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Abstract: The steadily growing traffic loading may become a hazard for the bridge safety. 
Compared to short and medium span bridges, long-span bridges suffer from simultaneous presence 
of multiple vehicle loads. This study presents an approach for extrapolating probabilistic extreme 
effects on long-span bridges based on weigh-in-motion (WIM) measurements. Three types of 
stochastic traffic load models are simulated based on the WIM measurements of a highway in 
China. The level-crossing rate of each stochastic traffic load is evaluated and integrated for 
extrapolating extreme traffic load effects. The probability of exceedance of a cable-stayed bridge is 
evaluated considering a linear traffic growth model. The numerical results show that the 
superposition of crossing rates is effective and feasible to model the probabilistic extreme effects of 
long-span bridges under the actual traffic loads. The increase of dense traffic flows is sensitive to 
the maximum load effect extrapolation. The dense traffic flow governs the limit state of traffic load 
on long-span bridges. 

Keywords: bridge; traffic load; extreme value; level-crossing theory; weigh-in-motion; probability 
of exceedance 

 

1 Introduction 
A large number of highway bridges were built over the past decades under the 
guidelines of national design specifications. The live load specified in the national 
design specification is conventionally evaluated based on site-specific traffic 
measurements collected several decades ago. For instance, the live load in the Load 
and Resistance Factor Design code of America (AASHTO, 2007) was evaluated 
based on data collected in Ontario in the 1970s (Nowak 1994). The live load in 
Eurocode 3 (ECS 2005) was made based on weeks of data collected in Auxerre in the 
1980s. The China’s code (MOCAT 2015) was made based on five highway traffic 
measurements in the 1990s. However, the current traffic load has increased 
significantly, which may become a hazard for serviceability, fatigue or even safety of 
existing bridges (Fu and You 2009). In fact, several short and medium span bridges 
collapsed due to extremely overloaded trucks. Han et al. (2014) indicated that 4 out 
of 1319 trucks in China cause larger bending moments of short-span bridges than the 
one evaluated according to the national design specification. Long-span bridges 
suffer from the simultaneous presence of multiple vehicle loads compared to short-
to-medium span bridges (Chen and Wu 2010). Therefore, evaluation of maximum 
traffic load effects on long-span bridges using actual traffic data deserves 
investigation. 

Traffic measurements are essential for modelling actual traffic load models, 
because traffic loads on a bridge are random and site-specific in nature. With 
developments of weight-in-motion (WIM) technologies (Yu et al. 2016), a traffic 
database is available for simulating and predicting multi-objective traffic load models. 
In this regard, Miao and Chen (2002) utilized WIM data in Hong Kong to develop a 
truck load model and compared it to several existing bridge live-load models. The 
WIM measurements in Netherlands were utilized by Oconnor and Obrien (2005) to 
extrapolate the maximum traffic load effect of a short-span bridge. A great number of 
WIM records collected from five European sites with consideration of overloaded or 
over-length vehicles were utilized by OBrien and Enright (2012) to simulate the 
maximum effect of short-to-medium span bridges under free-flowing traffic loads. 
Zhang and Au (2016) utilized WIM measurements in China to evaluate fatigue 
reliability of a long-span bridge. These studies have made great contribution to traffic 



load simulation based on WIM measurements. Lu et al. (2017b) evaluated the 
maximum deflection of a suspension bridge considering traffic volume growth based 
on WIM data in China. The traffic density variation that is a common phenomenon 
on highways has a significant influence on the load effects of long-span bridges. 
However, the traffic density has been ignored in the existing traffic load models. 

