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Abstract

In probabilistic analyses and structural reliability assessments, it is often difficult or infeasible

to reliably identify the proper probabilistic models for the uncertain variables due to limited

supporting databases, e.g., limited observed samples or physics-based inference. To address

this difficulty, a probability-bounding approach can be utilized to model such imprecise

probabilistic information, i.e., considering the bounds of the (unknown) distribution func-

tion rather than postulating a single, precisely specified distribution function. Consequently,

one can only estimate the bounds of the structural reliability instead of a point estimate.

Current simulation technologies, however, sacrifice precision of the bound estimate in return

for numerical efficiency through numerical simplifications. Hence, they produce overly con-

servative results in many practical cases. This paper proposes a linear programming-based

method to perform reliability assessments subjected to imprecisely known random variables.

The method computes the tight bounds of structural failure probability directly without the

need of constructing the probability bounds of the input random variables. The method

can further be used to construct the best-possible bounds for the distribution function of a

random variable with incomplete statistical information.
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1. Introduction1

The various sources of uncertainties arising from structural capacities and applied loads,2

as well as computational models, are at the root of the structural safety problem of civil3

structures. In an attempt to measure the safety of a structure, it is necessary to quanti-4

fy and model these uncertainties with a probabilistic approach so as to further determine5

the failure probability [1–4]. In a reliability assessment, the identification of the probability6

distributions of the random variables is crucial. The uncertainty associated with a random7

variable can be classified into either aleatory or epistemic [5], with the former arising from8

the inherent random nature of the quantity, and the latter due to knowledge-based factors9

such as imperfect modelling and simplifications, and/or limited supporting database. S-10

tatistical uncertainty is an important source of the epistemic uncertainty, which accounts11

for the difference between the probability model of a random variable inferred from limited12

sampled data and the “true” one. This uncertainty may be significant if the size of available13

data/observations is limited. To better assess the safety of a structure, structural reliability14

assessment needs to consider both aleatory and epistemic uncertainties [5–9].15

The result of a structural reliability assessment may be sensitive to the selection of the16

probability distributions of the random inputs [10]. However, in many cases, the identi-17

fication of a variable’s distribution function is difficult or even impossible due to limited18

information/data. Rather, only incomplete information such as the first- and the second-19

order moments (mean and variance) of the variable can be reasonably estimated. In such a20

case, the incompletely-informed random variable can be quantified by a family of candidate21

probability distributions rather than a single known distribution function. This is the basic22

concept of imprecise probability [11]. As a result, the structural reliability in the presence23

of incompletely-informed random variables can no longer be uniquely determined. A practi-24

cal way to represent an imprecise probability is to use a probability bounding approach by25

considering the lower and upper bounds of the imprecise probability functions. Under this26

context, approaches of interval estimate of reliability have been used to deal with reliability27

problems with imprecise probabilistic information [12], including the probability-box (p-box28

for short) method [13], random set and Dempster-Shafer evidence theory [14–16], fuzzy ran-29

dom variables [17], and others. These methods are closely related to each other, and may30
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often be used as equivalent for the purpose of reliability assessment [13, 18]. However, the31

bounds of structural reliability estimated using a probability bounding approach may be32

overly conservative in some cases, due to the fact that it only considers the bounds of the33

distribution function, thus some useful information inside the bounds may be lost. This fact34

calls for an improved approach for reliability bound estimate which can take full use of the35

imprecise information of the variable(s).36

Over the last decade many efforts have been directed towards structural reliability assess-37

ment using imprecise probability theory. In [19], random variables and interval variables are38

considered simultaneously. Monte Carlo simulation was used with function approximation to39

reduce the total number of simulations. In [20, 21], imprecisely probability distribution func-40

tions were modeled using probability-boxes and Dempster-Shafer structures. The reliability41

analysis was based on the Cartesian product method and interval arithmetic. The frame-42

work was applied to environmental risk assessment. Schweiger and Peschl [22] considered43

stochastic finite element analyses of a deep excavation problem in which the uncertain ma-44

terial parameters and geometrical data were modeled as random sets. The random sets were45

propagated through the finite element analysis using the vertex method, under the assump-46

tion that the structural response is monotonic with respect to each random set variable. In47

[23], structural reliability evaluations in the presence of both random variables and interval48

variables were considered. The limit state functions were approximated using the response49

surface method to reduce the computational cost. In [24], the Tchebycheff’s inequality was50

proposed to construct random set models of a random variable using the information of mean51

and standard deviation. The approach was demonstrated using two geotechnical problems.52

An interval Monte Carlo method was developed in [9] for structural reliability assessment53

under epistemic uncertainties. An imprecise cumulative distribution function with interval54

parameters is modeled as a probability-box. In each simulation, interval-valued samples are55

sampled and the range of the limit state function is computed using interval analysis. A56

similar approach, namely the unified interval stochastic sampling approach, was proposed in57

[25] to determine the statistics of the lower and upper bounds of the collapse loads of a struc-58

ture involving mixture of random and interval parameters. Variance-reduction techniques59

have been proposed to combine with the interval Monte Carlo simulation to enhance the60
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computational efficiency, e.g., the interval importance sampling technique [18], the interval61

Quasi-Monte Carlo sampling [26], and subset sampling [16, 27].62

Mathematically, the use of the (complete) moment information of a random variable63

is equivalent to its probability distribution function since knowing one can determine the64

other completely through the moment generation function [28, 29]. Many previous studies65

have conducted reliability analysis by making use of the moment information of random66

variables. For instance, a second-order reliability analysis method based on an approxi-67

mating paraboloid was proposed in [30]. In [31], a method for system reliability analysis68

was developed taking into account the moments of the system limit state function derived69

from point estimates. Zhao et al. [32] discussed the suitability and the monotonicity of the70

fourth-moment normal transformation in reliability assessment considering imprecise random71

inputs. Wang et al. [33] proposed an approach to estimate the time-dependent reliability of72

aging structures in the presence of incomplete deterioration information.73

This paper considers the case of reliability assessment with imprecise probabilities in74

which only the low-order moments of a random variable are known, while the distribution75

type and distribution function are unknown. The motivation of using (limited) moment76

information for reliability assessment is due to the fact that in many cases only limited77

observations/samples of a random variable are accessible, and thus the estimation of the78

moments (typically the low order moments such as mean and variance) based on the limited79

samples is relatively straightforward and more reliable as compared with estimating the80

complete distribution function.81

This paper proposes a linear programming-based method for solving the reliability prob-82

lems in the presence of imprecise probabilistic information. The estimate of reliability bounds83

is transformed into finding the solution of a linear objective function, where the constraint84

equations are established by taking full use of the information of moments, and the range in-85

formation of the random variable if available. Two types of objective functions are developed86

independently, which can verify the accuracy of the solutions mutually, and provide insights87

into the problem from different perspectives. The paper first introduces the methodology88

for the problems involving only one imprecise random variable; then an iterative approach is89

proposed to handle the problems with multiple imprecise random variables. While the pro-90
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posed method computes bounds of failure probabilities directly without first constructing91

the probability-boxes of the imprecisely known random input variables, it can also be used92

to construct the best-possible cumulative distribution function (CDF) bounds for a random93

variable with limited statistical information. Three examples are presented to demonstrate94

the application of the proposed method on these two aspects.95

2. Probability-box method in the presence of imprecise random variables96

2.1. Impact of imprecision on reliability assessment97

A typical structural reliability problem takes the form of98

Pf = Pr(G(X) ≤ 0) =

∫
. . .

