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Abstract In this paper, the material nonlinearity is1

introduced in the dynamic modeling of fiber-reinforced2

composite thin plates, and a new nonlinear vibra-3

tion model of such composite plate structures with4

amplitude-dependent property is established with the5

consideration of the nonlinear stiffness and damping6

characteristics, which is observed and confirmed in7

the nonlinear vibration characterization experiment. In8

this new model, the elastic moduli and loss factors9

are expressed as the function of strain energy den-10

sity on the basis of Jones–Nelson material nonlinear11

model. By using the identified parameters under differ-12

ent excitation amplitudes, these elastic moduli and loss13

factors are characterized as the function of the max-14

imum dimensionless strain energy density. Then, the15
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power function fitting technique is used to determine 16

the nonlinear stiffness and damping parameters in the 17

model, and the nonlinear natural frequencies, vibration 18

responses and damping ratios of a TC300 carbon/epoxy 19

composite thin plate are calculated and measured in a 20

case study. The comparisons between the theoretical 21

and experimental results show that the maximum cal- 22

culation error of natural frequencies with consideration 23

of amplitude-dependent property is less than 4.3%, and 24

the maximum calculation errors of resonant response 25

and damping results are no more than 12.5 and 9.6% 26

in the 3rd mode and the 6th mode, respectively. There- 127

fore, the practicability and reliability of the proposed 28

model have been verified. 229

Keywords Nonlinear vibration model · Fiber- 30

reinforced composite thin plate · Nonlinear vibration · 31

Amplitude-dependent property · Strain energy density 32

1 Introduction 33

The fiber-reinforced composite has excellent mechani- 34

cal properties, good thermal stability and capability on 35

weight reduction, which is widely used in the aeronau- 36

tics, astronautics, naval vessels and weapon industries 37

[1]. Currently, there are a large number of such com- 38

posite thin plate structures, including the solar panels, 39

aircraft engine fan blades, large wind turbine blades, 40

etc. As these plate-like composite structures often work 41

on the harsh environments, their vibration problems 42
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become increasingly severe, such as an excessive vibra-43

tion, wear and fatigue failure. In addition, with the in-44

depth research, the fiber-reinforced composite struc-45

tures are found to show the nonlinear stiffness and46

damping properties [2–4]. For example, the natural fre-47

quencies change with different external excitation lev-48

els or strain levels, which show some nonlinear stiffness49

characteristics, and the damping properties are also50

closely related to excitation frequencies and excitation51

levels. These nonlinear characteristics have brought a52

great deal of difficulties and challenges to the tradi-53

tional vibration modeling methods, which are mainly54

dependent on the linear equivalence principle. There-55

fore, it is of great scientific significance to study the56

nonlinear vibration characteristics and the correspond-57

ing modeling techniques [5].58

Nowadays, the nonlinear vibration studies of fiber-59

reinforced composite thin plate have attracted extensive60

attentions and most methods are achieved by Von Kár-61

mán nonlinear theory. Rao and Pillai [6] analyzed the62

large-amplitude vibrations of a simply supported com-63

posite plate with immovable edges. The Kirchhoff’s64

hypothesis and von Kármán theory were used in the65

formulation with the in-plane deformation and iner-66

tias were considered. It was found that the behavior67

of the oscillations was the same for both positive and68

negative displacements and the related frequency ratio69

would increase with the magnitude of the amplitude.70

Singh et al. [7] presented a direct numerical integra-71

tion method of the frequency/time period expression72

to study the nonlinear vibration behavior of the fiber-73

reinforced plates also based on the Von Kármán rela-74

tionship. It was found that the frequency ratio decreased75

with an increase in modulus ratio, and also was depen-76

dent on the amplitude direction. Ribeiro and Petyt [8]77

studied geometrically nonlinear vibration of thin lami-78

nated composite plates under the fully clamped bound-79

ary condition by the hierarchical finite element. The80

Von Kármán nonlinear theory and harmonic balance81

method were used to solve the nonlinear equations of82

motion. Chen et al. [9] presented the semi-analytical83

finite strip method to analyze the geometrically nonlin-84

ear response of a rectangular composite laminated plate85

under the simply supported boundary condition with86

the von Karman assumptions. The nonlinear dynamic87

problem was solved by using the Newmark time step-88

ping scheme in association with Newton–Raphson iter-89

ation. Lee and Ng [10] proposed a time-domain modal90

formulation using the finite element method for large-91

amplitude vibrations of composite thin plates. Also, 92

on the basis of von Kármán theory, the nonlinear free 93

and forced vibration responses were obtained by modal 94

reduction method. Harras et al. [11] established a theo- 95

retical model of nonlinear vibration of the thin compos- 96

ite plates based on the von Kármán strain–displacement 97

relationship. The effect of nonlinearity on the non- 98

linear resonance frequencies and modal shapes asso- 99

ciated with bending stress patterns was investigated. 100

Onkar and Yadav [12] conducted the nonlinear ran- 101

dom vibration analysis on the composite laminated 102

plate with uncertain material properties. The dynamic 103

equations were obtained based on the Kirchhoff–Love 104

plate theory and Von Kármán strain–displacement rela- 105

tionship. Singha and Daripa [13] studied the large- 106

amplitude vibration behavior of a composite thin plate 107

by finite element method. The nonlinear matrix ampli- 108

tude equations were obtained by employing Galerkin’s 109

method based on the von Kármán’s assumption. Zafer 110

and Zahit [14] studied the nonlinear dynamic response 111

of a laminated composite plate under the simply sup- 112

ported boundary condition. The geometric nonlinear- 113

ity effects were also taken into account with the von 114

Kármán theory. Singha and Daripa [15] used the shear 115

deformable finite element method to analyze the large- 116

amplitude vibration characteristics of composite plates. 117

The nonlinear matrix amplitude equations were also 118

obtained based on the Von Kármán nonlinear strain– 119

displacement relationship. 120

In addition, several studies are reported on the non- 121

linear material model of fiber-reinforced composite 122

with other hypotheses in the stress–strain relationship. 123

Hahn and Tsai [16] proposed a mathematical model to 124

describe the inherent nonlinearity in the longitudinal 125

shear in unidirectional composite laminae. An addi- 126

tional fourth-order term of the axial-shear stress was 127

added to the polynomial function to derive the nonlin- 128

ear stress–strain relationship of fiber composite. Jones, 129

Nelson and Morgan[17,18] proposed a new material 130

model for the deformation behavior of fiber-reinforced 131

composite under static loading. They pointed out that 132

the nonlinear stress–strain behavior was mainly due to 133

the nonlinear matrix material which greatly affected 134

the transverse modulus and the shear modulus. There- 135

fore, the material parameters were expressed as the 136

function of strain energy density. Amijima and Adachi 137

[19] presented a simplified mode to predict the nonlin- 138

ear stress–strain responses of the unidirectional lam- 139

ina. By applying the classical laminated plate theory 140
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to the small stress or strain increments of the stress–141