Investigation on effective approaches for probabilistic extrapolation of traffic 
load effects on bridges is a hot research field. The conventional approaches are the 
peaks over threshold (PVT) approach, generalized extreme value (GEV) distribution, 
and Rice level-crossing theory (OBrien et al., 2014; Zhou et al., 2016). The block 
maxima load effects for short and medium span bridges have a better fitting by the 
GEV distribution (Enringt and OBrien, 2013). However, the Rice’s level-crossing 
theory has advantages in probabilistic extrapolation of the traffic load effects on 
long-span bridges that can be assumed stationary and Gaussian (Cremona, 2001). For 
the Rice theory, the premise is the Gaussian process, and the key problem is how to 
determine the optimum interval to fit the crossing rate. This problem has been 
discussed by many researchers (O’Brien et al. 2015; Chen et al., 2015). On the basis 
of extrapolations, the characteristic load effect can be estimated for bridge design 
considering a lifetime return period. 

As elaborated above, the site-specific traffic measurements provide a huge 
database for the modelling the live load of in-service bridges. In addition, the 
stochastic traffic flow is an effective and realistic model that needs to be considered 
especially for long-span bridges due to the severe vibration in contrast to the 
transient vibration caused by a single vehicle on a short span bridge. To the best of 
the authors’ knowledge, most studies on this field focused on maximum traffic load 
effects analysis of short to medium span bridges. However, research efforts on long-
span bridges are relatively insufficient. In practice, due to the statistical parameters in 
the stochastic flow model, the corresponding load effects can be further developed 
for application of probabilistic modelling such as extrapolation of extreme values and 
reliability assessments. One of the difficulties in this regard is the time-consuming 
traffic load effect analysis. Moreover, probabilistic modeling of load effects requires 
additional long-term traffic loads database. 

This study aims to implement Rice’s level-crossing theory to extrapolate the 
probabilistic extreme effects on long-span bridges under site-specific traffic loads. 
The WIM measurements of a heavy-duty highway in China are utilized to simulate 
the interval-density stochastic traffic-load models. The level-crossing rate for the 
variable-density traffic is integrated by the level-crossing rates of three interval-
density traffics. Characteristic deflections and probability of exceedance of a cable-
stayed bridge are evaluated with consideration of a linear traffic growth model. The 
effective and feasible of the proposed framework is demonstrated in a case study of a 
cable-stayed bridge. 

2 Theoretical bases 

Similar to the generalized extreme value distributions, Rice’s level-crossing theory is an 
effective approach to predict maximum traffic load effect on long-span bridges in a 
reference period. The premise of utilizing the level-crossing formula is to presume the 
stationarity of a stochastic process. However, due to the variable density of the actual 
traffic flow on a long-span bridge, the traffic load effect is obviously non-stationary, 
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which violates the premise of the Rice’s theory. Therefore, this study utilizes an effective 
approach to consider the variable-density traffic loads. 

2.1 Rice’s level-crossing formula 

For long-span bridges, the ratio between the bridge length and the consecutive vehicle 
spacing is larger than that of short and medium span bridges. Therefore, the load effects 
of long-span bridges under stable traffic loads can be assumed stationary and Gaussian, 
or even be modelled as white noise processes (Ditlevson 1994). Rice’s level-crossing 
theory (see Fig. 1) is a conventional approach to deal with a stationary stochastic process 
exceeding a threshold level during a reference period. Level-crossing rate that is the 
number of crossings in a unit period can be written as (Rice 1945): 

' 2

2

( )( ) exp
2π 2

x mv x σ
σ σ

 −
= − 

 
                                        (1) 

where, x is a threshold level, m and σ are the mean value and standard deviation of the 
random process, respectively, and σ’ is the standard deviation of the derivative of x. In 
practice, v(x) can be fitted to histograms of number of crossings in a unit time. In 
particular to traffic load effects on bridges, v(x) can be approximated by the numerical 
simulations with traffic data and structural influence lines. 