∫
G(x)≤0

fX(x)dx (1)

where Pr denotes the probability of the event in the bracket, Pf represents the failure prob-99

ability of the structure, G is the limit state function in the presence of m random inputs100

X = {X1, X2, . . . Xm}, which defines structural failure if G < 0 and the survival of the101

structure otherwise, and fX(X) is the joint probability density function (PDF) of X. The102

failure probability in Eq. (1) is often estimated by the well-known Monte Carlo method,103

Pf ≈ 1

N

N∑
j=1

I [G(xj) ≤ 0] (2)

where N is the number of replications, I[·] is an indicator function, which returns 1 if the104

statement in the bracket is true and 0 otherwise, and xj is the jth simulated sample of X.105

xj can be generated using the inverse transform method,106

xj = F−1
X (rj), j = 1, 2, . . . , N (3)

with FX( ) being the CDF of X, and rj a sample of standard uniform random variates [1].107

When the distribution function of X cannot be determined uniquely and one has to108

consider a family of all possible distribution functions, the probability of failure will vary in109
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an interval [Pf , Pf ], which can be estimated by the interval Monte Carlo method [34]:110

Pf = min{ 1

N

N∑
j=1

I
[
G
(
F−1
X (rj)

)
≤ 0

]
, for all possible FX}, (4)

and111

Pf = max{ 1

N

N∑
j=1

I
[
G
(
F−1
X (rj)

)
≤ 0

]
, for all possible FX}. (5)

where Pf and Pf represent the lower and upper bounds of Pf , respectively.112

2.2. Probability box approach113

A probability-box describes a family of distribution functions by specifying the lower and114

upper bounds of the CDF, i.e.,115

FX(x) ≤ FX(x) ≤ FX(x), x ∈ R (6)

where FX(x) is the (unknown) CDF of X, FX and FX are the lower and upper bounds of116

FX respectively.117

For a number of cases of imprecise probability, methods are available in the literature to118

construct the corresponding probability boxes. If only the mean and standard deviation of119

X are known, denoted by µX and σX respectively, and the distribution type is unknown,120

Chebyshev’s inequality gives a lower and an upper bound of FX [35], i.e.,121

FX(x) =


0, x ≤ µX + σX

1− σ2
X

(x− µX)2
, x ≥ µX + σX

(7a)

FX(x) =


σ2
X

(x− µX)2
, x ≤ µX − σX

1, x ≥ µX − σX

(7b)

However, the CDF bounds as given in Eq. (7) are not the best-possible. As will be shown122

later in this paper, tighter CDF bounds can be constructed for this case.123

In practice, the bounds of a random variable are often known, e.g., structural loads are124

non-negative. The range information can be utilized to tighten the bounds of FX . Let x and125
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x denote the minimum and maximum of X, respectively, Ferson et al. [13] gave a tighter126

bounds of FX as follows,127

FX(x) =



0, x ≤ µX + σ2
X/(µX − x)

1− [b(1 + a)− c− b2]/a, µX + σ2
X/(µX − x) < x < µX + σ2

X/(µX − x)

1/[1 + σ2
X/(x− µX)

2], µX + σ2
X/(µX − x) ≤ x < x

1, x ≥ x

(8a)

FX(x) =



0, x ≤ x

1/[1 + (x− µX)
2/σ2

X ], x ≤ x < µX + σ2
X/(µX − x)

1− (b2 − ab+ c)/(1− a), µX + σ2
X/(µX − x) < x < µX + σ2

X/(µX − x)

1, x ≥ µX + σ2
X/(µX − x)

(8b)

where a = (x− x)/(x− x), b = (µX − x)/(x− x), and c = σ2
X/(x− x)2. Note that the CDF128

bounds as defined in Eq. (8) are the best possible bounds in the sense that the bounds cannot129

be any tighter if one only knows the min, max, mean and variance of a random variable.130

A distribution function with uncertain parameters represents another common case of131

imprecise probabilities. As the statistical parameters of a distribution function are usually132

estimated by statistical inference from sample observations, uncertainties arise in the esti-133

mation of the parameters when the available data is limited. A natural way to quantify the134

uncertainty of the parameters is to use the confidence intervals which define interval bounds135

of the distribution parameters. Zhang et al. [18, 34] have considered the case in which the136

distribution type is known, but the distribution parameters are uncertain and modeled by137

intervals.138

The present paper considers the imprecise probabilities in which the available information139

is limited to the mean and variance (either point estimates or interval estimates), and the140

range of the random variable (if available). The distribution type is assumed to be unknown.141
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2.3. Interval Monte Carlo methods to propagate p-boxes142

When the reliability analysis involves probability-boxes, an interval Monte Carlo method143

can be used to propagate probability boxes and compute the bounds of probability of failure.144

The basic Monte Carlo simulation as in Eq. (2) is extended to the case where the distribution145

function FX is a p-box. In the presence of the CDF envelope (c.f. Eq. (6)) for X, for each146

simulation run, two samples can be generated from the lower and upper bounds of FX ,147

respectively, i.e.,148

xj = F
−1

X (rj),

xj = F −1
X (rj), j = 1, . . . , N. (9)

The interval [xj,xj] contains all possible simulated numbers from the family of distributions149

contained in the p-box for a given value of rj.150

Let minG (xj) and maxG (xj) respectively denote the minimum and maximum of the151

limit state function G(X) when xj ≤ X ≤ xj. It simply follows,152

I [maxG (xj) ≤ 0] ≤ I [G (xj) ≤ 0] ≤ I [minG (xj) ≤ 0] , (10)

which further gives153

1

N

N∑
j=1

I [maxG (xj) ≤ 0] ≤ 1

N

N∑
j=1

I [G (xj) ≤ 0] ≤ 1

N

N∑
j=1

I [minG (xj) ≤ 0] . (11)

Thus, a lower and an upper bounds of Pf , Pf and Pf , are obtained respectively as follows154

[34],155

Pf =
1

N

N∑
j=1

I [maxG (xj) ≤ 0] , (12)

and156

Pf =
1

N

N∑
j=1

I [minG (xj) ≤ 0] . (13)

Details about interval Monte Carlo method can be found elsewhere [18, 34]. Clearly, the157

reliability bounds as given by Eqs. (12,13) are more conservative than the true bounds of158
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Eqs. (4,5).159

3. Linear programming-based reliability bounds analysis160

3.1. Problems involving one imprecise random variable161

We first consider the case of one imprecise probability. Consider a reliability analysis162

problem involving the random variables [Q,S], in which Q is a random variable with an163

imprecise distribution function, and S = [S1, S2, . . . ] is the remaining random vector with164

a known joint distribution function. Q and S are assumed to be statistically independent.165

The failure probability is given by166

Pf =

∫
G(S,Q)≤0

fQ(q)fS(s)dqds, (14)

in which fQ(q) and fS(s) are the probability density functions of Q and S, respectively.167

Eq. (14) can be rewritten as168

Pf =

∫
fQ(q)ξQ(q)dq, (15)

in which ξQ(q) represents the conditional failure probability on Q = q, i.e.,169

ξQ(q) , Pr(G(S, Q = q) ≤ 0) =

∫
G(S,Q=q)≤0

fS(s)ds. (16)