strain curve, the nonlinear stress–strain curve was con-142

tinuously predicted for various composite specimens.143

Mathison et al. [20] established a nonlinear material144

model using the orthotropic endochronic theory. The145

model was formulated in terms of elastic constants and146

endochronic parameters, and all constants and param-147

eters were determined from normal and shear tests148

on unidirectional and off-axis composite specimens.149

Tabiei et al. [21] proposed a nonlinear strain rate-150

dependent composite material model, which can be151

used for simulating the behavior of composite struc-152

tures under impact and tensile loadings.153

As this paper focuses on amplitude-dependent prop-154

erty of composite materials and structures, some impor-155

tant and selective literatures on this topic were high-156

lighted here. Firle [22] investigated the amplitude157

dependence of internal friction and shear modulus of158

boron fibers and found the strong amplitude depen-159

dence for higher oscillatory stresses. Maslov and Kinra160

[23] explored the amplitude–frequency dependence of161

damping property of carbon foam. The elastic mod-162

uli and loss factors were inverted from resonance fre-163

quencies and logarithmic decay measurements per-164

formed at several normal-mode resonances. Höfer and165

Lion [24] investigated the dynamic material behavior166

of filler-reinforced rubber and proposed a frequency-167

and amplitude-dependent model which can evaluate168

the stationary stress response in terms of the storage169

and the loss moduli. Khan et al. [25] studied the damp-170

ing characteristics of carbon fiber-reinforced compos-171

ites containing multi-walled carbon nanotubes (CNT).172

They found that the damping ratio was dependent on173

the amplitude as a result of the random orientation of 174

CNTs in the epoxy matrix. 175

Although the above researches have deeply investi- 176

gated the nonlinear vibration characteristics of fiber- 177

reinforced composite plates, most of them focus on 178

the geometric nonlinearity of composite plates based 179

on the Von Kármán strain–displacement relationship. 180

Besides, a few scholars[17,18] propose a model to 181

clarify the nonlinear stress–strain relationship of fiber- 182

reinforced composite structure. However, their primary 183

concern is the nonlinearity in the field of static loadings. 184

The material nonlinearity has not been introduced in the 185

dynamic modeling of composite structures. Therefore, 186

it is necessary to introduce the material nonlinearity 187

in the nonlinear vibration analysis of such a compos- 188

ite plate, especially to establish an appropriate mathe- 189

matical model to describe the nonlinear vibration phe- 190

nomenon with amplitude dependence. 191

2 Nonlinear vibration characterization experiment 192

In order to deeply understand nonlinear vibration 193

behavior of fiber-reinforced composite thin plate, in 194

this section, nonlinear vibration characterization exper- 195

iment is carried out to observe and confirm the nonlin- 196

ear stiffness and damping phenomenon under differ- 197

ent amplitudes. Three different TC300 carbon/epoxy 198

composite plates with the same sizes, namely com- 199

posite plate A, B and C , are used as test objects, as 200

shown in Fig. 1, which are laminated and produced by 201

Jiangxi Jiujiang Diwei composite materials Co. Ltd. 202

Besides, composite plate A is symmetrically laid with 203

Fig. 1 Three different

TC300 carbon/epoxy

composite plates

Composite 

plate A

Composite 

plate B

Composite 

plate C
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 Composite plateAccelerometerLMS  mobile front-end

Laser doppler vibrometer

Base

excitation

Data processing

Response

signal

ComputerTime processing Frequency analysis

Base

response

Vibration shaker

Fig. 2 Schematic of vibration test system of fiber-reinforced composite thin plate

 Composite plate

Vibration shaker

Laser doppler vibrometer

LMS  data acquisition 
front-end

45° mirror

Notebook computer

Laser measuring point 

Enlarge

Fig. 3 Real test picture of vibration test system of fiber-reinforced composite thin plate

laminate configuration of [0/0]5s, composite plate B204

is symmetrically laid with laminate configuration of205

[+ 45/− 45]5s, and composite plate C is woven fabric206

composite plate with laying angle of ± 45◦.207

In order to measure the vibration parameters of the208

composite plates with high accuracy, a vibration test209

system is set up in the nonlinear vibration characteriza-210

tion experiment, whose schematic and real test picture211

can be seen in Figs. 2 and 3. The fixture and M8 bolts are212

used to clamp the one side of the composite plates so as 213

to simulate cantilever constraint boundary, and the final 214

length, width and thickness of composite plate A, B and 215

C after the clamping is about 230, 130 and 2.36 mm, 216

respectively. King-design EM-1000F vibration shake is 217

used to provide base excitation to the plate specimens 218

with controllable excitation amplitude and frequency. 219

Polytec PDV-100 laser Doppler vibrometer mounted 220

to a rigid support is used to measure response signal 221
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Fig. 4 The first 3 time

waveforms and frequency

spectrums of composite

plate A under excitation

amplitude of 0.5 g
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of the composite plates. The laser measuring point is222

