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Abstract: Tank Container Operators (TCOs) are striving to maximize profit through the integration of their 
global Tank Container (TC) operations with the job quotation-booking process. However, TCOs face a set 
of unique challenges not faced by general shipping container operators, including the process uncertainties 
arising from TC cleaning and the use of Freight Forwarders (FFs). In this paper, a simulation-based two-
stage optimization model is developed to address these challenges. The first stage focuses on tactical 
decisions of setting inventory levels and control policy for empty container repositioning. The second stage 
integrates the dynamic job acceptance/rejection decisions in the quotation-booking processes with container 
operations decisions in the planning and execution processes, such as job fulfilment, container leasing terms, 
choice of FFs considering cost and reliability, and empty tank container repositioning. The solution 
procedure is based on the simulation model combined with heuristic algorithms including an adjusted 
Genetic Algorithm, mathematical programming, and heuristic rules. Numerical examples based on a real 
case study are provided to illustrate the effectiveness of the model. 
 
Keywords: OR in maritime industry; Profit maximization; Tank container management; Dynamic planning 
horizon; Uncertainty. 
 
1. Introduction 
The petrochemical industry has been growing steadily over recent decades, and up to 2014 the size of the 
global petrochemical market reached 490.5 million tons and is forecasted to grow at a Compound Annual 
Growth Rate (CAGR) of 5.1% from 2015 to 2022 (Grand View Research, 2016). As the biggest consumer, 
China accounted for 26.7% of global consumption in 2014 and is expected to witness growth of 6.2% from 
2015 to 2022 (ibid). In terms of market value, 419.4 billion US dollars were traded in 2015, and the high 
demands are majorly coming from the automotive, textile, construction, industrial, medical pharmaceuticals, 
electronics and consumer goods industries. With the growth in the petrochemical industry, associated 
transport demands are also growing. As one of the key transport modes in this industry, Tank Containers 
(TCs) play an important role due to their convenient handling, safety, and environmental friendly features. 
Similar to Dry Containers (DCs), they are designed for intermodal transport, so they can be moved easily 
by truck, train and ship. According to the International Tank Container Organisation (ITCO, 2016), the 
global fleet size of TCs was estimated as 458,200 units in 2016, and it is maintaining a steady growth rate 
of 10% per year. Erera et al. (2005) concluded that the major advantages of TCs that have resulted in this 
growth are: 

i. they are safer and produce less leakage during transportation and handling;  
ii. they provide better space utilization compared to other modes, e.g. 43% more volume than drums 

stowed in DCs;  
iii. no additional specialized port-side infrastructure is required when handling both DCs and TCs;  
iv. they can be used to provide a reliable liquid storage device, particularly at the customer-end post-

transport.  
 
Although the physical features of TCs are similar to DCs, so that they are compatible with standardized 
cargo handling equipment and intermodal transport, their operations are quite different due to the special 
features of this industry. Dry Container Operators (DCOs) are normally shipping companies, who manage 
their own containers or long-term leased containers (can be regarded as self-ownership) with their own liner 
service. In contrast, Tank Container Operators (TCOs) offer a complete logistics service to customers in the 
petrochemical supply chain, but do not own ships, and their customer demands are satisfied by a so-called 
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“quotation-booking” process (Erera et al. 2005). DCs are used in much higher volumes, creating large 
regular flows, through aggregation, that the large shipping companies can then match with regular routes 
and their own ships. It makes business sense for the shipping companies to own and manage DCs as it fits 
with their economies of scale business model. TCOs in contrast are used in much smaller volumes to provide 
far more specialist services, often with irregular flows. This is a low-volume high variety market less suited 
to the large shipping companies to own and manage TCs themselves. Instead, smaller specialist 
petrochemical logistics companies offer TC logistics and then piggyback on the container ships of the larger 
shipping companies. As a result, TCOs tend to emphasize profit (or revenue) maximization instead of cost 
minimization. 
 
Customers book logistics services from TCOs with expected itinerary and execution time. TCOs need to 
respond quickly by developing a quotation through negotiation with external resource providers and analysis 
of their own resources. In this process, TCOs are challenged by how to deal with the uncertainties arising 
from the time gap between quotation development and service delivery. Furthermore, the high reliance on 
external resources magnifies these uncertainties. The following significant key features of the TC 
management problem have been left unaddressed. 
 

i. The time gap between demand receipt and execution has not been modelled appropriately. As the 
customer request for a price quotation is often received well in advance of the demand execution 
time, so TCOs have to decide whether to issue a price quotation without accurate information on 
TC availability at the demand execution time. In addition, the demand receipt is revealed gradually 
over time. Erera et al. (2005) emphasized the “quotation-booking” process in TC management, 
but assumed all demands are known and deterministic in the planning horizon. 

 
ii. There is a lack of decision support methods for developing quotations to meet individual customer 

demands. Support is required in determining precisely how to service individual demands, 
calculating expected costs and subsequently maximizing profits through the quotation process. 
This problem becomes even more complex with the option to lease containers, which can take the 
form of planned leasing or spot/emergent-leasing, in more real-time, with their different costs. 

 
iii. Process uncertainties need to be included. For example, TCs are transported by third parties, so 

TCOs face significant uncertainties from Freight Forwarders (FFs) and shipping companies (as 
discussed later). Also, as practitioners from the TC industry pointed out, it is difficult to finish TC 
cleaning on time between different commodities, so deterministic, standardized cleaning times are 
not realistic.  

 
iv. Empty Container Repositioning (ECR) is a critical task because the global flows of loaded 

containers are not balanced geographically. Regions with net outflows need ECR to replenish 
container stocks from net inflow regions. Empty Tank Container Repositioning (ETCR) is 
particularly expensive as TCOs have no ships and there are the third-party sources of uncertainty 
mentioned above. The planned and forecast execution of booked customer demands in the future 
may influence the volume of ETCR at the present time, but something unforeseen in the future 
may make the current ETCR ineffective.  

 
Considering the above points, the research into TC management presented here, especially the quotation-
booking process, is carried out on two levels. At the tactical level, this research will help TCOs adopt 
appropriate inventory control policies to maintain effective empty container repositioning and to cope with 
mid-term uncertainties. At the operational level, this research gives decision-making support to plans 
formulated by the quotation-booking process, particularly decisions about how to satisfy customer demands 
and how to manage the container fleet on a daily basis in the presence of uncertainties.  
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The rest of this paper is organized as follows. In Section 2, relevant literature is reviewed and the research 
gaps identified. In Section 3, the underlying problems are discussed in more detail and formulated 
mathematically. Following this, in Section 4 an optimization model is developed to integrate the two-level 
planning. In Section 5, a numerical test is conducted to demonstrate the application of the optimization 
model and the associated justifications of the model. The final section concludes with a summary of the 
main outcomes of this research and outlines future work.  
 
2. Literature Review 
The relevant literature is organized as follows. First, studies of TC operations are reviewed. However, due 
to limited research reported in this area and the unaddressed features of the problems in TC operations, the 
literature review has been expanded to general container operations. Note, at the tactical and operational 
planning levels, among the raised issues in Section 1, only ECR is explicitly and extensively discussed in 
the literature, while the other key issues raised are either not investigated or jointly discussed in the context 
of ECR studies (see SteadieSeifi et al., 2014; Song and Dong, 2015). Hence the second part of the literature 
review focuses on exploring ECR related studies in dry container operations. 
 