Note that the conditional failure probability ξQ(q) for a given value of Q = q is custom-170

arily referred to as fragility in the risk analysis of natural hazards [36]. The conditional171

failure probability ξQ(q) may be obtained analytically through the integration in Eq. (16),172

or numerically using the Monte Carlo methods.173

To facilitate the derivation, Q is normalized into [0, 1] by introducing a reduced random174

variable X =
Q−Qmin

Qmax −Qmin

, where Qmax and Qmin are the maximum and minimum of Q,175

respectively. With this, Eq. (15) becomes176

Pf =

∫ 1

0

fX(x)ξ(x)dx (17)

where fX(x) is the PDF of X, and ξ(x) = ξa ((Qmax −Qmin)x+Qmin). The computation of177
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tight bounds of Eq. (17) is discussed next, employing the algorithms of linear programming.178

3.2. Objective function Type 1179

As a starting point, consider the case where the only information about the imprecise180

probability Q is its first two moments, i.e., the mean (µQ) and the standard deviation (σQ).181

To apply Eq. (17), the maximum and minimum of Q need to be estimated. In practice, they182

can be approximated as µQ ± kσQ, in which k is sufficiently large (e.g., k = 5). Clearly, the183

mean and standard deviation of the reduced variable X are184

µX =
µQ −minQ

maxQ−minQ
, σX =

σQ

maxQ−minQ
. (18)

Let E(Xτ ) represent the τth moment of X. Lemma 1 in Appendix A states that185

[ln(E(Xτ ))]′ increases with τ for positive integer values of τ . Thus,
ln(E(Xj+1))− ln(E(Xj))

ln(E(Xj))
186

also increases with j for j = 1, 2, . . .. Fig. 1(a) illustrates the possible trajectories of187

ln(E(Xj)) as a function of j, provided that ln(E(X)) = lnµX and ln(E(X2)) = ln(µ2
X + σ2

X)188

are known. The trajectories are bounded within a circular sector with a central angle of θ2.189

The upper bound of the logarithm of the jth moment is ln(µ2
X +σ2

X), while the lower bound190

is a half-line p0j + q, where191

p0 = ln
µ2
X + σ2

X

µX

, q0 = ln
µ2
X

µ2
X + σ2

X

. (19)

That is,192

p0j + q0 < ln
(
E(Xj)

)
< ln

(
µ2
X + σ2

X

)
(20)

for all integers j > 2. The cental angle, θ2, equals to | arctan(p0)|. Further, if the higher-193

order (up to the mth) logarithmic moments of X, ln(E(X)), ln(E(X2)), . . . ln(E(Xm)) are194

known (see Fig. 1(b)), then the central angle for the mth order of moment, θm, is195

θm =

∣∣∣∣arctan(ln E(Xm−1)

E(Xm)

)∣∣∣∣ , (21)
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ln [E(X 
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j
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ln [E(X)]

ln [E(X  
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ln [E(X 
2
)]

ln [E(X 
m
)]
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�2

�m

...

Possible trajectories 

of ln [E(X 
j
)] for j > 2 

Figure 1: Schematic representation of the jth order moment of X and its bounds.

which converges to 0 when m is sufficiently large since196

lim
m→∞

E(Xm−1)

E(Xm)
= 1. (22)

This fact indicates that the more orders of moment are known, the more precise the prob-197

abilistic characteristics of X can be determined. Fig. 1 provides a graphical explanation of198

the precision of a random variable with limited orders of moments known.199

In Eq. (17), as the distribution type of X is unknown, the values of fX(x) for each200

x cannot be uniquely determined. The domain of X ([0, 1]) is discretized into n identi-201

cal sections, [x0 = 0, x1], [x1, x2], . . . [xn−1, xn = 1], where n is sufficiently large such that202 ∣∣∣∣fX(x)− fX

(
xi−1 + xi

2

)∣∣∣∣ is negligible for ∀i = 1, 2, . . . n and ∀x ∈ [xi−1, xi]. The sequence203

fX

(
xi−1 + xi

2

)
,∀i = 1, 2, . . . n is denoted by {f1, f2, . . . fn} for the purpose of simplicity.204

With this, Eq. (17) can be approximated by205

Pf =

∫ 1

0

ξ(x)fX(x)dx = lim
n→∞

n∑
i=1

ξ

(
i− 0.5

n

)
1

n
· fi. (23)

Note that the definition of the mean value and variance of X, as well as the basic character-206
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istics of a distribution function simultaneously give207 

∑n
i=1 fi ·

1
n
= 1∑n

i=1 fi ·
1
n
· i
n
= µX∑n

i=1 fi ·
1
n

(
i
n

)2
= µ2

X + σ2
X

0 ≤ fi ≤ n, ∀i = 1, 2, . . . n.

(24)

Eqs. (23) and (24) indicate that the bound estimate of Pf can be converted into a classic208

linear programming problem, i.e., Eq. (23) is the objective function to be optimized, f =209

{f1, f2, . . . fn} are the vector of variables to be determined, and Eq. (24) represents the210

constraints. A brief introduction of linear programming is presented in Appendix B. The211

algorithms of linear programming-based optimization have been well studied and can be212

found elsewhere, e.g., [37–40].213

Eqs. (23) and (24) represents a linear programming-based approach to compute the relia-214

bility bounds for imprecise probability distributions. Another useful application of Eqs. (23)215

and (24) is to construct the best-possible CDF bounds for a random variable with incomplete216

information. For an arbitrary value of τ , by setting217

ξ(x) = I(τ ≥ x) =

 1, x ≤ τ

0, otherwise.
(25)

Eq. (23) becomes218 ∫ 1

0

ξ(x)fX(x)dx =

∫ τ

0

fX(x)dx = FX(τ). (26)

Thus, by solving the linear programming problem defined by Eqs. (26, 24), the best-possible219

bounds for FX(τ) can be obtained.220

The constraints in Eq. (24) represent the case in which the only knowledge available are221

the point estimates of the mean and the standard deviation. The constraints can be easily222

modified for more generalized cases if additional information is provided. For example, if X223

is known to be strictly defined in the range [x, x], where 0 ≤ x ≤ x ≤ 1, the introduction of224

a new variable X ′ = X−x
x−x

enables the applicability of Eq. (24). Moreover, if the mean value225

of X is an interval estimate of [µ
X
, µX ] rather than a point estimate, the second constraint226
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equation in Eq. (24),
∑n

i=1 fi ·
1
n
· i
n
= µX , is modified as227


∑n

i=1 fi ·
−1
n
· i
n
≤ −µ

X∑n
i=1 fi ·

1
n
· i
n
≤ µX .