The critical step for extrapolating is to choose the optimal starting point and 
number of intervals. A starting point close to the tail is better for the approximated to the 
tail, while a starting point far from the tail is better for the extrapolation. In this regard, 
Cremona (2001) suggested a Kolmogorov-Smirnov test to optimize the starting point. In 
order to deal with the subjective of the significance level in the Cremona’s approach, 
Chen et al. (2015) developed the Rice’s method by utilizing empirical distribution of 
random variables. Based on the optimal starting point and class intervals, the maximum 
value in a return period is written as (Cremona 2001) 

       max 0,( ) 2 ln( )t opt opt opt tx R m v Rσ= +                              (2) 

where, Rt is the return period, xmax is the maximum load effect corresponding to the return 
period, mopt, σopt and v0,opt, represent the optimal mean value, optimal standard derivation 
and optimal crossing rate, respectively.  It is worth to note that the plus sign in the second 
part of Eq. (2) can be changed to the minus sign to evaluate the minimum extrapolation. 

Based on the relationship of the return period and the reference period, the 
cumulative distribution function (CDF) of the maximum traffic load effect during the 
lifetime of a bridge can be written as 

  2
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where, Tref is the reference period. It is obvious that the CDF is a variation of Gumbel 

distribution where the kernel part is 2
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2.2 Bridge level-crossing rates under actual traffic loads 

The premise of utilizing the Rice’s formula is to ensure the stationary of the stochastic 
process. It is acknowledged that the traffic flows on bridges are time varying, where the 
traffic is dense at daytime and is free at night. Therefore, the traffic load on a long-span 
bridge will cannot be traded as stationary during the service period. However, the traffic 
load can be assumed as stationary in an interval time that can be evaluated from the 
traffic density distribution in one day. For instance, based on the WIM data of a highway 
bridge in Sichuan, China, the hourly traffic volume in two lanes was evaluated as shown 
in Fig. 2. The dash lines of 200 and 400 vehicles per hour divide the entire traffic flow 
into three parts, including the dense traffic flow, the moderate traffic flow and the sparse 
traffic flow. The expected numbers of vehicles are 8.3, 5.0 and 1.7 per hour per lane for 
the three types of traffic flows, respectively. 

By dividing the entire nonstationary process into several stationary interval 
processes, the level-crossing rate of the original process can be treated as a superposition 
of the interval processes in proportions. Based on this assumption, the kernel coefficients 
can be evaluated by a second-order polynomial function:  

[ ] 2
0 1 2

1

( )ln ( ) ln
m

i i

i

p N xv x a a x a x
T=

 = = + +  
∑                           (4) 

where, ( )v x is a estimated equivalent level-crossing rate of the non-stationary 

process,
2

0 0 2ln( )
2
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= − , 1 2
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σ
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1
2

a
σ

=
−

are second-order polynomial 

coefficients that can be evaluated based on the histograms of number of crossings. 
Subsequently, the maximum value during a return period can be estimated as shown in 
Eq. (3). In this way, the non-stationary process problem has been solved by utilizing an 
interval stationary process. The probability distribution of the vehicle spacing can be 
estimated from the WIM records in each time interval. 

In addition to the maximum value extrapolation based on the level-crossing 
formula, probability of exceedance can also be estimated. First-passage failure is the best 
description of stochastic process crossing the prescribed threshold during an interval time. 
Based on the Rice’s level-crossing theory, the probability of failure, Pf, can be estimated 
by the assumption of a Poisson distribution: 

[ ]
0

( , ) exp ( )d exp ( )sT

f s i sP a T A v a t T v a = − ≅ −  ∫                           (5) 

where, A is a coefficient associated with the stationarity of a random process and can be 
assumpted as 1 for a stationary process, Ts is usually the lifetime of a bridge, and a is the 
threshold value of the bridge, such as L/500 for the deflection limit of a concrete cable-
stayed bridge (MOCAT 2007). 

3 Methodology of level-crossing rate simulation of long-span bridges 
under variable-density stochastic traffic loads 

Fitting level-crossing rates is a critical step to implement the Rice’s theory to evaluate the 
maximum traffic load effect on a bridge. In general, the level-crossing rate can be fitted 
to the block maxima via MCS, which is applicable for short and medium span bridges. 
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However, long-span bridges suffer from simultaneous vehicle loads that lead to the 
complexity of the block maxima simulation. Moreover, the variable-density characteristic 
of the traffic loads on long-span bridges results in the nonstationarity of the live-load 
effects, which violate the premise of the Rice’s formula. As an extended application of 
the interval level-crossing model, a framework is present in the present study to simulate 
the level-crossing rate of long-span bridges under actual stochastic traffic loads.   