170 mm above the constraint end, and the horizontal223

distance between this point and the left free edge of the224

plate is 20 mm. In addition, LMS SCADAS 16-channel225

data acquisition front-end and notebook computer are226

responsible for recording the laser signal and excitation227

signal (measured by BK 4514-001 accelerometer).228

In the nonlinear vibration characterization experi-229

ment, the following measurement steps are adopted.230

Firstly, the sine sweep test is conducted on the plate231

specimens with the sweep frequency range of 0–232

1024 Hz, frequency resolution of 0.125 Hz, and quick233

sweep speed of 5 Hz/s. Next, after getting the raw234

response signal, employ the small-segment FFT pro-235

cessing technique [31] to get frequency spectrum of236

the signal. The first 6 natural frequencies of the plate3 237

specimen are roughly determined by identifying the238

response peak in the spectrum. Then, reselect sweep239

frequency range which contains each imprecise value240

of natural frequency and set much slower sweep speed241

(0.5 Hz/s) to obtain the related frequency spectrum. In242

this way, by using the half-power bandwidth method,243

the natural frequencies and damping ratios under the244

certain excitation amplitude can be identified in the245

frequency spectrum. Finally, repeat the above measure- 246

ment steps under different excitation amplitudes (such 247

as 0.1, 0.25, 0.5, 1, 1.5, 2 g), and the nonlinear natu- 248

ral frequencies and modal damping ratios can be mea- 249

sured. 250

By taking the 1st and 3rd nonlinear characterization 251

test on the composite plate A as an example, Fig. 4 252

shows the first 3 time waveforms and frequency spec- 253

trums with the normalized amplitude under excitation 254

amplitude of 0.5 g, and Fig. 5 gives the measured first 255

3 frequency response spectrums of composite plate A 256

under different excitation amplitudes. Then, by apply- 257

ing the half-power bandwidth technique, the first 3 nat- 258

ural frequencies, resonant response and damping ratio 259

results of composite plate A are identified under these 260

excitation amplitudes, as shown in Tables 1, 2 and 3. 261

For the convenience of comparison, the corresponding 262

test results of composite plate B and C are also listed 263

in the same tables. 264

It can be seen from Fig. 5 and Tables 1, 2 and 3 265

that the first 3 natural frequencies of three different 266

fiber-reinforced composite thin plates decrease with 267

the increase in base excitation amplitudes in varying 268

degrees, which shows soft nonlinear stiffness charac- 269
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Fig. 5 The first 3 frequency response spectrums of composite plate A under different excitation amplitudes. a The 1st frequency

response. b The 2nd frequency response. c The 3rd frequency response

teristics. Besides, it also can be found that the damping270

results show a rising trend when the excitation ampli-271

tudes increase, which shows nonlinear damping varia-272

tion. Therefore, it can be concluded that the amplitude-273

dependent property does exist in the vibration behavior274

of fiber-reinforced composite plates, and it is necessary275

to establish a theoretical model to explain these non-276

linear phenomena.277

3 A new nonlinear vibration model with amplitude278

dependence279

In this section, based on Jones–Nelson nonlinear the-280

ory, a new theoretical model of fiber-reinforced com-281

posite thin plate with amplitude dependence is estab-282

lished by considering both nonlinear stiffness and283

damping. Also, the theoretical principle and nonlinear284

vibration solutions are explained in details.285

3.1 Theoretical model286

Assume that a fiber-reinforced composite thin plate is287

made of fiber and matrix materials with the total layers288

of n and density of ρ, as seen in Fig. 6. Firstly, set up289

the coordinate system xoy at the middle surface, and290

suppose the length, width and thickness of composite291

plate are expressed as a , b and h, and the fiber direc-292

tion within a layer is defined as θ from the x-axis of the293

coordinate system. In this theoretical model, each layer294

of the composite plate is located at hk−1 and hk along295

the z-axis with the equal thickness, “1” represents the296

direction parallel to the fiber, “2” represents the direc-297

tion perpendicular to the fiber and “3” represents the298

direction perpendicular to the 1–2 surface. Meanwhile, 299

assume that the composite plate is under the cantilever 300

boundary condition and is subjected to the base excita- 301

tion load y(t). w0 is the vibration displacement in any 302

point R(x1, y1), as shown in Fig. 6. 303

According to the Jones–Nelson nonlinear theory, 304

each elastic modulus of fiber composite can be regarded 305

as the real number, which is actually the function of 306

strain energy density. Then, by using the complex mod- 307

ulus method [26] to introduce the loss factors into this 308

new theoretical model, named as “Jones–Nelson–Hui 309

nonlinear model,” the nonlinear material parameters of 310

composite thin plate can be expressed as 311

E∗
non1 = Enon1 + iE1ηnon1 312

= E1

[(

1 + A1U
�B1
e

)

+ iη1

(

1 + C1U
�D1
e

)]

(1) 313

E∗
non2 = Enon2 + iE2ηnon2 314

= E2

[(

1 + A2U
�B2
e

)

+ iη2

(

1 + C2U
�D2
e

)]

(2) 315

G∗
non12 = Gnon12 + iG12ηnon12 316

= G12

[(

1 + A12U
�B12
e

)

+ iη12

(

1 + C12U
�D12
e

)]

317

(3) 318

where E∗
non1 and E∗

non2 are the complex elastic moduli 319

of the layer parallel and perpendicular to the fiber, while 320

G∗
non12 represents the shear modulus in the 1-2 surface. 321

Also, Enon1, Enon2 and Gnon12 are the corresponding 322

real parts of E∗
non1 , E∗

non2 and G∗
non12 , ηnon1 and ηnon2 323

represent the nonlinear loss factors paralleled and per- 324

pendicular to the fiber, and ηnon12 represents the nonlin- 325

ear loss factor in the 1-2 surface. Moreover, E1, E2 and 326

G12 are the traditional elastic moduli, η1, η2 and η12 are 327

traditional loss factors without considering amplitude 328

dependence, U�
e is the maximum dimensionless strain 329

energy density, Ai and Bi are the nonlinear stiffness 330
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Fig. 6 A theoretical model of fiber-reinforced composite thin

plate

parameters which are related to elastic moduli, and Ci 331

and Di are the nonlinear damping parameters which 332

are related to loss factors of fiber composite. (We will 333

discuss how to obtain these key parameters in Sect. 4.) 334

The maximum dimensionless strain energy density 335

U�
e of fiber-reinforced plate can be expressed as 336

U�
e =

U�

U0
(4) 337

where U� is the strain energy density, whose expres- 338

sion can be written as U� = 1
2abh

∫ a

0

∫ b

0

∫ h

0 σxεx 339

+σyεy + σxyγxydxdy, and σx , σy σxy and εx , εy, γxy 340

are the stresses and strains in different fiber directions. 341

Besides, U0 is the constant which is used to make 342

U�
e dimensionless, which should have the same power 343

series with U�. 344

Because the composite plate is symmetrical between 345

the middle surface, its inner and outer displacements 346

are decoupled. Then, according to the classical lam- 347

inate theory, the displacement field can be expressed 348

as 349

u(x, y, z, t) = u0 (x, y, t) − z
∂w0 (x, y, t)