(27)

A similar modification can be made to the third constraint equation in Eq. (24) if the228

standard deviation of X is known to have a predefined range. It should be noted that the229

probability-box obtained by the proposed linear programming method will be identical to230

the probability-box given by Eq. (8) if one knows the min, max, mean and variance of a231

random variable. However, the proposed linear programming-based approach represents a232

more general method for constructing the best-possible probability-boxes.233

3.3. Objective function Type 2234

While Eqs. (23) and (24) have established a straightforward approach for estimating the235

bounds of structural failure probability, the accuracy and efficiency of the method is yet to236

be investigated. An important question has been raised: have Eqs. (23) and (24) made full237

use of the imprecise information of X? In an attempt to address this issue, as well as to form238

a different insight into the problem, this section reformulates the reliability bounds-estimate239

problem using a different objective function, referred to as objective function Type 2.240

Reconsider Eq. (17), where the variable X is assumed to have a mean value of µX , a241

standard deviation of σX and unknown distribution type. Fig. 1 and Lemma 1 in Appendix A242

have demonstrated the nonlinearity of ln(E(Xj)) with j. As the basis of further derivation,243

however, we consider a fictitious case where X has linear logarithmic moments, determined244

by a parameter pair (pi, qi). That is, ln(E(Xj)) = pij + qi for all integers j ≥ 2. Since245

E(X2) = exp(2pi+qi), qi = ln(µ2
X+σ2

X)−2pi. The corresponding fictitious failure probability246

is denoted by Pf (pi). Lemma 2 in Appendix A gives the solution of Pf (pi) as a function of247

pi. The choice of pi can be arbitrary, as long as it satisfies pi ≤ 0.248

For a sufficiently large integer n and n − 2 different pi’s (denoted by p1, p2, . . . pn−2 re-249

spectively), let Ẽij = exp [pj · (i+ 1) + qj] for 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − 2, where250
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qj = lnE(X2)− 2pj for ∀j. With this,251

Ẽij = exp [pj · (i− 1)] · E(X2). (28)

A sequence of constants {γi|i = 1, 2, . . . n− 2} can be found such that252

E =
n−2∑
i=1

γiÊi (29)

where E =
[
E(X2) E(X3) . . . E(Xn−1)

]T
, and Êi =

[
Ẽ1i Ẽ2i . . . Ẽ(n−2)i

]T
. The exis-253

tence of sequence {γi} in Eq. (29) is guaranteed by the fact that det
[
Ê1 Ê2 . . . Êm−2

]
̸=254

0. According to Lemma 3 (see Appendix A),255

Pf = ξ(0) +


ξ(β̃1)− ξ(0)

ξ(β̃2)− ξ(0)
...

ξ(β̃n−2)− ξ(0)



T

· B−1 · E (30)

where B is defined in Eq. (A.10). Substituting Eq. (29) into Eq. (30) yields256

Pf = ξ(0) +
n−2∑
i=1

γi


ξ(β̃1)− ξ(0)

ξ(β̃2)− ξ(0)
...

ξ(β̃m−2)− ξ(0)



T

· B−1 · Êi

= ξ(0) +
n−2∑
i=1

γi(Pf (pi)− ξ(0)) =
n−2∑
i=1

Pf (pi)γi.

(31)

Substituting Eq. (28) into Eq. (29) yields257

E = E(X2) ·P ·
[
γ1 γ2 γ3 · · · γn−2

]T
(32)

where P = [pij](n−2)×(n−2) with pij = exp[pj · (i− 1)] for ∀i, j = 1, 2, . . . n− 2. Note that by258
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definition, as n is large enough, for k = 2, 3, . . . n− 1,259

E(Xk) =

∫ 1

0

xk · fX(x)dx =
n−2∑
i=1

∫ i/(n−2)

(i−1)/(n−2)

xk · fX(x)dx. (33)

With the mean value theorem, there exists a sequence {ϵi|i = 1, 2, . . . n− 2, i−1
n−2

< ϵi <
i

n−2
}260

such that261

E(Xk) =
n−2∑
i=1

ϵki ·
fX(ϵi)

n− 2
, k = 2, 3, . . . n− 1 (34)

or equivalently,262

E =


1 1 · · · 1

ϵ11 ϵ12 · · · ϵ1n−2

...
...

. . .
...

ϵn−3
1 ϵn−3

2 · · · ϵn−3
n−2

 ·



fX(ϵ1)
n−2

· ϵ21
fX(ϵ2)
n−2

· ϵ22
...

fX(ϵn−2)
n−2

· ϵ2n−2

 . (35)

Comparing Eqs. (32) and (35), assigning exp(pi) = ϵi gives263

γi =
1

E(X2)
· fX(ϵi)
n− 2

· ϵ2i , i = 1, 2, . . . n− 2 (36)

with which one has264 

∑n−2
i=1 γi = 1∑n−2
i=1

γi
ϵi
= µX

µ2
X+σ2

X∑n−2
i=1

γi
ϵ2i

= 1
µ2
X+σ2

X

0 ≤ γi ≤ 1,∀i = 1, 2, . . . n− 2.

(37)

With Eqs. (31) and (37), finding the lower and upper bounds of Pf can be formulated as265

a linear programming optimization, i.e., Eq. (31) is the objective function to be optimized,266

{γ1, γ2, . . . γn−2} are the variable vector to be determined, and Eq. (37) is the constraints.267

In the implementation, one can assign ϵi =
i−0.5
n−2

for ∀i = 1, 2, . . . n−2 since i−1
n−2

< ϵi <
i

n−2
268

and n is sufficiently large. With this, ϵi = exp(pi) gives pi = ln(ϵi) for ∀i.269

The new objective function in Eq. (31) as well as the constraint equations in Eq. (37)270

have been developed independently of those in Eqs. (23) and (24). Thus, the results from271

the two objective functions can be used for mutual verification. Moreover, Eqs. (31) and (37)272

can also be extended to the case where X has a predefined range [x, x]. As introduced in273
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Section 3.1, this can be handled by introducing a normalized variable X ′ = X−x
x−x

. However,274

Eq. (31) is not applicable to the case where the statistical parameters ofX (mean or standard275

deviation) vary in intervals, since the statistics of X are explicitly involved in the objective276

function. From this point of view, objective function Type 1 is a more general approach.277

3.4. Problems with multiple imprecise random variables278

Sections 3.1 to 3.3 have discussed the case of only one imprecise random variable. This279

section discusses the reliability problems involving multiple imprecise random variables. Sup-280

pose the reliability problem involves a mixture of imprecise random variables and conven-281

tional random variables, [Q,S], in which Q = {Q1, Q2, . . . Qk} is the vector of k imprecise282

random variables with unknown distribution functions, while S is the conventional random283

vector with known distribution function. Similar to Eq. (15), the failure probability is given284

by285

Pf =

∫
G(S,Q)≤0

fQ(q)fS(s)dqds (38)

where fQ(q) is the joint distribution of Q. It is assumed that each element in Q, Q1 through286

Qk, is statically independent. With this, Eq. (38) becomes287

Pf =

∫
. . .