The flowchart of the proposed computational framework is shown in Fig. 3. The 
initial task as depicted in the flowchart is to simulate several interval stochastic traffic 
flows based on the WIM measurements. The statistical analyses of the filtered WIM 
measurements are conducted to obtain the probability models that are essential for 
stochastic traffic load simulation. According to the predefined traffic density threshold as 
shown in Fig. 2, divide the daily traffic flow into several types of interval traffics. The 
probability density functions (PDFs) of the vehicle spacing are fitted to the histograms of 
the interval traffics. Eventually, the interval stochastic traffic load models can be 
simulated based on the PDF models of traffic flows via the MCS. The actual traffic flow 
can be deemed as the integration of the interval traffic flows in proportions. 

Based on the simulated interval stochastic traffic loads, the load effects can be 
evaluated by the bridge static influence lines. The static response rather than the dynamic 
response are considered for long-span bridges because the dynamic amplification factor 
for flexible long-span bridges are less than 1.05 as specified in many design codes. The 
number of crossings as described in Fig. 1 can be counted as histograms where the level-
crossing rate can be fitted via a polynomial function as shown in Eq. (4). An equivalent 
level-crossing rate for the actual traffic flow can be approximated to the superposition of 
the interval level-crossing rates in proportions. With the equivalent level-crossing model, 
predications of the maximum load effect and the probability of failure can be conducted 
based on Eq. (2) and Eq. (5). It is worth to note that this framework can also be 
implemented to investigate the influence of traffic change in proportions of the interval 
traffic flows on the maximum load effect extrapolation and the probability of failure. 

The efficiency and accuracy of the computational framework mostly depend on 
the number of the interval traffic flows. For instance, the actual traffic in the present 
study is divided into three parts as shown in Fig. 2. Obviously, traffic load models with a 
shorter interval density length leads to a more accurate approximation to the actual traffic. 
Since the bridge static influence line is utilized to estimate the traffic load effect, the 
computational effort is negligible.  

4 Level-crossing rate simulation of a cable-stayed bridge 

A long-span cable-stayed bridge and its WIM measurements are selected herein to 
demonstrate the application of the proposed approach. The influence of the traffic density 
on the level-crossing rate is investigated. 

4.1 Stochastic traffic load simulation based on WIM measurements 

The WIM measurements in the present study were collected from a heavy-duty highway 
bridge in Sichuan, China. Details of the WIM measurements can be found in Liu et al. 
(2015) and Lu et al. (2017a). Since the original data contains some error and invalid data 
that is useless for the present study, a filtering process was conducted to remove these 
invalid data. In addition, the highly occupied light cars have slight contribution to the 
traffic load effect, and thus should be removed. According to the suggestion given by 



Enright and Obrien (2013), the present study utilized the following criteria to filter the 
invalid data: (1) the GVW was less than 30 kN; (2) the axle weight was greater than 300 
kN or less than 5 kN; and (3) the vehicle length was more than 20 m. The overview of the 
effective measurement is shown in Table 1. According to the vehicle configuration, all 
vehicles were classified as 6 types, where V1 represents light cars, V2~V6 represent the 
2- to 6-axle trucks. 

The essential statistics of the traffic flows are shown in Figs. 4. In Fig. 4(a), the 
GVW of the 6-axle trucks is well fitted by a bimodal Gaussian mixture model (GMM), 
where wi, μi and σi are parameters in the Gaussian distribution. It is worth to note that the 
second peak of the probability model of the GVW resulting from the overloaded trucks is 
well captured by the GMM model. In Fig. 4(b), xi and pi are the vehicle spacing and 
proportion of the ith type of traffic flows as defined in Fig. 2. The probability models of 
the vehicle spacing of various traffic densities were modelled separately by lognormal 
distribution functions. 