∂x
350

v(x, y, z, t) = v0 (x, y, t) − z
∂w0 (x, y, t)

∂y
351

w(x, y, z, t) = w0(x, y, t) (5) 352

where t is the time, u, v, w represents the displacement 353

of any point of composite plates, and u0, v0, w0 is the 354

displacement in the midplane. 355

Based on the assumed displacement field of the clas- 356

sical laminate theory, the normal strain εz , shear strain 357

γyz and γxz of composite plate are equal to zero, i.e., 358

εz = γyz = γxz = 0. Then, by considering the rela- 359

tionship between strain and displacement, the strain of 360

any point in the composite plate can be obtained with 361

the following expressions 362
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Fig. 7 Calculation flowchart of nonlinear vibration characteristics of fiber-reinforced composite thin plate with amplitude dependence

εx =
∂u

∂x
= −z

∂2w0

∂x2
363

εy =
∂v

∂y
= −z

∂2w0

∂y2
364

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w0

∂x∂y
(6)365

The bending curvatures κx , κy and torsion curvature366

κxy of composite plate on the middle surface can be367

expressed as368

κx = −
∂2w0

∂x2
, κy = −

∂2w0

∂y2
, κxy = −2

∂2w0

∂x∂y
(7)369

Then, the strain of any point in the composite plate370

can be simplified as371

εx = zκx , εy = zκy , γxy = zκxy372

For the orthotropic material, the stress–strain rela-373

tionship in the fiber coordinate can be defined as374

⎧

⎨

⎩

σ1

σ2

σ12

⎫

⎬

⎭

=

⎡

⎣

Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤

⎦

⎧

⎨

⎩

ε1

ε2

γ12

⎫

⎬

⎭

(8)375

where Qi j is the reduced stiffness, which can be376

expressed as377

Q11 =
E∗

non1

1 − ν12ν21
, Q12 =

ν12 E∗
non2

1 − ν12ν21
378

Q22 =
E∗

non2

1 − ν12ν21
, Q66 = G∗

non12, ν21 = ν12

E∗
non2

E∗
non1

(9)379

where v12 and v21 are the Poisson’s ratio which are380

induced by the stress in “1” and “2” directions.381

When an angle θ exists between the fiber coordinate382

and global coordinate, the stress–strain relationship of383

the kth layer of composite plate in the global coordinate384

Composite 

plate D

Laser point 

 Clamping 

fixture and bolts

Fig. 8 The real picture of composite plate D
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Fig. 9 The measured frequency response functions of composite

plate D

can be calculated by using stress–strain transformation 385

equation, which has the following form 386

⎧

⎨

⎩

σx

σy

σxy

⎫

⎬

⎭

(k)

=

⎡

⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤

⎦

(k) ⎧
⎨

⎩

εx

εy

γxy

⎫

⎬

⎭

387

=

⎡

⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤

⎦

(k) ⎧
⎨

⎩

zκx

zκy

zκxy

⎫

⎬

⎭

(10) 388
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Fig. 10 The measured 3rd and 6th frequency response spectrums of composite plate D under different excitation amplitudes. a The

3rd frequency response spectrums. b The 6th frequency response spectrums

where Q̄i j is the transformed reduced stiffness, which389

can be expressed as390

Q̄11 = Q11 cos4 θk + 2(Q12 + 2Q66) sin2 θk391

cos2 θk + Q22 sin4 θk392

Q̄12 = (Q11 + Q22 − 4Q66) sin2 θk393

cos2 θk + Q12

(

sin4 θk + cos4 θk

)

394

Q̄22 = Q11 sin4 θk + 2 (Q12 + 2Q66) sin2 θk395

cos2 θk + Q22 cos4 θk396

Q̄16 = (Q11 − Q12 − 2Q66) sin θk cos3 θk397

+ (Q12 − Q22 + 2Q66) sin3 θk cos θk398

Q̄26 = (Q11 − Q12 − 2Q66) sin3 θk399

cos θk + (Q12 − Q22 + 2Q66) sin θk cos3 θk400

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θk401

cos2 θk + Q66

(

sin4 θk + cos4 θk

)

(11)402

where k represents the kth layer of composite plates403

and θk represents the angle between the fiber direction404

and the x direction.405

The bending and twisting moment resultants in com-406

posite plates can be expressed as407

⎡

⎣

Mx

My

Mxy

⎤

⎦ =

n
∑

k=1

∫ zk

zk−1

⎡

⎣

σx

σy

σxy

⎤

⎦

(k)

zdz408

=

n
∑

k=1

∫ zk

zk−1

⎡

⎣

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤

⎦

(k) ⎧
⎨

⎩

zκx

zκy

zκxy

⎫

⎬

⎭

zdz409

=

⎡

⎣

D11 D12 D16

D12 D22 D26

D16 D26 D66

⎤

⎦

⎧

⎨

⎩

κx

κy

κxy

⎫

⎬

⎭

(12) 410

where, 411

Di j =
1

3

n
∑

k=1

(

Q̄i j

)(k)
(

z3
k − z3

k−1

)