∫
ξQ(q)fS(s)ds

k∏
i=1

fQi
(qi)dq (39)

where ξQ(q) is the conditional failure probability on Q = q, i.e.,288

ξQ(q) , Pr(G(S,Q = q) ≤ 0) =

∫
G(S,Q=q)≤0

fS(s)ds. (40)

As before, in order to find the lower and upper bounds of the failure probability, the289

objective is to find the optimized distribution function of each element in Q, Qi, so as to290

maximize or minimize Pf in Eq. (38). To begin with, consider the case where k = 2 (i.e.,291

two imprecise random variables are involved in the problem). The PDFs of Q1 and Q2 are292

written as fQ1(x) and fQ2(x), respectively. The failure probability Pf in Eq. (38) becomes a293
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function of fQ1(x) and fQ2(x), denoted by294

Pf = h(fQ1 , fQ2). (41)

Consider the lower bound of Pf . Note that a set of candidate distribution types exists for both295

fQ1(x) and fQ2(x), denoted by ΩQ1 and ΩQ2 , respectively. First, an arbitrary distribution296

is assigned for Q1 and Q2 (e.g., a normal distribution), whose PDFs are 1fQ1 ∈ ΩQ1 and297

1fQ2 ∈ ΩQ2 . Next, we find 2fQ2 ∈ ΩQ2 which minimizes h(1fQ1 , fQ2) for ∀fQ2 ∈ ΩQ2 , followed298

by determining 2fQ1 ∈ ΩQ1 which minimizes h(fQ1 , 2fQ2) for ∀fQ1 ∈ ΩQ1 . The approach to299

find 2fQ2 and 2fQ1 has been discussed in Section 3. As such, it is easy to see that300

h(2fQ1 , 2fQ2) ≤ h(1fQ1 , 2fQ2) ≤ h(1fQ1 , 1fQ2). (42)

This fact implies that the pair (2fQ1 , 2fQ2) leads to a reduced Pf compared with the pair301

(1fQ1 , 1fQ2). Similarly, one can further find the subsequent sequences (3fQ1 , 3fQ2) through302

(nfQ1 , nfQ2), in which n is a sufficiently large number of iteration. By noting that h(fQ1 , fQ2)303

is bounded, according to Lemma 4 in Appendix A , it can be seen that h(nfQ1 , nfQ2) con-304

verges to the lower bound of Pf as n is large enough. Further, the upper bound of the failure305

probability can also be found using a similar procedure.306

Now consider the more generalized case where k > 2. The failure probability in Eq. (38)307

is rewritten as,308

Pf = h(fQ1 , fQ2 , . . . fQk
) (43)

where fQi
is the PDF of Qi for i = 1, 2, . . . k. Let ΩQi

denote the set of all the possible309

candidate distribution functions of element Qi. In terms of the lower bound of Pf , an310

iteration-based approach is proposed to minimize the failure probability, as summarized in311

the following.312

(1) Assign an arbitrary distribution for each element in Q, i.e., 1fQ1 through 1fQk
, and313

calculate h1 = h(1fQ1 , 1fQ2 , . . . 1fQk
).314
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(2) Find jfQi
, fQi

∈ ΩQi
which minimizes

h(jfQ1 , jfQ2 , . . . jfQi−1
, fQi

, . . . j−1fQi+1
, . . . j−1fQk

)

for i = 1, 2, . . . k and j = 2, and calculate hj = h(jfQ1 , jfQ2 , . . . jfQk
).315

(3) For each j, if |hj − hj−1| is smaller than the predefined error limit (say, 10−5), then hj316

is found to be the lower bound of Pf ; otherwise, return to step (2) with j replaced by317

j + 1.318

It can be seen that for each j = 1, 2, . . ., hj ≤ hj−1. This observation is guaranteed by the319

fact that320

h(jfQ1 , jfQ2 , . . . jfQk
) ≤ h(jfQ1 , jfQ2 , . . . j−1fQk

)

≤ h(jfQ1 , jfQ2 , . . . j−1fQk−1
, j−1fQk

) ≤ . . . ≤ h(j−1fQ1 , j−1fQ2 , . . . j−1fQk
).

(44)

With Lemma 4 in Appendix A, the sequence {hj} converges to the lower bound of Pf as j321

is sufficiently large.322

Finally, for the upper bound of the probability of failure, a similar procedure can be used,323

with the operation “minimize” replaced by “maximize”.324

4. Examples325

In this section, three examples are presented to demonstrate the applicability and effi-326

ciency of the proposed method.327

4.1. Example 1: a portal frame328

The reliability of a rigid-plastic portal frame as shown in Fig. 2 is considered. The frame329

is subjected to a horizontal wind load W and a vertical load V . The layout and member330

geometry of the structure are adopted from [1]. The structure may fail due to one of the331
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Figure 2: Example 1: a rigid-plastic portal frame (after [1]).

following three limit states,332

G1(X) = M1 + 2M3 + 2M4 −W − V

G2(X) = M2 + 2M3 +M4 − V

G3(X) = M1 +M2 +M4 −W

(45)

in which M1, . . . ,M4 are the plastic moment capacities at the joints as shown in the fig-333

ure. Since the structure is a series system, the system fails if G < 0, where G(X) =334

min{G1(X), G2(X), G3(X)}. The random variables considered include {M1,M2,M3,M4, V,W}.335

All random variables are assumed to be statistically independent with each other. The dis-336

tributions of the moment capacities and the vertical load are fully known, and summarized337

in Table 1. However, only limited statistical information is available for the wind load W .338

For illustration purpose, consider the following three representative cases of the imprecise339

probabilistic information of W :340

Case (1) W has a mean of 1.9 and a standard deviation of 0.45, with its distribution type341

unknown;342

Case (2) W has a mean of 1.9 and a standard deviation of 0.45, and is strictly defined within343

[1.0, 3.0], with its distribution type unknown;344

Case (3) W has a mean within [1.87, 1.93] and a standard deviation of 0.45, with its distri-345

bution type unknown.346

Note that in Case 1 and 3, the wind load may take negative values.347
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Table 1: Example 1: statistics of the random variables.

Variable Distribution type Mean Std. Dev.

M1,M2,M3,M4 Normal 1.0 0.3
V Normal 1.5 0.3

4.1.1. Constructing the P-box for wind load W348

The CDF bounds of the wind load W constructed from different methods are first ex-349

amined. For all three cases, the p-boxes for W are determined using the proposed linear350

programming method using both types of objective function. As a comparison, the p-box in351

case (1) is also constructed using the Chebyshev’s inequality (Eq. 7), and Eq. (8) for case352

(3).353

Fig. 3 (a) compares the p-boxes for case (1) obtained from the proposed method and354

the Chebyshev’s inequality. It can be seen that the CDF bounds obtained using the ob-355

jective functions Type 1 and Type 2 (c.f. Eq. (23) and (31)) are identical, indicating that356

the optimization results are consistent (note that the two objective functions are linearly357

independent of each other). It is also evident that the p-box from the Chebyshev’s inequal-358

ity is significantly wider than the p-box from linear programming. This confirms that the359

Chebyshev’s inequality does not give the best-possible bounds, thus if it is used in reliability360

analysis, the obtained reliability bounds may be overly conservative.361

Fig. 3 (b) plots the p-boxes for case (2), obtained from the proposed linear programming,362

and also from Eq. (8). Again, it is shown that the two p-boxes from linear programming363

using objective function Type 1 and Type 2 are identical. It is also observed that the CDF364

bounds from the proposed method are identical to those from Eq. (8). Note that it has been365

proved that Eq. (8) gives the best-possible CDF bounds for this case [13]. This comparison366

implies that the proposed linear programming method also yields the best-possible CDF367

bounds.368

For case (3) where the mean value of W is not deterministic but varies within an interval,369

there is no analytical solution in the literature for the bounds of the CDF as those in Eqs. (7)370

or (8). Nevertheless, the proposed optimization-based approach (Eq. 23) can be applied for371

constructing the best-possible CDF bounds. Fig. 4 shows the CDF bounds obtained by372
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Eq. (23). Note that only the objective function Type 1 can be applied to this case; objective373

function Type 2 cannot be used as it requires point estimates of the mean and standard374

deviation.375

In practical reliability analyses, when the available data of a random variable is scarce,376

its distribution type is often assumed based on subjective judgement, e.g., assumed as one of377

the commonly used distribution types. This common practice is applied to the three cases,378

considering five candidate distribution types for W , namely normal, lognormal, Weibull,379

Gamma and Extreme Type 1 largest (T1Largest). Since in Case (2), W is strictly defined380

in the range [1.0, 3.0], the bottom and the top of the candidate distributions are removed.381

The CDF bounds of all five candidate distributions are given by382

FW (w) = min{Fi(w), i = 1, 2, . . . 5}, (46a)

FW (w) = max{Fi(w), i = 1, 2, . . . 5}, (46b)

in which Fi represents the ith candidate distribution. Fig. 4 compares the CDF bounds383

based on Eq. (46) assuming five candidate distribution types, and from the proposed linear384

programming method without any assumption of the distribution type. It can be seen that in385

all three cases, the CDF bounds assuming five candidate distribution types are significantly386

narrower than those without assuming any knowledge of distribution type. This suggests387

that the estimate of failure probability may give a false impression of reliability if only388

considering a limited number of potential distribution types based on subjective judgement389

only.390

Table 2: Example 1: bounds of failure probability.

