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It is now clear in many species that male and female genital evolution has been

shaped by sexual selection. However, it has historically been difficult to con-

firm correlations between morphology and fitness, as genital traits are

complex and manipulation tends to impair function significantly. In this

study, we investigate the functional morphology of the elongate male intromit-

tent organ (or processus) of the seed bug Lygaeus simulans, in two ways. We

first use micro-computed tomography (micro-CT) and flash-freezing to recon-

struct in high resolution the interaction between the male intromittent organ

and the female internal reproductive anatomy during mating. We successfully

trace the path of the male processus inside the female reproductive tract.

We then confirm that male processus length influences sperm transfer by

experimental ablation and show that males with shortened processi have sig-

nificantly reduced post-copulatory reproductive success. Importantly, male

insemination function is not affected by this manipulation per se. We thus pre-

sent rare, direct experimental evidence that an internal genital trait functions to

increase reproductive success and show that, with appropriate staining, micro-

CT is an excellent tool for investigating the functional morphology of insect

genitalia during copulation.
1. Introduction
Male and female genitalia show extraordinary diversity across the animal king-

dom, and there are numerous examples of highly divergent genital morphology

among closely related species [1–4]. It is now widely accepted that both the

elaboration and rapid evolution of genital traits is probably driven by sexual

selection, with selection favouring the evolution of genital morphology (usually

in males) that increases fertilization success relative to that of their rivals

(whereas the ‘lock and key’ hypothesis for genital evolution is not well sup-

ported [2,4]). However, the specific mechanisms of sexual selection involved

in genital evolution remain unclear for most species [3–6]. Evidence for the

role of sexual selection in genital evolution comes primarily from studies corre-

lating intraspecific variation in morphology with reproductive success (see [7]

for examples of male genitalia in insects; female genitalia have been much

less studied [8]). In males, the size and shape of both internal and external gen-

italia have been shown to influence post-copulatory traits such as sperm

transfer and paternity [7].

An alternative approach is to experimentally manipulate male genitalia and

record how reproductive success is influenced by such manipulation [7]. This

has the advantage of establishing that the targeted trait actually functions to influ-

ence reproductive success (although of course other functions cannot be ruled

out). Studies in which genital structures are removed or reduced in some way

are known as genital ablation studies. Such studies have become much more

sophisticated in recent years. For example, Hotzy et al. [9] used micro-laser sur-

gery to ablate male genital spines in the seed beetle Callosobruchus maculatus.
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This manipulation, along with artificial selection lines, showed

that males with longer spines gained more fertilizations in a

competitive context and that this was possibly due to a larger

proportion of the seminal fluid passing into the haemolymph

of the female [9]. The traits targeted by such ablation studies

tend to be tough sclerotized structures such as spines [9,10],

teeth [11] and claspers [12] that are amenable to manipu-

lation. Manipulation of the structures directly associated

with sperm transfer is not likely to be possible in most species,

as such structures tend to be highly complex so that manipu-

lation impairs function [13] and vascularized so that

manipulation leads to injury and the loss of blood/haemo-

lymph (although see [14] for an experimental reduction of

male gonopodium length in a fish, for which genital function

was not tested).

Moreover, this approach has recently come under criti-

cism, with Simmons [7] noting that complete removal or

serious disruption of a trait may not tell us much about the

selection pressures acting on it due to the inevitable detri-

mental effect on normal trait function. However, if genital

traits can be manipulated while keeping normal reproductive

functions intact, the major drawbacks of this potentially

powerful approach are resolved. Such a manipulation has

been performed in the tortoise beetle Chelymorpha alternans
[15,16]. Male tortoise beetles possess an extremely long,

thread-like flagellum that enters the female spermathecal

duct, and experimental reduction of the flagellum leads to

an increased incidence of sperm droplet formation after

mating, a behaviour which may represent sperm rejection

by the female [15,16]. We suggest that this is a potentially

powerful approach to studying the functional morphology

of genitalia that has not been fully explored.

