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Slip flow in ducts and porous media is simulated using lattice-Boltzmann method incorporated
with interfacial force models. The dependence of the results on the viscosity, LBM scheme (D3Q15
and D3Q19) and the relaxation time model (single or multi-relaxation time) is investigated. The
severity of spurious velocities (arisen from classic and advanced interfacial force models) is discussed
that leads to entirely non-physical results for whole flow rates (0.027<Re<10.7). A simple method
based on superposition of solutions is proposed to fully rehabilitate the simulations. We validate
the method by showing the simulations versus analytical solution of slip flow through circular ducts.
The validity of the rehabilitated results for porous media applications are also tested through two
approaches: First, we show that the rehabilitation method is independent to the force scheme
used, i.e., the rehabilitated results are identical in both pore and macro-scales for different force
schemes with different distributions of spurious velocities. Second, using an analogy based on the
Kozeny-Carman model, we show that the permeability variation in porous media resulted from
the flow slippage obtained from rehabilitated simulations is reliable. We argue that to obtain
correct results, it is necessary to use the rehabilitation method whenever interfaical force models are
used in LB simulations. The results reveal that the permeability of porous media may increase or
decrease with positive or negative slippage (repulsive and attractive interfaces), respectively. The
permeability enhancement rate increases as the system becomes simpler in its interfaces, i.e., for the
same positive slippage of flow, ( κ

κNS
)parallel plates > ( κ

κNS
)square ducts > ( κ

κNS
)porous media (where κ

is the permeability and NS denotes no-slip).

I. INTRODUCTION

Fluid flow in porous media is ubiquitous in nature
and technology. Applications span many sectors and
processes such as oil recovery [1], shale gas production
[2], CO2 storage [3, 4], filtration membranes [5, 6], water
treatment [7], fuel cells [8], and microfluidics [9–11]. In
most analytical and numerical investigations of natural
or artificial porous media, the well-known no-slip bound-
ary condition is applied on the solid surfaces [12]. In
recent years, this assumption is shown to fail in many
circumstances, including in the presence of interfacial in-
teractions, e.g. hydrophobic [13–15] or hydrophilic [16–
20] interfaces, and micro/nanofluidics characterized by
high Knudsen numbers [21–24]. The importance of the
issue is better understood when considering the ubiquity
of interfacial interactions. All inorganic minerals of soil,
except for dehydroxylated silica are hydrophilic due to
the charges and polar groups on their surfaces [25]. How-
ever, water repellency is also common for soil and peat
which is caused by the organic matter of soil (humic acid)
[26]. There is also experimental evidence indicating the
existence of a strong interfacial energy imposed to the
fluid at the vicinity of many materials, in a long-range
fashion [27]. This leads to the formation of a deep surface
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zone of molecule orientation (a review in [28]). Particu-
larly, the solute-free zone near the hydrophilic surfaces is
shown as a long-range zone [29, 30], not only for aqueous
solutions but also for other polar liquids [31]. Recently, it
has been shown that the pore-scale features could induce
significant variations in microscopic flow behavior lead-
ing to highly variable transport mechanisms while the
macroscopic permeability could remain unchanged [32–
34]. Finally, the impact of wettability on the dynamics of
drying and drainage [35, 36], the permeability of porous
media [37, 38] and oil recovery [39] is well recognized.

On the other hand, the influence of interfacial inter-
actions is more significant when the characteristic size
of the medium decreases. There is a large number of
applications in nature, technology, biology and medicine
where the fluidic systems are downsized [9]. As the ratio
of surface-to-volume increases, the physics of microflu-
idics becomes largely dependent on the surface proper-
ties [40]. Therefore, surface interactions characterized by
wettability or hydrophobic/hydrophilic behaviour is one
of the most important issues determining the resistance
of such systems to flow [41, 42].

The apparent slip of flow is the main feature induced
by interfacial interactions (a review for the slip of Newto-
nian liquids is provided in [43]). The slip flow involves the
interplay of several physiochemical parameters including
the wettability of the solid, shear rate, pressure, elec-
trical properties (e.g. ionic strength and polarity), sur-
face roughness, as well as impurities and dissolved gas
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[12]. While it is very difficult to determine all involv-
ing parameters precisely, it has been shown that their
interplay can be successfully simulated using the lattice-
Boltzmann method incorporating the application of local
forces at the interfaces [44]. The method has been shown
to be appropriate for simulation of slip flow over planar
surfaces [45–48].

Although successfully implementable for slip flow in-
vestigations, the interfacial force models have certain lim-
itations. A problem known as spurious currents or spu-
rious/parasitic velocities, emerging in all computational
fluid dynamic approaches, has been shown to be linked to
the simulation of forces on non-planar (curved) interfaces
[49–55]. The spurious velocities are non-physical rota-
tional fluid velocities spreading throughout the domain,
especially at the vicinity of the interfaces. Thus a simula-
tion of flow in realistic porous media incorporating inter-
facial forces is always to some extent affected by spurious
velocities. The problem is highlighted when knowing that
one of the main reasons for the popularity of the LBM
is providing the facility to simulate realistic (complex)
pore geometries. In many cases, the spurious velocities
may cause entirely non-physical simulation results, par-
ticularly when the low-rate (laminar) flow and/or strong
interfacial forces are dominant. Researchers have intro-
duced many different computationally demanding ways
to mitigate the spurious velocities, e.g. higher-order ap-
proximation of the gradient term [49, 51, 52, 56–58]. De-
spite these attempts, the spurious currents are usually
reduced only by folds or an order of magnitude and a full
remediation is yet to be achieved [44]. For instance, the
application of multi-relaxation time model in Ref [59], al-
though decreasing the magnitudes of spurious velocities,
has yet led to large non-physical velocities (making any
flow simulation non-physical for Re < 2.3, with respect
to characteristic lengths of the model). Furthermore, in
current work, we show that the application of advanced
interfacial force models is also insufficient for obtaining
the physical results in slip flow simulations.