, i, j = 1, 2, 6 412

The composite plate is subjected to the base excitation 413

load y (t), which can be expressed as 414

y (t) = Y eiωt (13) 415

where Y is the base excitation amplitude, ω is the exci- 416

tation frequency, and t is the time. 417

Assume that the base excitation can be simplified as 418

the external load of uniform inertia force f , which has 419

the following expression 420

f (t) = −ρh
d2 y (t)

dt2
= ρhYω2eiωt (14) 421

Then, the bending strain energy stored in the composite 422

plate can be expressed as 423

U =
1

2

∫ ∫

R

[

Mxκx + Myκy + Mxyκxy

]

dxdy (15) 424

The kinetic energy of composite plate can be expressed 425

as 426

T =
ρh

2

∫ ∫

R

(

∂w0

∂t

)2

dxdy (16) 427

The external work done by the uniform inertia force is 428

W f =

∫ ∫

R

f (t)w0dxdy (17) 429
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Table 7 The maximum dimensionless strain energy density val-

ues corresponding to the 6th mode of composite plate under dif-

ferent excitation amplitudes

Excitation amplitude (g) 1 2 3 4 5

U�
e 5.3 20.9 47.3 84.7 133.6

3.2 Nonlinear vibration solutions430

The displacement w0 of any vibration response point431

R(x1, y1) in the composite plate can be expressed as432

w0 = eiωt W (ξ, η) (18)433

where ω is the excitation frequency, and W (ξ, η) rep-434

resents modal shape function which can be defined as435

W (ξ, η) =

M
∑

i=1

N
∑

j=1

qi j Pi (ξ) Pj (η) (19)436

where qi j are the eigenvectors which need to be solved,437

Pi (ξ) (i = 1, . . . , M) and Pj (η) ( j = 1, . . . , N ) are438

the orthogonal polynomials.439

The orthogonal polynomials can be obtained by440

implementing orthogonalization operation on polyno-441

mial function, which should satisfy the boundary con-442

dition of composite plate, and these polynomials have443

the following expressions444

P1 (ξ) = χ (ξ) , P1 (η) = κ (η)445

P2 (φ) = (φ − H2) P1 (φ)446

Pi (φ) = (φ − Hi ) Pi−1 (φ) − Vi Pi−2 (φ)447

φ = ξ, η, i > 2 (20)448

where Hi and Vi are the coefficient functions and their449

expressions can be written as450

Hi =

∫ 1
0 W (φ)

[

Pi−1 (φ)
]2

φdφ
∫ 1

0 W (φ)
[

Pi−1 (φ)
]2

dφ
451

Vi =

∫ 1
0 W (φ) Pi−1 (φ) Pi−2 (φ) φdφ

∫ 1
0 W (φ)

[

Pi−2 (φ)
]2

dφ
, φ = ξ, η452

(21)453

where W (φ) is the weighting function and usually454

W (φ) = 1. Besides, χ (ξ) and κ (η) are the polynomial455

functions which should satisfy the different boundary456

conditions, such as the clamped, simply support and457

free boundary. These functions can be expressed as458

χ (ξ) = ξα (1 − ξ)β , κ (η) = ηγ (1 − η)τ459

ξ = x/a, η = y/b (22) 460

As the studied composite plate is under the cantilever 461

boundary condition, the corresponding values can be 462

set as α = 2 , β = 0 , γ = 0 , τ = 0. Then, sub- 463

stituting Eq. (19) into Eqs. (15)–(17), the maximum 464

bending strain energy Umax stored in the plate, the max- 465

imum kinetic energy Tmax and the maximum external 466

work W f max done by the uniform inertia force can be 467

obtained and expressed as 468

Umax =
1

2

∫ ∫

R

⎡

⎣D11

(

∂2W

∂x2

)2

+ 2D12
∂2W

∂x2

∂2W

∂y2
469

+ D22

(

∂2W

∂y2

)2

470

+ 4

(

D16
∂2W

∂x2
+ D26

∂2W

∂y2

)

∂2W

∂x∂y
471

+ 4D66

(

∂2W

∂x∂y

)2
⎤

⎦ dxdy (23) 472

473

Tmax =
ρhω2

2

∫ ∫

R

(W )2dxdy (24) 474

W f max = ρhYω2

∫ ∫

R

W dxdy (25) 475

Define the Lagrangian energy function L as 476

L = Tmax + W f max − Umax (26) 477

By minimizing partial derivative of the Lagrangian 478

energy function L with respect to qi j in the following 479

equation 480

∂L

∂qi j

= 0, i = 1, 2, . . . , M, j = 1, 2, . . . , N . (27) 481

Then, M × N equations in frequency domain can be 482

obtained and written as the matrix form, and the vibra- 483

tion equation of composite thin plate with the consider- 484

ation of amplitude-dependent nonlinear effects can be 485

expressed as 486

(

K∗
non − ω2M

)

q = F (28) 487

where K∗
non is complex nonlinear stiffness matrix which 488

can be rewritten as Knon + iCnon, and Knon, Cnon and 489

M are the nonlinear stiffness matrix, nonlinear material 490

damping matrix and mass matrix, respectively. Besides, 491

q = (q11, q12, . . . qi j )
T is the response vector and F is 492
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exciting force vector. It should be noted that the non-493

linear vibration equation can be converted to the linear494

vibration equation with ignoring Ai , Bi , Ci and Di ,495

which has the following form496

(

K∗ − ω2M
)

q = F (29)497

where K∗ is the complex linear stiffness matrix without498

considering the amplitude-dependent nonlinearity.499

Ignoring the damping matrix and the exciting force500

vector in Eq. (28), the free vibration eigenvalue501

equation of composite thin plate with considering502

amplitude-dependent nonlinearity can be obtained and503

written as504

(

Knon − ω2M
)

q = 0 (30)505

In order to make Eq. (30) have the nonzero solution or506

nontrivial solution, the determinant of the coefficient507

matrix should be equal to zero508

∣

∣

∣
Knon − ω2

i M

∣

∣

∣
= 0 (31)509

In order to solve nonlinear natural frequencies of com-510

posite plate, the iteration technique is employed to solve511

Eq. (31) when the iteration initial value ω
(0)
i is deter-512

mined. Besides, according to the minimum difference513

principle of the two adjacent natural frequency results,514

the iteration termination condition can be expressed as515

∣

∣

∣
ω

( j+1)

i − ω
( j)
i

∣

∣

∣
≤ S0 (32)516

where S0 is the iteration accuracy factor, ω
( j)
i is the j th517

step of natural frequency results, ω
( j+1)

i is the j+1th518

step of natural frequency results (superscript j or j+1519

represents the different iteration calculation steps).520

By solving Eq. (32) with iterative optimization tech-521

niques [27,28], the i th nonlinear natural frequency522

ωnoni of composite plate can be determined. Then, the523

Newton–Raphson iteration method can be used to cal-524

culate the nonlinear vibration response. The expression525

of residual vector r can also be derived and expressed526

as follows527

r =
(

K∗
non − ω2M

)

q − F (33)528

Because r is a complex vector which includes the real529

part qR and imaginary part qI of the response vector530

q, it can be written in the form of qR + iqI. Then, the531

Jacobian matrix J related to r can be expressed as532

J =

[

R(∂r/∂qR) R(∂r/∂qI)