In order to understand the function of male genital traits, it

would be useful to be able to visualize the interactions between

male and female genitalia while in copula. However, such inter-

actions can be delicate, especially in insects, so that even the most

careful dissections of copulating pairs may alter the normal

positions of male and female genitalia. An alternative is to use

non-destructive imaging techniques such as micro-computed

tomography, or ‘micro-CT’. Micro-CT has been widely used

to describe the morphology of fossil organisms [17,18] and,

in recent years, has become increasingly prominent in anatomi-

cal studies of extant species [19], particularly in combination

with contrast-enhancing agents [20]. The technique allows

taxonomists to carry out non-destructive ‘virtual dissections’

of taxonomically important characters, such as genitalia [21].

Thus far, few studies have used micro-CT to study the functional

morphology of genitalia (although see [22,23]).

Males of the seed bug Lygaeus simulans L (Heteroptera:

Lygaeidae) possess an intromittent organ with a very long,

thread-like posterior structure known as the processus gono-

pori (hereafter referred to as the processus) [24] (electronic

supplementary material, figure S1), which is around two-

thirds of a male’s body length [25]. Such an extremely long

male intromittent organ is common in the Heteroptera

[26–28], and is also found in several other insect groups

including the Coleoptera [15,16,29,30], Dermaptera [31,32]

and Zoraptera [22]. A previous correlational study in

L. simulans found stabilizing post-copulatory selection on

processus length: males with an average processus length

were most likely to inseminate a female [33]. The male proces-

sus is a long, thin, sclerotized tube through which the

ejaculate is transferred via fluid pressure at the base, with
no obvious musculature or vascularization. It therefore may

be amenable to experimental manipulation without further

damage to the male or complete loss of function.

In this study, we investigate the functional morphology of

the male processus in L. simulans in two ways. First, we pre-

sent micro-CT scans of flash-frozen copulating pairs and

show that this technique can be used to non-destructively

visualize the interactions between male and female genitalia.

We then confirm that male processus length influences sperm

transfer directly by experimental reduction of processus

length by differing amounts over three experiments. We con-

sider four measures of reproductive success: male mating,

copulation duration, insemination success and fertilization

success (see §2e). We show first that the processus can

be manipulated while maintaining its sperm transfer func-

tion, and second that male post-copulatory reproductive

success decreases as a greater proportion of the processus

is removed.
2. Material and methods
(a) Insect husbandry
All individuals were maintained at 298C, with a 22 L : 2 D cycle to

prevent reproductive diapause. Prior to experiments, individuals

were moved from large stock populations into small plastic deli

tubs (108 � 82 � 55 mm) as nymphs. These tubs were checked

every day for newly eclosed adults, which were then separated

into single-sex tubs, with 8 to 10 individuals per tub. All tubs

were provisioned with de-husked organic sunflower seeds

(Helianthus annuus) ad libitum, plastic tubes containing distilled

water stopped with cotton wool, and a piece of dry cotton wool

as shelter. Water was replaced every 7 days, and prior to mating

trials. All mating trials were performed when males and females

were sexually mature (7–14 days post adult eclosion).
(b) Micro-computed tomography
A single male and female were allowed to copulate for 2 h, and

then flash-frozen in liquid nitrogen. This gives time for the proces-

sus to reach the entrance to the spermatheca (this typically takes

around 1 h), but is shorter than the average copulation duration

of 200–250 min [33,34]. Samples were fixed by placing in Alcoholic

Bouin’s solution for 4 h. The fixative was then washed out using

70% ethanol, and then the pairs were stained with 1% iodine in

100% ethanol (I2E) for 4 days prior to scanning. This served to

enhance the X-ray attenuation contrast of non-mineralized tissues,

which are otherwise difficult to distinguish using micro-CT [20].

Prior to transportation to the scanning facility, mated pairs

were washed several times in 70% ethanol to remove excess I2E,

and then all ethanol was pipetted out (ethanol residue on the

sides of the tubes was sufficient to prevent the samples from

drying out).

Micro-CT was performed on a Nikon (formerly Metris X-Tek)

XT H 225 cabinet scanner at the Natural History Museum, London.

Samples were scanned dry, in an Eppendorf tube mounted on flor-

ist’s foam. Scans were performed using a current/voltage of

105 kV/190 mA and 3142 projections. This generated datasets of

slice images with voxel sizes ranging from about 5 to 7 mm. Digital

visualization was undertaken using the freely available SPIERS

software suite [35]. For each scan, a global linear threshold was

applied to the dataset, creating binary images in which all pixels

brighter than a user-defined grey level were turned ‘on’ (white).

