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Abstract 26 

The bacterial genus Staphylococcus comprises diverse species with most being described 27 
as colonizers of human and animal skin.  A relational analysis of features that 28 

discriminate its species and contribute to niche adaptation and survival remains to be fully 29 

described.  In this study, an interspecies, whole-genome comparative analysis of 21 30 
Staphylococcus species was performed based on their orthologues. Three well-defined 31 

multi-species groups were identified: group A (including aureus/epidermidis); group B 32 

(including saprophyticus/xylosus) and group C (including pseudintermedius/delphini).  33 
The machine learning algorithm Random Forest was applied to prioritise orthologues that 34 

drive formation of the Staphylococcus species groups A-C. Orthologues driving 35 
staphylococcal intrageneric diversity comprised regulatory, metabolic and antimicrobial 36 

resistance proteins. Notably, the BraSR (NsaRS) two-component system (TCS) and its 37 

associated BraDE transporters that regulate antimicrobial resistance showed limited 38 
distribution in the genus and their presence was most closely associated with a subset of 39 

Staphylococcus species dominated by those that colonise human skin. Divergence of 40 

BraSR and GraSR antimicrobial peptide survival TCS and their associated transporters 41 
was observed across the staphylococci, likely reflecting niche specific evolution of these 42 

TCS/transporters and their specificities for AMPs.  Experimental evolution, with 43 

selection for resistance to the lantibiotic nisin, revealed multiple routes to resistance and 44 
differences in the selection outcomes of the BraSR-positive species S. hominis and S. 45 

aureus. Selection supported a role for GraSR in nisin survival responses of the BraSR-46 

negative species S. saprophyticus. Our study reveals diversification of antimicrobial-47 
sensing TCS across the staphylococci and hints at differential relationships between 48 

GraSR and BraSR in those species positive for both TCS.  49 

 50 
Keywords: Staphylococcus, antibiotic resistance, competition, machine learning 51 

 52 

Background 53 
Staphylococcus species and genomics 54 

The existence of taxonomically distinct species groups was first proposed for 55 
Staphylococcus based on differential DNA-DNA hybridization methods (1). These 56 

groups were supported by 16S rDNA sequence analysis of 38 taxa (2) and multilocus 57 

sequence data of around 60 species and subspecies (3). 58 
 59 
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A comparative analysis that utilized next generation genome sequencing data of 60 

staphylococci to probe phylogenetic relationships with 491 shared orthologues across 12 61 
Staphylococcus species (4) proposed S. pseudintermedius and S. carnosus as the most 62 

basal lineages. Moreover, with ten species in their analysis being residents of human skin, 63 

the authors proposed that evolution selected for human adaptation after branching from S. 64 
carnosus. The relationships between the strains generated from shared orthologues were 65 

maintained using total gene content (4). However, in contrast to the conclusions of 16S 66 

rDNA and multilocus data (2,3) their analysis revealed discrete clustering of 67 
Staphylococcus species. In contrast with this analysis, no distinct clustering of S. hominis 68 

with S. haemolyticus was observed, and S. saprophyticus was assigned to the S. 69 
epidermidis group of species (4).  Currently, there is a knowledge gap in Staphylococcus 70 

species comparisons with a need to determine if this clustering of staphylococcal species 71 

is supported using whole genome data. Our findings here begin to close this gap. 72 
 73 

Two component systems 74 

Prokaryotes are receptive to environmental stimuli through diverse sensory and 75 
transducing two component systems (TCS). These TCS archetypically comprise a sensor 76 

histidine kinase (HK) that spans the cell membrane to interact with the external 77 

environment. Stimulus perception causes conditional autophosphorylation that is relayed 78 
to an interacting response regulator (RR) to enable DNA-binding directed transcription 79 

modulation (5).  80 

 81 
While TCS are widespread and diverse across prokaryotes, the intramembrane-sensing 82 

histidine kinases (IM-HK) are specific to the Firmicutes. This family of small HKs has a 83 

short, 25 amino acid linker region between each 400 amino acid transmembrane helix. S. 84 
aureus GraSR uses a IM-HK to regulate a global network responsible for resistance to 85 

antimicrobial peptides (AMPs). GraSR modulates the expression of DltABCD and MprF 86 

that in concert alter the S. aureus surface charge to evade electrostatic interaction-87 
mediated targeting of cationic AMPs (6). 88 

 89 
An orthologous TCS to GraSR described in S. aureus was concurrently designated BraSR 90 

and NsaSR by two different groups (7,8). Serial passage in sub-MIC concentrations of the 91 

lantibiotic nisin was shown to select increased nisin MIC due to a SNP in nsaS gene 92 
encoding sensor histidine kinase of NsaRS (nisin susceptibility-associated sensor 93 

regulator) (8). The TCS was separately designated BraSR (bacitracin resistance-94 
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associated sensor regulator) from the reduced MIC of bacitracin and nisin determined for 95 

the TCS gene mutant (7). BraR binding sites were revealed upstream of the ABC 96 
transporter genes braDE and vraDEH (9) that were not transcribed in the mutant but 97 

induced in the presence of bacitracin. The transporter BraDE contributes to the detection 98 

of nisin and bacitracin and subsequent signal transduction via BraSR, whereas VraDE is 99 
more directly involved in detoxification by efflux (7).  Transcription of braSR is 100 

increased following exposure to multiple antibiotics, including ampicillin, phosphomycin 101 

and nisin. Inactivation of braS (nsaS) revealed differential transcription of 245 genes 102 
(10), revealing the TCS might report cell envelope stress to directly regulate biofilm 103 

formation, cellular transport and responses to anoxia.  104 
 105 

In this study, a comparative genome analysis of 21 Staphylococcus species was 106 

performed based upon their orthologous gene content. Species groups were revealed and 107 
then interrogated using the Random Forest algorithm to identify group-contributing 108 

genes. The operon encoding the BraSR TCS was found to differentiate the S. aureus/S. 109 

epidermidis species group from other species groups determined in the study and the TCS 110 
was found to have restricted distribution across 49 species of Staphylococcus. 111 