In the TC operations field, only two relevant studies have been found. Erera et al (2005) have used the term 
‘quotation-booking’ to describe the key process of TC operation and highlighted its significance. They 
employed a time-space deterministic model to optimize TC network flow with multiple commodities within 
an intermodal environment. They demonstrated the economic benefit of integrating TC booking and routing 
decisions with ECR decisions. Although their research has elaborated the special features associated with 
TC operations, the designed model is deterministic and assumed all demands in the planning horizon are 
known in advance and must be satisfied. The model is not applicable to support developing quotations to 
meet individual customer demands. More importantly, uncertainties such as container cleaning time and FF 
reliability are not considered, although these are important features in TC operations according to our 
communication with industry experts. Karimi et al. (2005) studied the TC operation using a different 
approach. They formulated the TC operation in a Just-in-Time (JIT) fashion and proposed a linear 
programming optimization model based on event-driven simulation. This helps in optimizing TC movement 
at the operational level, but again, it assumes a deterministic situation with the JIT setting that is barely the 
case in the real TC industry.   
 
In the dry container operations field, many studies have been conducted in the last two decades (e.g. see the 
review papers: Braekers et al., 2011; Song and Dong, 2015). With the emphasis on empty container 
management models, the relevant literature may be classified into two groups: deterministic models and 
stochastic models. In the first group, for example, Choong et al. (2002) simulated ECR for an intermodal 
transportation network and examined the influence of the length of planning horizon. Meng and Wang (2011) 
developed a mixed-integer linear programming for shipping routes design and ECR optimization; Song and 
Dong (2013) considered route structure design, ship deployment and ECR jointly in a three-stage 
optimization process; Zheng et al. (2016) studied the container leasing price, with ECR consideration, from 
the point of view of the lessee. Although the above papers address several interesting issues such as length 
of planning horizon, laden and empty container routing and container leasing pricing, their models are not 
directly applicable to TC operations due to the higher levels and variety of uncertainties in the processes of 
quotation, booking and execution.  
 
In the second group, Crainic et al. (1993) were among the first to extend deterministic formulations to 
stochastic programing models for ECR. Cheung and Chen (1998) applied a stochastic quasi-gradient method 
and a stochastic hybrid approximation procedure to deal with uncertainties in their two-stage optimization. 
They dealt with stochastic supply, demand and the residual capacity on vessels simultaneously in the 
optimization. Erera et al. (2009) used the adjusted robust optimization framework for dynamic empty 
repositioning when demands and future supply of empty containers are uncertain. Specifically, decisions 
and plans in this model are continuously adjusted when uncertainties are realized, i.e. they are dynamic. 
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Similarly, Di Francesco et al. (2009, 2013) developed a scenario-based formulation to solve stochastic 
problems on a rolling-basis. It only makes here-and-now decisions, and plans are updated as the planning 
horizon is rolling forward. Erera et al. (2009) and Di Francesco et al. (2009, 2013) demonstrated an ability 
to cope with uncertainties in a multi-stage decision making environment. However, as Epstein et al. (2012) 
noted, mathematical programming models are not suitable for large solution spaces mainly due to the 
computational complexity. Therefore, as TCOs normally operate on a global basis within large networks, it 
would be challenging to optimize them with stochastic mathematical models.  
 
Alternatively, simulation-based optimization models have been developed widely to tackle container 
management problems for which computational complexity can be avoided at the cost of obtaining 
approximate solutions. For example, Lam et al. (2007) used a simulation-based approximate policy iteration 
algorithm to obtain an optimal average cost for ECR over an infinite planning horizon. Dong and Song 
(2009) used a simulation-based method to optimize a threshold control policy for ECR and container fleet 
size under stochastic demands. Song and Dong (2011) used simulation to evaluate the effectiveness of an 
empty container repositioning policy with flexible destination ports. Yun et al. (2011) built an (s, S) 
inventory policy for an inland transportation system in dealing with uncertain demand. Dang et al. (2013) 
took both ECR and leasing options into account with the optimization of a double threshold policy in an 
inland-depot system with dynamic order-arrival time. These papers present decision-making rules 
associated with system dynamic states, such as inventory levels of empty containers, and implement the 
decisions in the same time period as when they are made. The advantage of the inventory-based container 
management policies is ease of operating on a dynamic basis that can accommodate uncertainties. However, 
none of the studies in this stream have explicitly addressed the ECR decisions in relation to the quotation-
booking process. 
 
In the TC industry, customers normally request price quotations first and then make a booking with TCOs. 
Once the quotation is issued to the customer and the booking is confirmed, it is hard to change the demand 
fulfilment on the execution date. This is very different from the dry container shipping industry where 
neither shippers nor shipping lines would guarantee the cargo or the slot even after the booking confirmation. 
It should also be pointed out that there may be a significant gap between customer booking time and demand 
execution time, and uncertainties and the emergence of more information during the time gap can change 
what is expected (e.g. availability of empty containers at demand execution time). On the other hand, TCOs 
have the bargaining power to reject certain jobs during the quotation stage if they believe that the jobs are 
not sufficiently profitable within the business operations circumstances. Based on our communication with 
the industry, at present TCOs mainly rely on experience and manual calculation to decide whether to 
reject/accept jobs during the quotation stage. There is a need to develop decision support tools to assist in 
the quotation-booking process in relation to TC fleet management.   
 
Moreover, although container leasing has been explicitly or implicitly studied by many authors (e.g. Moon 
et al., 2010; Dong and Song, 2012; Olivo et al., 2013), the difference between planned leasing and emergent 
leasing has not. Here planned leasing is defined as leasing that the TCO requests from lessors at least one 
day before the actual required time, whereas emergent leasing is requested on the same day as the actual use 
of the TC. In practice, planned leasing (pre-booked leasing) is cheaper than emergent leasing. This concept 
is analogous to the ‘advanced purchase discount model’, which is widely applied in the airline industry or 
other asset leasing activities (Gale and Holmes, 1992; Dana, 1998). From a supply chain coordination 
perspective, planned leasing contributes to information sharing under an uncertain environment (Tang and 
Girotra, 2017). TC lessors provide incentives to encourage their customers to do so. Taking the planned 
leasing and emergent leasing into consideration in the quotation-booking process enables TCOs to make 
strategic choices between these two options. In particular, when TCOs expect there will not be enough 
inventory to execute the demands received, they can arrange planned leasing to avoid higher emergent 
leasing costs. Furthermore, a cheaper leasing option could provide the opportunity for TCOs to plan to serve 
some demands with leasing containers to maintain more balanced container flows overall.  
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He (2013) modelled ECR with the participation of FFs and demonstrated that the total cost of ECR 
operations is affected by the choice of FFs. It differentiates FFs with different costs when the service depot 
of a FF is changed. However, the uncertain service levels and reliability provided by different FFs are not 
considered. In general, higher commission-charging FFs provide higher service levels and more reliable 
service. The use of FFs (or shipping lines directly) to book shipping slots may lead to uncertainty in realizing 
the empty container repositioning plan. In addition, after completing each job, empty TCs have to be cleaned 
at a dedicated depot in preparation for carrying different chemicals. This cleaning process may take several 
days and the precise time is a source of uncertainty. This uncertainty affects forecast TC availability that 
needs to be taken into consideration in planning ETCR. To the best of our knowledge, studies taking into 
consideration FF reliability and cleaning time uncertainty are not found in either the container operations or 
the maritime FF research literature.  
 
This paper investigates how TCOs manage their container flows within the uncertain environment, and 
subsequently a decision-making support model is developed, based on an inventory-control based policy, 
to enable TCOs to achieve higher profits through the quotation-booking process.  
 