Based on the statistics of WIM measurements, the conventional MCS approach 
(Caprani et al. 2008; Enright Obrien 2013) was utilized to simulate the stochastic traffic 
load model. The first step is to determine the type of a vehicle according to the uniformly 
distributed PDF of the vehicle type proportion. The second step is to sample the GVW of 
the vehicle and the driving lane according to the statistics of the type of vehicles. The 
final step is to determine the vehicle spacing between two vehicles in the same traffic 
lane. The advantage for the segmental stochastic traffic load model is the feasibility of 
converting of the nonstationary daily traffic load into segmental stationary processes. 

4.2 Deflection-time history simulation of a cable-stayed bridge 

Dimensions of the prototype long-span cable-stayed bridge are shown in Fig. 5. The 
bridge has two pylons with double-sided cables following a fan pattern. The pylon and 
segmental girders are connected by 34 pairs of cables in double sides. The length and 
height of each steel box-girder are 12.8 m and 3 m, respectively. There are 4 traffic lanes 
in opposite directions. 

A commercial program ANSYS was used to extract the static deflection 
influence lines from the finite element model of the bridge. In the finite element model as 
shown in Fig. 6, the beams and towers were simulated by beam elements, and the cables 
were simulated by link elements. The cable forces are considered by the initial strain. The 
modulus of elasticity of the cables was revised based on the Ernst’s equation (Freire et al. 
2006): 

2 2

3

1

1
12

eq
h

E E
q L EA

T

=
+

                                       (6) 

where, E is the Young modulus of the material, T is the cable force, q is the unit self-
weight per length, Lh is the horizontal length of the cable, A is the cross-sectional area. A 
unit force was considered to move through the bridge, and the deflection influence lines 
at the points L/4, L/2 and 3L/4 are plotted in Fig. 7. It is observed that the critical point is 
the mid-span (L/2) point. Therefore, the subsequent analysis focuses on the mid-span 
point of the bridge girder. 

Based on the influence lines, the deflection-time histories of the bridge under the 
simulated stochastic traffic loads were calculated. The moving step of the traffic flow on 
the bridge is 6 m that is the cable spacing on girders. The computational effort is 
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ignorable for the static analysis.  One of the daily deflection-time histories is shown in 
Fig. 8, where Dmax is the maximum deflection for a type of traffic loads in one day.  

It is obvious that the dense traffic load leads to more higher extreme values 
compared to the free traffic load. In addition, the three types of time-histories can be 
distinguished easily by the extreme values. This phenomenon explains the necessary of 
dividing the variable-density daily traffic flow into several intervals of constant-density 
traffic flows. In this way, the bridge deflections have been divided into three types of 
stationary deflections. 

4.3 Deflection crossing rate simulation 

Based on the daily deflection histories of each interval traffic loads, the number of level-
crossings can be counted and the crossing rate can be fitted by lognormal functions and 
polynomial functions. In order to make a more accurate extrapolation based on the level-
crossing model, 1,000-day traffic flows were simulated where 30% upper data were 
utilized to approximate the annual deflection crossing rate. The effects of the three types 
of traffic flows were simulated and analysed separately, and the histograms of the actual 
traffic loads were accumulated considering the proportions of the three traffic flows. Fig. 
9 plots the individual histograms and corresponding fittings. Parameters of the fitting are 
shown in Table 2. 

In Fig. 9, each type of histogram corresponds to a type of traffic loads. The line 
for the actual traffic loads is a mixture of the three level-crossing rates. It is obvious that 
the actual traffic model has taken into account different types of traffic loads. In addition, 
influence of each type of traffic flows on the actual level-crossing model can be 
investigated by changing their proportions.  Therefore, the proportions of the traffic flows 
were doubled respectively to investigate their influence on the actual level-crossing rate. 
It is observed from Fig. 10 that the dense traffic flow impacts the tail of the fitting for the 
actual traffic load. 

