.

II. METHODOLOGY

We conducted numerical simulations using a computer
model based on the Lattice-Boltzmann Method (LBM)
and the Discrete Element Method (DEM) [50]. The sim-
ulated porous medium was made of 500 spherical parti-
cles, each of 16 lattice units (I.u) in diameter, randomly
deposited into a box with a cross-section of 182 x 182
l.u. In the LBM, the variables are defined in lattice
units and time steps but can be converted to physical
units based on dimension-less numbers, e.g. Reynold’s
number [51]. The model dimensions and the particle di-
ameter are convertible to physical units of 9mm for the
sphere diameter and 10 x 10c¢m for the cross-section of
the box domain with water being the fluid. The packing
of particles was obtained with the simulation of a natural
deposition through a free fall process using the discrete
element method, resulting in a medium with the poros-
ity of ¢ = 0.42. This medium was then imported into
the LBM model where the fluid flow through the pore
space was simulated. When the spheres settle into the
box, they spin (with different angular velocities) in their
location for some time depending on the surface friction
specified. To generate static porous media, the angular
velocities of the spheres were set to zero after deposi-
tion was completed (zero linear velocities). In contrast,
the spheres in dynamic porous media were fixed in their
locations (with zero linear velocity), but kept rotating
at constant angular velocities caused by the deposition
process. In the dynamic porous medium, each sphere
is spinning at a different, but constant angular velocity
over time (Fig. 1(a)), around a fixed axis (with a different
orientation from others: Fig. 1(b)). While the angular
velocity distribution depicted in Fig. 1(a) and 1(b) is
referred to as the wy dynamic case, other dynamic con-
ditions were also simulated by multiplying the angular
velocity of each sphere by a constant factor (0.5 and 2),
but maintaining the same axes of rotations.

The process of particle deposition by which the initial
rotations of the spheres are induced is a natural example
that makes preferential direction of rotations: the par-
ticles in contact with others would rotate in directions
and speeds correlated by the relative movement of oth-
ers. The rotation of particles in our model is then not
a random, but a correlated distribution. By maintaining
the rotations in dynamic media, we suggest that a natu-
ral condition in which preferential movements of particles



are induced (e.g. rearrangement of packings by continu-
ous shear strains) can be mimicked.

A constant velocity and pressure boundary condition
[52, 53] were set at the bottom and top of the model
domain, respectively, to simulate a constant discharge of
fluid through the medium with a constant fluid pressure
maintained at the top boundary. Periodic boundary con-
ditions (PBC) were implemented for the lateral bound-
aries representing an infinite domain in the lateral di-
rections. Simulations were conducted with different dis-
charge rates to cover the whole Darcy regime (with the
post-Darcy conditions also simulated). Each simulation
was run until the steady state in flow characteristics (e.g.
distribution of velocity and fluid pressure) was reached
(normally after 3 x 10? simulation time steps).

More simulations were also conducted to analyze the
sensitivity of the results to the number of spheres in the
porous medium (i.e., porous medium dimensions) and the
number of lattices per sphere diameter (tested for up to
70 cell/diameter), as well as the lateral boundary condi-
tions (PBC vs no-slip walls). The results reported were
found to be unaffected by these factors. For instance,
simulations with 8400 particles, with a medium of 2003
L.u (PBC for lateral boundaries and velocity/density BC
for inlet/outlet boundaries) confirmed the consistency of
the results (Fig. 2).

III. FLOW REGIME IDENTIFICATION (V — VP
RELATIONSHIP)

Based on the simulated (linear) relationship between
the pressure gradient across the medium (VP) and
macroscopic flow velocity (V), we determined the Darcy
regime (Fig. 3) given by Reynolds number (Re) < 1.8,
where Re is defined as

pVd,
1

Re = (3)

with p and d, being fluid density and particle diameter,
respectively. Within this regime, Darcy’s law was indeed
found to apply with a constant permeability for the sim-
ulated porous media (both static and dynamic).