Experimental evolution of representative braSR-positive and -negative species with nisin 112 

selection identified differential selection of BraSR and GraSR to produce resistance to 113 
this AMP. 114 

 115 

 116 
  117 
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Results and Discussion 118 

Analysis of orthologous gene content across the staphylococci 119 
The orthologous gene content of 21 sequenced staphylococcal species’ genomes (Table 1) 120 

was determined using OrthoMCL to group orthologous genes (homologues separated by 121 
speciation) into clusters across the different species. The number of shared orthologous 122 

clusters between the different species’ genomes was then represented as a heatmap 123 

(Figure 1). The output from this analysis revealed the assembly of three major groups of 124 
species, each with high numbers of shared orthologous clusters. An associated cladogram 125 

supported three groups (groups A, B and C) when defined as containing three or more 126 

species (Figure 1). This supported previous reported groupings from 16S rDNA and 127 
multilocus analyses (2,3). Additionally, three species pairs showed a high degree of 128 

shared orthologous clusters of genes and branched together in the cladogram: S. aureus/S. 129 
simiae, S. simulans/S. carnosus, and S. lentus/S. vitulinus. S. aureus and S. simiae were 130 

proposed as members of the S. aureus group of staphylococci from gene content (2). 131 

 132 
The largest and least well-defined, species group comprises S. epidermidis, S. capitis, S. 133 

warneri, S. haemolyticus, S. hominis, S. lugdunensis, S. pettenkoferi, S. aureus and S. 134 

simiae (Figure 1).  Designated group A, it is dominated by species that colonize human 135 
skin (21, 22). The likelihood of a strain-dependent effect structuring group A was 136 

investigated by substituting S. epidermidis, S. hominis and S. aureus strains based on 137 

multiple available genomes (Table 1 and Supplementary File S1). Substituting these 138 
individual species with alternative strains and repeating the OrthoMCL analysis did not 139 

alter species groupings.  Groups B and C were similarly unaffected by switching strains 140 

of S. saprophyticus and S. pseudintermedius, respectively.  141 
 142 

The smaller species group B comprises S. equorum, S. arlettae, S. cohnii, S. 143 

saprophyticus and S. xylosus (Figure 1).  Though not universal, a frequent lifestyle 144 
identified in the group B species is human or animal host colonization; several species are 145 

associated with meat products and novobiocin resistance (23, 24) with commonalities in 146 

their cell wall composition (25).  147 
 148 

Species group C comprises S. pseudintermedius, S. delphini and S. intermedius and this 149 
collective was previously designated the S. intermedius group (SIG); the species cause 150 

opportunistic infection of companion animals and equids (23). Emerging antibiotic 151 
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resistance in the SIG species group is a clinical veterinary concern (26) and their routine 152 

speciation is complicated by their high degree of 16S rRNA locus sequence identity (27). 153 
 154 

While preserving known species groupings, the whole genome analysis identified discrete 155 

species groups of staphylococci (A-C) and an explanation for their formation was sought. 156 
Genetic determinants directing the formation of species group A were tested in R using 157 

machine learning with the Random Forests algorithm for classification (28). This 158 

algorithm was used to identify variables, in this case OrthoMCL clusters (data not 159 
shown), that contributed to formation of the groups, based on a forest of trees generated 160 

from these variables.   A gene from each cluster was then determined and mapped back to 161 
a representative genome and the PROKKA annotation of each protein coding sequence 162 

was verified using BLAST, for group A this representative was S. epidermidis. 163 

Contributing variables were investigated for group A, based on the strain set described in 164 
Table 1, where permutations were used to verify the existence and reproducibility of 165 

species groups (Supplementary File S1).  166 

 167 
Clusters driving formation of group A species 168 

The presence of 7 and absence of 6 OrthoMCL clusters collectively contribute to defining 169 

group A, with differing levels of support (Mean Decrease in Accuracy [MDA] values) 170 
(Table 2 & Supplementary File S2). Four orthologues that are sequentially encoded in the 171 

genome as an operon (epi_02134 - epi_02137; MDA 3.2, 3.0, 2.6, 2.2, respectively) were 172 

also the most strongly supported in this analysis (Table 2). The latter cluster pair 173 
epi_02136/epi_02137 was annotated by PROKKA as a TCS sensor/regulator (Table 2 & 174 

Supplementary File S2) and shares ~100% similarity with BraSR (SA2417/SA2418 of S. 175 

aureus N315), a TCS associated with resistance to AMPs nisin and bacitracin (7). The 176 
adjacent clusters encoded in the same operon (epi_02134, epi_02135) comprise the 177 

BraD/BraE ABC transporter subunits with 98% and 99% similarity with SA2415/ 178 

SA2416 of S. aureus N315, respectively (7). We demonstrate as a key finding of our 179 
analysis that BraSR and BraDE are associated with genomes of group A Staphylococcus 180 

species.   181 
 182 

The presence of orthologue epi_00542 (MDA 2.2; Table 2 & Supplementary file S2) 183 

contributes to species group A, with support that the protein functions as a putative cell 184 
wall hydrolase from the Nlp-P60 family hydrolase domain that is associated with 185 

hydrolysis of peptidoglycan.  Also, contributing to defining group A are the absences of 186 
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two orthologue clusters (sap_00398; MDA 3.3 and sap_00399; MDA 1.4; Table 2 & S2) 187 

that are annotated as multidrug ABC transporters. A range of cytotoxic molecules are 188 
mobilized across the cell membrane by multidrug ABC transporters where certain 189 

families of these can also act as sensors (5, 29). Across staphylococcal groups, 190 

differential repertoires of ABC transporters associated with antimicrobial survival are 191 
consistent with the importance of community competition in species evolution. 192 