We propose a simple method to fully rehabilitate the
spurious velocities for single-phase fluid flow problems in-
volving interfacial interactions. The method is shown to
be accurate enough to determine the pore flow changes
in porous media induced by interfacial force. Our simple
post-processing rehabilitation method provides a signifi-
cant accessibility for the lattice-Boltzmann method to a
broad area of research, namely, flow simulations in wet-
table /non-wettable porous media using available inter-
facial force models.

We validate our method with two different approaches:
firstly, we implement two different force models that
largely changes the values and distributions of the spu-
rious velocities. Then we show that the rehabilitation
method is not affected by the variations of the non-
physical velocities, leading to accurately identical reha-
bilitated velocity fields. Secondly, we propose an analogy
between the porous medium and other systems (ducts
and plates) in which the spurious velocities are mini-

mal. Then the overall behavior of flow in those sys-
tems in presence of attractive/repulsive forces is com-
pared. The rehabilitated results showing the variation of
the permeability of porous media is evaluated based on
the similarity to other systems, also in comparison with
analytical solutions. The results demonstrate that the
attractive/repulsive interactions corresponding to neg-
ative/positive slip lengths induce reduction/increase of
permeability in porous media. The rate of the perme-
ability variation in different systems is also compared.

II. METHODS

A. Lattice-Boltzmann Method

The fluid flow was simulated using the lattice Boltz-
mann method that solves the discrete Boltzmann equa-
tion for a distribution of particles, fi(~x, t), on a discrete
lattice [60]. For each particle (cell), a set of discrete ve-
locities (~ei ) along discrete paths (i) is assigned and fi
is the probability function of each velocity. Employing
D3Q15 scheme, the movement of particles with 15 veloc-
ity components are determined, indexed from 0 to 14, the
first of which is associated with the rest case with null
velocity [61]. The flow density ρ and velocity ~u at a cell
position ~x are:

ρ(~x) =

14∑
i=0

fi(~x) (1)

~u(~x) =

∑14
i=0 fi(~x)~ei
ρ(~x)

(2)

We also compare the D3Q19 and D3Q19 schemes.
The Boltzmann equation could be solved using an evo-

lution rule [62]:

fi(~x + ~eiδt, t+ δt) = fi(~x, t) + Ωcoll (3)

where t is the current time, δt is the time step and Ωcoll
is the collision operator. Unless mentioned otherwise,
the collision operator utilized here is the widely used
Bhatnagar-Gross-Krook (BGK) model with the follow-
ing form:

Ωcoll =
feqi − fi

τ
(4)

with feqi being an equilibrium distribution function and τ
being the characteristic relation time. The Navier-Stokes
equations are shown to be recovered with having [63]:

feqi = ωiρ

(
1 +

3~ei.~u

C2
+

9(~ei.~u)2

2C4
− 3u2

2C2

)
(5)

where C = δx/δt is a characteristic lattice velocity with
δx being the time step and δx, the grid spacing. The
weight factor ωi is also assigned for each direction, the
sum of which for all would be unity (see [64]: Table 1



3

for weight factors of different schemes). The dynamic
viscosity of the fluid also determines the relaxation time,
τ as

ν = (τ − 0.5)
δ2x
3δt

(6)

Unless mentioned otherwise, we have kept the magni-
tude of τ equal to 1 to prevent numerical instabilities
[62], where δt and δx are also kept as unity. A detailed
parametric study on the influence of viscosity (and the
choice of τ) will be explained in Section III. In this sec-
tion we also use the multi-relaxation time scheme which
is described in Ref. [65].

B. Interparticle pseudopotential models

The methods defining the multi-phase/multi-
component interactions in LBM could be categorized
into the following three models: the pseudopotential
model of Shan and Chen [66, 67], the color gradient
model of Gunstensen [68] and the free energy model of
Swift et al. [69, 70]. This study adopted the pseudopo-
tential model which is known as the most widely used
model in this class, and introduced for interactions of
multi-phase [66, 67] and multi-component flow [71] (a
review is available in [44]). We incorporated this model
to account for the solid boundary interactions with
fluid in repulsive or attractive fashion. An improved
pseudopotential model known as explicit forcing scheme
(EFS) is also developed that is featured with reduction
of spurious velociites among other advantages [72]. We
also use this method to model the interfacial dynamics
as discussed later in Section VIII A.

1. Original Shan Chen pseudopotential model

The way the multicomponent and multiphase forces
are implemented in the SC model [66, 67] is similar to
the body forces, e.g. gravity [73], where a net force is
introduced for each cell. The velocity used for the equi-

librium function is modified with the net force, ~F as the
following:

~u = ~u′ +
τ ~F

ρ
(7)

where ~u′ is an effective velocity and ~F is the total force
(including interfacial interactions). The fluid-solid repul-
sion is modeled as

~F = −gsρ(~x)
∑
i=1

ωis(~x + σt~ei)~ei (8)

where gs is the force factor controlling the intensity of the
solid-fluid repulsion and the function s is unity when the
neighboring cell is solid and zero otherwise. The attrac-
tive force is also modeled with a negative force factor.

2. Explicit forcing scheme

In EFS, rather than through an equilibrium velocity
shift as in the original SC model, the force term is directly
incorporated into the discrete Boltzmann equation which
yields to the following implicit expression [72]:

fi(~x + ~eiδt, t+ δt)− fi(~x, t) = Ωcoll

+
δt
2

[
fFi (~x + ~eiδt, t+ δt) + fFi (~x, t)

]
(9)

where fFi is the forcing term added to the function to
account for variations due to external forces, and Ωcoll is
the same as Eq. 4. The forcing term is also defined as
[74]:

fFi =
~F .(~ei − ~u)

ρC2
feqi (10)

with F being the external force. The equilibrium distri-
bution function feqi is in the same form as Eq. 5. The
momentum substituted in Eq. 5 in SC model is different
due to the velocity treatment as per Eq. 7. In the SC
model, the external forces are introduced to the distri-

bution function through ~u′ . Therefor ~u′ is an effective
momentum. In EFS model, the forces are directly in-

corporated into the distribution function, thus the ~u′ is
simply an effective velocity.