The straight line fitted to the V' versus VP relation-
ship for the static porous media passes the origin. How-
ever, fitted V' versus VP lines for dynamic porous media
exhibit intercepts on the positive part of the VP axis.
With a higher mean angular velocity for the particles
(Jw]), the value of the intercept increases. This behavior
can be explained by considering the resulting flow in-
duced by the rotation of spheres. Each spinning sphere
can produce a flow around its surface from the two poles
(with respect to the axis of rotation) towards the equator,
and then radially away from it [45]. The resulting pore
fluid flow structures would appear in form of vortices.
Resulted from the integration of flow generated by indi-
vidual spheres, a net flow is induced outward from the
medium. The average velocity magnitude of the outflow

is presumably proportional to the mean of the tangential
velocity of particles v+ = |w|r (with r being particle ra-
dius). The mean of the angular velocities for the dynamic
base case is [wp| = 0.026 rad/sec.

To examine the generation of a net outflow from the
system of dynamic spheres, the pack of rotating spheres
with the PBC for all boundaries (no velocity boundary
conditions) was analysed (see Fig. 1). In this case, the
flow is only induced by the rotating spheres. As an engine
made of rotating spheres with different angular velocities
around different axes, the system generates a net flow ex-
iting the medium with longitudinal velocity component
in the direction of —z (negative longitudinal). This also
results in a gradient of pressure. When we assign the
macroscopic flow with velocity boundary conditions in
+z direction (in further simulations for Darcy flow in-
vestigation), the net flow overcomes the background flow
generated by the rotating sphere system. This would in-
duce a pressure gradient which is the sum of the gradient
required to overcome the backward flow and the gradient
due to the main flow. With a higher angular velocity of
spheres, the net outflow (in the —z direction due to the
rotating spheres) is larger. This induces a larger back-
ground hydraulic gradient across the medium. Thus, for
the net macroscopic flow (developed by outer boundary
conditions in +z), a larger pressure intercept is observed
in the V' versus VP graph (see Fig. 3).

To better understand the mechanism involved in cre-
ating a net flow out of the system of rotating spheres,
we set up a simple model (Fig. 4). While a rotating
sphere produces a symmetrical recirculation zone around
it with no net flow in any direction, the symmetry break-
ing could cause the non-zero net flow in a direction de-
pending on the obstacle location (and the free void space
available). A single fixed (non-rotating) sphere next to
the same rotating sphere (Fig. 4(b)) accommodates the
asymmetric fluid movement that result in an outflow.
Two spheres both rotating with the same speed may also
produce zero or non-zero net flow depending on the ori-
entations of the rotations. For the same orientation of ro-
tations, the fluid recirculates with no net outflow (4(c)).
With opposite orientations of rotation, net flow is pro-
duced (4(d)). A similar phenomenon could happen for
the medium studied here as the dynamic porous medium
which is comprised of spheres rotating individually with
various speeds in different orientations. In a packing with
the pore space randomly variable, the voids surrounding
the particles are not symmetrical, leading to preferential
flow directions depending on the relative rotation veloc-
ities and the void space available. Spheres may play an
obstacle role for neighbors depending on their relative ro-
tations. The complex integration of fluid recirculations
and preferential flow streams within the pores provides a
net flow out of the medium in a certain direction.

As indicated by Fig. 1(e), the entirely circulating fluid
in pore space leads to similar distributions for velocity
components in different directions. However, a small net
flow is generated in a certain direction out of the medium
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FIG. 1.

Dynamic porous media with periodic boundary conditions. a) PDF of the magnitudes of angular velocities
(lw| (rad/sec)) imposed to the spheres to produce dynamic porous media (resulting from the natural deposition process
as described in section II). Each particle of such media is rotating at a different but constant w = (ws,wy,w-) around a fixed
axis also different in orientation from others. The mean of rotation speed magnitudes is equal to || = 0.026 rad/sec. b) The
orientation of rotations displayed as angular velocity components. c) Streamlines for the dynamic porous medium. Here the
boundary conditions for all sides of the model are periodic (no pressure or velocity boundary conditions), thus the resulting flow
(downward) is caused by the rotating spheres only. d) The velocity vectors shown on an internal cross-section of this model,
indicating the main direction of flow (—z, negative longitudinal) resulted from rotating sphere pack. e) Pore fluid velocity
distributions of rotating sphere pack for longitudinal (V) and transverse (V) velocities and velocity magnitudes (|V1]). ) The
macroscopic velocity of outflow caused by rotating sphere system (the component in —z direction) versus |w|r where r is the
sphere radius. The equation shows a linear fitting. The models of rotating spheres are subsequently exposed to additional

velocity (pressure) boundary conditions to examine a net Darcy flow (in +z direction) passing through the dynamic porous
medium.