 193 

Sequence variation of the NADP-dependent succinate semialdehyde dehydrogenase 194 
(SSADH) between group A staphylococci versus groups B and C was identified by the 195 

association of cluster sap_00201 (MDA 2.9, Table 2 & Supplementary File S2) with 196 
group A species; this variation might be allied to differences in glutamate metabolism 197 

across the genus. Glutamate is involved in multiple metabolic processes and bacterial 198 

glutamate dehydrogenase catabolizes glutamate, which contributes to acid tolerance. 199 

NADP-SSADH catalyzes catabolism of g-aminobutyrate, a product of glutamate 200 

dehydrogenase activity (30); this pathway is oxidative stress sensitive owing to the 201 
catalytic cysteine residue of SSADH.   202 

 203 
With respect to clusters driving formation of group B and C species, the size of species 204 

input groups B and C (Figure 1) limit use of the random forest algorithm. Consequently, a 205 

similar species-defined analysis of groups B and C is not included and a broader species 206 
comparison of staphylococci could be considered in future.   207 

 208 

Diversity of cationic AMP survival loci across the staphylococci  209 
The described comparative genomic analysis revealed that while BraSR TCS is associated 210 

with group A species of staphylococci, the GraSR TCS is distributed across all species 211 
groups.  Supporting predictions from the Random Forest analysis, low sequence identity of 212 

BraR/BraS with GraR/GraS was confirmed. BraR mean sequence identity with GraR of 213 

group A (44%) and group B/C species (40%) was greater than that of BraS compared with 214 
GraS of group A and groups B/C (mean ~30% and ~26%, respectively) (Table 3).   215 

 216 

High mean sequence identity (84-98%) of GraR regulator protein occurs within each of the 217 
three species groups (Table 3) with divergence of GraR between species groups identified 218 

by lower mean sequence identity (67%). GraS sensor histidine kinase was less conserved 219 

within species groups A (mean 69%) and B (mean 66%), compared with GraS of species 220 
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group C that shared greatest mean sequence identity (88%), albeit that group C defined 221 

here is a small, related species set.  Both BraS and GraS sensor proteins have lower 222 
sequence conservation across staphylococci than BraR and GraR (Table 3).  The reduced 223 

divergence of these response regulators might reflect their relative isolation from selection 224 

by the external environment and differential stimuli. 225 
 226 

Responses to cationic AMPs in the staphylococci are complex (31, 32) and ligand 227 

specificity could account for species divergence of GraSR and BraSR TCS. This 228 
evolutionary outcome could be explained with strong selection pressure driven by ubiquity 229 

and diversity of cAMPs in staphylococcal niches. One intrigue in our analysis is the 230 
absence of GraSR and presence of only BraSR TCS in the group A species, S. pettenkoferi, 231 

with the sole related sensor protein having a mean sequence identity of 27% with group A 232 

GraS but 58% with group A BraS. S. pettenkoferi BraR has a mean sequence identity of 233 
47% with GraR and 73% with BraR from group A. These values support the S. pettenkoferi 234 

TCS is a BraSR orthologue. GraSR was also absent and BraSR present in the four 235 

additional publicly available S. pettenkoferi genome sequences (strains 1286_SHAE, 236 
589_SHAE, UMB0834 and CCUG 51270). The absence of GraSR in S. pettenkoferi raises 237 

questions about the evolution of BraSR in group A staphylococci. Gene duplication of 238 

GraSR in a group A species, with subsequent sequence divergence over time to BraSR and 239 
spread throughout group A species by horizontal gene transfer, is tempting to suggest. S. 240 

pettenkoferi having BraSR but not GraSR presents a challenge to this paralogue hypothesis. 241 

We propose two possibilities; S. pettenkoferi may have suffered deletion of graSR 242 
following acquisition of braSR, or S. pettenkoferi never acquired braSR, but rather its TCS 243 

evolved from ancestral genes. Such a scenario would enable group A organisms to acquire 244 

braSR from S. pettenkoferi as an additional and sufficiently divergent TCS locus. 245 
 246 

Staphylococcus species genomes sequenced recently were investigated for their encoded 247 

GraS and BraS protein homologues, which supported the limited distribution of BraS in 248 
staphylococci as identified in the Random Forest analysis (Table 4; Table S3). Furthermore, 249 

it revealed additional species encoding BraSR but not GraSR (S. agnetis, S. auricularis, S. 250 
chromogenes, S. hyicus, S. massiliensis).  Regardless of the origins of both TCSs, the 251 

divergence between and within GraSR and BraSR likely reflect specificities for their 252 

ligands and selection driven by the niches to which the staphylococci are specialized.  253 
 254 

GraSR and BraSR-associated ABC transporters 255 
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Both GraSR and BraSR, as members of the BceS-like IM-HK family of TCS, are 256 

activated by AMP ligand bound to an associated ABC transporter (33). Given the 257 
important function of these TCS, the conservation of their associated transporter protein 258 

sequences was compared across the staphylococci.  259 

 260 
VraFG is the GraSR-associated ABC transporter (34) and in the genomes encoding VraFG 261 

(absent from group B species and S. pettenkoferi) there is a high degree of shared protein 262 

sequence conservation. VraF has a mean sequence identity of 68% across the staphylococci 263 
examined (Table 1), with greatest conservation within species groups (group A, 79% 264 

identity; group B, 85.3% identity; group C, 96.8% identity). Shared sequence identity 265 
among the VraG proteins was 47.5%, with 88%, 65.2% and 61.9% identity within groups 266 