With the following transformation applied to Eqs. 4
and 9,

f̄i = fi −
δt

2
fFi (11)

we obtain the explicit force scheme expressed as

f̄i(x+ ~eiδt, t+ δt)− f̄i(x, t)

=
1

τ

[
feqi (x, t)− f̄i(x, t)−

δt

2
fFi

]
+ δtfFi .

(12)

III. PARAMETRIC STUDY OF NUMERICAL
SIMULATIONS

A. Viscosity-dependence of simulations

We conducted a detailed study on the influence of vis-
cosity (and therefore the relaxation time) on the results.
In addition to the Bhatnagar-Gross-Krook (BGK) single-
relaxation time model, we also use the multi-relaxation
time (MRT) scheme [65]. We also check the influence of
different LBM schemes (D3Q15 and D3Q19) when used
with the SRT model. With a system of circular duct
with different diameters, we also investigate the influence
of the characteristic lengths when curved surfaces of the
ducts are modeled as zigzag boundaries. The results of
simulations when reaching the steady state are shown as
mean velocity of flow which is compared to the analytical
mean flow (Fig. 1). The viscosities used for the simula-
tions are between 1/30 to 2, equivalent to 0.6 < τ < 6.5.
From the results, we conclude that:
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• For all methods used here (SRT-D3Q15, SRT-
D3Q19, MRT-D3Q15), the highest accuracy is ob-
tained for 1 < τ < 2.

• For all methods used, the simulation flow rate is less
than the analytical value for τ < 1. The simulation
flow velocity is larger than the 〈u〉Ana for τ > 2 for
SRT models, but remains smaller for MRT.

• The viscosity (relaxation time)-dependence of the
simulation velocity is generally less for 19-velocity
scheme compared to 15-velocity one, and for MRT
compared to SRT. MRT has almost the same sta-
bility (and accuracy) for the whole viscosity range
examined, while the SRT-D3Q15 is less stable than
the SRT-D3Q19 for large viscosities.

• For all of the schemes checked here, with a higher
resolution of simulations (i.e a larger number of
cells per the characteristic length of the system),
the error of the velocity decreases leading to less
viscosity-dependency and higher accuracy of the re-
sults.

B. Simulation iterations

It is worth mentioning that the iteration times required
to reach the steady-state conditions are different for dif-
ferent viscosities assigned. If the results are taken from
the same time steps, the viscosity-dependence would be
exaggerated. As a rule of thumb, the smaller the viscos-
ity, the larger the time iterations needed. The time steps
used in our simulations for this part are between 2500 to
35000 for largest and smallest viscosities, respectively. A
larger number of iterations are also needed as the num-
ber of lattices increases. For a model of 100 × 25 × 25
lattices used for the case of R = 20, 2500 time steps were
enough to reach the steady-state condition for all viscosi-
ties. The largest number of time steps were required for
the models with largest sizes and smallest viscosities.

C. No-slip assumption

The no-slip velocity boundary conditions at the fluid-
solid interface are usually approximated using the stan-
dard bounce-back (SBB) boundary conditions. This
model is defined to mimic the momentum reflection of
particles when colliding with a solid surface. However,
for the standard BB boundary condition, the position of
wall is not always obtained at the one-half grid spacing
beyond the last fluid node [75]. In the BGK model, the
actual position of the wall could be viscosity dependent
when the standard BB is applied, as derived from the an-
alytic solutions for the Poiseuille flow [76]. The accuracy
of no-slip boundary condition is of the first order of the
resolution, and might be low in under-relaxed situations,

i.e., when τ > 1 or for the low-resolution simulations.
However, it is also shown that the accuracy of the no-slip
assumption for bounce-back scheme with halfway wall is
of second order that is a high accuracy with acceptable
results for Poiseuille flow [76].

The accuracy of the no-slip model in our simulations
is indicated in In Fig. 2 through the fitting equations on
the no-slip velocity profiles. The erroneous slip velocities
when the no-slip model is assumed are in order of 10−3

and 10−4 compared to the maximum velocity of the flow
for the plate spacing of d = 10 and d = 30, respectively.
Compared to the slip velocities obtained from slip flow
models, the errors are negligible. The accuracy also im-
proves as the resolution of simulation increases. Given
that the resolution of our porous media simulations is
comparatively high (at least 68 cells per diameter), we
conclude that the models are suitable for no-slip assump-
tions.

Furthermore, as we are interested in slip flow charac-
terization, the position of the wall is the relative coordi-
nates of the origin for relative variation of the velocity
profiles. In our simulations, we consider the fluid cell ve-
locity for the coordinates of the middle of the cell. The
wall location is then where the velocity equals to zero
for the velocity profile of models with gs = 0.0. This
consideration usually places the wall at the edge of the
first fluid cell neighboring to solid cells. When gs 6= 0,
the variation of the velocity profile is compared to the
corresponding wall location for the no-slip assumption.

Finally, in Figs. 4 and 6(d), we show a validation of
slip lengths from LBM simulations against analytical so-
lutions. In those figures, it is illustrated that the slip
lengths tend to zero for interfacial forces tending to zero.
The close agreement of slip velocities in LBM simulations
with analytical slip velocities demonstrate the suitability
of the models used for both no-slip and slip flow simula-
tions.

IV. SLIPPAGE OF POISEUILLE FLOW

A. Flow between parallel plates

Using the interfacial force schemes, we obtained posi-
tive and negative slippage of flow corresponding to repul-
sive and attractive forces, respectively (Fig. 3). The neg-
ative slip is usually associated with the surface roughness
which narrows the effective channel width, in addition to
the Knudson number or electroosmotic flow [21, 77, 78].
The positive slippage causes an enhanced flow rate with
an increase in the effective plate separation [78, 79].