3. Problem Description 
TCOs have no ownership of maritime transportation services, instead serving customer demands through 
contracts with third-party transport providers. In the daily operation, customer demands are received 
including job start date, origin and destination. TCOs need to plan on these, developing corresponding 
quotations. TCOs exploit known information about costs and profits to decide how much they need to charge 
customers and how the demands should be served using three types of jobs; self-container jobs using TCOs’ 
self-owned containers, planned leasing jobs and emergent leasing jobs.  
 
Demands are not executed on their receiving date. Instead, they have a demand execution date set by the 
planning process, and the gap between the two dates varies from one demand to another. Once an execution 
date is set it is fixed, i.e. plans made each day have no influence over previously made plans as these have 
been returned already to the customer. The only change allowed to a planned job is if there is not enough 
inventory when the execution date arrives for a self-container job, which is then replaced by an emergent-
leasing job. If at the planning stage it is forecast that there will not be enough self-containers on the execution 
date, then planned-leasing containers are scheduled for use, or the job can be rejected on profitability 
grounds. To simplify the narrative and formulation, it is assumed that quotation request, quotation return or 
rejection, and booking confirmation occur on the same day. For all the demands received on a given day, 
the latest of their execution dates forms the limit of the planning horizon on that day, so the planning horizon 
is dynamic and varying between days. Overall, this process is the ‘booking-quotation process’ illustrated in 
Figure 1. 
 
Considering the quotation-booking process, it is challenging to make effective decisions for the following 
three reasons in particular:   

i) Uncertain events occur along the supply chain, especially during the container return leg. However, 
once a quotation is returned to the customer it cannot be changed, so if there are not enough self-
containers available for self-container jobs on a given execution day, TCOs will have to emergent-
lease TCs. This increases the cost greatly.  

ii) Leasing is in practice essential to provide flexibility without having excess capacity of self-
containers and excessive just-in-case ETCR. However, pre-booked planned-leasing is much 
cheaper than emergent leasing. Therefore, TCOs need to consider not only how to avoid emergent 
leasing but also whether to use planned-leasing to achieve lower leasing and ETCR costs.  

iii) In their niche market, TCOs have the bargaining power to reject some customer demands without 
losing future business. A job might be advantageously rejected if it would have knock-on effects 
or interactions with other jobs causing higher costs and lower profits. However, the time gap 
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between returning a quotation and actual execution makes it difficult for TCOs to evaluate whether 
or not to reject.  

 
Figure 1. The Quotation-Booking Process 

 
TCOs need effective strategies for the complex decision-making involved in dealing with these challenges. 
Unlike the dry container industry, TCOs need FFs to book external transport services for their TCs. Since 
maritime transport companies have limited capacity on specified routes, they will prioritize bookings for 
FFs with whom they have closer relationships. FFs with low priority will be less able to guarantee booking 
requests, so some of their TCOs’ container transportation may not be completed as planned. The model 
developed here translates this into higher costs for FFs to maintain close relationships with transport 
companies, and these costs are passed on to TCOs, i.e. the higher the cost of an FF the higher its booking 
success rate. FFs providing 100% successful booking rates are defined as ‘best FFs’. When TCOs choose 
FFs that are cheaper than best FFs, they will have the possibility of unsuccessful bookings. The successful 
booking rate is modelled as a discrete random variable that takes the value 50% or 100%, and the probability 
of a 100% successful rate is given by the cost of the chosen FF divided by that of the best FF. For example, 
if the cost of the best FF is £100, while the cost of the chosen FF is £60, the successful booking rate has a 
60% chance of being 100% and 40% chance of being 50%. In the model, the choice of FF is made only for 
ETCR because only best FFs are used when meeting customer demands to avoid unsuccessful bookings for 
confirmed jobs. For ETCR, TCOs may choose appropriate inventory control policies with less than 100% 
successful booking rates to reduce costs. The safety stocks of TCs at each depot provide a buffer to guard 
against uncertainties caused by cheaper FFs (and other uncertainties explained later). According to the TC 
industry, inter-regional ETCR is far more expensive and seldom adopted, so the model categorizes depots 
into different regions geographically and only intra-regional ETCR is allowed.  
 
In observed practise, TCOs can estimate accurately the container outflows from every depot to their 
destinations two weeks ahead. Hence, the data from the two-week customer-demand forecast is considered 
here in the decision-making. Figure 2 summarizes the key aspects of TC assets management. 
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Figure 2. Tank container assets management overview 
 
TCOs’ operations can be different in many aspects. The following simplifying assumptions are made 

here to make the problem tractable: 
1. Only the 20-foot equivalent unit (TEU) TC is used. 
2. TC lessors have infinite fleets and leasing demands are met immediately. 
3. Once a container-cleaning process has started, the cleaning time for that container becomes known.  
4. FF cost is positively correlated with the shipping-slot booking success rate. 
5. Selected FF will not vary from depot/region to depot/region, so only one FF will be used for global 

ETCR planning each day.  
6. ETCR is only intra-regional, on routes available between any two depots. 
7. Unloaded containers must be cleaned before reuse, with random duration in range 3 to 7 days. 
8. Execution dates of customers’ demands are later than their received dates. 
9. Emergent leasing is more expensive than planned leasing, and leased containers are returned to 

lessees immediately after jobs.  
10. The customer demand pattern remains similar annually. TCOs can forecast customer demands 

accurately two weeks ahead. 
11. Self-owned TCs are always used first to meet customer demands during the demand-planning phase. 
 

3.1 Notations 
To formulate the system, the following notation sets are introduced: 

Indices 
  Indices of TC depots. 
   Indices of date. 

 Index of regions.  
 Index of customer demands. 

𝑦 Index of predicted customer demands that is used in Stage 2 model. 
 
Sets 
T Set of time periods for Stage 1 model; each element in T represents a day. 
R Set of regions.  
P Set of depots. 
Ds Set of customer demands received on day s. A customer demand is a tuple 𝑑 , which 

contains the information of journey origin, destination, job received date, job start date, 
and number of containers. It is denoted as ( 𝑂 , 𝐷 , 𝑆 , 𝑇 , 𝑀 ), where 

,i j
,s t

r
d
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. Note that in TC operations, one demand is 

usually one unit. It is therefore assumed Md = 1. However, the model can be modified 
easily to handle the case Md >1. 

D Set of customer demands received on the days in T, which will be used in Stage 1 model. 
𝑌  Set of customer demands for the next two weeks forecasted on day t. Each predicted 

demand 𝑦 is denoted as (𝑂 , 𝐷 , 𝑆 , 𝑇 , 𝑀 ) and it represents a demand from depot 𝑂  to 

𝐷  to be received on date 𝑆 , where 𝑆 ∈ [t+1, 𝑡+14]; . 

Consistent with the above tuple, 𝑇  represents the execution date of the forecasted demand, 
but its actual value cannot be forecasted and it is unknown at time t.  

 
Input parameters 
N TC fleet size. 
C  Inventory holding cost per TEU per day at depot 𝑖, where . 
𝐶  Penalty cost for unmet demands per TEU from depot i to depot 𝑗 , where 

.  
𝐶  Lifting-on cost per TEU at depot 𝑖, where . 

𝐶  Lifting-off cost per TEU at depot 𝑖, where . 

C  Cost per TEU for choosing the best FF to move empty TCs on day t.   
𝐶  Transportation cost per TEU (for both laden and empty) from depot 𝑖 to depot j, where 

. 

𝐶  TC cleaning cost per TEU at depot 𝑖, where . 
𝐶  Planned (pre-booked) leasing cost per TEU per day at depot 𝑖, where .  
𝐶  Emergent leasing cost per TEU per day at depot 𝑖, where . 
𝐸  Revenue of demand d.  
𝑎  Transportation time in days from depot 𝑖 to 𝑗, where . 