FIG. 2. Monodispersed particle packing achieved by free fall
deposition of 8400 spheres into a box using DEM. The resulted
porous medium is then used for LBM simulations.

as discussed earlier. The net flow rate is shown to be more
than two orders of magnitudes smaller than the average
of fluid recirculation velocity, i.e., |@|r (see Fig. 1(f)).

The intercept on the VP axis discussed here is sim-
ilar to what is well reported as the initial (minimum)
pressure gradient (VP,) required for the Darcy flow in
porous media [11], that is, Darcy’s law only applies for
the pressure gradients greater than VP, with the new
form of V = —£(VP—VF). Although the static porous

media simulation (no-slip boundary condition for solids)
provides no evidence of such an initial pressure gradient,
with dynamic conditions simulated here, the initial pres-
sure gradient is required to generate the net flow through
the media. The mechanisms of the initial pressure gra-
dient in nature (the electrical streaming potential, non-
Newtonian viscosity, or immobile water layers [54]) and
the behavior reported here are different. However, the
simulations can be a step towards better understanding
of the phenomenon.

The permeability of the porous medium is found to be
constant in all conditions (static or dynamic), equal to
2.78 x 10~7 m?2. This value is comparable to the per-
meability of well-sorted gravels. The medium is made of
spheres with a diameter of d = 9mm. Using the Kozeny-
Carman equation (equation 2) with ¢ = 0.42, S =% (as
for spheres), T' = 1.168 (as calculated in our simulations),
and ¢’ = 2.5 as suggested by [14], the permeability esti-
mation would be equal to 1.45 x 10~"m? which is a close
estimation to that of simulations.

The upper end of the V — VP graph deviates from the
linear regime (for Re Z 1.8). As shown in Fig. 3: top
right inset, the non-Darcy behavior can be fitted with a
Forchheimer equation in the form of [55]:

_ My Py
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with k being the permeability of the medium obtained
from the linear regime, and Cy being the form coefficient,
taken to be 0.9 here.

IV. STATIC POROUS MEDIA
A. Pore scale flow variations

Pore fluid velocities obtained from the numerical model
were found to vary largely in the longitudinal (L) and
transverse (1') direction as shown in Fig. 5. As expected,
the transverse velocity distributions are symmetric about
zero indicating zero mean velocity in the transverse di-
rection (Fig. 5(b)). The longitudinal (L-)velocities are
mostly distributed in the positive range with a small neg-
ative tail (Fig. 5(a)). Further comparisons between our
numerical results and experimental and numerical data
from the literature are presented in Fig 5, where a satis-
fying agreement is observed.

B. Streamlines

Streamlines were computed using the numerical inte-
gration [57] on the 3D flow fields obtained from simula-
tions. As compared in Fig. 6, streamlines in static porous
media with different Darcy flow rates show channelized
flow mostly directed along the general flow direction. Al-
terations in the shape and direction of streamlines asso-
ciated with different flow rates within the Darcy regime
are negligible.