A, B and C, respectively.  The BraDE ABC transporter associated with BraSR was 267 

identified in group A species and, similar to VraFG, revealed greater identity (68.4%) 268 
across BraD sequences compared with BraE (38.9%) protein sequences.  Divergence 269 

within BraSR and GraSR-associated transporters has likely arisen from concurrent 270 

evolution of the ABC transporter specificities for AMPs.  271 
 272 

Experimental evolution of nisin resistance in S. aureus, S. hominis and S. 273 
saprophyticus. 274 

Previous studies demonstrated that selection by experimental evolution identified 275 

mutations conferring antimicrobial resistance in overarching regulators, notably SNPs in 276 
braS revealed roles for BraSR in nisin sensing and survival (7). Following our identified 277 

species association of BraSR to group A staphylococci, we adopted an experimental 278 

evolution strategy to interrogate the contributions of GraSR and BraSR TCS under 279 
selection for nisin resistance.   280 

 281 

Strains of group A species, S. aureus and S. hominis plus group B S. saprophyticus were 282 
each serially passaged in triplicate cultures with increasing concentrations of nisin using a 283 

microtiter plate method, with an equivalent sodium citrate buffer control passaged in 284 

parallel. Stepwise increases in nisin MIC were observed for all strains tested with no 285 
obvious pattern in the rate of resistance acquisition between the species.  After selection, 286 

both S. aureus 171 and S. aureus SH1000 strains exhibited ~100-fold increases in nisin 287 
MIC, a greater fold increase in resistance than that observed by Blake et al (7), which 288 

may be due to experimental design differences. Selection of both S. hominis strains 289 

increased nisin MIC ~25-fold, and S. saprophyticus strains CCM_883 and CCM_349 290 
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showed 80-fold and 5-fold increases, respectively.  Multiple clones of S. aureus 171, S. 291 

hominis J31 and S. saprophyticus CCM883 were genome sequenced to identify sequence 292 
variants that potentially contributed to increased nisin MIC. T0 genomes were assembled 293 

and annotated, then reads from three pools (each comprising 5 independent clones) and 294 

one individual clone of each experimentally evolved species were aligned to their 295 
respective assembled genomes to identify sequence variants (SNPs, insertions/deletions) 296 

specific to nisin selection (Tables 5-7).   297 

 298 
Nisin-selected SNPs in staphylococci 299 

Experimental evolution of S. saprophyticus identified a SNP in graS (GraS: A160S; table 300 
5) that was present in two clone pools, and SNP graS G209C in a third pool.  A single 301 

clone sequenced from the latter pool identified only one SNP in graS (GraS: G209C) and 302 

an upstream variant associated with ptsG (table 5). These data provide support for GraSR 303 
contributing to nisin resistance in S. saprophyticus given the absence of the BraSR TCS 304 

in this group B Staphylococcus species.  Aside from TCS, other regulators may contribute 305 

to the nisin response in S. saprophyticus as evidenced by an identical SNP identified in 306 
two separate nisin resistance selections (pools 2 and 3) corresponding to a T62I change in 307 

an uncharacterized MarR transcriptional repressor.   308 

 309 
In both S. aureus and S. hominis there are multiple pathways to high-level nisin 310 

resistance.  Each species revealed SNPs in TCS systems, but these differed across the 311 

parallel selection experiments (Table 5-7).  In S. aureus, a non-synonymous SNP in braS 312 
(BraS: T175I) was present in 100% of reads from one sequenced pool, differing from 313 

previous work that identified a discrete braS SNP (BraS: A208E) (7).  Evidence for a 314 

second TCS contributing to nisin resistance arose from a walK non-synonymous SNP 315 
(WalK: H364R) within the diverse and flexible signal sensing PAS domain of WalK in S. 316 

aureus (35). WalKR is essential and functions to maintain cell wall metabolism (36) and 317 

SNPs in this TCS contribute to vancomycin and daptomycin resistance due to cell wall-318 
thickening (37). Should this cell wall phenotype be associated with the H364R WalK 319 

variant it could similarly limit nisin interaction with its lipid II target to abrogate pore 320 
formation.  A large overlap was reported between the WalKR and GraSR regulatory 321 

networks in S. aureus (6).   322 

 323 
In S. hominis, a graS SNP (GraS: S120L) was present in 2 clones of sequence pool 2 and 324 

no SNPs or other sequence variants were identified in braSR (Table 5-7). S. hominis has 325 
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both braSR and graSR loci and therefore it is intriguing nisin resistance selection resulted 326 

in SNPs in a different TCS to S. aureus despite encoding both, potentially reflecting 327 
differences in their contribution across group A staphylococci.  A further transcriptional 328 

regulator might contribute to nisin resistance in both S. aureus and S. hominis, where the 329 

uncharacterized yhcF revealed SNPs producing G73R and N47*, respectively; the presence 330 
of SNPs in yhcF of both species supports a role for this regulator. The YhcF 331 

transcriptional regulator proteins of S. aureus and S. hominis have 75% similarity and 332 

their cognate genes are adjacent to an ABC transporter locus with potential specificity for 333 
GlcNAc, which might catalyze recycling of cell wall substrates from nisin damage. The 334 

role of this operon is currently being investigated.  335 
 336 

In summary, we have identified differential encoding and diversity of antimicrobial 337 

resistance regulators and their associated transporters across the staphylococci.  Our 338 
previous studies of the nasal microbiome correlated cumulative antimicrobial production 339 

with community structure, limitation of invasion and S. aureus exclusion (38, 39, 40). 340 

Further dissection of antimicrobial sensing and discrimination via the TCS systems 341 
BraSR and GraSR combined with analysis of their associated transport specificities will 342 

provide information that can be layered with niche-relevant antimicrobial activities from 343 

competing species.  Such analyses are now emerging and will provide a more holistic 344 
determination of Staphylococcus ecology. 345 