Herein, the deflection crossing models of the cable-stayed bridge are simulated 
based on the WIM measurements. The nonstationary of the traffic loads have been solved 
by dividing the daily traffic flow into three intervals of constant-density traffic flows. 
Since the tail of the level-crossing rate fitting is mostly impacted by the dense traffic 
loads, numerical study of its influence on the probability of exceedance of the bridge 
limit is investigated. 

5 Probabilistic extreme traffic load effects 

Based on the estimated level-crossing model, the characteristic traffic load effects and the 
probability of exceedance are evaluated with the consideration of the traffic density. 

5.1 Maximum deflection extrapolation 

The purpose of the level-crossing rate fitting is to extrapolate the maximum traffic load 
effect of a bridge in a reference period. Based on the level-crossing model, the maximum 
deflection of the bridge in a 1000-year lifetime was evaluated as shown in Fig. 11. In a 
1000-year return period, the maximum deflections of the bridge under sparse, moderate 
and dense traffic loads are 0.493m, 0.541 m, and 0.721 m respectively. The maximum 
deflection for the actual traffic load is 0.703 that is relatively close to the one of the dense 
traffic load. 



Since three traffic load models were utilized to superpose the level-crossing 
model, the influence of their proportions on the maximum deflection extrapolations is 
deserved investigating. Suppose two of the traffic proportions are constant, and change 
the third traffic proportion from 0 to 1. Fig. 12 plots the results, where the 100% dense 
traffic and the 100% sparse traffic load effects are included for comparison. As observed 
from Fig. 12, the maximum deflection value increase dramatically as the dense traffic 
appears, while the maximum deflection values increase slightly due to the proportion 
growth of the spare traffic and the moderate traffic. This phenomenon demonstrates that 
the proportion of the influence is the most sensitive factor leading to the maximum 
deflection. 

5.2 Probability of exceedance assessment 

As mentioned before, different design codes have different threshold values, such as 
L/300 and L/800. In the present study, the threshold deflection value is L/500=0.84 m 
according to MOCAT (2007) for long-span concrete cable-stayed bridges. It is defined as 
an event of exceedance that the bridge deflection crossing the threshold value in a 100-
year period. Therefore, the probability of failure can be estimated based on the CDF of 
the level-crossing model. It is observed from Fig. 13 that the probabilities of failure are 
7.9×10-6 and 8.2×10-5 for the current traffic loads and the double dense traffic loads, 
respectively. This result is analysed based on the assumption of stationary traffic loads. 
The double dense traffic means the traffic volume increase without reducing the vehicle 
spacing, because a variation of the distribution of the vehicle spacing results in the 
nonstationary of the traffic density. 

In order to investigate the influence of density growth of the dense traffic on the 
probability of exceedance, the initial vehicle spacing in the stochastic traffic load model 
was supposed to be shortened by a reduction coefficient descripting the growth factor of 
the traffic. For instance, a reduction coefficient of a means the traffic volume grows by 1-
1/(1-a). By re-evaluating the level-crossing rates and the superposition, the probability of 
the exceedance are plotted in Fig. 14. It is observed that a reduction coefficient of 0.54 
corresponding to the traffic growth ratio of 117% is the threshold for a given probability 
of exceedance of 0.1 in a 100-year lifetime. 

It can be concluded from the case study that the superposition of the level-
crossing model simulated by interval stochastic traffic loads is an effective approach to 
predict the probabilistic extreme traffic load effects. Moreover, the influence of the 
different traffic proportions on the maximum deflection and the probability of 
exceedance can be analysed by utilizing the superposition of the level-crossing models. 

6 Conclusions 

This study presents a framework for probabilistic extrapolation of traffic load effects on 
long-span bridges based on WIM measurements. Three types of stochastic traffic load 
models are simulated based on the statistics of the WIM measurements of a heavy-duty 
highway bridge. Rice’s level-crossing theory is implemented to approximate extreme 
traffic load effects. The actual crossing rate is integrated by the interval crossing rates of 
three types of traffic flows. Characteristic deflections and the probability of exceedance 
of a cable-stayed bridge are evaluated with consideration of a linear traffic growth model. 
The case study of the maximum deflection extrapolation of a cable-stayed shows the 
application of the framework in predicting probabilistic extreme traffic load effects. The 
dense traffic flow governs the limit state of traffic load on long-span bridges. The 
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appearance of the dense traffic results in a dramatic increase of the maximum value 
extrapolation. A threshold traffic growth ratio can be evaluated based on the numerical 
result. 