The ‘on’ pixels identified as belonging to the bugs were then

manually assigned to distinct regions of interest, which corres-

ponded to important anatomical characters (e.g. processus,

http://rspb.royalsocietypublishing.org/
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aedaegus, claspers, spermatheca and bursa). Finally, these regions

of interest were rendered as separate isosurfaces, producing inter-

active three-dimensional virtual reconstructions in which the

different anatomical structures could be independently manipu-

lated (see the electronic supplementary material). High-quality

images and animations were produced in the open-source

program BLENDER (www.blender.org).

Two mating pairs were scanned in total, but reconstructions

for only one of the pairs are presented here, as the results for the

other pair are very similar. A scan was also performed of a single

male with aedeagus everted from the genital capsule following

mating. Additional figures and videos are presented in the elec-

tronic supplementary material. The raw slices obtained from the

scans, plus SPIERSVIEW (VAXML) files and 3D PDFs showing

scan reconstructions, have been deposited in Dryad (doi:10.

5061/dryad.4tp56).

(c) Processus cutting
In order to manipulate male processus length, virgin males and

females were first placed together in a mating arena and observed

until copulation occurred. After approximately 5 min, copulation

was interrupted using a fine paintbrush, which caused the male

to disengage from the female with his intromittent organ everted

from the genital capsule. The male was then sedated by placing

in a freezer at –188C for 4 min, and then the processus was cut

using a pair of micro-scissors. The removed portion of the pro-

cessus was kept for measurement. A sham treatment was also

performed in which males were placed in the freezer and the pro-

cessus manipulated but not cut. Males were given at least 1 day to

recover before being introduced to new, naive females: the females

used for this pre-trial stage were not re-used. Prior to the exper-

iment, the lumen of the processus was confirmed as remaining

open after cutting by taking images using a dissecting microscope

and a scanning electron microscope (figure 2). During the exper-

iment, each processus was checked by eye following cutting to

ensure the cut was performed cleanly.

(d) Experimental design
Three manipulation experiments were performed. In the first

experiment, the processus was shortened by an average of 2 mm

in 39 males, which is 29% of the total processus length. This is

far outside the natural phenotypic range of the processus [33].

A further 39 males were subjected to the same procedure but

without cutting (sham treatment). Males were then given the

opportunity for a single mating with a virgin female.

A second experiment was performed in which proportionally

less of the processus was removed experimentally. The processus

of 13 males was shortened by an average of 1 mm (14% of total

length), while 12 males were left untreated. In order to confirm

that sperm transfer was possible after experimental manipulation,

each male was housed with a single virgin female for two weeks,

thus allowing the opportunity for multiple matings. This gave

each male several opportunities to successfully inseminate the

female. Pairs were checked two to three times a day for copulation.

Finally, a third experiment was performed in which treated

males had their processi reduced by a smaller amount, this time

within the natural phenotypic range. A third treatment was also

added in which only the very tip of the processus was removed,

for two reasons. First, this controls for any effect of ablation

itself, as males receive the cutting procedure but with a negligible

reduction in processus length. Second, the processus ends in a cup-

like structure with a V-shaped cleft, which may be important for

normal sperm transfer (figure 2). Males were thus given one of

three treatments: (i) reduction by 0.4 mm (5.7% of total length,

n ¼ 56), (ii) reduction by 0.1 mm (n ¼ 54) or (iii) no reduction

(sham treatment, n ¼ 55). Males were then given the opportunity

for a single mating with a virgin female as before.
(e) Measures of reproductive success
For experiments 1 and 3, no-choice mating trials were performed

in which virgin males were introduced to a virgin female in small

plastic Petri dishes (55 mm diameter). Dishes were observed con-

tinuously for 2 h, and then checked every 10 min for a further

8 h. If a copulation ended during the trial, the pair were separ-

ated so as to restrict the female to a single mating. This was

done for any copulation that lasted 15 min: pairs that copulated

for less than this time were not separated as sperm transfer is not

possible (sperm transfer has been shown to take at least 30 min

[34]). Copulations that did not end during the trial were separ-

ated manually using a fine paintbrush (this does not damage

the male or female). We recorded the proportion of males that

mated for all treatments. Copulation duration was recorded of

all mated pairs, as this is shown to significantly influence insemi-

nation success [36]. For experiment 2, each male was housed with

a single virgin female in a tub with food and water ad libitum for

two weeks. For this treatment, the proportion of times a pair was

seen in copula was used as a proxy for male mating frequency.