The analytical solution for mean velocity of Poiseuille
flow between parallel plates with no-slip surfaces is [80]

〈u〉 =
d2

12µ
G (13)

where G denotes a pressure gradient or body force gen-
erating the flow. Application of slip boundary conditions
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FIG. 1. Viscosity-dependence of the simulations. The normalized mean velocity of the flow through circular ducts (a) and its
relative error (b) vs. the viscosity ν in l.u and the relaxation time τ . The lattice resolution is 100 × (d + 5)2. The analytical
flow mean velocity is given as 〈u〉Ana = R2G/(8µ). The cross-section of the models is shown in (c)

at solid surfaces yields the mean flow velocity as [81]

〈u〉 =
d2

12µ

(
1 +

6λ

d

)
G (14)

with λ being the slip length (as defined in Fig. 3(a)) and
d being the plate separation. Using the interfacial forces
controlled with the force factor gs, LBM simulations in-
duce the slippage of flow with specific slip lengths. The
flow rates corresponding to the slip lengths that appear
in our LBM simulations exhibit a close agreement with
the available analytical solutions (Fig. 4).

B. Flow through polygonal ducts

Analytical solutions for slip flow in polygonal ducts are
obtained from separation of variables leading to solutions
in the form of infinite series of eigenfunctions [82–84].

For a rectangular duct, as solved by [83], the mean
velocity of flow is [84]:

〈u〉 =
L2

µ
×

∞∑
n=1

an sinαn
α3
n

[
1− sinh(αnb)

αnb
[

cosh(αnb) + λαn sinh(αnb)
]]G

(15)
where one side of the rectangle is 2L and the other is



6

-0.5 0 0.5

y/d

0

0.5

1

1.5

d=10

(a)

-0.5 0 0.5

y/d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 -0.45 -0.4
0

0.2

0.4

d=30

(b)

FIG. 2. Evaluation of the no-slip assumption. Velocity profiles of flow between parallel walls with spacing of d = 10 (a) and 30
(b) in l.u. Simulations are conducted using SRT-D3Q15 scheme with standard bounce-back boundary conditions at walls. The
resolution of simulations is (d+ 2)× 1102 lattices.. The no-slip velocity profile is obtained from simulations with no interfacial
forces (gs = 0) and bounce-back boundary conditions. The fitting equations on the no-slip velocity profiles indicate the accuracy
of the model for the no-slip assumption, leading to erroneous slip velocities of (3.4× 10−3)× umax and (3.5× 10−4)× umax for
d = 10 and 30, respectively.
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FIG. 3. Slippage of flow between repulsive (a) and attractive (b) walls, leading to positive and negative slip, respectively.
The flow velocity profiles are shown in right-hand-side panels. The definition of slip length λ is shown in (a). The insets
in left-hand-side panels show the mean velocity of flow versus the force factor gs. The repulsive and attractive interactions
resulted in enhanced (a) and decreased flow rates (b), respectively.

2bL. The eigenvalues αn are obtained from

cosαn = λαn sinαn. (16)

The convergence is shown to be fast with a few terms
needed for the required accuracy. The factor an is equal
to

an =
2 sinαn

αn + sinαn cosαn
. (17)

The slip flow through ducts with polygonal cross-
sections is solved using a collocation method by [82].

Those solutions presented in tables are illustrated in Fig.
5. The graph indicates that the flow is enhanced due
to the slippage with higher rates as the number of sides
in the cross-section of the duct becomes less. A trian-
gular shape receives the highest rate of flow enhance-
ment among the polygonal cross-sections while the cir-
cular shape possesses the lowest rate of flow increase.
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V. SUPERPOSITION METHOD FOR
REHABILITATION OF SPURIOUS VELOCITIES

We propose a simple post-processing method to reha-
bilitate the velocity fields obtained from the LBM simu-
lations of single-phase fluid interacting with active solid
interfaces, i.e., the surfaces with repulsive/attractive
forces. The method is based on the linearity of the
Navier-Stokes equations for Stokes flow. The full Naver-
Stokes equation governing the isothermal incompressible
fluid flow is [85]:

ρ
D~u

Dt
= ρ

(
∂~u

∂t
+ ~u.∇~u

)
= −∇p+ f + µ∇2~u (18)

∇.~u = 0. (19)

Here f is the body force (e.g. gravitational forces, ρg).
For low Re, the full equation is simplified to Stokes equa-
tion of creeping and steady flow:

∇p− f = µ∇2~u (20)

∇.~u = 0. (21)

Since Stokes flow equations are linear, they are responsive
to suitable methods in solving the linear partial differen-
tial equations such as linear superposition of solutions.
Consider two flow systems (velocity and pressure fields,
u1, p1 and u2, p2) individually satisfying Eqs. 20 ans 21.
Then their linear combination could be solved with the
superposition of the solutions of its components.

Based on this method, we construct a set of solutions
for the rehabilitation of spurious currents. To fulfill the
requirements of the superposition method, the spurious
velocities are to be linear fields. We examine the applica-
bility of a linear subtraction of the spurious velocities for
a wide range of interfacial force strengths (|gs| ≤ 2.5).
Furthermore, the linearity is generally held in low Re
number flows. So we investigate a range of flow rates to
give Re varying from below 1 to higher values up to 10,
corresponding to a transition zone from Darcy to post-
Darcy flow in porous media. The study would reveal to
what extent the results of a superposition method could
be valid for higher Re numbers (and also larger interfacial
forces) where non-linearity may progressively appear.