C. Tortuosity

The flow tortuosity can be calculated based on the flow
velocities [58]:

_ v
T_ZUL (5)

where v and vy, denote the pore fluid velocity and its
component in the direction of macroscopic flow (longi-
tudinal direction), respectively. The method has been
used in several studies to investigate the flow tortuosity
(e.g. 19, 59, 60]). We used equation 5 to calculate the
tortuosity of the flow in porous media. A cubic section
from the middle of the porous media with all sides at a
distance from the boundaries was selected as the repre-
sentative volume for the velocity fields. We used equation
5 to calculate the tortuosity of the flow within this cu-
bic section. The results are shown in Fig. 7 where a
constant tortuosity (' = 1.168) is observed within the
Darcy range. With the flow rate exceeding the upper
limit of the Darcy range, tortuosity slightly decreases up
to T = 1.156 for Re = 18. The decrease in tortuosity can
be attributed to the effects of transition to the non-Darcy
regime as also indicated by some researchers (see [61]).
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FIG. 3. Pressure gradient versus macroscopic flow velocity for static and dynamic porous media, with the Darcy regime
indicated by the linear range, corresponding to Re < 1.8 (the equations on the figure show the fitting to the Darcy range of the
curves). |w| is the mean angular velocity of the spheres in the dynamic porous media. The permeability of the media within
the Darcy regime is found to be the same (k = 2.78 x 1077 m2) for all cases. The top left inset shows a close-up near the origin
and the top right inset displays the other end of the graph on a log scale, as the transition to the post-Darcy regime. It also

shows the Forchheimer fitting to this part of the curve.

V. DYNAMIC POROUS MEDIA

In this section, we use the dynamic sphere pack (as
described in section IT) to conduct the flow simulations
through the dynamic porous media. The discussion fo-
cuses on the case of wy unless mentioned otherwise.

A. Pore scale flow variations

PDFs of normalized transverse (Fig. 8(a)) and longi-
tudinal (Fig. 8(b)) velocities and velocity magnitudes
(Fig. 8(c)) all show wider distributions in the lower
Darcy range with smaller macroscopic flow rates (Re).
In this range, the counter-currents (V7 < 0) are also
more profound. The normalized longitudinal flow ve-
locities through the pores display different patterns of
flow activities (Fig. 9). Under high macroscopic flow
rates, active flow zones appear to be well connected and
channelized in the Darcy flow direction (Fig. 9(b)). In
contrast, flow streams under low flow rates are more tor-
tuous with local vortices, separating the pore flow zones
into streams directing towards or opposite the main flow
direction (counter-currents) (Fig. 9(a)).

With the higher flow rates, the pore flow velocity dis-
tributions coincide with those of static medium. This
is because the local flow rotational velocities due to dy-
namic effects are not relatively strong enough to disturb
the main flow streams (see section V F for the associated

threshold). This is indicated by the decrease of the tor-
tuosity to that of the static conditions (discussed later).

B. Streamlines

The results show different pore-scale flow patterns de-
pending on the macroscopic flow rate or Re (Fig. 10).
At low macroscopic flow rates, the fluid moves through
very tortuous streamlines, many of which do not even end
at the exit boundary and instead form circulation cells
inside the medium (Fig. 10(a)). As the macroscopic
flow rate increases, the streamlines become straighter,
like those in the static media.

Circulating streamlines under the condition of low
macroscopic flow rates in dynamic porous media appear
in the form of vortices. The nature of these vortices which
are formed in an ideally laminar flow (Darcy regime)
[62, 63] is different from that of turbulent eddies. Consid-
ering that the permeability of the medium was found the
same in all of static and dynamic cases investigated here,
we further examine the mechanism of the flow through
dynamic porous media with identification of the conduct-
ing flow channels and recirculating fluid capsules (no net
flow).
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FIG. 4. Simple models to explore the mechanism of generation of net flow out of the rotating sphere models. The model

boundaries are all periodic.

a) A single rotating sphere (|w]

= 1.0 rad/sec) produces no net flow with the symmetrical

recirculation around the rotating sphere. b) The same rotating sphere when next to a fixed sphere generates a net flow out
of the system due to the symmetry breaking for circulating fluid. ¢) Two adjacent spheres when rotating with the same
orientations produce only local rotational flow, but no net flow. d) Two spheres rotating with opposite orientations generate
a net outflow. The combination of differently rotating spheres (different in speed and orientation of rotation) in our porous
medium (Fig. 1) could produce complex fluid structures resulting in a net outflow in a similar way as presented here.