Case No. Interval MC (IMC1)* Interval MC (IMC2) ** Direct optimization

(1) [0.0090, 0.3678] [0.0184, 0.2593] [0.0597, 0.1057]
(2) [0.0223, 0.2490] [0.0223, 0.2490] [0.0831, 0.1106]
(3) − [0.0097, 0.4233] [0.0523, 0.1918]

* P-box for W was obtained using Eq. (7) (case 1) and Eq. (8) (case 2)
** P-boxes for W were obtained using linear programming.
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Figure 3: Example 1: CDF bounds of W computed by the proposed method (Objective Function Type 1
and 2), and the existing methods.
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Figure 4: Example 1: CDF bounds of W computed from Objective Function Type 1, and the CDF’s of W
by assuming specific distribution type.
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4.1.2. Bounds of probability of failure391

This section examines the bounds of failure probability for the three cases. Table 2392

presents the intervals of failure probability obtained from different methods. The second393

column of Table 2 gives the failure probability bounds computed by the interval Monte Carlo394

simulation. In this method, the probability-box of W was first constructed using the existing395

methods, i.e., Eq. (7) for case 1 and Eq. (8) for case 2. Then the failure probability bounds396

were computed using the interval Monte Carlo method (Eqs. 12 and 13). This method is397

referred to as IMC1 in the following discussions. The results presented in the third column of398

Table 2 were also computed using the interval Monte Carlo method; however, the probability-399

boxes for W were constructed using the proposed linear programming method. This method400

is referred to as IMC2. The fourth column of Table 2 lists the results computed by the401

proposed linear programming method using objective function Type 1. In this method,402

it is not required to construct the probability-box of W ; instead, the failure probability403

bounds were determined directly solving the linear programming problem. For this reason,404

the method is referred to as “Direct Optimization”. In applying the linear programming405

method, the conditional failure probability function, ξW (w), was approximated first based406

on 106 Monte Carlo simulations, and is plotted in Fig. 5. This conditional failure probability407

function can be fitted by an expression408

ξW (w) = Φ(0.0007w6−0.0067w5+0.0036w4+0.133w3−0.2856w2+1.2389w−3.7204) (47)

in which Φ(·) is the cumulative distribution function of the standard normal. The R-squared409

of this fitted curve is 0.999. Substituting Eq. (47) into Eq. (23) yields the estimate of lower410

and upper bounds of Pf without the need to consider the CDF envelope of W .411

The results from IMC1 and IMC2 are firstly compared. From Table 2, it can be seen that412

for case 1, the failure probability bounds from IMC2 is narrower than those from IMC1. This413

is to be expected, as the p-box for W from linear programming is tighter than that from the414

Chebyshev’s inequality. For case 2, IMC1 and IMC2 yielded the identical results, since the415

p-box for W is the same in both methods. For case 3, since there is no analytical solution416

in the literature for constructing the CDF bounds of W , the failure probability bounds were417
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Figure 5: Example 1: conditional failure probability function ξW (w).

not computed in IMC1. With IMC2, the failure bounds were computed as [0.0097, 0.4233].418

Next, the failure probability bounds from IMC2 and the proposed method are compared.419

It is observed that the failure probability intervals obtained with the direct optimization420

method are significantly narrower than those based on interval Monte Carlo method with421

p-boxes. For example, the upper bound of failure probability for case 1 is 0.1057 from direct422

optimization, as compared to 0.2593 from IMC2. The latter is more than twice than the423

former. Similar observations are also made in case 2 and case 3. This comparison shows424

that the proposed linear programming method can better utilize the available information,425

and yields more informative results than the interval Monte Carlo method with p-boxes.426

The improved estimate with a direction optimization than the interval Monte Carlo427

method propagating probability boxes can be explained by a simple example. Consider428

an imprecisely-known random variable X, which has two candidate CDF’s as shown in429

Fig. 6. Note that the two candidate CDF’s cross over each other. It is assumed that the430

failure probability is a monotonic function of X, i.e., Pf = F(X). Suppose that the failure431

probability bounds are estimated simply with two runs of simulation, generating four samples432

x1, x2, x3 and x4 from the two candidate distributions. With this, the interval width of the433

failure probability associated with a direct optimization method is434

L1 =

∣∣∣∣F(x1) + F(x4)

2
− F(x2) + F(x3)

2

∣∣∣∣ , (48)
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Figure 6: Schematic representation of the CDF of two random variables.

while the interval width associated with a p-box method is435

L2 =

∣∣∣∣F(x1) + F(x3)

2
− F(x2) + F(x4)

2

∣∣∣∣ . (49)

Clearly, L1 ≤ L2, and the equality holds when either u1, u2 ∈ [0, u0] or u1, u2 ∈ [u0, 1].436

4.2. Example 2: time-dependent reliability of an aging structure437

Example 2 considers the time-dependent reliability of an aging structure, whose deterio-438

ration is associated with imprecise information due to the fact that the deterioration may be439

a multifarious process involving multiple deterioration mechanisms [2]. The example herein440

is adopted from Wang et al [33], where the impact of the selection of different candidate dis-441

tribution types for resistance deterioration on structural reliability has been discussed. The442

structure was initially designed at the limit state as 0.9Rn = 1.2Dn + 1.6Ln, in which Rn is443

the nominal resistance, Dn and Ln represent the nominal dead load and live load, respective-444

ly. It is assumed that Dn = Ln. The dead load is assumed to be deterministic and equals to445

Dn. The live load is modeled as a Poisson process; the magnitude of the live load follows an446

Extreme Type I distribution with a standard deviation of 0.12Ln and a time-variant mean447

of (0.4 + 0.005t)Ln in year t. The occurrence rate of the live load is 1.0/year. The initial448

resistance of the structure, denoted by R0, is assumed to be deterministic and equals to449

1.05Rn. In year t, the resistance deteriorates to R(t), given by R(t) = R0 · (1 − G(t)), in450
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which G(t) is a linear degradation function. If the resistance in a particular year T , R(T ),451

can be estimated, then G(t) can be readily obtained using the conditions G(0) = 0 and452