 346 

Methods 347 

Staphylococcus orthologous gene content  348 

Representative genomes of 21 different Staphylococcus species available at the time of 349 
analysis (Table 1) were either sequenced (see later section) or retrieved from the NCBI 350 

FTP repository (ftp://ftp.ncbi.nlm.nih.gov/). Complete genomes were used where 351 

possible. Draft genomes available as NCBI scaffolds were reordered against an 352 
appropriate reference using a bespoke perl script. Genomes were annotated using 353 

PROKKA (version 1.5.2) (41) to ensure consistent gene calling and annotation. 354 

OrthoMCL (version 1.4) was used to cluster orthologous proteins (42), with input 355 
parameters, e-value cut-off: 1e-5, percentage identity cut-off: 30, percentage match cut 356 

off: 20.  Briefly, initial BLAST steps of orthoMCL used the latter two low stringency cut-357 
off values; these values were used to retain more proteins for clustering from these 358 

BLAST stages. Inparalog, ortholog and co-ortholog pairwise relationships were generated 359 

through reciprocal best and better hits in subsequent stages that used the p-value cut-off 360 
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of 1e-5. Finally, the MCL (Markov clustering) aspect of the tool was applied to these 361 

pairwise relationships to allow clustering into orthologous groups (42, 43). A bespoke 362 
python script was used to create a table describing the presence or absence of each 363 

OrthoMCL cluster within every genome. These data were converted to a matrix for 364 

analysis in the statistical package R and a heatmap was generated from the matrix.  To 365 
control for gross strain-specific effects on the heat map (and thus OrthoMCL clusters), 366 

this step was repeated by substituting with alternative strains (Table S1) and all 367 

permutations were analyzed in subsequent steps of the analysis. 368 
 369 

Drivers of OrthoMCL group formation 370 
The R library, Random Forest (version 4.6-7) (44) was used to investigate the genetic 371 

inputs directing classification of the species into their OrthoMCL groups. A 372 

presence/absence table of each of the orthologous groups obtained from the USA300 373 
permutation of the OrthoMCL analysis was generated using a bespoke python script and 374 

used as the input data for the Random Forest algorithm.  375 

 376 
The data was split into a test and training data set with both sets including equal 377 

proportions of group A species. The optimum value for mtry was found to be 66 using the 378 

tuneRF function (ntree=1001, stepFactor=1.5, improve=0.001). These mtry and ntree 379 
parameters resulted in a model with an out of bag (OOB) error rate of 9.09% and area 380 

under ROC curve (AUC) of 0.96.  381 

 382 
Data output was summarized using the variable importance plot function and the numeric 383 

mean decrease in accuracy (MDA) resulting from the permutation of each variable was 384 

obtained through the importance function; these data were used as the measure of the 385 
importance of each variable. The maximum MDA in this analysis was 3.3. Clusters were 386 

mapped back to the genome and the annotation of protein sequence for a species 387 

representative of each cluster was retrieved. Protein sequences of clusters identified as 388 
important were retrieved and their annotations curated and verified against published 389 

annotations. In addition, outputs were generated by substituting strains of species in the 390 
analysis to compare conservation of identified clusters between the variable importance 391 

plots. Sequences of protein clusters from the single species representative in Table 2 and 392 

identified by Random Forest output are listed in Supplementary Files S2-3.  Protein 393 
sequences were retrieved from their respective genomes and alignments were performed 394 

using ClustalW2 (version 2.1). 395 
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 396 

Minimum inhibitory concentration assay 397 
Nisin (Sigma-Aldrich Company Ltd, UK) was prepared as a 20 mg mL-1 solution in 10 398 

mM sodium citrate (Sigma-Aldrich Company Ltd, UK) at pH 3 and stored at 4 °C.  MIC 399 

assay used microtiter plates with doubling dilutions of nisin in BHI (Thermo Scientific) 400 
inoculated 1 in 2 with 100 μL bacterial suspension adjusted to OD600 0.2 ± 0.005. The 401 

lowest concentration with an optical density ≤ to that of the initial optical density was 402 

taken as the minimum inhibitory concentration (MIC). 403 
 404 

Selection for nisin resistance 405 
Experimental evolution was performed by serial passage in broth containing doubling 406 

dilutions of nisin in triplicate wells of a microtiter plate. For selection of S. aureus and S. 407 

saprophyticus, the maximal assay concentration of nisin was 5 mg mL-1 and for S. 408 

hominis 50 µg mL-1. Control selection experiments with equivalent sodium citrate 409 

concentrations were performed in parallel. Experiments were initiated with inoculation of 410 
bacteria to OD600 =0.2 for the first passage and plates were incubated static at 37 °C. 411 

Bacteria growing at the highest concentration of nisin after 24-48 h were passaged 412 
forward to the next plate; subsequent passages were inoculated with a 1:1000 dilution of 413 

culture. Serial passage was continued until growth occurred at the maximal nisin 414 

concentration (for strains S. saprophyticus =10 mg ml-1, S. aureus =10 mg ml-1 and S. 415 

hominis =250 µg ml-1) or for a period of 12 days. All passaged cultures were collected 416 

and stored at -80oC in 20% (v/v) glycerol (Fisher Scientific) after each passage and the T0 417 

time point served as comparator strain.  418 

Colonies were randomly selected for sequencing after plating from independent 419 
biological replicate cultures that had reached an equivalent maximum level of nisin 420 

resistance. Clones from each repeat were selected and cultured in 10 mL of BHI at 37 °C 421 

with shaking at 200 rpm overnight. Increased MICs were confirmed by using the MIC 422 
assay described above at the highest nisin concentrations. Selection was performed for a 423 

corresponding citrate control time point for each of the three species. 424 

 425 
DNA extraction, library preparation and sequencing 426 

Cells were harvested from overnight culture and lysed in buffer containing 12.5 μg ml-1 427 

lysostaphin (Sigma-Aldrich) and 10 U mutanolysin (Sigma-Aldrich).  DNA was purified 428 
using a DNeasy Blood and Tissue Kit (Qiagen). DNA (30 ng) from each of five selected 429 

clones was pooled to make Illumina Truseq DNA libraries with an insert size of 350 bp. In 430 
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addition to three separate clone pools, a single clone was selected for sequencing from the 431 

clones used to constitute the pools. Single clones were selected on the basis of the highest 432 
DNA quality. The single clones and the T0 isolates were also sequenced using Illumina 433 