The velocity fields required in order to implement the
superposition method are as follows:

a) Spurious velocity field (uSP ):
This velocity field is obtained by simulation of the

model incorporated with the interfacial forces, but all
outer boundaries defined as periodic boundaries. We call
this velocity field as uSP hereafter. For example, if one
models the flow by the gravity or using the velocity (or
density) boundary conditions, to obtain the spurious ve-
locity field, no gravity or boundary condition should be
assigned. Therefore, the only velocity filed generated is
due to the force imbalance called spurious velocities.

b) Flow (original) simulation velocity field (u):
This field is obtained from simulation of the same

model, but with required configurations to generate the
flow (whether velocity/density boundary conditions or
gravitational forces). While simulations should be con-
tinued to reach the steady state, it is also vital to acquire
the data from the same time step as one of the uSP (with
other simulation parameters kept the same, i.e., the same
lattice units). It is because the spurious velocities may
vary with simulation time. This velocity field is called u
here.

c) Rehabilitated velocity field (u∗):
The rehabilitated velocity field is then defined as

u∗ = u− uSP (22)

i.e., the rehabilitated velocity vector on each lattice is
calculated by subtraction of the spurious velocity vector
from the flow original simulation velocity vector.
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VI. VALIDATION OF SUPERPOSITION
REHABILITATION METHOD: SLIP FLOW

THROUGH CIRCULAR DUCTS

In addition to validation of the LBM code for slip flow
simulations (as shown in Fig. 5), we also directly validate
the introduced rehabilitation method when applied on a
case with significant spurious velocities. For this pur-
pose, the slip flow through a circular duct is modeled.
The accuracy of the rehabilitated results for porous me-
dia simulations is also further assessed in the following
sections.

The no-slip solution for flow velocity at radial distance
r from the center of a circular duct is [80]

u =
1

4µ

(
R2 − r2

)
G (23)

where R is the duct radius. The mean velocity is

〈u〉 =
R2

8µ
G (24)

There is also a closed form solution for the slip flow
through circular ducts as [81]

〈u〉 =
R2

8µ

(
1 +

4λ

R

)
G (25)

When simulated numerically, curved surfaces of cir-
cular ducts induce large spurious velocities (see Fig.
6(a)). The superposition rehabilitation method results
in quadratic profiles which are fully purified from para-
sitic velocities (Fig. 6(b)). Velocity profiles indicate the
enhanced flow rates and the corresponding slip velocities
as caused by interfacial repulsive forces (Fig. 6(c)). The
slip lengths (λ) are also measured using quadratic fitting
equations assigned to the velocity profiles. The rehabili-
tated flow fields (u∗) are used to calculate the flow rate
enhancement versus the slip lengths (Fig. 6(d)). Despite
significant spurious currents in original simulations, the
rehabilitated results are proved valid with the close agree-
ment to the analytical solution.

VII. SIGNIFICANCE OF SPURIOUS
VELOCITIES IN POROUS MEDIA

SIMULATIONS

In porous media LBM studies, the slip flow could be
simulated using the interfacial forces while the main flow
is generated using the boundary conditions or gravita-
tional body forces. While the interplay of the surface
forces and the main flow produces the slip behavior, it
is important to estimate to what extent the simulations
could be affected by the spurious velocities. We per-
formed a general study on a typical porous medium com-
prised of monodispersed spheres with diameters equal to
68 cells. The surface forces characterized by the force

factor of gs are defined using SC and EFS models with
an influence length of one cell. The distributions and
magnitudes of spurious velocities are varied when using
different force models. While the EFS model would re-
duce their magnitude, the spurious currents could yet
cause entirely non-physical simulation results depending
on the force factor strength and main flow rates assigned
(see Fig. 7).

To study the severity of spurious currents, we extended
the simulations to a range of flow rates and interfacial
force strengths. The results are reported in l.u as shown
in Fig. 8. When simulating a flow in porous media with a
general flow velocity, 〈u〉, the magnitude of the spurious
velocities could be estimated for weak to strong inter-
facial interactions using Fig. 8(a). In this study, the

Reynolds number is equal to
〈u〉dp
ν = 409× 〈u〉 where dp

is the particle diameter and ν is kinematic viscosity. For
instance, when using a surface force strength of gs = 1,
for simulations of laminar flow with Re = 1, the spurious
velocities are on average 6 times as large as the mean flow
velocity. As spurious velocities are almost constant for
a certain gs, this ratio increases when we simulate lower
flow rates, causing non-physical results for entire Darcy
flow range.

A unique relationship is found when the relative
strength of spurious velocities is shown versus the ratio
of g

gs
(Fig. 8(b)). For the case of this study, the spurious

velocities start to exceed the physical mean flow velocity
when g

gs
becomes smaller than the threshold of 2×10−4.

VIII. SLIP FLOW THROUGH POROUS MEDIA

To evaluate the accuracy of our proposed method in
the rehabilitation of the results affected by spurious ve-
locities, we implement two different approaches:

First, using two different models to define the forces,
we obtain various distributions of the spurious velocities.
Although largely different from each other, the results of
both force models before rehabilitation are totally non-
physical velocity fields. Then we show the rehabilitated
velocity fields obtained from both models match accu-
rately in terms of both profiles and average values. The
velocity fields with the interfacial interactions are fea-
tured with enhanced or reduced permeability (the mean
flow velocity). The rehabilitation method is shown to
reflect this behavior in an accuracy appropriate for the
scale of the feature.

Second, a theoretical approach is employed by which
an analogy between some simple systems and porous me-
dia is proposed. The simple systems are parallel plates
and square ducts. In those systems, with only flat sur-
faces, the spurious velocities are known to be minimal.
With the analogy proposed, we suggest that the general
behavior of the systems should be similar. By comparing
the macroscopic behavior, i.e., the permeability of all
systems in presence of repulsive and attractive surface
forces, we validate the results attributed to simulated
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FIG. 6. Validation of superpositions rehabilitation method. Cross-sectional velocity profiles (a and b) for a circular duct with
interfacial forces (gs = 1.0). The diameter of the duct is equal to 90 cells where the resolution of the simulations is 993. The
simulation velocities u are significantly affected by spurious velocities (a) with non-physical rotational velocities as shown in
the inset at (a). The rehabilitation of flow leads to quadratic flow profiles (b). The simulation velocity profiles u are distorted
by spurious velocities (inset at c) for gs > 0. d = 2R is the pipe diameter. The rehabilitated velocities u∗ demonstrate the
slippage of flow by increasing the force factor (c). The maximum velocity increases with flow slippage and the slip velocity at
the duct surface leads to positive slip lengths. The LBM rehabilitated simulations for flow through circular duct are validated
with the analytical solution as per Eq. 25 (d). The slip lengths (λ) are calculated using quadratic fittings on rehabilitated
velocity profiles.