G(T ) = 1 − R(T )/R0. A schematic representation of the time-variant resistance and load453

effect of the deteriorating structure is presented in Fig. 7.454

Suppose that in a particular year T , the PDF of G(T ) is fG(g). With this, the time-455

dependent reliability, L(T ), is given by456

L(T ) =

∫ 1

0

exp

[
−
∫ T

0

λ(1− FS[r(t|g)−D, t])dt

]
· fG(g)dg (50)

where r(t|g) is the resistance at time t given that G(T ) equals g, λ is the occurrence rate of457

the load, and FS is the CDF of each live load effect. It is noted that G(T ) should not be less458

than 0 for structures without maintenance or repair measures because the resistance process459

in non-increasing, nor be greater than 1 since the resistance of a structure never becomes a460

negative value, accounting for the integration limits of 0 and 1 in Eq. (50).461

For the case where the mean of load effect increases linearly with time (i.e., µS(t) =462

µS(0)+κmt), while the standard deviation of load effect, σL, is constant, the core of Eq. (50),463

ν(g) = exp

[
−
∫ T

0

λ(t)(1− FS[r(t|g)−D, t])dt

]
(51)

can be simplified as follows [41],464

ν(g) = exp(−λ · Ξ), (52)

in which465

Ξ = exp

(
m0 +D − r0

a

)
aT

r0g + κmT

[
exp

(
r0g + κmT

a

)
− 1

]
, (53)

where a =
√
6σL

π
, and m0 = µS(0)−0.5772a. Comparing with Eq. (17), the bound estimate of466

time-dependent reliability can be transformed into a standard linear programming problem,467

if treating ν(g) in Eq. (50) as ξ(x) in Eq. (17).468

Suppose that the resistance at year 40 can be estimated. The COV of G(40) is 0.4; two469

cases of the mean of G(40), denoted by µG(40), are considered, i.e., 0.2 and 0.4. Without470
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Figure 7: Schematic representation of the time-variant resistance and load effect of an aging structure.

introducing additional assumptions in regarding to the distribution type of G(40), the lower471

and upper bounds of the time-dependent probability of failure for reference periods up to472

40 years are computed using the proposed linear programming-based method, and plotted473

in Fig. 8. As a comparison, Fig. 8 also shows the probabilities of failure with additional474

assumptions of the distribution type of G(40), i.e., several commonly-used distributions475

including normal, lognormal, Gamma, Beta and uniform distributions. The corresponding476

time-dependent probabilities of failure are adopted from the original literature [33]. It can be477

seen from Fig. 8 that for both cases of µG(40), the lower and upper bounds computed using the478

proposed method establish an envelope for the time-dependent reliabilities. These reliability479

bounds consider all possible distribution types for G(40). As expected, these bounds enclose480

those probabilities of failure with additional assumptions for the distribution type of G(40).481

This example clearly demonstrates that by simply assuming some common distribution types482

without justification, the probability of failure may be significantly underestimated.483

4.3. Example 3: an oscillation system484

A non-linear single degree of freedom system without damping is shown in Fig. 9. The485

example is adopted from [42]. The limit state function is defined by the case where the486
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Figure 8: Example 2: lower and upper bounds of the time-dependent failure probability.
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Figure 9: Example 3: schematic representation of an oscillation system.

maximum displacement response exceeds the limit, i.e.,487

G(X) = 3R− |Zmax| = 3R−
∣∣∣∣ 2F0

MΩ2
0

sin

(
Ω2

0t0
2

)∣∣∣∣ (54)

where Zmax is the maximum displacement response of the system, Ω0 =
√
(C1 + C2)/M , and488

R is the displacement when one of the two springs yields. The system is deemed to “fail” if489

G(X) < 0 and “survive” otherwise. The probabilistic information regarding the six random490

variables in Eq. (54) is summarized in Table 3. It is assumed that the variables C1 and C2491

are imprecise with their distribution types unknown. It is further assumed that C1 and C2492

are statistically independent of each other.493

The fragility curve of the system with respect to C1 and C2 is fitted through numerical494

simulation as follows,495

ξC1,C2(c1, c2) = 0.072Φ(−0.016c6+0.138c5−0.348c4+0.182c3+0.202c2+1.919c−3.656) (55)
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Table 3: Example 3: statistics of the random variables.

Variable Distribution type Mean Std. Dev.

M Normal 1 0.05
R Normal 0.5 0.05
F0 Normal 1 0.2
t0 Normal 1 0.2
C1 unknown 1 0.6
C2 unknown 0.5 0.3

where c = 3− c1 − c2.496

Since the problem involves multiple imprecise random variables, the iteration-based ap-497

proach as developed in Section 3.4 is used to find the lower and upper bounds of the system498

failure probability. Table 4 summarizes the bounds of Pf associated with different iteration499

rounds. Setting an error threshold of 10−4, the bounds of failure probability are obtained500

with five cycles of iteration, yielding an interval of failure probability of [0.0171, 0.0311].501

This demonstrates the applicability of the proposed method for handling multiple imprecise502

random variables. Furthermore, for comparison purpose, the bounds of Pf are also obtained503

using two different interval Monte Carlo methods, referred to as IMC1 and IMC2. The two504

interval Monte Carlo methods are different in that the CDF bounds of C1 and C2 were con-505

structed using the existing method (Eq. 7) in IMC1, and the proposed linear programming506

method in IMC2.507

Table 5 presents the bounds of failure probability obtained from the proposed method,508

IMC1 and IMC2. The interval of failure probability is found to be [0.0171, 0.0311] using509

the proposed method, [0.0001, 0.0655] for IMC1, and [0.0020, 0.0579] for IMC2. The same510

observation as in Example 1 is made, i.e., the proposed direct-optimization method yields the511

tightest bounds of failure probability, followed by IMC2. IMC1 leads to the widest bounds512

of failure probability.513

5. Conclusions514

A linear programming-based method has been proposed to handle reliability analyses515

involving random variables with incomplete statistical information (only knowing the first516

two moments and possible range). The proposed method does not require the assumption517
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Table 4: Example 3: bounds of failure probability from the proposed iteration-based approach.

Iteration No. Operation Lower bound Upper bound

1 1fC1 , 1fC2 ∼ normal distribution 0.0250 0.0250
2 1fC1 fixed, 2fC2 optimized 0.0245 0.0260
3 2fC2 fixed, 2fC1 optimized 0.0171 0.0310
4 2fC1 fixed, 3fC2 optimized 0.0171 0.0311
5 3fC2 fixed, 3fC1 optimized 0.0171 0.0311

Table 5: Example 3: bounds of failure probability from the interval MC and the proposed method.