 
Inventory state and intermediate variables 

𝑆 (𝑡) Inventory level of depot i at the beginning of day t, where . 

𝑆 (t) Adjusted inventory level of depot i on day t after confirmed container flow is 
completed, where . 
 

Derived variables 
𝑏  Cleaning time in days at depot 𝑖, where . It is a random variable. 
βt Shipping slot booking success rate on day t. A discrete random variable that takes two 

values: βt = 100% with probability 𝑓 /C ;  βt = 50% with probability (1 − 𝑓 /C ). 
𝑀  Length of each dynamic planning horizon, which equals the number of days from day t

to the latest execution date in the demands received on day t at depot 𝑖, where . 
 
Decision variables  

𝑊  Equals 1 if demand 𝑑 is rejected, otherwise equals zero. 

𝑋  Equals 1 if demand 𝑑 is planned to be delivered by self-container, otherwise equals 
zero. 

𝑋  Equals 1 if demand d is actually delivered by self-container on day 𝑇 , otherwise 
equals zero.  

𝑌  Amount of ETCR containers from depot 𝑖 to depot 𝑗 on day t, where . 

, , , , 1d d d d d d dO D P O D S s T M    

, , ;y y y yO D P O D  1yM 

i P

, ,i j P i j 
i P
i P

, ,i j P i j 
i P

i P
i P

, ,i j P i j 

i P

i P

i P

i P

, ,i j P i j 
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𝑍  Equals 1 if demand 𝑑 is planned to be delivered by leased container, otherwise 
equals zero. 

𝑍  Equals 1 if demand 𝑑 is actually delivered by emergent-leasing container on day 𝑇 , 
otherwise equals zero.  

𝑓  FF cost per TEU at day t subject to 𝑓  ∈ [2/5𝐶 , 𝐶 ]. It determines the reliability of 
FF to complete the ETCR activity.  

[L , U ] Upper and lower bounds of container inventory control policy at depot 𝑖, used for 
determining whether depot 𝑖 is a surplus or deficit depot, where . 

 
3.2 Outline of the Methodology 
A two-stage simulation-based optimization approach is proposed to achieve two goals. The first goal is an 
optimized inventory control policy that leads to more effective ETCR at the tactical level by assuming all 
demands are accepted. The second is a decision-making support tool at the operational level for determining 
how new customer demands will be served every day to maximize profit by integrating with container 
operations planning. The different goals and their different preliminary settings require separate 
optimization processes. They are different in their planning levels. The inventory control policies are 
normally obtained through analysis of long-term statistics, which in turn, enables their adaptation to the 
associated environment. According to Braekers et al. (2011), inventory-control based optimization is tactical 
planning as it aims at ensuring the efficiency and rationale of existing resources over a medium horizon. 
Practically, once the inventory control policies are established, they will direct a series of operations, i.e. 
transportation, replenishment planning and production etc. Therefore, they are often maintained for a certain 
period of time to ensure the continuity of operations. In contrast, the second goal is at the operational level 
dealing with day-to-day operations. Customer demands are received on a daily basis, and associated 
decisions are made using current information. Therefore, only ‘best-decisions-for-now’ can be made when 
new demands are received, while demands received later can be planned using any subsequently available 
information, e.g. previously uncertain information may become certain.   
 
Another critical reason why the two processes should be decoupled is that the two goals have different 
focuses. The inventory-control optimization seeks a long-term solution to TC management facing 
imbalanced trade flows and uncertain cleaning times by maximizing profit for the entire planning horizon. 
Whereas, the decision-making support tool is maximizing profit in serving customer orders (job quotation, 
planning and execution) on a daily basis within a dynamic planning horizon. The outputs of Stage 1 are used 
as inputs to Stage 2. On the other hand, the evaluation and optimization of the inventory-control policies 
rely on the simulation of simplified daily operations over the entire planning horizon.   
 
The inventory-control based optimization is Stage 1 of the proposed simulation model. Specifically, a 
double-threshold inventory control policy is optimized through simulation of the entire planning horizon. 
To reflect industrial practice of daily operations, a special rolling-horizon approach is introduced that is 
different from the traditional rolling-horizon. As defined by Di Francesco et al. (2013), a ‘rolling-horizon’ 
refers to how a time-extended optimization model plans all the decisions for all periods of the planning 
horizon, but it will only implement the decisions for the first period and the model will be run again to plan 
and implement new decisions in the next period, when new information becomes available. Therefore, as 
the model runs forward, the total length of the planning horizon decreases by one period each period, so that 
the planning horizon at period t is (t, |T|). In contrast, the length of the rolling planning horizon in our model 
is determined dynamically. Planning happens every day that new demands are received, and the planning 
horizon is defined by the latest execution date (𝑀 ) of the newly received demands. At every decision-
making point, plans are made for the horizon (𝑡, t+𝑀 ). After this point TCOs can only adjust ‘how’ these 
scheduled demands will be served (self-owned containers or emergent-leased containers). They cannot alter 
execution times or reject jobs later on. This dynamic rolling-horizon is tailored to reflect the TC quotation-
booking practice and, as it has not been seen in the literature, we believe it is novel. 
 

i P
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Since historical data is used for the simulation at Stage 1, all the customer demands are accepted using either 
self-owned containers or planned-leasing containers. After all the known container flows are completed on 
this day, ETCR performed by following the inventory control policies. According to the initial inventory 
level of empty containers, every depot is classified as being either in surplus, in deficit or ‘normal’. The 
deficit depots call for ETCR from surplus depots in their own region until either all the deficit depots are 
filled up to their lower bound threshold or all the surplus depots have repositioned out their TCs down to 
their upper bound. In Stage 1, it is assumed ETCR is 100% reliable as the ‘best FF’ is selected. By applying 
an Adapted Genetic Algorithm (AGA), a series of near optimal threshold-pairs can be generated through 
simulation using the historical data. With the completion of the Stage 1 simulation, the optimized inventory 
control policies are obtained.    
 
In Stage 2, the optimized inventory control policies are implemented for ETCR. Whenever new demands 
arrive, all the demands received in the same period will be planned together. Similar to Stage 1, the demands 
are planned with the new dynamic rolling-horizon. However, Stage 2 seeks the most profitable way to serve 
the newly received customer demands, with demand rejection considered within the context of a two-week 
demand prediction. Experience has given industrial practitioners confidence in two-week time predictions, 
therefore they are used here when making decisions on customer demands. TCOs also need to decide which 
FFs are hired for ETCR on a given day, which incurs an additional process uncertainty in the reliability of 
ETCR. A more ‘standard’ GA is applied to select FFs on a daily basis within a dynamic planning horizon 
along the overall planning horizon.  
 
3.3 Model at Stage 1: The Threshold Policy Optimization 
 
Events in Stage 1 
Stage 1 aims to find the optimal inventory control policies for all depots based on historical data. One year’s 
daily operational data is used. It consists of the following four events and its mathematical model is 
formulated below.  

1. Inflows. Inventory at each depot is updated with inflows of self-owned TCs from finished jobs and 
ETCR. Leased TCs are not counted because they are returned directly to the lessors. Since 
containers need to be cleaned after jobs only ETCR containers go directly into inventory. Cleaning 
times are modelled as a random variable that according to industrial experience varies from 3 to 7 
days.  

2. Outflows. Container outflow occurs for demands planned already for execution on that day. 
Although the ‘to-be-executed’ self-container and leased container jobs are planned, uncertainties 
may cause container unavailability. Once actual inventory cannot cover self-container jobs, 
emergent leasing is required.  