FIG. 7. Velocity vectors in a single pore space from a 3D porous medium showing spurious currents (a and b) and physical (no-
slip) velocities (c). The net flow generated by gravity in x-direction has the mean flow velocity in a no-slip condition (without
surface forces) equal to 〈u〉NS = 6.7× 10−5 (Re = 0.027). With an interfacial attractive force (gs = −2.0) implemented in (a)
and (b), the spurious velocities are dominant with different magnitudes and distributions for SC and EFS modes. The same
medium with no-slip BC (gs = 0) would result in a velocity field as shown in (c). Note the magnification scale in showing
vectors in (c) for a comparison to spurious currents.
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FIG. 8. Significance of spurious velocities in porous media
simulations. The ratio of the mean of spurious velocities
〈u〉SP to mean velocity of no-slip flow 〈u〉NS for flow sim-
ulations through porous media where different intensities for
solid-fluid interfacial forces (gs) are assigned. The viscosity
is equal to 0.1667. The pseudopotential SC model is used
here. The characteristic length (sphere size) for the porous
medium is 68 cells. A stronger interfacial force increases the
spurious velocities (a). The velocity range in (a) is equivalent
to 0.027<Re<10.7. The relationship collapses into a unique
behavior where the variation of velocities are shown versus
the ratio of g

gs
with g being the gravitational factor utilized

to generate the main flow (b).

porous media flow rehabilitated using our superposition
method.

A. Different interparticle-potential models

We performed simulations on a monodispersed porous
medium comprised of spheres randomly distributed into
a cube. Periodic boundary conditions are defined for the
lateral sides of the model to account for infinite lateral
sizes. The main flow is generated using a gravitational
body force. Interfacial interactions are also implemented
using SC and EFS models.

The idea is to show the independence of the rehabili-
tated velocity fields from the force model assigned (and

hence the distribution of spurious velocities). To evaluate
the suitability of the rehabilitation method for slip flow
simulations, we also need to show that the resulted (reha-
bilitated) flow field is identical, both in average (macro-
scale) and in velocity profile (pore-scale).

Porous media simulations for a wide range of flow ve-
locities (Re < 10.7) corresponding to laminar and lower
transition flow rates are performed (Fig. 9). Simulation
mean flow velocities 〈u〉 are entirely non-physical for the
whole flow range (even orders of magnitudes larger than
the physical velocity), although yet largely dependent on
the force model employed. The rehabilitated fields pro-
vide consistent flow behavior as expected (reduced flow
with attractive force). The flow rates rehabilitated from
both models are also identical, leading to a reduction fac-
tor of 0.915 in flow rate when gs = −1.0. The force mod-
els alter the simulation velocities significantly, whereas
the rehabilitated velocities out of them are closely simi-
lar with minor differences (Fig. 10).

In addition to macro-scale flow characteristics, i.e.,
flow mean velocity, we also examine the accuracy of
the proposed rehabilitation method for micro-scale ve-
locity distributions. The porous media velocity profiles
are shown for a small and large interfacial force strength
(gs = −0.1 and −2.0). Largely affected by spurious ve-
locities, simulation velocities u (i-plots in Fig. 11) are
much larger than physical (no-slip) velocities (iv-plots).
However, the force models (SC and EFS) would influence
the magnitudes and distributions of the spurious veloci-
ties (ii-plots). The rehabilitated velocity fields (iii-plots)
are however not affected by the force model assigned,
showing identical differences from the no-slip profiles (v-
plots).

A pore velocity profile is also visualized along a straight
line within the porous medium, where the simulation ve-
locities obtained from two force models are shown to
be dramatically different (i-plot in Fig. 12). The fig-
ure also demonstrates the rehabilitated velocities (ii-plot)
and their difference from no-slip profiles due to the neg-
ative slip associated with attractive forces (iii-plot). The
equivalence of profiles obtained from both models evi-
dences the accuracy of the method in retrieving the slip
flow velocities in characteristic scales.

B. Analogous systems

In this section, in a different approach, we evaluate the
results obtained from rehabilitated simulations based on
an analogy between porous media and other flow sys-
tems. Since the spurious velocities are known to be orig-
inated from non-planar surfaces, the analogous systems
with planar surfaces are ideal. Thus we chose square
ducts and parallel plates to resemble porous media. The
macroscopic flow property, i.e., the permeability is ex-
amined in all systems. Expressing the analogy based
on the Kozeny-Carman conceptualization between those
systems and porous media, we evaluate the permeabil-
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FIG. 9. Identical macroscopic results for different interfa-
cial force schemes after using the rehabilitation method. The
mean velocity, 〈u〉 of flow through porous media for gs = −1.0
normalized by the mean velocity of the flow in the same model
but with no-slip solid boundaries, 〈u〉NS (gs = 0). 〈u〉 is the
mean velocity of the original simulations and 〈u∗〉 denotes the
mean velocity of the rehabilitated simulations using superpo-
sition method. Although EFS model provides an improve-
ment in reducing the spurious velocities, the model results
are mainly non-physical in the whole range of flow velocities.
The inset is the same graph with logarithmic scales, showing
that the model velocities could be several orders of magnitude
larger than the physical velocities. The superposition reha-
bilitation method is shown to achieve the same feature (per-
meability reduction) regardless of the force model employed
(SC or EFS) for the whole velocity range.
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FIG. 10. The minor difference of rehabilitated velocities ap-
plied to different force schemes with the major difference in
spurious velocities. The variation of the mean velocity of flow
through porous media by using different force models (SC and
EFS) for gs = −1.0. 〈u〉 and 〈u∗〉 are the mean velocity of
the original simulations and the simulations rehabilitated us-
ing superposition method, respectively. Using an improved
force model (EFS) has changed the normalized magnitude of
the spurious velocities up to more than one order of magni-
tude compared to the SC model. However, the rehabilitated
velocity fields using superposition method (u∗) proved to be
unaffected by the force model used, with a minor variation
between different models.

ity variations due to interfacial forces in porous media.
We argue that the results of porous media simulations
when rehabilitated using our superposition method can
be testified by comparing to analogous capillary ducts or
parallel plates.