In addition to the cable-stayed bridges, the proposed approach can also be 
applied to any other flexible long-span bridges. However, some challenges need to be 
addressed in future works. First, since the dense traffic governs the extreme traffic 
loading scenario, a more detailed probability model focusing on the dense traffic is 
expected to provide a more reasonable extrapolation. Second, the congestion state rather 
than the free flowing state needs to be considered for the traffic load modelling. Finally, 
the nonlinearity of the traffic load effects can be considered by screening critical 
stochastic traffic loading scenarios based on influence lines. 
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Table Captions 

Table 1  Overview of WIM measurements 
Table 2  Parameters of the level-crossing rates accounting for traffic densities 

 
Table 1  Overview of WIM measurements 

Items Values 
Time period May 1, 2013 to April 30, 2015 

Number of recording days 729 
Average daily truck traffic 2145 

Traffic lanes 4 
Maximum GVW (t) 164 

 
Table 2  Parameters of the level-crossing rates accounting for traffic densities 

Traffic states Sparse traffic Moderate traffic Dense traffic Actual traffic 
v0,opt 1274 751 675 859 
mopt (m) 0.2662 0.358 0.3352 0.249 
σopt (m) 0.0427 0.0354 0.0746 0.0869 

 



Figure captions 

 
Figure 1  Principle of the level-crossing theory 
Figure 2  Histograms of traffic volume in the same direction of a highway bridge 
Figure 3  Flowchart of the computational framework 
Figure 4  Statistics of the WIM measurements: (a) GVWs of 6-axle trucks; (b) vehicle 

spacing 
Figure 5  Dimensions of a half of the cable-stayed bridge 
Figure 6  Finite element model of the cable-stayed bridge 
Figure 7  Static deflection influence lines of the bridge girders at positions L/4, L/2 

and 3L/4 
Figure 8  Daily deflection history of the mid-span point of the bridge girder 
Figure 9  Histograms and fittings of the number of level-crossings 
Figure 10  Influence of the traffic proportion on the level-crossing rate 
Figure 11 Maximum deflection of the bridge under traffic loads 
Figure 12  Influence of traffic proportion on the maximum deflection extrapolation 
Figure 13 Probability of exceedance of the threshold deflection 
Figure 14  Influence of the reduction of the vehicle spacing on the probability of 

exceedance 
 
 



   

 

   

   
 

   

   

 

   

    14   
 

Level crossing (x>0)
Level crossing (x<0)

t

Load effect

o

x1

x2

 
Figure 1  Principle of the level-crossing theory 
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Figure 2  Histograms of traffic volume in the same direction of a highway bridge 
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Figure 3  Flowchart of the computational framework 
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Figure 4  Statistics of the WIM measurements: (a) GVWs of 6-axle trucks; (b) vehicle 

spacing 
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Figure 5  Dimensions of a half of the cable-stayed bridge 

 

 
Figure  6  Finite element model of the cable-stayed bridge 
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Figure 7  Static deflection influence lines of the bridge girders at positions L/4, L/2 and 

3L/4 
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Figure 8  Daily deflection history of the mid-span point of the bridge girder 
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Figure 9  Histograms and fittings of the number of level-crossings 
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Figure 10  Influence of the traffic proportion on the level-crossing rate 
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Figure 11 Maximum deflection of the bridge under traffic loads 
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Figure 12  Influence of traffic proportion on the maximum deflection extrapolation 
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Figure 13 Probability of exceedance of the threshold deflection 
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Figure 14  Influence of the reduction of the vehicle spacing on the probability of 

exceedance 
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