3. ETCR. The remaining inventory in every depot is gauged with the specified inventory control 
policies, and ETCR determined accordingly. The real inventory levels in every depot must be 
modified by including the expected overall future container inflows and outflows within the 
planning horizon before comparison with associated threshold values. This avoids lead-time-caused 
repetitive ETCR and yields better inventory availability for upcoming demands.  

4. New Demands. The dynamic rolling horizon for executing new demands is from the next day to the 
latest execution date of the new demands. Following a chronological sequence within the rolling 
horizon, the model simulates the expected container inflows and outflows on every demand 
execution date. Inventory on the demand execution dates is checked to see if there is enough to 
satisfy the ‘to-be-executed’ demands. If yes then demands are served by self-containers, otherwise 
planned leasing is required.  

 
Mathematical model of Stage 1 
 
Event 1: Inbound flow to receive self-owned containers on day t 
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At the beginning of day t, the inventory level for depot 𝑖 is updated by adding the ETCR containers that 
have arrived and those that have returned from cleaning. Once the container cleaning process is started, the 
cleaning time becomes known. Let d represent the cleaning time for job d, which is a realized sample of 
random variable 𝑏 , then: 
  

𝑆 (𝑡)′ = 𝑆 (𝑡) + ∑ 𝑌∈ + ∑ ∑ ∑ ∑ X, ∈∈ ; (1)                               

 
Equation (1) indicates the expected inventory level for depot 𝑖 after adding in TCs returning from ETCR or 
cleaning. 
                                                      
Event 2: Outbound flow to execute jobs on day t 
The inventory level is updated with the planned container outflows for day t. Due to uncertain cleaning 
times, the actual inventory level may not satisfy all planned outflows. Therefore, emergent leasing may be 
required, so the most cost-effective way to assign the jobs among self-containers and emergent-leased 
containers must be determined. Let:  
 
𝑆 (𝑡)′′ = Max {0, 𝑆 (𝑡) − ∑ ∑ ∑ X∈ }; (2) 
 
If 𝑆 (𝑡)′′ > 0, then X  = X , Z = 0; (3)  
 
If 𝑆 (𝑡)′′  = 0, then the assignment of jobs among self-containers and emergent-leasing containers is 
determined by solving the following mathematical programming problem: 
 
Min ∑ ∑ ∑ ∑ Z, ∈ ,∈ ∗ C ∗ 𝑎  (4) 
 
Subject to: 
  
∑ ∑ ∑ X∈ ≤ 𝑆 (𝑡)′,  
 
X + Z = X ; for dD with Td = t. (5) 
 
Equation (2) gives the potential inventory level for depot i after the job associated TC outbound flow. 
Equation (3) determines whether or not the current inventory is still able to cover the planned self-container 
jobs. Equation (4) determines how to assign self-container jobs and emergent-leasing jobs when the current 
inventory is unable to cover the planned self-container jobs.  
 
Event 3: ETCR  
ETCR is driven by inventory control policies every day, but intrinsic problems may emerge. Before in-
transit ETCR containers arrive at a deficit depot, the ‘to-be-replenished’ depots will still be in deficit and 
will keep asking for ETCR from surplus depots. If no intervention is made, repetitive ETCR assignments 
will occur. Also, since part of the future container flow information is already known, it makes no sense to 
reposition TCs out of a depot that is surplus today but will soon be a non-surplus depot because of planned 
jobs. Likewise, there is less need of ETCR for a deficit depot if TCs will be available soon from finished 
jobs or previously arranged ETCR. Consequently, the need for inventory adjustment arises. First, the 
horizon length of adjusted inventory needs to be decided, i.e. how far into the future does information on 
planned operations need to be taken into account? Since the main target of the adjusted inventory process 
is to enable effective ETCR, while the target of ETCR is to ensure better container availability to meet the 
received demands, the latest execution day of the received demands will be used to define the adjusted 
inventory horizon length. Then, the imminent inventory adjustments described above need to be calculated. 
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Within the determined horizon, the future container arrivals and confirmed container outflow are the main 
adjustments. The future container arrivals come from finished jobs and previous ETCR. For any depot i, the 
future container arrival of previous ETCR planning is the sum of all ETCR from other depots to depot i that 
departed before the decision-making day and will arrive at depot i within the horizon. Another adjusted 
component is the containers returned from finished jobs. Since self-owned containers need to be cleaned 
before their next job, they face two scenarios. One, cleaning has already started and the container will return 
to the depot within the planning horizon. Two, cleaning has not started, but it is expected to be finished and 
the container returned to the depot within the planning horizon period. For the first scenario, the return day 
is certain. For the second, since cleaning has not started, the cleaning duration is a random number that 
needs to be estimated (Figure 3). To simplify the computation, the mean value of the cleaning duration is 
used. Finally, since no customer demands will be rejected at Stage 1, the overall container outflows are 
estimated by the demands that arrived on or before the decision-making day, while their execution dates are 
within the planning horizon. 

 
Figure 3. Two scenarios of container return after cleaning 

 
Following the above discussion, let Ω ,  represent the time periods before time t and the deployed ETCR 
containers from depot j to depot i will be available in time period t + 1 to t + 𝑀 , then Ω ,  ={ 𝑠 ∈ 𝑇|𝑡 +

1 − 𝑎 ≤ 𝑠 ≤ 𝑚𝑖𝑛 (t + 𝑀 − 𝑎 , 𝑡 − 1)}. In addition, let Ω ,  represent the containers that have finished 
jobs and started cleaning, and will be available in time period t + 1 to t + 𝑀 , then Ω , = {𝑑 ∈ 𝐷|𝐷 =

𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑇 + 𝑎 ≤ 𝑡, 𝑡 < 𝑇 + 𝑎 +  ≤ 𝑡 + 𝑀 } ; Ω ,  represents the containers that are still 
fulfilling jobs but expected to be available in the time period t+1 to t+𝑀 , then Ω , = {𝑑 ∈ 𝐷|𝐷 = 𝑖, 𝑂 =

𝑗, 𝑗 ∈ 𝑃, 𝑆 < 𝑡, 𝑇 + 𝑎 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑀 }; Ω ,  represents the containers that are planned to 
use self-containers but not shipped out yet, and are expected to be available in the time period t + 1 to t + 𝑀 , 
then Ω , = {𝑑 ∈ 𝐷|𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑆 < 𝑡, 𝑇 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑀 }. The adjusted inventory 
level is: 
 
𝑆 (𝑡) = 𝑆 (𝑡)  +∑ ∑ 𝑌∈ ,

∈ + ∑ X∈ ,
+ ∑ X∈ ,

+ ∑ X∈ ,
−

∑ ∑ ∑ 𝑀, . (6) 

 
On the right-hand-side of Equation (6), the second to fifth terms are the container inflows specified above. 
The last term is the overall self-owned container outflows received on and before time t, and to-be-executed 
from t + 1 to 𝑡 + 𝑀 .  



13 
 

 
After the inventory levels are adjusted for all depots, ETCR assignments need to be determined. As inter-
regional repositioning is not used, all ETCR is within the same region as follows. Let Ps

r,t denote the set of 
surplus depots in the selected region r at time t, namely, Ps

r,t  := { i  Pr | 𝑆 (t)-U > 0}, where Pr is the set 
of depots in region r. Similarly, let Pd

r,t denote the set of deficit depots in the same region r at time t, i.e. 
Pd

r,t  := { i  Pr |L −  𝑆 (𝑡) > 0}. The ETCR assignments {𝑌 } are determined by solving the following 
mathematical programming problem: 
 
Min ∑ ∑ 𝑌∈ ,

∈ ,
∗ 𝐶 ; (7) 

s.t. 
 