All males were euthanized once mating trials were finished.

Mated females were kept in isolated tubs with food and water for

two weeks to oviposit. After two weeks, mated females and all

offspring were frozen, and the number of offspring produced

was recorded. Hereafter, we refer to whether a female produ-

ced offspring or not as ‘insemination success’, and the number

of offspring produced by a female as ‘fertilization success’.
( f ) Processus measurements
After the experiments were performed, male processi were dissected

and placed onto a microscope slide using Sellotape double-sided

sticky tape for measurement [37]. Images were taken with an Olym-

pus SZX10 stereo microscope (Olympus Corp.) and an attached

ColorView IIIu camera (Soft Imaging System, Olympus Corp.).

Measurements were made from these images using the program-

CELL^D v. 2.8 (Soft Imaging System, Olympus Corp.). Processus

length was measured from the middle of the ‘turning point’, the

curved region just before the fleshy aedeagus ends to the tip (point

A to point B in electronic supplementary material, figure S1), follow-

ing Tadler [33]. Both the removed portion of the processus as well as

the intact portion was measured.
(g) Statistical analysis
Analyses were performed separately for the four measures of male

reproductive success. All models (with the exception of those con-

cerning copulation duration for experiment 3; see below) were first

run including treatment, male body length and their interaction

as response variables. In all cases, the interaction was not signifi-

cant and so was removed from the model. Male body lengths

were not measured for experiment 2, so those models include

only experimental treatment as a response variable.

Determinants of male mating were tested in two ways. For

experiments 1 and 3, logistic regression was used, with male

mating as a binary response variable (whether a male mated or

not). For experiment 2, general linear models were used, with the

proportion of times a male was seen mating (square-root trans-

formed) as the response variable. Determinants of copulation

duration were tested in two ways. For experiment 1, a general

linear model was used, including both experimental treatment

and male body length as response variables. However, the residuals

for experiment 3 were not normally distributed, and so the effects of

treatment and male body length were tested separately, using non-

parametric tests. The effect of experimental treatment was tested

using a Kruskall–Wallis test, and the effect of male body length

using Spearman’s rank correlation. Determinants of insemination

success were tested using logistic regression with insemination as

a binary response variable (whether a mating resulted in offspring

http://www.blender.org
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Figure 1. Reconstructions of reproductive anatomy of L. simulans obtained from micro-CT scans, showing male and female in copula. (a) The male genitalia in
isolation and (b,c) the interaction between the male and female genitalia (with the body transparent) in dorsal and lateral view, respectively. The fleshy base of the
aedeagus can be seen in orange/brown (aed), and the coiled processus in purple ( pro). The paired male claspers are shown in blue (cla). The female bursa is shown
in green (bur), and the spermatheca in yellow (spe). The corkscrew region at the entrance to the spermatheca is shown at point D. The aedeagus enters the female
at point E. The approximate point where the processus enters the female spermathecal duct is shown at point F. Scale bar, 1 mm.

(b)(a) (c)

Figure 2. Scanning electron microscope images showing (a,b) the normal tip of the processus and (c) the intact lumen after experimental manipulation.
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or not). Finally, determinants of fertilization success were tested

using general linear models, with offspring number as the response

variable. For experiment 3, additional pairwise comparisons were

performed between the three experimental treatments using

Tukey tests, using the multcomp package in R [38].