1. Square ducts

The Kozeny-Carman equation [86, 87] is the most
widely used permeability model that relates the perme-
ability to the medium’s structural properties:

κ =
φ3

c(1− φ)2S2
(26)

where c is the KC constant (c = c′T 2 with c′ being
an empirical constant and T , the flow tortuosity), φ is
medium’s porosity, and S is specific surface area, equal
to the ratio of the total interstitial surface area to the
bulk volume [85]. The KC model is based on transform-
ing the porous medium into a bundle of capillary tubes
with the same structural parameters, i.e., the contact
area of solids and fluids, and the volume of voids. Im-
plementing the same approach, we transform our porous
medium into square ducts. The interior surface area of
ducts is to be equal to the solid surface area in porous
media in contact with the fluid, Acont:

Acont = N(4a)lT (27)

where N is the number of ducts and a is the duct cross-
section side. The length of ducts is equal to lT where l is
the length of the porous medium and T is the tortuosity
of flow in porous media. The tortuosity of the flow was
calculated using the following equation [88]

T =

∑
u∑
uL

(28)

where u is the velocity magnitude and uL is the ve-
locity component in the longitudinal direction of flow
(T = 1.366 for the modeled porous medium). The in-
ternal volume of the ducts is to be equal to the volume
of voids in porous media, Vvoid:

Vvoid = Na2lT (29)

Substituting eq. 27 into eq. 29, we obtain the number of
ducts and their side size as:

N =
A2
cont

16VvoidlT
(30)

a =
4V void

Acont
(31)

The mean flow velocity in a square pipe with no-slip
boundaries is analytically shown to be equal to [80]

〈u〉 =
a2

12µ

[
1− 192

π5

∞∑
i=1,3,5,...

tanh(iπ/2)

i5

]
G (32)
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(a) SC model      gs=-0.1 (b) EFS model gs=-0.1 (c) SC model gs=-2.0 (d) EFS model gs=-2.0

(e)

FIG. 11. Identical pore-scale results of different force schemes after rehabilitation. Velocity distributions shown across a cross-
section perpendicular to the main flow direction through a 3D porous medium simulation. The surface force factor is gs = −0.1
(a and b) and −2.0 (c and d) denoting interfacial attractive behaviours. The mean flow velocity in a no-slip condition (without
forces) is 〈u〉NS = 6.7 × 10−5 (Re = 0.027). The force models used are SC (a and c) and EFS (b and d). The simulation
velocities, i.e., u in i-plots are impaired with spurious velocities which are much larger than the physical velocities. u in SC
model is also roughly 5-fold larger than that of EFS. The model of stagnant fluid (with only forces on interfaces) also resulted
in similarly large velocities (spurious velocities, i.e., uSP in ii-plots), indicating the dominance of spurious velocities in the
simulations. The results of our superposition rehabilitation method (u∗ in iii-plots) are slightly different from those obtained
from the model with no-slip boundaries (gs = 0) illustrated as uNS in iv-plots. The difference between u∗ and uNS is shown
in v-plots where the pore flow velocities are reduced (less than %1 or %20 for gs = −0.1 or −2.0, respectively) due to the
attractive force effects. Despite the significant difference of simulation velocities (u) in two force models, the rehabilitation
method resulted in accurately similar velocities both in quantities and distributions. We conclude that our rehabilitation
model is capable to retrieve the small velocity changes due to surface force effects even for such complex interfaces with large
spurious velocities. The 3D porous medium simulated is shown in (e) where the cross-section on which velocities are plotted is
highlighted at x=55 and flow direction is in x.
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FIG. 12. Identical velocity profiles in pores after rehabilitation of spurious velocities from different force models. Velocity
profiles (a) and vectors (b) for 3D porous media simulations where 〈u〉NS = 6.7 × 10−5 (Re = 0.027). u in (a-i) is the
simulation velocities for gs = −2.0 simulated using SC and EFS models (D3Q15 scheme) as well as the model of no-slip BC
(gs = 0). u resulted from two models are entirely corrupted by spurious velocities. They are also largely different, both in
values and distributions. Despite the differences in u, the rehabilitated velocities (u∗) of both models as shown in (a-ii) match
accurately together indicating a flow pore-wide velocity reduction due to the effects of attractive forces on solid surfaces. The
profile of the changes in velocities (u∗ − uNS) for both models is also shown in (a-iii) demonstrating the close agreement of the
results of the models after rehabilitation. In (a-iv) are shown the line (in red) and the cross-section (in y-z plane perpendicular
to the flow main direction, x) over which the velocity profiles are plotted. The cross-section is highlighted in the porous
medium. Original simulation velocity vectors (u) for different models where spurious velocities dominate the flow field (before
rehabilitation) in both SC and EFS models are shown in (b). The no-slip flow field is much smaller in magnitudes of velocities
than the spurious fields (Note the magnification factor of 500)

.