∑ ∑ 𝑌∈ ,

∈ ,
= 𝑀𝑖𝑛 [∑  (𝑆 (t) − U ) ∈ ,

, ∑ (L −  𝑆 (t))∈ ,
]. (8)  

 
After this event, the inventory levels at surplus depots are updated, which determines the inventory levels 
at the beginning of the next period: 
 
𝑆 (𝑡) = 𝑆 (𝑡 + 1) = 𝑆 (𝑡) − ∑ 𝑌∈ ,

; for 𝑖 ∈ 𝑃 , . (9) 

 
Event 4: Planning execution of new demands received on day t 
This event plans the most profitable way to fulfil the new demands arriving on day t. Although execution 
of these jobs will be in the future, how this will be done must be decided on the receiving day. At the current 
stage, there are self-container jobs and planned-leasing jobs. When a job’s execution date arrives, it will be 
executed as planned unless there are not enough self-containers, in which case an emergent-leasing job will 
arise. When time moves to the next day (t+1), the process is repeated and the new decisions are built on top 
of all the old plans without affecting them (Figure 4), i.e. plans once made are set firm and cannot be 
modified in the light of new demands or other data on subsequent days.  
 

 
 

Figure 4. Overview of new demands receiving and planning 
 
For a series of new demands, the rules for their planning are as follows. First, the latest execution date 
among these demands defines the current length of the planning horizon. Then, demands from the earliest 
execution date until the latest execution date will be planned. Second, within the planning horizon, if depot 
i has demands to be executed on day t + q, the inventory level of depot i is first updated with all the known 
information. This process is similar to the inventory adjustment in the previous event. Ω ,  is used to 
represent the time that ETCR activities have been arranged and those containers from depot j to depot i are 
expected to be available in time period t + 1 to t + q; Ω , , Ω , , Ω ,  represent the sets of jobs with respect 
to different status. Ω ,  comprises containers that have finished jobs and started cleaning, and will be 
available in time period t + 1 to t + q; Ω ,  comprises containers that are still fulfilling their jobs and are 
expected to be available in the time periods from t + 1 to t + q; Ω ,  represents the demands that have been 
planned to use self-containers but have not been shipped out yet, but are expected to be available in the time 
period from t + 1 to t + q. Their mathematical definitions are: 
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 Ω ,  = { 𝑠 ∈ 𝑇|𝑡 + 1 − 𝑎 ≤ 𝑠 ≤ min (t + 𝑞 − 𝑎 , 𝑡 − 1)}; (10) 

 Ω , = {𝑑 ∈ 𝐷|𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑇 + 𝑎 ≤ 𝑡, 𝑡 < 𝑇 + 𝑎 +  ≤ 𝑡 + 𝑞}; (11) 
 Ω , = {𝑑 ∈ 𝐷|𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑆 < 𝑡, 𝑇 + 𝑎 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑞}; (12) 
 Ω , = {𝑑 ∈ 𝐷|𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑆 < 𝑡, 𝑇 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑞}.  (13) 
 
If the updated self-containers are enough to cover all the ‘to-be-executed’ demands at that depot, those 
demands are planned as self-container jobs. If not, planned-leasing containers are needed. Mathematically, 
the assignments are described as follows: 
 
𝑆 (t + q)′ =  𝑆 (𝑡)′′′ +∑ ∑ 𝑌∈ ,

∈ + ∑ X∈ ,
+  ∑ X∈ ,

+  ∑ X∈ ,
−

∑ ∑ ∑ ∑ X∈ . (14) 
 
On the right-hand side of Equation (14), the second term represents the accumulated ETCR jobs that have 
been scheduled and will arrive between time t + 1 to t + q. From the third to the fifth term are the 
accumulative container inflows related to self-container jobs between time t + 1 to t + q. The last term is all 
the scheduled container outflows between time t + 1 to t + q.   
 
If 𝑆 (𝑡 + 𝑞)′ ≥ ∑ ∑ ∑ ∑ 𝑀∈ , then X = 1 for any d{𝑑 ∈ 𝐷|𝑂 = 𝑖, 𝑆 = t, 𝑇 = t + q};
 (15) 
If 𝑆 (𝑡 + 𝑞)′ < ∑ ∑ ∑ ∑ 𝑀∈ , then the self-container jobs and planned-leasing jobs are 
determined by solving the following mathematical programming problem: 
 
Min ∑ ∑ ∑ ∑ ∑ Z, ∈∈ ∗ C ∗ 𝑎 ; (16) 
s.t.  
∑ ∑ ∑ ∑ ∑ X, ∈∈ ≤  𝑆 (𝑡 + 𝑞)′; (17) 

X + Z = 𝑀  and {𝑑 ∈ 𝐷|𝑂 = 𝑖, 𝑆 = t, 𝑇 = 𝑡 + 𝑞}; (18) 
 
Equations (15) and (16) define the two scenarios of demand assignments by comparing the inventory level 
and customer demands. Specifically, if there are not enough self-containers, planned-leasing containers are 
used. Equation (16) assigns the different types of jobs. Equation (17) and (18) define the constraints for the 
optimization equation.  
 
Inventory control policy optimization 
The objective of this model at Stage 1 is to find the optimal inventory control policy that leads to the most 
profitable TC operations, with profit defined as total revenue minus total cost. Here, the cost components 
include container-holding cost, laden and empty container moving cost, leasing cost, container-handling 
cost and container-cleaning cost. The optimal threshold values {[Li, Ui] | iP} are found by maximizing the 
following expected profit: 
 

Max EXP {∑ 𝑀 ∗∈ 𝐸 − ∑ ∑ S (𝑡)∈∈ ∗ 𝐶 − ∑ ∑ ∑ 𝑀, ∈, ∈∈ ∗ (𝐶 + 𝐶 + 𝐶 ) −

∑ ∑ ∑ 𝑌∈ ∗ (C + 𝐶 + 𝐶 ) − ∑ ∑ 𝑋, ∈∈ ∗ 𝐶 − ∑ ∑ ∑ 𝑍, ∈, ∈∈ ∗ 𝐶 ∗ 𝑎 −

∑ ∑ ∑ 𝑍, ∈, ∈∈ ∗ 𝐶 ∗ 𝑎 )}. (19) 
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3.4 Model at Stage 2: customer demands fulfilment 
Stage 2 assists decision-making in terms of how the new customer demands will be served every day to 
make better profits, whilst facing the additional uncertainties caused by FFs’ abilities to fulfil ETCR. The 
focus is on operational decisions, and the ETCR inventory-control policies from Stage 1 are inputs. 
 
Events in Stage 2 
There are four events with Events 1 and 2 being similar to those in Stage 1, whereas Events 3 and 4 are 
more complicated due to choosing FFs, job rejections and future demand forecasting.  
 
Event 3 plans ETCR. Since this happens before demand planning (Event 4), all received customer demands 
and future demand prediction are considered in adjusting the inventory levels. Event 3 plans the ETCR 
deployment but not the amount, which will be influenced by the choice of FF in Event 4 (see Equation (28)). 
 
Event 4 makes decisions on satisfying demands in terms of choice of FFs, self-container jobs, planned-
leasing jobs and demand rejections. FFs are chosen by an iterative procedure, with the other decisions being 
made following this selection, within each iteration. Figure 5 illustrates this iterative procedure and its 
mathematical formulation is given below.  
 