Additionally, for experiment 3, logistic regression was used

to estimate the relationship between male processus length

and insemination success (as a binomial response) separately

for each of the three experimental treatments. Processus length

was included as both a linear and quadratic term. This relation-

ship was then plotted for males with 0.4 mm of the processus

removed using a non-parametric curve [39]. The curve was

estimated using a general additive model, with insemination

success as a binomial response (whether the mating resulted in

offspring or not) and processus length as the predictor variable

(using the R package mcgv), and visualized using a cubic

spline [39]. All statistical analyses were performed in R v. 3.1.0

[40]. All data for the three experiments have been deposited in

Dryad (doi:10.5061/dryad.4tp56).
3. Results
(a) Micro-computed tomography
Three-dimensional virtual reconstructions of an L. simulans
copulating pair, obtained via micro-CT scanning, can be

seen in figure 1. Iodine staining served to greatly enhance the

contrast of non-mineralized tissues—which are otherwise

difficult to resolve with micro-CT because they show limited

X-ray contrast [20]—allowing visualization of the entire male
intromittent organ, including the processus and fleshy base

of the aedeagus, within the female tract. The sclerotized

nature of the processus meant that it was clearly differentiated

from the surrounding tissues in micro-CT images (figure 1), so

that its path could be traced both inside the female, and also

posteriorly within the base of the aedeagus (figure 1a). The

female internal reproductive morphology was also recon-

structed in detail; specifically, the bursa (which appears as a

large cavity) and the spermatheca, which is sclerotized

(figure 1b,c). The positions of the male aedeagus and processus

within the female bursa have not previously been reported,

and physical dissection invariably causes distortion of the

natural shape of the bursa, which is very fragile; consequently,

this virtual approach was an ideal way of imaging these struc-

tures in situ. It appears that the processus is coiled inside the

bursa for slightly more than half of its length and performs

one and a half turns once in the spermathecal duct (figure 1b,c)

[34]. Furthermore, the high resolution of the scans (down to

about 5–7 mm) meant that very fine-scale anatomical features

could be detected, such as the tight corkscrew region at the

entrance to the spermatheca (point D in figure 1b) [41].

Scans also confirm that the male processus is able to reach

the spermatheca after copulation for 2 h, and can thus be

inferred to extend all the way along the spermathecal duct

(as previous studies have reported [34]). However, the sper-

mathecal duct could not be distinguished from the male

processus; this may be because the spermathecal duct is a

very fine structure, and hence is difficult to resolve with

micro-CT, even after the use of contrast-enhancing agents to
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Figure 3. The influence of experimental reduction in processus length on male reproductive success in experiment 1. The male processus was either shortened by
2 mm (n ¼ 39) or manipulated but not cut (sham, n ¼ 39). Following a single mating, three measures of reproductive success were recorded: (a) copulation
duration, (b) insemination success (whether a mating resulted in offspring or not) and (c) fertilization success (the number of offspring produced).

Table 1. Table showing mean processus lengths for all three manipulation experiments, split by experimental treatment.

experiment treatment n
amount removed
(mm) s.d.

length after
cutting (mm) s.d.

proportion of
total removed

1 sham 39 0.00 — 6.90 0.22 —

manipulated 39 2.00 0.24 4.84 0.30 0.29

2 sham 12 0.00 — 6.92 0.26 —

manipulated 13 1.02 0.39 5.80 0.48 0.16

3 sham 55 0.00 — 6.80 0.16 —

tip removed 54 0.10 0.03 6.74 0.20 0.01

manipulated 56 0.39 0.13 6.48 0.20 0.05
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increase differential attenuation [20]. The starting position of

the spermathecal duct can be inferred from the point where

the processus appears to break through the wall of the

bursa (point F in figure 1c). Furthermore, the resolution of

the CT scans was insufficient to reveal the fine-scale structure

of the processus tip, which is better resolved using scanning

electron microscope (SEM) imaging (figure 2).

(b) Experimental reduction in processus length
The average processus length for each treatment across all

experiments can be seen in table 1. Across all three exper-

iments, experimental treatment did not appear to alter male

mating behaviour.

(i) Experiment 1
The proportion of males that mated did not differ between

the two experimental treatments (logistic regression;

x2
1 ¼ 0:6, p ¼ 0.44). However, larger males were more likely

to mate (x2
1 ¼ 6:58, p ¼ 0.01). Copulation duration was signifi-

cantly shorter for males with a shortened processus compared

with sham males (GLM; F1,56 ¼ 7.04, p ¼ 0.01; figure 3a).