Truseq nano DNA libraries with 350 bp inserts.  434 

 435 
Identification of SNPs and INDELS  436 

T0 comparator strains were assembled using VelvetOptimiser (version 2.2.5; Victoria 437 

Bioinformatics Consortium) with Kmer sizes from 19 to 99 and Velvet version 1.2.06 438 
(45). Annotation was carried out using PROKKA version 1.5.2 (41). The PacBio 439 

assembly of S. hominis strain J31 (Accession FBVO01000000) (46) was used as the 440 
comparator assembly for this strain. Good quality filtered reads from experimentally 441 

evolved pools and single clones were aligned to respective comparator strains using the 442 

BWA (version 0.5.9-r16) (47) packages aln and sampe, and also using BWA (version 443 
0.7.5a-r405) mem package. SAM files were converted to bcf (binary variant call) files 444 

with samtools for SNP calling using the mpileup package. The bcf output file from 445 

mpileup was then converted to vcf (variant call format) files and quality filtered. For 446 
SNPs, only this quality filtered vcf file from the pooled clones, along with mpileup output 447 

without base data, were used to further filter the SNPs to include only those present in 448 

33.33% of reads, which equates to the SNP being present in more than one clone. To 449 
reduce falsely called SNPs, SNPs not called from both alignments (from either BWA aln 450 

and sampe or BWA mem) were removed from the data set, as recommended by Li (48). 451 

SNPs called in the control data and evolved isolates were filtered from the data. 452 
 453 

Availability of data and materials 454 

Genomes resulting from this work can be retrieved from the ENA database at EMBL-EBI 455 
(https://www.ebi.ac.uk/ena/data/view) under the bioproject accession PRJEB22856, 456 

including data from experimental evolution of S. aureus 171; Parental S. aureus 171 data 457 

accession: LT963437. Individual genome assembly accessions used in Figure 1 are listed 458 
in Table 1 and Supplementary File S1. Strains not already publicly archived are available 459 

on request.  This manuscript was submitted to bioRxiv ahead of review (49). 460 
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Figure Legends 619 
 620 
Table 1. Staphylococcus species and strains included in OrthoMCL analysis. 621 
Genomes were sequenced for this study, as indicated, or retrieved from NCBI for 622 
analysis; genome integrity is indicated. 623 
Figure 1. Heat map representation of shared orthologous proteins across 624 
Staphylococcus species. Presence is indicated using a color scale from red (highest 625 
number of shared clusters of orthologous proteins) to white (lowest number). Major 626 
groups of species observed in the analysis are highlighted as groups A-C  627 
Table 2. Proteins driving formation of species group A. PROKKA annotation was 628 
found by mapping clusters from the variable importance analysis to the S. epidermidis 629 
genome in the case of ‘present’ clusters and the S. saprophyticus genome for ‘absent’ 630 
clusters. The PROKKA locus tag is indicated in brackets. BLAST homology was 631 
determined from searches against the NCBI BLAST database. %MDA is representative 632 
for the cluster across the randomForest analyses, where higher values indicate increased 633 
support.  Sequences corresponding to PROKKA locus tag are listed in supplementary file 634 
S2. 635 
Table 3. Comparative sequence identity of the BraRS and GraRS TCS across 636 
species groups A-C. Mean identity values of BraR and BraS within species group A and 637 
values for BraR and BraS with GraR and GraS of species group A or B/C. Mean identity 638 
values of GraR and GraS within and between species groups A, B and C. Sequence 639 
identity was calculated from multiple sequence alignments of all protein sequences of 640 
species indicated in Table 1.  641 
Table 4. Presence and absence of GraS and BraS across 49 Staphylococcus species.  642 
Presence and absence were determined using BLASTp with S. aureus N315 SA2417 643 
(BraS) and SA0615 (GraS) sequences confirming and extending Random Forest output. 644 
Asterisk (*) indicates species forming part of group A in Figure 1. 645 
Linked data is present in Suplementary File S3. 646 
Table 5. Non-synonymous, homozygous SNPs from independent clone pools of 647 
staphylococci after nisin selection. Names and functions of genes containing SNPs in 648 
the sequenced clone pools are shown with their locations and nucleotide change.  Cognate 649 
amino acid change or stop (*) is indicated. Pools comprised 5 clones from each of three 650 
independent experiments and allele frequencies were determined from numbers of 651 
corresponding reads in these pools. Nisin MICs of clones in each pool were confirmed to 652 
ensure they were similar.  653 
Table 6. Non-synonymous, homozygous SNPs from single clones of S. aureus, S. 654 
hominis and S. saprophyticus after nisin selection. Names and functions of genes 655 
containing SNPs in single selected clones are shown with their locations and nucleotide 656 
change.  Cognate amino acid change or stop (*) is indicated. Nisin MICs of clones in 657 
each pool were confirmed to ensure they were similar.  658 
Table 7. INDELs from nisin selection pools and single clones of S. aureus, S. hominis 659 
and S. saprophyticus. Names and functions of genes containing INDELs in the 660 
sequenced clone pools are shown with their locations and nucleotide change.  Cognate 661 
amino acid change or other sequence change is indicated: frameshift (fs); upstream 662 
variant (uv); downstream variant (dv); deletion (del); insertion (ins). INDELs marked § 663 
are predicted to have a major consequence by SnpEFF. Pools comprised 5 clones from 664 
each of three independent experiments. 665 
File S1. Staphylococcus species and strains used as substitutes in OrthoMCL 666 
analyses. 667 
File S2.  Species group A, present and absent cluster protein sequences.  Sequences 668 
represent clusters listed in Table 2. 669 
 670 
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File S3.   Data from BLASTp search analysis for GraS and BraS homologues in 49 671 
Staphylococcus species genomes.  BLASTp was performed using default settings and 672 
either S. aureus N315 SA0615 (GraS) or SA2417 (BraS) protein sequences.673 
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Table 1 674 
 675 