I(∂r/∂qR) I(∂r/∂qI)

]

(34)533

∂r

∂qR

= K∗
non − ω2M (35) 534

∂r

∂qI

= i(K∗
non − ω2M) (36) 535

Meanwhile, by separating the real and imaginary parts 536

of the residual vector r and the response vector q, 537

the separation vectors of r̄ and q̄ can be obtained and 538

expressed as 539

r̄ =

{

R(r)

I(r)

}

(37) 540

q̄ =

{

R(q)

I(q)

}

(38) 541

By combining with Eq. (34)–(38), the Newton–Raphson 542

iteration formula of Eq. (33) can be expressed as 543

r̄( j) + J( j) × �q̄( j) = 0 (39a) 544

q̄( j+1) = q̄( j) + �q̄( j) (39b) 545

q( j+1) = R(q̄( j+1)) + i × I(q̄( j+1)) (39c) 546

where �q̄( j) represents the response increment at the 547

j th step (superscript j or j+1 represents the different 548

iteration calculation steps). 549

Then, substituting the iteration initial value of res- 550

onant response q(0)(when j = 0) into Eq. (39), the 551

iteration termination condition can be determined by 552

setting 2-norm of residual vector r less than the itera- 553

tion accuracy factor S0 (e.g., set S0 = 0.0001), which 554

has the following form 555

∥

∥

∥
r( j+1)

∥

∥

∥

2
=

√

(

∣

∣

∣
r
( j+1)
1

∣

∣

∣

2
+

∣

∣

∣
r
( j+1)
2

∣

∣

∣

2
+

∣

∣

∣
r
( j+1)
3

∣

∣

∣

2
+ . . .

)

≤ S0 556

(40) 557

558

When the 2-norm of residual vector r in Eq. 559

(39b) satisfies the iteration termination condition, the 560

response vector q can also be obtained using Eq. (39). 561

Further, by substituting q into Eq. (18), the nonlinear 562

vibration response wnon0 of composite plate under a 563

certain exciting frequency can be obtained. 564

Once the nonlinear vibration response wnon0 is 565

acquired, the total strain energy of composite plate U 566

and the strain energy U1 , U2 and U12 in different fiber 567

directions can be calculated and expressed as 568
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Fig. 11 The identified relation curves between elastic moduli

and the maximum dimensionless strain energy density along the

longitudinal, transverse and shear directions of fiber-reinforced

composite. a The longitudinal direction. b The transverse direc-

tion. c The shear direction
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Fig. 12 The identified relation curves between loss factors and

the maximum dimensionless strain energy density along the

longitudinal, transverse and shear directions of fiber-reinforced

composite. a The longitudinal direction. b The transverse direc-

tion. c The shear direction

U1 =

n
∑

k=1

1

2

∫ a

x=0

∫ b

y=0

∫ hk

hk−1

σ k
1 εk

1dxdydz569

U2 =

n
∑

k=1

1

2

∫ a

x=0

∫ b

y=0

∫ hk

hk−1

σ k
2 εk

2dxdydz570

U12 =

n
∑

k=1

1

2

∫ a

x=0

∫ b

y=0

∫ hk

hk−1

τ k
12γ

k
12dxdydz571

U = U1 + U2 + U12 (41)572

Next, on the basis of modal strain energy method, the573

relationship between modal loss factors and loss factors574

in different fiber directions can be expressed as575

ηnoni =
ηnon1U1 + ηnon2U2 + ηnon12U12

U
(42)576

Finally, the nonlinear modal damping ratio ζnoni , which577

is often used in engineering practice, can be obtained578

as 579

ζnoni =
ηnoni

2
(43) 580

4 Determination of the nonlinear stiffness and 581

damping parameters 582

In this section, the principle of how to determine the 583

key stiffness and damping parameters in the proposed 584

nonlinear vibration model, such as Ai , Bi , Ci and Di , 585

is illustrated. 586

4.1 Identify the elastic moduli and loss factors 587

without considering amplitude dependence 588

Firstly, by using the least square method, the frequency 589

relative error function efre between the experimental 590
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natural frequencies and the theoretical natural frequen-591

cies can be constructed under a certain excitation ampli-592

tude, which can be obtained by solving Eq. (29) with593

the following expression594

efre =

Rmode
∑

i=1

(

|� fi |

f̂i

)2

(44)595

where Rmode represents the number of modes, � fi rep-596

resents the difference between the i th natural frequency597

obtained by the experiment and theoretical calculation,598

f̂i is the i th natural frequency obtained in the experi-599

ment.600

Then, take the average material parameters as the601

center, such as E0
1 , E0

2 , G0
12, ν

0
12, which are usually pro-602

vided by composite material manufacturer. With the603

consideration of parameters error Rerr = 10–∼20%,604

the range of elastic moduli can be determined as fol-605

lows606

E0
1 (1 − Rerr) ≤ E1 ≤ E0

1 (1 + Rerr)

E0
2 (1 − Rerr) ≤ E2 ≤ E0

2 (1 + Rerr)

G0
12 (1 − Rerr) ≤ G12 ≤ G0

12 (1 + Rerr)