C. Vorticity

We computed the vorticity based on the simulated flow
velocity, i.e., curl of the velocity vector. The variation of
the curl magnitude within the pore space was investi-
gated. For the purpose of comparing flow structures of
different Darcy flow rates, we normalized the curl mag-
nitude by the macroscopic flow velocity. That is, the
curl was first calculated over normalised velocity fields

and then divided by local normalised velocity magnitude,

VX (=)l
1.€., T
magnitudes with converged gradients can be identified
as vortices and linked to circulating streamlines under
the condition of low macroscopic flow rates in dynamic
porous media. While some vortices appear to circulate
solid particles, smaller vortices also exist entirely within
the pore space. The vortex flow structures, however, dis-

appear in cases with larger macroscopic flow rates (Re)

As shown in Fig. 10(a), zones of curl

within the Darcy regime (Fig. 10(b)).

Combining the results of streamline and curl magni-
tude, we determined a critical value of the normalised
curl magnitude (£29) to separate the vortical zone (pore
space occupied by vortices) and the passing-through flow
zone (pore space with streamlines passing through the
whole medium). When the macroscopic flow rate is low
(Re — 0), the vortical zone caused by spinning particles
dominates but such dominance diminishes as the macro-
scopic flow rate increases (Re g 1) and the whole pore
space contributes to the passing-through flow toward the
upper end of the Darcy regime (Re ~ 1.8) (Fig. 13(c)).
The volume of pore space contributing to the passing
through flow (denoted as net flow streams in Fig. 13(c))
increases with the Darcy flow rate reaching the maximum
value (entire pores) at high flow rates.

The generation of the vortices can be characterized by
the value of % (see Fig. 11). For values less than one,



1.2 1.8
o Datta et al., Re =107° —3
1 o | o Lebon et al., 1996, Re = 0.9 161 o Datta, ctal, Re 210 el |
L 3 - v Beguin et al., , Re = 0.
Begum' et al., 2013, Re = 0.63 Cenedese and Viotti, 1996,
x Moroni and Cushman, 2001, Re = 0.1 1.4 Re < 0.05
a Kutsovsky et al., 1996, Re = 1.4 Present simulations, Re < 1
08 r Present simulations, Re < 1 12 1
g 06 | e || Tr ]
- T Re<1
A - = Lebon ct al, 1996 o8t i
Maier et al., 1998, .
i
0.4t 0.6 | i
04 - ]
0.2 + 5
ql 02 L 4
bl 0
= =
-4 -2 0 2 4 6 ” > 4
Vi) <V > Vr/ < Vi >
(a) (b)
FIG. 5. [Static porous media] Probability density functions of the normalized longitudinal, V; (a) and transverse, Vr (b)

components of velocity obtained from simulations, compared to experimental data, and also numerical simulation results (a:

inset) from the literature [56].

) 0

M / // /N\

w(\\\/// M\\ \\/// \

x@*%@@l@

(a)Re = 0.09 (b)Re =1.8
FIG. 6. [Static porous media] Flow streamlines for (a) low
and (b) high flow rates within the Darcy range.

1.17
L R I I R S R 2 %
E3
51165 ¢ ]
S
(@]
= .
2 1.16 ]
1.155 L ‘ ‘ —
1072 107" 10° 10"

FIG. 7. [Static porous media] Variation of the flow tortuosity
(equation 5) with flow rate.

the main flow rate is weaker than the rotational streams,
resulting in vortices to evolve. As this ratio increases,
the main flow gradually overwhelms the rotational zones,
making the vortices to progressively shrink and transform
to channelized flow streams for % > 1.

