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Some facts about the brain as a PC... 
• The brain has ~100 billion neurons (1011) – about 30µm large

– Neuron Fan-in ~ 103 – 104 (logic gates 2-4!)

– complex dynamics - includes several time constants,

– maintains a more complex internal state

– output is a time-series of action potentials 

or ‘spikes - no information in amplitude! 

• Massively parallel in nature
– Typical  1015 interconnections

– Total computation rate of about 1016 complex operations /sec (cf 10 P-
FLOPs)

• Millisecond time frame of ‘events’

• Low level function: ‘reasonably well understood’..

• High level function.....................???????



Some other brains 
• A fly (1 grain of sugar a day to feed it!): 250 k neurons

• Honeybee (fantastic navigator!): 1 million neurons

• Rat (pretty smart animal): 55million neurons

• But how do the following work:

– the arithmetic

– Fault-tolerance

– The parallelism (beat Moore’s Law hands down)

This is the inspiration!
But must find a simpler, scaleable, low power approach



Synapses and neurons
Spike-timing dependent plasticity

STDP learning rule

t1

t2

If spike, t1 causes neuron, N 
to fire (t2 – t1 small)..

Weight  W1 may be 
increased

and W2 etc decreased

N



Motivation

Create building blocks that can emulate biological 
functionality

Implement in mixed signal CMOS (cheap!)

Assess layout / scalability / systems functionality

Circuits that can learn!
- Plasticity / decision circuits (STDP) / FG weight storage

Build large, useful electronic systems
learn more about ‘brain computation’ ..... 



Circuit Challenges

• Store and update weights

• Detect timing (t2 – t1 )

• Axonal delay

• Low power operation

• Scale to VLSI

• Learn!

t1

t2



Dynamic synapse

Vpres → on
Charge sharing
S of M2 increase 
→ M2 clamped ‘off’
Transient i, mirrored in M5 

i(t)
i(t)

Dowrick et al.’ IEEE Trans. On Neural Networks 
and Learning Systems, 23(10), p.1513 (2012)
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How it works
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Post-synaptic potentials
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Fan-in: theory 
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Dowrick et al, Neurocom., vol.314, pp.78-85, https://doi.org/10.1016/j.neucom.2018.06.065 (2018)

Rise time Post-synaptic potential

Consider transients of capacitive nodes



Fan-in

Dowrick et al, Neurocom., vol.314, pp.78-85, https://doi.org/10.1016/j.neucom.2018.06.065 (2018)

Conclusion: Fan-in intrinsic limit > 105 !

Practical limit is set by layout / interconnect 
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Weight Increase, WI, Circuit Block, Output Buffers and SIFGNVM Device

Compact decision circuits (STDP)

Pass transistors gated by Vpre, Vpost

charge node X

Decay via sub-Vth MOST

Sets plasticity ‘window’

Smith et al, Neurocomputing, v124, p 210 (2014)

tpost -tpre

Δw

Δw

X
Similar circuit for 
weight decrease



How it works: WI Block Operation Pre-Post Spiking Event

• When a presynaptic spike occurs (VPre)

• V1 is pulled up to 3V- VTMpre(V1), C1 charges via Mpre

• C1 Slowly discharges via sub-threshold Mleak

• Vpost triggers the sample/hold as some time, t after Vpre

Sample 
and hold

Sets 
timing 
window

Triggers
Weight 
update

Step up V 
to drive 
FG

FG



Axonal delay
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• M1 operates subthreshold
• Slow charging of C
• VN rises and inverters turn on
• Tune delay with VLEAK

Dowrick et al, Neurocomputing, 2012 
http://dx.doi.org/10.1016/j.neucom.2012.12.004, 



Pulse burst creation
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Scaling

• Two solutions: sum voltages or sum currents



Scaleability: easier to sum currents

linear voltage-to-current converter (V2I)

Transmit voltage steps and re-create spikes for long 
interconnect

But added 
complexity!



Scaling: circuit issues
Large synapse fan-out problem: 

non uniform spike inputs due to parasitics

non-linearities occur in currents

synaptic nodes

Hope it all comes out in the wash!
Nature is messy as well



Neurons with excitatory and inhibitory synapses

.. ..
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Programmable weights

• Analog weight
– Good: Continuous weight value, compact analog storage circuit

– Bad: Inaccurate, require bias reference circuit and complex control circuit 
for high resolution, also require high voltage rail and undocumented 

– technology feature

• Digital weight
– Good: accurate, mature digital memory technology,  easy to program

– Bad: discrete quantitative weight, require more space



Programmable weight



Embrace: an alternative approach

Harkin et al, Int. Jnl of Reconfigurable Computing, doi:10.1155/2009/908740 (2009)

• Network-on-chip address the issues of scalability and connectivity between 
components. 

• Low-area/power spiking neuron cells with associated training provides neural 
computing capability.

• 2-dimensional array of interconnected neural tiles + I/O blocks. 
• Neural tiles connected in North, East, South and West. 
• Tile can be programmed to realise neuron-level functions.

Slide courtesy of Jim Harkin



Evaluation
• Learning in software (calculate weight values)

• Fit the experimental synapse results
• Solve benchmark problems

• Wisconsin breast cancer (WBC) dataset
• IRIS dataset

• Temporally encoded input values

Ghani at al, Neurocomputing, 83 (2012) pp.188–197 (2011)

SNN architecture: IRIS dataset SNN architecture: WBC dataset



Circuits fabricated in AMS 0.35,mixed signal 
CMOS



Astrocytes
Presynaptic Axon

Postsynaptic 
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+

Glu
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Indirect feedback 
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Increasing the PR
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c Reticulum 
(ER)
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Breslin et al, PLoS Computational Biology, doi.org/10.1371/journal.pcbi.1006151, May (2018)

Study transport 
within astrocyte 
process
and between 
neuron/astrocyte



Endocannabinoid Mediated Self-Repair

2-AG (DSE)

e-SP
2-AG

Wade, McDaid et al, Frontiers in computational neuroscience, v6, Art 76 (2012)

10 synapses

Damage a fraction of 
these synapses

neurons

Remains undamaged



Astrocytes mediate self-repair

Wade, McDaid et al, Frontiers in computational neuroscience, v6, Article 76 (2012)

Neurons firing

damage
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• Astrocyte ‘forces’ synapses to ‘work harder’
• Opens up STDP window – restarts learning



What we learnt..

• Can build compact analogue circuits that emulate aspects 
of biology with a degree of success (better than in 
software? – potentially much faster)

• Getting them to learn is another matter..

– Need feedback

– Weight update 

– Starts to get very complicated…

• A lot of redundancy once the circuit has ‘learnt’

• Scaling soon results in a huge amount of interconnect 

Need software/hardware combination – learning in software



Still some way to go before….

DC Comics
May 1961
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