(45)607

Further, select an appropriate step size g (for exam-608

ple g=1%) in the above range and construct the itera-609

tion vectors of the elastic moduli, such as E1, E2, G12,610

which can be expressed as611

Z = [Z1, Z2, . . . Zn] (46)612

where Z1 = Z0(1 − Rerr) , Z2 = Z0(1 − Rerr) +613

2gRerr Z0 , Zn = Z0(1 − Rerr) + 2g(n − 1)Rerr Z0 ,614

Z = E1, E2, G12.615

By iteratively calculating these material parameters616

in a permutation and combination manner, the optimum617

estimation results of E1, E2, G12 without considering618

amplitude dependence under certain excitation ampli-619

tude can be obtained when efre reaches the minimum620

value. Consequently, by repeating the above steps, the621

elastic moduli in different fiber directions under differ-622

ent excitation amplitudes can be identified.623

Similarly, the damping relative error function edamp624

can be constructed and expressed as625

edamp =

Rmode
∑

r=1

⎛

⎝

|�ζi |
∣

∣

∣
ζ̂i

∣

∣

∣

⎞

⎠

2

(47)626

where �ζi represents the difference between the i th627

modal damping ratio obtained by the experiment and628

theoretical calculation and ζ̂i is the i th modal damping629

ratio obtained in the experiment.630

Next, set the maximum loss factor, e.g., ηmax = 0.04 631

(which is large enough for the fiber material), and con- 632

struct the iteration vectors of loss factors, such as η1, 633

η2 and η12 with an appropriate step size g (for example 634

g=1%) in a range of 0 ∼, lηmax, which can be expressed 635

as 636

η1 =
[

η1
1 η2

1 . . . ηn
1

]

η2 =
[

η1
2 η2

2 . . . ηn
2

]

η12 =
[

η1
12 η2

12 . . . ηn
12

]

(48) 637

where η1
i = 0, η2

i = gη, . . . , ηn
i = (n − 1)gηmax. 638

By iteratively calculating the loss factors in a per- 639

mutation and combination manner, the optimum esti- 640

mation results of η1, η2 and η12 without considering 641

amplitude dependence under certain excitation ampli- 642

tude can be obtained when the damping relative error 643

function edamp gets to the minimum value. Finally, by 644

repeating the above steps, the loss factors in different 645

fiber directions under different excitation amplitudes 646

can be identified. 647

4.2 Determine the maximum dimensionless strain 648

energy density 649

In this step, the maximum dimensionless strain energy 650

density values are calculated under different excita- 651

tion amplitudes so as to determine the nonlinear stiff- 652

ness and damping parameters in the nonlinear vibration 653

model. First, substitute the identified elastic moduli, 654

loss factors and natural frequency under a certain exci- 655

tation amplitude into Eq. (29) to obtain the response 656

vector q of composite plate. Then, substitute response 657

vector q into Eq. (18) to obtain the displacement w0. 658

The strain energy density U� can also be calculated by 659

substituting w0 into Eq. (15). Finally, by considering 660

the expression of dimensionless strain energy density 661

in Eq. (4), the maximum dimensionless strain energy 662

density U�
ei under a certain excitation amplitude can be 663

calculated. And by repeating the above steps, the maxi- 664

mum dimensionless strain energy density values under 665

different excitation amplitudes can be determined. 666

4.3 Obtain nonlinear parameters by the power 667

function fitting technique 668

In this step, firstly set the maximum dimensionless 669

strain energy density value as X -axis, while set each of 670
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Table 8 The identified elastic moduli and loss factors of fiber-reinforced composite without considering amplitude dependence

Name E1 (GPa) E2 (GPa) G12 (GPa) η1 η2 η12

Linear material parameter 115.70 9.64 5.26 0.0126 0.0171 0.0236

Table 9 The identified nonlinear stiffness and damping parameters of fiber-reinforced composite with considering amplitude depen-

dence

Name Longitudinal direction Transverse direction Shear direction

Nonlinear material parameter A1 − 0.000980 A2 − 0.000983 A12 −0.001801

B1 0.11971 B2 0.48410 B12 0.48410

C1 − 1.33692 C2 4.66192 C12 4.81225

D1 − 0.67641 D2 0.02747 D12 0.02787

elastic modulus and loss factor as Y -axis, and therefore671

the relation curve between the X -axis and Y -axis can672

be plotted. Then, the concerned stiffness and damping673

parameters in the nonlinear vibration model, such as674

Ai , Bi , Ci and Di , can be obtained by the power func-675

tion fitting technique, which is realized by the curve676

fitting tool in MATLAB (enter cftool at the command677

line). Finally, by referring to the following calculation678

flow chart of fiber-reinforced composite thin plate with679

amplitude-dependent property, as shown in Fig. 7, the680

nonlinear natural frequencies, vibration responses and681

modal damping ratios under different excitation ampli-682

tudes can be calculated by the self-written MATLAB683

program.684

5 A case study685

In this section, another TC300 carbon/epoxy composite686

plate, namely composite plate D, is taken as a research687

object to verify the practicability and reliability of the688

proposed model.689

5.1 Test object690

The composite plate D is symmetrically laid with lam-691

inate configuration of [(0/90)5/0/(90/0)5], as shown692

in Fig. 8. It has in total 21 layers, and each layer has the693

same thickness and fiber volume fraction. The longi-694

tudinal elastic modulus is 115.7 GPa, transverse elastic695

modulus is 9.64 GPa, shear modulus is 5.26 GPa, Pois-696

son’s ratio is 0.33, and density is 1780 kg/m3. Besides,697

the length, width and thickness of the plate D after the 698

clamping are 200×130× 2.36 mm. The laser measur- 699

ing point is 140 mm above the constraint end, and the 700

horizontal distance between this point and the left free 701

edge of the plate is 20 mm. 702

5.2 Linear vibration measurement 703

Based on the same vibration test instruments used in 704

Sect. 2, a modal hammer is added in the linear vibration 705

measurement to conduct the experimental modal test of 706

composite plate D. The frequency response functions 707

are measured with the changes of the excitation posi- 708

tions, and totally 100 measuring points are excited by 709

the hammer. Figure 9 shows the measured frequency 710

response functions at three different excitation points, 711

and Table 4 lists the identified natural frequency and 712

modal shape results. Besides, for the convenience of 713

comparison, the calculated results of the composite 714

plate D are also listed in the same table, from which 715

we can see that there is a good agreement between the 716

calculated and measured modal shapes, and the max- 717

imum calculation error of natural frequencies is less 718

than 6.1%. 719

5.3 Nonlinear vibration measurement 720

Nonlinear vibration measurement of composite plate D 721

under different excitation amplitudes is taken. By tak- 722

ing the 3rd and 6th modes as an example, firstly set the 723

excitation energy as five different excitation values and 724
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Fig. 13 The 3rd frequency response spectrums of composite plate D calculated under different excitation amplitudes. a With considering