D. Tortuosity
1. Tortuosity calculated using streamlines

The results presented above for dynamic porous media
demonstrated large variations of pore-scale flow behav-
ior with different characteristics over the same macro-
scopic Darcy flow regime (with invariant permeability).
To quantify such variations, we computed flow tortuos-
ity, a quantity often treated as a function of only poros-
ity in porous media flow studies [19, 59, 64-69]. With
the streamlines already computed, the tortuosity of the
streamlines can be calculated as the ratio of [/L where [
is the actual length of the streamline and L is its direct
length in the macroscopic flow direction. The PDF of
the tortuosity values calculated for all individual stream-
lines (Fig. 12) indicate a highly variable behavior of the
flow in dynamic porous media: at low flow rates, stream-
lines have a wide range of tortuosities including a portion
of highly tortuous streamlines. At high flow rates, the
tortuosity values span a narrow range, mostly less than
2. In all cases, there are a number of streamlines with
small tortuosities (T < 2), which are the passing through
streamlines, but their proportions to all streamlines vary
largely with the Darcy flow rate.

The average of the flow tortuosity was also first cal-
culated directly from all the streamlines, i.e., the ratio
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velocity magnitudes (c) obtained from numerical simulations (all within the Darcy range). Under a lower Darcy flow rate, all
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FIG. 9. [Dynamic porous media] Normalised longitudinal velocity ( <VL>) in a cross section at the middle of the 3D model,
for a) Re = 0.025 (%~ = 0.024) and b) Re = 2 (% = 1.9). The color scale is adjusted so that the normalised velocities
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negative longitudinal velocities (counter-currents). Samll zones at the middle indicated with squares on left are magnified at

right panels, also showing the streamlines. The macroscopic Darcy flow direction is upwards.
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FIG. 10. [Dynamic porous media] Flow streamlines shown in 3D (left) and in 2D (middle) at a vertical section of the modelled
porous medium for a low (a) and high (b) flow rate both within the Darcy range. A single pore zone from the selected section
is enlarged at the right hand side with color images showing the normalised vorticity.

of the sum of the streamlines’ actual lengths (> 1;) to
the sum of their length in the macroscopic flow direction
(>3- L;). Given that some streamlines belong to vorti-
cal regions with no share in the net flow, this method
provides a tortuosity value associated with all pore fluid
movements, regardless of contributions to the net flow. A
decreasing trend in the calculated tortuosity from large
values in the order of 102 at low Darcy flow rates, to small
values less than 2 at the upper limit of the Darcy range
is observed (Fig. 13(b): all streamlines). While this re-
flects the changes of pore fluid flow structures over the
Darcy regime, the calculated tortuosity cannot be linked
directly to the macroscopic passing-through Darcy flow.
Therefore, we re-calculated the tortuosity based on only
passing-through streamlines, those that span the medium
from the bottom (net flow entrance) to top (net flow exit)
boundary (Fig. 13(b): complete streamlines). Another
criterion was also applied to select additional streamlines
that are likely to belong to the passing-through group
but do not appear to exit the medium. The criterion is
that streamlines whose individual tortuosity is less than
4 with an ending point located at the highest elevation of
the streamline path are also passing-through streamlines

(Fig. 13(b): selected streamlines). The threshold of 4
was chosen according to the outcomes of other methods
explained below (i.e., T1), which show that the passing-
through flow has a maximum tortuosity less than this

value. A sensitivity analysis confirmed the rationale of
this threshold.

2. Tortuosity calculated over velocity fields

While being popular as a preferred method to calculate
the tortuosity, equation 5 has some limitations [19] that
clearly exist when applied to complex flows as encoun-
tered here. Thus modifications are needed to exclude the
effects of counter-currents and circulations that make no
contribution to the macroscopic flow through the whole
porous medium. The following modified tortuosity equa-
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tions are introduced:

dw

T = (6)
ZUL(’UL>0)

T, = ZU(UL>0) (7)
> VL (v, >0)

Ty = ZU(Q<QO)/\(1}L>O) (8)
> VL (Q<Q0)A(vr, >0)

with the parameters defined as follows: vr,(,, >0y are the
longitudinal-component velocities for those velocity vec-
tors with positive L-components (directing in the macro-
scopic flow direction, i.e., +L), V(v >0) are the veloc-
ities with positive L-components, vq<o)a(w,>0) and
VL(Q<Qo)A(v,>0) are velocities and L-component veloc-
ities for those vectors with positive L-components and
the curl magnitudes less than critical value of €y. These
modified equations (Fig. 13(b)) gave similar results
to those calculated based on passing-through stream-
lines. In summary, the calculated tortuosity based on



all streamlines for the dynamic porous medium varies
by two orders of magnitude over the Darcy regime, con-
sistent with the large changes of pore-scale flow struc-
tures. With the vortical zone excluded, the tortuosity of
the conducting channels given consistently by different
methods remains variable but to a much less extent (by
a factor of 2).