Staphylococcus 
Species 

Strain Genome 
Accession 

Sequence Status 
(Reference) 

S. arlettae CVD059 ALWK01000000 
(Uid175126) 

Draft 
(11) 

S. aureus Newman AP009351 
(Uid58839) 

Complete 
(12) 

S. capitis SK14 ACFR01000000 
(Uid55415) 

Draft 

S. carnosus TM300 NC012121 
(Uid59401) 

Complete 
(13) 

S. cohnii ATCC29974 LT963440 Draft  
(This study) 

S. delphini 8086 CAIA00000000 
(Uid199664) 

Draft 
 

S. epidermidis ATCC_12228 NC005008 
(Uid57861) 

Complete 
(14) 

S. equorum Mu2 CAJL01000000 
(Uid169178) 

Draft 

S. haemolyticus K8 LT963441 Draft  
(This study) 

S. hominis J6  LT963442 Draft  
(This study) 

S. intermedius NCTC_11048 CAIB01000000 
(Uid199665) 

Draft 

S. lentus F1142 AJXO01000000 
(Uid200144) 

Draft 
(15) 

S. pettenkoferi VCU012 AGUA00000000 
(Uid180074) 

Draft 
 

S. lugdunensis HKU09 CP001837 
(Uid46233) 

Complete 
(16) 

S. pseudintermedius HKU10 Uid62125 Complete 
(17) 

S. saprophyticus ATCC_15305 AP008934 
(Uid58411) 

Complete 
(18) 

S. simiae CCM_7213 AEUN0000000 
(Uid77893) 

Draft 
(4) 

S. simulans ATCC 27848 LT963435 Draft  
(This study) 

S. vitulinus F1028 AJTR0000000 
(Uid200114) 

Draft 
(19) 

S. warneri SG1 CP003668 
(Uid187059) 

Complete 
(20) 

S. xylosus ATCC29971 LT963439 Draft  
(This study) 

 676 

 677 

 678 

 679 

 680 
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 681 

 682 

 683 

 684 

Table 2 685 

 686 

 687 

 688 
 689 

 690 

 691 

 692 

 693 

 694 

Group A staphylococci Random Forest Output 
PROKKA annotation BLAST homology MDA 
Presence 
Putative cell wall associated hydrolase (epi_00542) Hypothetical protein 2.2 
Hypothetical protein (epi_02098) Cell wall surface anchor protein 2.7 
Hypothetical protein (epi_02108) Hypothetical protein 1.9 
FtsX like permease family protein (epi_02134) ABC transporter permease 3.2 
Macrolide export ATP binding/ permease protein 
MacB (epi_02135) 

Bacteriocin ABC transporter ATP-
binding protein 

3.0 

Sensor histidine kinase GraS (epi_02136) TCS histidine kinase 2.6 
Glycopeptide resistance associated protein R 
(epi_02137) 

TCS transcriptional regulator 2.2 

 Absence  
Succinate semialdehyde dehydrogenase NADP+ 
(sap_00201) 

Succinate-semialdehyde 
dehydrogenase 

2.9 

Putative membrane protein putative toxin regulator 
(sap_00203) 

PTS sugar transporter subunit IIC 2.7 

Putative multidrug resistance ABC transporter 
ATP binding/permease protein YheI (sap_00398) 

Multidrug ABC transporter ATP-
binding protein 

3.3 

Putative multidrug resistance ABC transporter 
ATP binding/permease protein YheH (sap_00399) 

Multidrug ABC transporter ATP-
binding protein 

1.4 

L-lactate utilization operon repressor (sap_00760) Transcriptional regulator 2.7 
Glutamate aspartate carrier protein (sap_01003) Sodium:dicarboxylate symporter 2.7 
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 695 
 696 
Table 3 697 
 698 
 699 

 700 
 701 
  702 
 703 
 704 
 705 
 706 
 707 
   708 

TCS 
protein 

Mean identity 
within group A 

Mean identity to groups 
B & C GraR or GraS 

Mean identity to group 
A GraR or GraS 

BraR 77.1 39.6 44.3 
BraS 62.9 26.4 29.8 
 
TCS 
protein 

Mean identity 
within group A 

Mean identity within 
group B  

Mean Identity within 
group C  

Mean Identity 
across groups  

GraR 87.8 84 97.9 66.7 
GraS 69.4 66 88.2 48.2 



 
 

26 

Table 4 709 
 710 
 711 

GraS-encoding only GraS and BraS-encoding BraS-encoding only 

   
S. arlettae S. argenteus S. agnetis 
S. carnosus S. aureus * S. auricularis 
S. cohnii S. capitis * S. chromogenes 
S. condimenti S. caprae * S. hyicus 
S. delphini S. devriesei S. massiliensis 
S. edaphicus S. epidermidis * S. pettenkoferi * 
S. equorum S. haemolyticus *  
S. felis S. hominis *  
S. fleurettii S. lugdunensis *  
S. gallinarum S. pasteuri  
S. intermedius S. petrasii  
S. kloosii S. saccharolyticus  
S. lentus S. schweitzeri  
S. lutrae S. simiae *  
S. microti S. warneri *  
S. muscae   
S. nepalensis   
S. piscifermentans   
S. pseudintermedius   
S. rostri   
S. saprophyticus   
S. schleiferi   
S. sciuri   
S. simulans   
S. stepanovicii   
S. succinus   
S. vitulinus   
S. xylosus   