Considering 〈u〉 = κ
µG

κ =
a2

12

[
1− 192

π5

∞∑
i=1,3,5,...

tanh(iπ/2)

i5

]
= ca2 (33)

c ≈ 0.0342 (34)

We use the analytical solution of permeability for com-
parison to our simulations with no-slip assumptions.
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2. Parallel plates

A similar analogy between porous media and parallel
plates based on the KC model could be considered. Fol-
lowing the same approach as one described for square
ducts, the structural parameters are determined so that
the same contact area and volume of voids are retained
for the porous medium and the system of parallel plates.
Therefore:

Acont = 2bT l (35)

Vvoid = bdT l (36)

where b is the plate width, and d is the plate separation.
The length of plates is also chosen as T l. Thus:

d =
2Vvoid
Acont

(37)

b =
Acont
2T l

(38)

We recall the analytical solution for mean velocity of flow
between parallel plates with no-slip surfaces as [80]

〈u〉 =
d2

12µ
G (39)

Knowing that 〈u〉 = κ
µG

κ =
d2

12
= c′d2 (40)

c′ = 0.0833 (41)

The flow velocity versus body force, 〈u〉 − ρg for the
porous medium simulations rehabilitated using our su-
perposition method is shown in Fig. 13(a). The analo-
gous systems are also simulated when the same interfa-
cial force strengths are assigned (Fig. 13(b) and 13(c)).
The no-slip analytical solutions are also included. The
slip flow LBM validation for parallel plates is also al-
ready provided as discussed in Fig. 4. The analogous
systems exhibit a similar macro-scale behavior as one of
the porous medium in permeability variation with inter-
facial forces.

As demonstrated in Fig. 14, the permeability of the
analogous systems are constantly proportional to that of
porous media for gs < 0 (attractive forces). The ratio
of the analogous systems’ permeability to that of porous
media is a factor of less than 3 for all conditions. This
implies a reasonable analogy defined as the factor is com-
parable to the empirical constant included in the original
KC formula to account for geometrical effects including
tube (pore) shapes (see Table 1 in Ref. [89] for a list of
recommended values).

The variation of permeability with attractive interfa-
cial forces are almost similar for all systems (Fig. 15).
However the permeability of analogous systems for re-
pulsive forces (positive gs) increases with higher rates
as the system becomes less complex, i.e., ( κ

κNS
)plates >

( κ
κNS

)ducts > ( κ
κNS

)porous media (Fig. 14). This is in
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FIG. 13. Permeability variation due to interfacial forces. Flow
mean velocity (〈u〉) versus driving force (ρg) for the porous
medium (a) and analogic systems composed of square ducts
(b) and parallel plates (c). The results of porous media are
rehabilitated using our proposed method. The general be-
haviour is enhanced and reduced permeability with repulsive
(positive) and attractive (negative) surface forces, respective-
ley as exhibited by all systems. The analytical solutions of
the no-slip assumption for ducts and plates demonstrate the
agreement of the results.
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agreement with the analytical forms of slip flow as dis-
cussed in section IV and Fig. 5 .

In summary, we showed that the results of porous me-
dia simulations rehabilitated from spurious currents us-
ing our superposition method are in compliance with the
results acquired from analogous systems. This approach
demonstrated the reliability of the obtained results for
porous media slip flow studies. The approach evaluated
the rehabilitation method in obtaining macro-scale flow
characteristics, in addition to the previous evaluation cri-
terion (section VIII A) in which we examined the accu-
racy of the results both in pore-scale and as average.
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FIG. 14. The ratio of permeability of analogous systems
(ducts and parallel plates) to that of the porous medium
(κPM ) versus surface force factor (gs).
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FIG. 15. Variation of the normalised permeability with the
surface force factor (gs). The permeability of the porous
medium and its analogous systems reduces similarly with at-
tractive interfacial forces. The permeability is enhanced with
repulsive forces for all systems too, but with different rates.

IX. CONCLUSION

We investigated the slip flow behavior in porous me-
dia using the lattice-Boltzmann method. Firstly, the slip
flow between parallel plates and ducts were examined.
With repulsive and attractive interfacial forces, the flow
rate enhances and reduces, respectively. From parallel
plates to polygonal ducts, with the increase of the num-
ber of cross-section sides, the rate of flow enhancement
due to repulsive forces diminishes. This is demonstrated
by having a less flow enhancement for similar slip lengths
in polygonal ducts with more sides. We showed the ana-
lytical solutions and our LBM simulations to explain the
issue.

We also discussed the severity of the spurious velocities
in case of porous media simulations due to the existence
of force imbalance near the non-planar surfaces. To reha-
bilitate the simulations which are totally non-physical for
entire Darcy range (up to Re ≈ 10), we proposed a su-
perposition method based on the linearity of simulations.
The method was proved valid as shown to be closely in
agreement with the analytical solution when applied on
LBM simulation of slip flow through circular ducts.

To show the accuracy of simulated porous media flow
results after rehabilitation, two strategies were employed:

First, using two different pseudo-potential force mod-
els, the spurious currents were shown to be altered signif-
icantly. Then we showed the equivalence of the rehabil-
itated results obtained from both models in the feature,
i.e., the scale of flow alteration due to interfacial forces.
The approach verified the accuracy of the results in mi-
cro (pore)-scale (velocity profile) as well as macro-scale
(permeability).

Second, using an analogy concept based on the
Kozeny-Carman equation, we transformed our porous
medium into simple structures, i.e., parallel plates and
square ducts in which spurious currents are negligible.
Then we demonstrated the accuracy of the porous media
rehabilitated results evidenced by the compliance with
analogous systems. The compliance between the results
of porous media and analogous systems was discussed
in accordance with the analytical solutions. In this ap-
proach, we outlined the accuracy of superposition reha-
bilitation method in a macro-scale lookout.

The results revealed that the porous medium and the
analogous systems are apparently similar in permeability
reduction with attractive forces. However, the system of
porous medium provides a smaller increase in permeabil-
ity than analogous systems when the surfaces function
as repulsive (causing positive slippage) with the same
strength. This behavior inspires further research to in-
vestigate the differences in flow changes due to negative
and positive slippage, with respect to the pipe (pore)
shapes.

The study proposed a simple method to treat the LBM
simulations affected by common spurious currents when
interfacial interactions are investigated. The applica-
tions include the flow simulations when wettability is con-
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cerned. Although examined for the LBM, the method is
applicable to other fluid flow solvers dealing with linear
Navier-Stokes equations. However, we note that the su-
perposition method is tested here for the single-phase

flow of incompressible fluid. The applicability of the
method in the multi-phase flow where the phase sepa-
ration is involved should be further evaluated.
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