Larger males also copulated for longer (F1,56 ¼ 4.23, p ¼
0.044). Males with a shortened processus also had signifi-

cantly reduced insemination success (x2
1 ¼ 12:44, p , 0.001;

figure 3b): only 2 out of 28 matings by manipulated males
led to offspring, compared with 15 out of 31 matings for

sham males. Insemination success was not influenced by

male body length (x2
1 ¼ 1:96, p ¼ 0.16). For those matings

that produced offspring, there was no significant difference

in the number of offspring between reduced and sham males

(F1,14 ¼ 3.22, p ¼ 0.09; figure 3c), which is likely to be due to

the small number of successful inseminations by manipulated

males. Additionally, larger males produced more offspring

following fertile matings (F1,14 ¼ 6.03, p ¼ 0.027).
(ii) Experiment 2
There was no significant difference in male mating frequency

(proportion of observations seen in copula) between the two

treatments (F1,23 ¼ 0.95, p ¼ 0.34). Reduction of processus

length by 1 mm led to no difference in male insemination suc-

cess (including all males, even those that were not seen mating)

compared with sham males (x2
1 ¼ 2:59, p ¼ 0.11; figure 4a).

However, the sample size for this experiment is small, and

there is a non-significant trend towards a reduction in the inse-

mination success of manipulated males. Nevertheless, this

confirms that males can successfully transfer sperm after exper-

imental manipulation, at least when the processus has been

shortened by around 1 mm. There was also no significant

difference in the fertilization success of manipulated males

compared with sham males (F1,15¼ 1.14, p ¼ 0.3; figure 4b).
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Figure 5. The influence of experimental reduction in processus length on male reproductive success in experiment 3. The male processus was shortened by
0.4 mm (n ¼ 56) or 0.1 mm (n ¼ 54), or manipulated but not cut (sham, n ¼ 55). Following a single mating, three measures of reproductive success were
recorded: (a) copulation duration, (b) insemination success (whether a mating resulted in offspring or not) and (c) fertilization success (the number of offspring
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(iii) Experiment 3
The proportion of males that mated was not significantly influ-

enced by experimental treatment (x2
1 ¼ 0:13, p ¼ 0.94) or male

body length (x2
1 ¼ 0:84, p ¼ 0.36). Copulation duration was

also not significantly influenced by experimental treatment

(Kruskal–Wallis test, H2 ¼ 0.54, p ¼ 0.76; figure 5a). However,

larger males copulated for longer (Spearman’s rank corre-

lation, rs ¼ 0.18, d.f.¼ 1, p ¼ 0.026). Insemination success

was not significantly influenced by experimental treatment

(x2
1 ¼ 0:028, p ¼ 0.99; figure 5b), though matings with larger

males were more likely to result in insemination (x2
1 ¼ 5:8,

p ¼ 0.016). Among the males that produced offspring, there

is a positive relationship between processus length and insemi-

nation success for males that had 0.4 mm of processus removed

(x2
52 ¼ 5:16, p ¼ 0.023; figure 6), but no relationship for sham

males (x2
50 ¼ 0:1, p ¼ 0.75) or those that had just the tip

removed (x2
49 ¼ 2:003, P ¼ 0.16).

Fertilization success was not influenced by male body

length (F1,98 ¼ 1.89, p ¼ 0.17), but was significantly influ-

enced by the experimental treatment (F2,98 ¼ 4.59, p ¼ 0.012;

figure 5c). Post hoc tests show that removal of the tip did

not influence the number of offspring produced compared
with sham males (t65 ¼ 0.35, p ¼ 0.94; figure 5c); however,

females mated to males with a processus shortened by

0.4 mm had significantly fewer offspring compared with

http://rspb.royalsocietypublishing.org/


r

7

 on May 13, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
both sham males (t68 ¼ 2.4, p ¼ 0.046) and those with just the

tip removed (t68 ¼ 2.76, p ¼ 0.019).
spb.royalsocietypublishing.org
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4. Discussion
We use two approaches to investigate the functional mor-

phology of the male processus in L. simulans. We first use

micro-CT to produce high-resolution virtual dissections of

male and female reproductive anatomy in copula. Our results

show that it is possible to distinguish between soft (non-

sclerotized) structures even of small invertebrates; for example,

from the scans we were able to resolve structures less than

10 mm long. This method may be especially useful when coup-

ling with flash-freezing to investigate the positioning of

genitalia at different stages of copulation, and also to determine

the normal shape of internal structures (such as the female

bursa). This has traditionally been investigated using serial sec-

tions; however, micro-CT has the advantage of not requiring

the destruction of samples. Our results confirm that this tech-

nique is an excellent tool for the non-destructive visualization

of internal reproductive morphology, including the interaction

between male and female genitalia in copula.