 
Figure 5. Decisions on new demands and choice of FFs 
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Mathematical model of Stage 2 
 
Event 1: Inbound flow to receive self-owned containers on day t. 
This event is the same as Event 1 in Stage 1 except the amount of ETCR is influenced by the choice of FFs. 
Also, since the FFs for the inflow ETCR are decided already, the associated booking success rate is known. 
Likewise, the cleaning duration for newly available containers is known. Let   denote the known cleaning 
duration sampled from random variable 𝑏 , and β  (𝑠 < 𝑡) be the known booking success rate on day s. The 
inventory level on day t is updated after Event 1 using Equation (20): 
 

𝑆 (𝑡)′ = 𝑆 (𝑡) + ∑ 𝑌∈ ∗ β + ∑ ∑ ∑ ∑ ∑ X, ∈∈ ,  (20) 

 
Event 2: outbound flow to execute jobs on day t. 
 
𝑆 (𝑡)′′ = max {0, 𝑆 (𝑡)′ -∑ ∑ ∑ ∑ ∑ X, ∈∈ }; (21) 
 
If 𝑆 (𝑡)′′ > 0, then X  = X , Z = 0, where 𝑑 ∈ 𝐷 ; (22)  
 
If 𝑆 (𝑡)′′  = 0, then the assignments of the actual self-container jobs and emergent-leasing jobs are 
determined by solving the following sub-optimization problem: 
 
Min  ∑ ∑ ∑ ∑ ∑ Z, ∈ ,∈ ∗ C ∗ 𝑎 ; (23) 
s.t.  
 
∑ ∑ ∑ ∑ X∈ ≤ 𝑆 (𝑡)′,  
X + Z = X ; for d𝐷 , s<t, and 𝑇 = t (24) 
 
Equations (21)-(24) jointly determine the laden TC outflows at depot i on day t. 
 
Event 3: ETCR deployments. 
ETCR is guided by the optimized inventory control policies obtained from Stage 1, while the actual process 
is the same as Event 3 in Stage 1. Ω ,  is used to represent the time periods before time t and the deployed 

ETCR containers from depot j to depot i will be available in time period t + 1 to t +𝑀 , then Ω ,  ={ 𝑠 ∈

𝑇|𝑡 + 1 − 𝑎 ≤ 𝑠 ≤ min( 𝑡 + 𝑀 − 𝑎 , 𝑡 − 1)}; Ω ,  represents the containers that have finished jobs and 
started cleaning, and will be available in time period t + 1 to t + 𝑀 , then Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈

𝑃, 𝑇 + 𝑎 ≤ 𝑡, 𝑡 < 𝑇 + 𝑎 +  ≤ 𝑡 + 𝑀 }; Ω ,  represents the containers that are still fulfilling jobs but 
expected to be available in time period t + 1 to t + 𝑀 , then Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑠 <

𝑡, 𝑇 + 𝑎 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑀 }; Ω ,  represents the containers that are planned for use in self-
container jobs but have not shipped out yet, and are expected to be available in time period t + 1 to t + 𝑀 , 
then Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 𝑠 < 𝑡, 𝑇 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑀 }. Equation (25) gives the 
adjusted inventory level. 
 
 𝑆 (𝑡) = 𝑆 (𝑡)′′ +∑ ∑ 𝑌∈ ,

∈ ∗ β + ∑ X∈ ,
+ ∑ X∈ ,

+ ∑ X∈ ,
−

∑ ∑ ∑ 𝑀 , − ∑ ∑ ∑ 𝑀∈  (25) 

 
Equation (25) is the adjusted inventory process, and it is similar to Stage 1 except the booking successful 
rate, rejected jobs and predicted demands are included. β  is the realized value for the successful booking 
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rate of ETCR on day s. The last term is the total predicted container outflow for the following 14 days, i.e. 
the two-week forecast used in industry. 
 
After every inventory level is adjusted, ETCR assignments are determined. If Ps

r,t is taken as a set of surplus 
depots in region r at time t, any depot i of Ps

r,t needs to be {𝑖 ∈ 𝑃 , |𝑆 (t)-U > 0}. Likewise, if 𝑃 ,  is the 
set of deficit depots in the same region, any depot i of 𝑃 ,  should be {i∈ 𝑃 , |L − 𝑆 (t)>0}. Equation (26) 
determines the ETCR assignments at time t. 
 
Min ∑ ∑ 𝑌∈ ,

∈ ,
∗ 𝐶 ; (26) 

s.t. 
 
∑ ∑ 𝑌∈ ,

∈ ,
= 𝑀𝑖𝑛 [∑  (𝑆 (t) − U  )∈ ,

, ∑ (L −  𝑆 (t))∈ ,
]. (27) 

 
Event 4: Decisions towards new demands. 
Since the consideration of FFs has been introduced at Stage 2, the determined ETCR amount from Event 3 
may not be the actual repositioned amount due to the unreliability of the selected FF. To achieve greater 
profits, the choice of FFs will be optimized together with the decisions on meeting customer demands. 
However, without knowing the choice of FFs, this event cannot proceed. Hence, an FF is randomly selected 

with a cost of  𝑓 ∈ [ , C ]. Based on the chosen FF, the associated booking success rate β  can be realized, 

and the inventory level can be further updated to: 
 
𝑆 (𝑡) = 𝑆 (𝑡) − ∑ 𝑌∈ ,

∗ β  (28) 

 
Then, taking the newly received demands 𝐷  with execution date of t + q as an example for the job 
assignments process, and using Ω ,  to represent the time periods before time t and the deployed ETCR 

containers from depot j to depot i will be available in the time periods from t + 1 to t + q, then Ω ,  ={ 𝑠 ∈

(0, 𝑡)|𝑡 + 1 − 𝑎 ≤ 𝑠 ≤ min (t + 𝑞 − 𝑎 , 𝑡 − 1) }; Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 0 ≤ 𝑠 < 𝑡, 𝑇 +

𝑎 ≤ 𝑡, 𝑡 < 𝑇 + 𝑎 +  ≤ 𝑡 + 𝑞}  represents the containers that have finished jobs and started the 
cleaning process, and will be available in time period t + 1 to t + q; Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈

𝑃, 0 ≤ 𝑠 < 𝑡, 𝑇 + 𝑎 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑞} represents the containers that are still fulfilling jobs but 
are expected to be available in time period t + 1 to t + q; Ω , = {𝑑 ∈ 𝐷 |𝐷 = 𝑖, 𝑂 = 𝑗, 𝑗 ∈ 𝑃, 0 ≤ 𝑠 <

𝑡, 𝑇 > 𝑡, 𝑇 + 𝑎 + b ≤ 𝑡 + 𝑞} represents the containers that are planned for use in self-container jobs but 
have not shipped out yet, and are expected to be available in time period t + 1 to t + q: 
 
𝑆 (t + q)′ =  𝑆 (𝑡)′′′ +∑ ∑ 𝑌∈ ,

∗ β + ∑ X∈ ,
+ ∑ X∈ ,

+  ∑ X∈ ,
−

∑ ∑ ∑ ∑ X∈ ; (29) 
 
Equation (29) is used to calculate the expected inventory level for depot i on day t + q after the planned 
container inflows and outflows are finished. The second term is used to obtain the amount of ETCR arrivals 
in time period t + 1 to t + q, and parameter β  is the known value of the booking success rate for every 
ETCR arrangement on its associated day. 
 
If 𝑆 (t + q)′  ≥ ∑ ∑ ∑ 𝑀∈ ,  , ∀ X = 1 , Z = W = 0 , for ∀d {𝑑 ∈ 𝐷 |𝑂 = 𝑖, 𝑠 =

𝑡, 𝑇 = t + q}. (30) 
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If 𝑆 (t + q)′ < ∑ ∑ ∑ 𝑀∈ ,  , the assignment of self-container jobs, planned-leasing jobs 
and job rejections are determined by solving the following mathematical programming problem: 
 
Min ∑ ∑ ∑ ∑ (X +, ∈∈ ,  Z ) ∗ C + ∑ ∑ ∑ ∑ Z, ∈∈ ,  ∗ C ∗

𝑎 + ∑ ∑ ∑ ∑ W, ∈∈ ,  ∗ C ; (31) 
s.t. 
 