E. Pressure fluctuation

We also analysed local pore fluid pressure fluctuations
(spatial variations) relative to the global pressure drop
across the medium. A dimensionless number is intro-
duced, i.e.,

Mean of local fluid pressure fluctuations
Specific length (9)
Global pressure gradient

M =

For the mean of local fluid pressure fluctuations, the stan-
dard deviation of fluid pressure, op is evaluated at the
lower boundary of the porous medium, while the specific
length is chosen as the particle diameter. Over the Darcy
regime, this dimensionless number was found to vary in
a similar manner to that of the tortuosity (Fig. 13(d)).
We suggest that the similarity is linked to the mechanism
of the pore-scale flow behavior. Local pressure fluctua-
tions can potentially induce vortical flow (or be caused
by such a flow), depending on the intensity of the net
(global) flow. Large local pressure fluctuations under a
weak net flow condition (small global pressure drop) as
indicated by a large M number tend to produce vortical,
tortuous pore-scale flow structures.

F. General range of tortuosity variation

With different speeds of rotations for the spheres in
the porous medium, the velocity of disturbed (vortical)
pore fluid would change. We examine the effects of rota-
tion speeds by changing the angular velocity of spheres
(nwg). The results show that the increase of rotation
speeds causes a larger tortuosity of the flow (Fig. 14),
and yet the permeability remains constant (see Fig. 3).

A unique relationship was found between the tortuos-
ity of flow and the dimensionless number of % (Fig.
14: inset). With the net flow velocity (V) exceeding the
mean tangential velocity of spheres (|w]|r), the tortuosity
drops to the minimum possible value that coincide with
that of the static medium. Thus V = |w|r can be taken
as the threshold of dynamic porous medium effects on
local pore fluid velocity distributions (tortuosity).

G. Effects of medium’s characteristic length

We examined the effect of variations in particle diame-
ter on the flow behavior under the dynamic porous media
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FIG. 13. [Dynamic porous media] (a) Averaged fluid pres-
sure gradient across the porous medium versus Re showing
the Darcy flow regime studied (% = 0.95 Re). (b) Varia-
tions of calculated tortuosity based on different methods. (c)
The fraction of pore space occupied by different flow regions.

(d) Variations of the M = Aalf//i’)L. oP, d, and AP are the
standard deviation of the fluid pressure calculated at the lower
(entrance) boundary of the porous medium, particle diame-
ter and the macroscopic fluid pressure difference across the

medium with the macroscopic length of AL, respectively.
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FIG. 14. [Dynamic porous media] Tortuosity vs flow macro-
scopic velocity (V') for porous media of rotating particles with
different mean angular velocities (|w|). Here, V is the velocity
of net flow passing through the dynamic medium which is con-
trolled by external boundary conditions. The inset shows the
tortuosity vs % where r is the particle radius. The unique
relationship indicates that when the mean flow velocity (V)
reaches the mean velocity of disturbed pore fluid motions due
to rotating spheres (|w]|r), the effects of the dynamic medium
on flow diminish and the flow retrieves the minimum tortuos-
ity equivalent to that of static media.

circumstances. The simulations were performed for the
media comprised of particles with the diameters of 1.0 to
10~% in the unit of length (with water as the fluid and
the sizes in the unit of em). The angular velocity dis-
tribution was determined in the same way as shown in
Fig. 1(a), but multiplied by a constant factor of 4.3 for
all spheres.

The tortuosity varies with flow rate and the charac-
teristic length (Fig. 15). As expected, the flow distur-
bance resulted from the rotation of particles can alter
the tortuosity, while the range of this effect varies with
particle diameter. The velocity of disturbed (circulating)
fluid is a function of the tangential velocity of particles
(vt = |w|r). Hence with a decrease in particle diameter,
the range of Reynolds numbers in which the tortuosity
varies is reduced to the same orders as that of 2.