Experimental reduction in processus length confirms that

males with shorter processi have reduced insemination and fer-

tilization success in a non-competitive context. Furthermore,

the effect that manipulation has on male reproductive success

depends on which proxy measure of success we use: if we

remove 0.5% of the total processus length (which is within

the natural phenotypic range), we cannot detect a significant

reduction in insemination success, but we can detect a

reduction in the number of eggs fertilized (experiment 3). By

contrast, reduction of the processus by 29% (which is far out-

side the natural phenotypic range) leads to a significant

reduction in copulation duration, insemination success and

the number of offspring produced (experiment 3).

Across all three manipulation experiments, the manipu-

lation of processus length had no effect on the proportion

of males seen mating, or male mating frequency. By remov-

ing only the tip of the processus in experiment 3, we also

show that the experimental ablation itself does not influence

post-copulatory reproductive success. This result, and the fact

that processus morphology is the same over the region

manipulated here, suggests that the reduction in reproductive

success seen in experiments 1 and 2 is not due to injury

caused by cutting, but rather a direct result of the reduction

in processus length. Additionally, in experiment 2, we show

that insemination success when the processus is reduced by

around 15% (which is still outside the natural phenotypic

range) is comparable with that from a non-manipulated pro-

cessus, when males were allowed to mate multiple times.

However, it is not clear if males mated significantly more

often following this manipulation.

Interestingly, the relationship between processus length

and insemination success is positive and linear following

reduction by 0.4 mm (figure 6), in contrast to the stabilizing

selection found in previous studies [33]. This demonstrates

how directional selection may act strongly following pertur-

bation to return processus length to its optimum. We note

that we were unable to detect stabilizing selection on proces-

sus length for the sham males in experiment 3; however, this

is likely to be because the sample size was insufficient to be

able to detect the much weaker quadratic selection gradient.
Studies on the functional morphology of genitalia are

lacking in general [23], and an experimental approach such

as this is rarely taken, probably due to the perceived difficulties

of manipulating traits while maintaining function. However,

we demonstrate that this approach may be fruitful in some

cases, though probably only when targeting sclerotized struc-

tures that do not cause damage to subjects. Despite this, the

exact mechanisms through which processus length increases

sperm transfer success remain unclear. The simplest possibility

is that successful insemination could only occur if sperm are

released in the distal region of the spermathecal duct, after pas-

sing the valve at the entrance to the spermatheca, through

which sperm seem unable to pass [34,40]. However, it should

be noted that the female spermathecal duct is approximately

1.9 mm long [41], which is considerably shorter than even

the shortest processus length [33], and it can be seen from

figure 1 that a large proportion of the processus remains in

the female bursa during sperm transfer. This suggests that

mechanical considerations are more likely. For example, pro-

cessi that are much shorter or longer than average may be

harder to manoeuvre into the entrance to the spermathecal

duct if the number of coils the processus makes within the

female bursa is important for positioning of the tip [34].

Alternatively, we cannot rule out mechanisms of cryptic

female choice that might prevent successful insemination by

the male. For example, the valve at the entrance to the sper-

matheca may give some degree of control to the female

over the amount of sperm stored [34]. This might be likely

in a species such as L. simulans, where males can overcome

female resistance to mating and seem able to extend copu-

lation duration as a form of mate-guarding [25], and may

also explain the observed high frequency of insemination fail-

ures [33,36]. However, active choice would require that the

female is able to assess the size of the male processus

during copula (independent of other male traits), which has

not yet been shown.

In conclusion, we confirm that male processus length sig-

nificantly influences insemination and fertilization success in

L. simulans, by experimentally reducing processus length

while keeping the sperm transfer ability intact. Further, we

show that the greater the reduction in processus length, the

greater the reduction in male reproductive success. We

suggest that recent criticisms regarding genital ablation can

be overcome if traits can be manipulated in such a way as

to maintain reproductive function. This is probably not plaus-

ible for the majority of taxa, and for this reason L. simulans
may prove to be a useful model system for the study of

male genital evolution and sexual selection.
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