the amplitude-dependent property. b Without considering the amplitude-dependent property
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Fig. 14 The 6th frequency response spectrums of composite plate D calculated under different excitation amplitudes. a With considering

the amplitude-dependent property. b Without considering the amplitude-dependent property

measure the corresponding frequency response spec-725

trums under different excitation amplitudes, as shown726

in Fig. 10. Then, the natural frequencies, resonant727

responses and damping ratios are identified, as listed728

in Table 5.729

5.4 Identification results under different excitation730

amplitudes731

Here, the 6th natural frequency and modal damping732

results obtained in the above are utilized to calculate733

elastic moduli, loss factors and the maximum dimen- 734

sionless strain energy density values under the excita- 735

tion amplitudes of 1, 2, 3, 4 and 5g, and the identified 736

results are listed in Tables 6 and 7. 737

5.5 Fitting of the nonlinear stiffness and damping 738

parameters 739

Since the elastic moduli and loss factors along the lon- 740

gitudinal, transverse and shear directions of the fiber- 741

reinforced composite are already obtained, each of 742
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them is used as the dependent variable while the max-743

imum dimensionless strain energy density value is set744

as the independent variable. Then, the nonlinear rela-745

tion curves between these variables are obtained by the746

power function fitting technique, as shown in Fig. 11747

and Fig. 12. In addition, the following parameters, such748

as E1, E2, G12, η1, η2, η12, Ai , Bi , Ci and Di in Eq. (1),749

Eq. (2) and Eq. (3), with and without considering the750

effect of the amplitude dependence are also identified,751

as listed in Tables 8 and 9.752

5.6 Comparison and discussion753

Finally, the identified nonlinear material parameters754

are brought into the nonlinear vibration model, and755

therefore the nonlinear natural frequencies, resonant756

responses, damping ratios and response spectrums in757

the 3rd and 6th modes of composite plate D under758

different excitation amplitudes are calculated by the759

self-written MATLAB program, as given in Fig. 13760

to Fig. 14 and Tables 9, 10, 11, 12, and 13. For the761

convenience of comparison with experimental results,762

the corresponding calculated results in the 3rd and 6th763

modes without considering the amplitude dependence764

are also given in the same figures and tables.4 765

It can be seen from the above results that: (I) For the766

3rd mode of composite plate, the maximum calculation767

errors of natural frequencies, resonant responses and768

damping ratios with considering amplitude-dependent769

property are less than 4.3, 6.2 and 8.2%, and these cal-770

culation errors are smaller than those obtained with-771

out considering the amplitude dependence (which are772

less than 5.2, 8.9 and 11.5%, respectively); (II) for the773

6th mode of composite plate, the maximum calculation774

errors of natural frequencies, resonant responses and775

damping ratios with considering amplitude-dependent776

property are less than 2.1, 12.5 and 9.6%, and these777

calculation errors are also smaller than those obtained778

without considering the amplitude dependence (which779

are less than 2.3, 37.5 and 16.7%, respectively). There-780

fore, the correctness and effectiveness of the proposed781

nonlinear vibration model have been verified. How-782

ever, it is still necessary to find out the reasons for the783

above errors, which probably result from both theo-784

retical modeling and experimental measurement. For785

example, in the theoretical modeling process, the fol-786

lowing calculation errors exist: (I) without consider-787

ing the damping effects resulting from interface defects788 T
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b
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and interfacial frictions between the layers; (II) with- 789

out considering the effect of residual stress; (III) with- 790

out considering the influence of the dispersion of com- 791

posite materials; (IV) without considering the accu- 792

mulation of the truncation errors and rounding errors 793

in the calculation process. While in the experimental 794

measurement, the following factors may also lead to 795

some errors: (I) without considering the influence of the 796

looseness in the clamped boundary condition; (II) with- 797

out considering calibration errors of the accelerometer 798

and laser Doppler vibrometer; (III) without considering 799

the influence of air damping. 800

Finally, after the further analysis and comparison, 801

we can also find out that: (I) The calculated and mea- 802

sured natural frequencies in the 3rd and 6th mode of 803

composite plate decrease with the increase in excita- 804

tion amplitudes, which all show the soft nonlinear stiff- 805

ness characteristics. The reason for this phenomenon 806

may be the nonlinear viscoelastic effect of epoxy resin 807

materials, which contributes to frequency and ampli- 808

tude dependences [29,30]; (II) the calculated damping 809

results show the same trend of enlargement with the 810

measured damping results when the excitation ampli- 811

tudes increase monotonously, which may be caused 812

by the increased interfacial friction, resulting from the 813

increased response amplitudes [3,4]. 814

6 Conclusions 815

By combining theory with practice, this research inves- 816

tigates the nonlinear vibration modeling method of 817

composite plate structures with amplitude dependence. 818

(1) The nonlinear natural frequencies, resonant responses 819

and damping ratios of three different TC300 car- 820

bon/epoxy composite plates have been measured 821

in the nonlinear vibration characterization experi- 822

ment. Based on the measured results under differ- 823

ent excitation amplitudes, the nonlinear stiffness 824

and damping phenomena have been observed and 825

confirmed. 826

(2) A new nonlinear vibration model of fiber-reinforced 827

composite thin plate with amplitude-dependent 828

property has been established based on the Jones– 829

Nelson material nonlinear model. Both of the non- 830

linear stiffness and damping are considered by 831

expressing the elastic moduli and loss factors of as 832

the function of strain energy density. Then, by com- 833

bining with the measured natural frequency and 834
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damping data, the power function fitting technique835

is provided to determine the nonlinear stiffness and836

damping parameters in this new model.837

(3) Another TC300 carbon/epoxy composite plate is838

taken as study object to verify the practicability839

and reliability of the proposed model with consid-840

eration of more modes and measuring points, and841

the comparisons between the theoretical and exper-842

imental results show a good agreement. Also, it has843

been proved that the proposed model can provide844

a reasonable explanation why the composite plate845

structure shows the soft nonlinear stiffness charac-846

teristics and nonlinear damping variation when the847

excitation amplitudes change.848
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