A unique relationship is found between the tortuosity
and the M number (Fig. 16). This indicates a similar
relative local pressure fluctuation with respect to the flow
tortuosity, regardless of the porous medium characteristic
lengths. The uniqueness of the T versus M relationship
provides a measure to integrate the flow characteristics in
pore scale. With the interrelationship between flow tor-
tuosity and the local pressure fluctuations, the circum-
stances where one may cause the other could be further
identified.
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VI. PRESSURE FLUCTUATION-TORTUOSITY
RELATIONSHIP

To further explore the mechanism behind the tortuos-
ity variations, we set up a simple model with only two
spheres representing the solid phase and confining the
pore space where the fluid flows (see Fig. 17). This
simple medium is subjected to different pressures at the
lower and upper boundary. While the upper boundary
pressure is set to be spatially uniform (Fp), the lower
boundary pressure oscillates spatially in a sinusoidal form
(P=Py+ AP+ A, xsin(n/5 x i) where Ap is the pres-
sure fluctuation amplitude and i is the lateral coordinate
in Lu for the spheres with diameter of 8 l.u). Simulations
were conducted under various conditions with different



averaged pressure drop over the medium, and different
amplitudes and wavelengths of the sinusoidal pressure
oscillations at the lower boundary. For this model, the
M number is given by M = % where AP is the average
pressure difference between the boundaries. The results
clearly demonstrate that local fluid pressure fluctuations
in counter-balance with the global (averaged) pressure
gradient cause variations of pore-scale flow behavior over
the Darcy regime (Fig. 18). In particular, large pressure
fluctuations combined with low global pressure gradients
lead to vortical flows in the porous medium. The results
also show a strong relationship between M and flow tor-
tuosity, which appears not to be directly affected by the
value of global pressure drop.

VII. CONCLUSIONS

This study has provided new insights into the pore-
scale flow behavior and revealed the vastly different pore-
scale flow structures within the Darcy regime, in porous
media that are subjected to internal energy (here via
spinning particles). The static (ordinary) porous media
resulted in invariant channelized pore-scale flow struc-
tures (constant tortuosity). In dynamic porous media,
for the lower Darcy ranges (where % < 1), tortuous
flow is shown to produce vortices with little contribu-
tion to the net flux. As the Darcy flow rate increases,
vortices shrink in volumes and channelised flow zones ex-
pand. Despite the variations particularly in flow tortu-
osity, the macroscopic flow through the medium in the
simulated cases satisfies the Darcy’s law with an invari-
ant permeability for all cases (static and dynamic). The
microscopic flow behavior is shown to be linked to the
local fluctuations of the pressure compared to the global
pressure gradient.
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With the variable tortuosity demonstrated here, the
findings challenge the "universality’ of the existing porous
media models (e.g. the KC model) that relate the
medium’s permeability to a constant tortuosity. The ar-
gument could be more significant in cases where there are
considerable internal sources of energy from solid mate-
rial interacting with the fluid (e.g. geothermal, chemical
or mechanical energies). However, how the flow tortu-
osity variations revealed here are related to an invariant
permeability remains a question.

Given that a large portion of pore space occupied by
vortices is virtually immobile under relatively low Darcy
fluxes for a dynamic medium, how is the solute transport
in such a medium? The complex transport mechanism
called non-Fickian transport [70, 71] has been shown to
be an inherent characteristic of many types of porous
media (packed and granular media, fractured and open
networks), whether homogeneous or heterogeneous [72].
To some extent could it be related to the pore fluid struc-
tures that differ from the ordinary channelized flow? The
immobile vortical zones may provide transient storage for
solute via exchange with the main solute transport path
along the passing-through flow. When examined in re-
alistic porous media conditions, this argument may help
us to better understand complex transport mechanisms
in porous media. The solute transport mechanisms with
respect to the variable pore flow behaviors thus require
further investigations.
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