Method Interval

Interval MC (IMC1)* [0.0001, 0.0655]
Interval MC (IMC2)** [0.0020, 0.0579]
Direct optimization*** [0.0171, 0.0311]

* P-boxes for C1 and C2 were obtained using Eq. (7) .
** P-boxes for C1 and C2 were obtained using linear programming.
*** Iteration-based approach is used, c.f. Section 3.4.

of a distribution type; it considers all possible distribution types which are compatible with518

available data. The proposed method makes full use of the available information, without519

introducing additional assumptions.520

The reliability analysis subject to imprecise probabilistic information is converted into521

solving a linear programming optimization problem. Two objective functions, namely Type522

1 and Type 2 (c.f. Eqs. (23) and (31)), are developed independently. Three numerical exam-523

ples demonstrated the efficiency and accuracy of the proposed method. The two objective524

functions lead to the same reliability bounds. In all three examples, the bounds on the525

failure probabilities obtained from the proposed method are significantly tighter than those526

from the interval Monte Carlo method, suggesting that more information is provided by the527

proposed method. The reason is that in the interval Monte Carlo method, the CDF bounds528

of imprecise input random variables need to be constructed first, and then are propagated529

through the Monte Carlo simulation. Useful information “inside” the CDF bounds of input530

random variables may be lost in the procedure. The proposed method, on the other hand,531

makes full use of available information of the imprecise random variables.532

While the proposed method can compute tight bounds of failure probability directly533

30



without the need of first constructing the CDF bounds of the imprecisely known random534

input variables, it can also be used to construct the best-possible CDF bounds for a random535

variable with limited moment information. It has been shown that the proposed method can536

yield tighter CDF bounds than the Chebyshev’s inequality when only the mean and variance537

of the random variable are known. In the case where the min, max, mean and variance of538

a random variable are known, the CDF bounds from the proposed method are the same539

as the best-possible bounds provided in [13]. The proposed method can also handle other540

general cases of imprecise probability such as interval moments, without assuming the type541

of distribution.542

Appendix A. Some lemmas and their proofs543

Lemma 1. For any real value τ > 0 and a random variable X defined in [0, 1], [ln(E(Xτ ))]′544

increases with τ .545

Proof. Since546

[ln(E(Xτ ))]′ = lim
dτ→0

d ln(E(Xτ ))

dτ
=

1

E(Xτ )
· E(X

τ+dτ )− E(Xτ )

dτ
(A.1)

it is equivalent to prove that for 0 < τ1 < τ2 = τ1 + dτ ,547

E(Xτ2)

E(Xτ1)
<

E(Xτ2+dτ )

E(Xτ2)
. (A.2)

With the Cauchy-Schwarz inequality, for two functions ι(x) and ϱ(x) defined in [0, 1], one548

has549 [∫ 1

0

ι(x)ϱ(x)dx

]2
≤

∫ 1

0

ι2(x)dx ·
∫ 1

0

ϱ2(x)dx (A.3)

where the equality holds if and only if ι(x) is linearly proportional to ϱ(x). Let550

ι(x) =
√

xτ1fX(x), ϱ(x) =
√

xτ2+dτfX(x) (A.4)

Eq. (A.3) gives551

[E(Xτ2)]2 < E(Xτ1) · E(Xτ2+dτ ) (A.5)
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which is an equivalent form of Eq. (A.2).552

Lemma 2. For a random variable X defined in [0, 1] with an unknown distribution type, if553

E(Xj) = exp(pj+q) for ∀j = 2, 3, . . ., then Pf (p) =
∫ 1

0
ξ(x)fX(x)dx = (1−eq)ξ(0)+eqξ(ep),554

where fX(x) is the PDF of X, and q = ln(E(X2)− 2p.555

Proof. Since E(Xj) = exp(pj + q) for ∀j = 2, 3, . . ., according to [43],556

Pf =
a0
2

+
∞∑
j=1

[
aj + aj

∞∑
k=1

exp(2pk + q)

(2k)!
· (jπ)2k(−1)k

]
(A.6)

where aj = 2
∫ 1

0
ξ(x) cos(jxπ)dx for j = 0, 1, 2, . . .. Assigning x = exp(p) · jπ in the equation557

cos x =
∑∞

k=0
x2k

(2k)!
(−1)2k gives558

Pf =
a0
2

+ (1− eq)
∞∑
j=1

aj + eq
∞∑
j=1

aj cos(e
p · jπ). (A.7)

Further, assigning x = 0 and x = ep respectively in the Fourier expansion of ξ(x), ξ(x) =559

a0
2
+
∑∞

j=1 aj cos(jxπ), yields560

ξ(0) =
a0
2

+
∞∑
j=1

aj, ξ(ep) =
a0
2

+
∞∑
j=1

aj cos(e
p · jπ). (A.8)

With Eq. (A.8), Eq. (A.7) becomes561

Pf (p) = (1− eq)ξ(0) + eqξ(ep) (A.9)

which completes the proof.562

Remark 1. A simple verification of Eq. (A.9) is that when σX is sufficiently small, E(Xj) ≈563

[E(X)]j = µj
X , thus p = lnµX and q = 0, with which Pf (p) = ξ(µX). Specifically, when ξ(0)564

is typically 0, Eq. (A.9) can be further simplified as Pf (p) = eqξ(ep).565

Remark 2. The failure probability in Eq. (A.9) is referred to as fictitious as it is derived566

based on the assumption that X has linear logarithmic moments.567
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Lemma 3. For a random variable X defined in [0, 1], there exist two coefficient sequences568

{α̃l, l = 1, 2, . . . n − 2}, {β̃l > 0, l = 1, 2, . . . n − 2} such that E(Xj) =
∑n−2

l=1 α̃l · β̃j
l for569

j = 2, 3, . . . n− 1, and Pf =
∫ 1

0
ξ(x)fX(x)dx = ξ(0) +

∑n−2
l=1 α̃l[ξ(β̃l)− ξ(0)], where fX(x) is570

the PDF of X.571

Proof. First, the existence of sequences {α̃l} and {β̃l} is guaranteed by the fact that572

detB = det


β̃2
1 β̃2

2 · · · β̃2
n−2

β̃3
1 β̃3

2 · · · β̃3
n−2

...
...

. . .
...

β̃n−1
1 β̃n−1

2 · · · β̃n−1
n−2

 =
∏

1≤l<k≤n−2

(β̃k − β̃l) ·
n−2∏
k=1

β̃2
k (A.10)

which is non-zero if β̃k ̸= β̃l for ∀k ̸= l. Next, according to [43],573

Pf =
a0
2

+
∞∑
j=1

[
aj + aj

∞∑
k=1

∑n−2
l=1 α̃l · β̃2k

l

(2k)!
· (jπ)2k(−1)k

]
(A.11)

where aj = 2
∫ 1

0
ξ(x) cos(jxπ)dx for j = 0, 1, 2, . . .. By noting that cosx = 1+

∑∞
k=1

x2k

(2k)!
(−1)2k574

holds for any x, and that ξ(β̃l) =
a0
2
+
∑∞

j=1 aj cos(β̃l · jπ), Eq. (A.11) becomes575

Pf =
a0
2

+
∞∑
j=1

aj +
n−2∑
l=1

α̃l

{
∞∑
j=1

aj

[
cos(β̃l · jπ)− 1

]}

= ξ(0) +
n−2∑
l=1

α̃l[ξ(β̃l)− ξ(0)]

(A.12)

which completes the proof.576

Lemma 4. If a real sequence monotonically increases with an upper bound, then the sequence577

converges to the supremum.578

Proof. See, e.g., [44].579
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Appendix B. Standard form of a linear programming problem580

A linear programming problem takes a standard form of581

min cTx, subjected to Ax ≼ b and x ≽ 0 (B.1)

where x is a variable vector to be determined, b and c are two known vectors, A is a582

coefficient matrix, and the subscript T denotes the transpose of a matrix. The operator ≼583

(or ≽) in Eq. (B.1) means that each element in the left-hand vector is no more (or less)584

than the corresponding element in the right-hand vector. The constraints Ax ≼ b and585

x ≽ 0 simultaneously define a convex poly-tope in which the objective function, cTx, is to586

be optimized [45, 46]. The algorithms of linear programming-based optimization have been587

well studied and widely applied in previous works [37–40], including some useful toolboxes588

such as YALMIP [47].589
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