  712 
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Table 5 713 
 714 

 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
 730 
 731 

Gene ID 
(Prokka) 

Protein ID Pool Position Base 
change 

Amino acid 
change 

Allele 
frequency  

S. aureus 171 
walK WalK Sensor kinase  1 17119 A -> G H364R 1 
gltB_1 Glutamate synthase 1 437361 A -> T Q797L 1 
rpoB DNA-directed RNA 

polymerase subunit beta 
1 520176 C -> T H506Y 1 

mraY Phospho-N-acetylmuramoyl-
pentapeptide transferase 

1 1103071 G -> A V266I 1 

yhcF Transcriptional regulator 1 1998279 G -> A G73R 1 
hypothetical  Membrane protein 2 615003 C -> T Q57* 0.35 
rpoC DNA-directed RNA 

polymerase subunit beta 
3 523690 G -> T A448S 0.99 

femB FemB 3 1323450 G -> A R215H 0.63 
phage terminase  Terminase 3 1491745 G -> C G240A 1 
greA GreA 3 1625376 A -> T L76* 0.37 
braS BraS sensor histidine kinase 3 2627088 C -> T T175I 1 
S. hominis J31 
rpoB DNA-directed RNA 

polymerase subunit beta 
1 41317 G -> T D1046Y 0.79 

graS GraS sensor histidine kinase 2 147503 C -> T S120L 0.42 
ftsH FtsH Zinc metalloprotease 2 2172470 C -> A D171E 1 
gmk Guanylate Kinase 3 552630 G -> A R135H 1 
yhcF Transcriptional regulator 3 1212777 C -> T Q47* 1 
S. saprophyticus 883 
graS GraS sensor histidine kinase 1 2068987 G -> T G209C 1 
codY CodY regulator 2,3 1537681 C -> A L79F 1,1 
pitA Phosphate transporter 2,3 2066724 C -> T A195V 0.99,1 
graS GraS sensor histidine kinase 2,3 2069134 C -> A R160S 1,1 
marR family  MarR regulator 2,3 2136907 C -> T T62I 1,1 



 
 

28 

Table 6 732 
 733 

 734 
 735 
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
 746 
 747 
 748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 
 756 
 757 
 758 
 759 
  760 

S. aureus strain 171 (single clone from pool 1) 
Gene ID 
(Prokka) 

Protein ID Position Base 
change 

Amino acid 
change 

walK WalK Sensor histidine kinase  17119 A -> G H364R 
gltB_1 Glutamate synthase 437361 A -> T Q797L 
rpoB DNA-directed RNA polymerase subunit 

beta  
520176 C -> T H506Y 

mraY Phospho-N-acetylmuramoyl-pentapeptide 
transferase 

1103071 G -> A V266I 

msrR Regulatory protein MsrR 1309845 G -> T E181* 
yurK Transcriptional regulator 1998279 G -> A G73R 
S. hominis strain J31 (single clone from pool 2) 
ftsH Zinc metalloprotease FtsH 2172470 C -> A D171E 
S. saprophyticus strain 883 (single clone from pool 1) 
graS GraS sensor histidine kinase 2068987 G -> T G209C 



 
 

29 

 761 
Table 7 762 
 763 

Source Gene ID 
(Prokka) 

Protein ID Location Base change Effect 

S. aureus 171 
Single, 
Pool 3 

lpl2_2 Lipoprotein 403168 195_196 
insGG 

I66fs § 

Single, 
Pool 1,3 

sdrE_1 MSCRAMM family 
adhesin 

554844 2672_2673 
insC 

K891fs § 

Single   1990375 -1_-1 insCC uv 
Single, 
Pool 2,3 

  2052262 *1530_*1530 
delTG 

fs 

Single, 
Pool 3 

deoC2 Deoxyribose-
phosphate aldolase 2 

2126552 450_451 
insAG 

K151fs § 

Single, 
Pool 1 

hypothetical Hypothetical protein 2471437 116_117 insT E40fs 

Single, 
Pool 3 

fnbA_2 Fibronectin binding 
protein 

2490720 1763_1764 
delCG 

S588fs § 

Pool 1 hypothetical Hypothetical protein 1556011 201 delT S67fs § 
Pool 2   1337112 -1_-1 insATG  
Pool 2,3 hypothetical transposase 1337623 209_211 

delAAG 
E70del 

Pool 2 hypothetical transposase 1819467 1047_1048 
insC 

*350fs § 

Pool 2 leuA_2  2052046 *1530 delC dv 
Pool 2 hypothetical hypothetical 2471438 115_116 

insATA 
P39del, 
insHT 

Pool 3 lpl2_1 hypothetical 402338 212_213 
insCT 

Q71fs § 

Pool 3 sdrD_1 MSCRAMM family 
adhesin 

550856 3237_3238 
insC 

M1080fs § 

Pool 3 hypothetical  555082 -1_-1 insG  
Pool 3 hypothetical LPXTG surface 

protein  
2480756 216 delA T72fs § 

S. hominis J31 
Single, 
Pool 2 

ftsH Zinc metalloprotease 2172279 325 delA S109fs § 

Pool 1 relA GTP 
Pyrophosphokinase 

951655 764 delA Q255fs § 

Pool 2 ssaA2_2 CHAP domain 
containing protein 

1437614 575_578 
delGTTA 

G192fs § 

S. saprophyticus 883 
Single, 
Pool 1,2,3 

ptsG PTS alpha-glucoside 
transporter subunit 
IIBC 

604054 -1_-1 insAA uv 