X + Z + W = 1 for ∀d {𝑑 ∈ 𝐷 |𝑂 = 𝑖, 𝑠 = 𝑡, 𝑇 = 𝑡 + 𝑞} ; (32) 
∑ ∑ ∑ X∈ ,  = 𝑆 (𝑡 + 𝑞)′; (33) 

 𝑆 (𝑡 + 𝑞) = 𝑆 (𝑡 + 𝑞)′ − ∑ ∑ ∑ X∈ ,  . (34) 
 
Equations (30) and (31) are the rules for assigning self-container jobs, planned-leasing jobs and rejections, 
and if there are not enough self-containers, the specific assignments are obtained by solving Equation (31). 
Equations (32)-(34) are the constraints for planning container outflows, if there are self-container jobs, 
planned-leasing jobs or rejections. The above steps, Equations (28)-(34), are repeated to finish the job 
assignments for all the demands received on day t.   
 
According to the event description at the beginning of this stage, the optimized choice of FFs can be searched 
for within the range of 𝑓  by running the loop from Equations (28)-(34) to maximize profit in Equation (35). 
β  is the realized booking success rate for each loop:  
 

 EXP {∑ ∑ (𝑀 − 𝑊 ) ∗∈ 𝐸 − ∑ ∑ ∑ 𝑆∈∈ ∗ 𝐶 −

∑ ∑ ∑ ∑ (𝑀 − 𝑊 ) ∗ (𝐶 + 𝐶, ∈, ∈∈ + 𝐶 + C ) − ∑ ∑ 𝑌 ∗∈∈ β ∗ (C +

𝐶 + 𝐶 + 𝑓 ) − ∑ ∑ ∑ 𝑋, ∈∈ ∗ 𝐶 − ∑ ∑ ∑ 𝑍, ∈∈ ∗ 𝐶 ∗ 𝑎 −

∑ ∑ ∑ ∑ W, ∈, ∈∈ ∗ 𝐶 }. (35) 

      
4. Solution methods 
   
4.1 The needs 
The Stage 1 and Stage 2 models are difficult to solve analytically. First, they involve random variables and 
a large number of operational decisions (taking integer values). Second, to reflect the practices of real TCOs, 
these operational decisions need to be determined on an event-driven basis, which is difficult to formulate 
in a single mathematical programming model. Hence, the solution method proposed is a simulation-based 
heuristic, which allows the handling of workflow and constraints as well as the searching of the solution 
space and the execution of associated evaluations. However, some of its required input data comes from 
local mathematical programming optimizations, e.g. the everyday ETCR assignments are determined by 
linear programming. Therefore, hybrid elements are introduced to make the heuristic method a mixed 
optimization solution. For example, during Events 2, 3 and 4 in both simulation stages, linear programming 
is used jointly with certain rules to optimize ETCR amounts and job assignments. This allows: 

i)  an increase in computational tractability by using a heuristic method;  
ii)  an increase in effectiveness and efficiency by using a mathematical optimization method to find 

the local optimum. 
 
Similarly, a math-heuristic is another hybridized optimization algorithm that uses interoperation of 
heuristics and mathematical programming. For example, Rath and Gutjahr (2014) propose a math-heuristic 
to optimize warehouse location routing. They use a mixed-integer linear programming formulation as the 

tf
max
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backbone and a constraint pool heuristic to reduce the expensive computational part for dealing with large 
problem spaces. Chen and Lau (2011) use a math-heuristic for resource scheduling in maritime logistics. 
They decompose their problem into two sub-problems, using heuristics for their machine-scheduling sub-
problem, while using linear integer programming for their equipment allocation sub-problem. Comparing 
math-heuristics to the solution method applied in this paper, no matter how the mathematical and heuristic 
parts are structured, they are not built upon event-driven simulation. They are just an extension to either 
heuristic or mathematical programming methods to combine both of their advantages. In this paper, a math-
heuristic can hardly be applied. This is because without the simulation process, it is hard to formulate the 
dynamic traits of the changing planning horizon and variable container cleaning times causing different 
container returns, and it is hard to handle some subtle issues such as the 2-week demand forecast and 
different groups of job-finished containers etc. Instead, a novel mixed optimization method is designed here 
to address the problem formulated in Section 3.  
 
The simulation-based optimization method developed here consists of a GA search module and a 
simulation-based decision-making module. The latter uses a discrete event model of the operational level 
process of TC management and flows. This allows tracing of the TC holding cost, laden and empty container 
transportation costs, planned and emergent leasing costs, FF cost (Stage 2), container lifting-on/off cost, 
container cleaning cost and job rejection penalty of each order at each region and depot. It outputs the profit 
of a given solution, whereas the GA searches for better solutions. 
 
4.2 Simulation module 
The structure of the simulator is described in Appendix 1 and Appendix 2. In Stage 1 and Stage 2, it 
simulates the same daily process of each depot simultaneously (receive containers returned from cleaning 
and repositioning; arrange outflow containers to execute customer demands, determine ETCR and leasing; 
cope with new customer demands and planning etc.). It takes a set of input data including customer demands, 
inventory thresholds and initial net stock, and the shipping network with distances between regions and 
depots. It interacts with the decision-making module to receive its outputs for use in executing the four 
events. It records and allows tracing of the storage, loading, transhipment and unloading processes of each 
job and the inventory level of each depot. It outputs an operational level performance measure; the total 
profits. 
 
In Stage 1, the decision-making module is limited to the assignment of self-container jobs and planned-
leasing jobs and linear optimization of the order in which to take the jobs. In Stage 2, decisions are made 
with consideration of the 2-week demand forecast, and job rejections and choice of FFs are considered 
jointly. The job assignments are again made by linear optimization, and the output performance measure is 
used to determine the best choice of FFs. ETCR is the same for both stages. It first determines a depot’s 
status as deficit or surplus, by comparing the current inventory, ‘on the way’ containers and deterministic 
future demands against the thresholds. Then, the ETCR activities (the quantities, origins and destinations of 
reposition containers) are deployed by solving a classic assignment problem. This decision-making process 
is performed dynamically in an event-driven module based on the input threshold values, customer demands 
and dynamic information obtained from the simulator. 
 
To evaluate the performance of the system, in Stage 1 the relevant costs including handling costs, transport 
costs, leasing costs and inventory costs are calculated. The Stage 1 simulation terminates when the defined 
total simulation days are reached, in this case 180 days. In Stage 2, the FF costs and job rejection penalties 
are also calculated. Whenever ETCR is required on a given day, the FF optimization is run, and the overall 
simulation terminates when the defined total simulation days are reached, as for Stage 1. 
 
4.3 The Heuristic Search Method (HSM) 
To emulate observed industrial practice a heuristic is introduced to determine the threshold values in the 
inventory control policy. This utilizes the statistics of customer demands and inventory dynamics across the 
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whole planning horizon. First, all the depots are grouped into surplus and deficit depots according to their 
overall TC net flow (e.g. a net import depot is a surplus depot). Next, the following key statistical indicators 
are estimated:  

i. Average jobs per day in depot i ( );  

ii. Standard deviation of demands in depot i ( );  

iii. Least Inventory Level (LILi) for every depot i based on given container flow information;  
iv. Largest Backlog Order (LBOi) for depot i; 
v. Largest Consecutive Container Net Outflow (LCCNOi) for depot i. 

 

Specifically, , , LBOi and LILi can be obtained simply from demand information, while LCCNOi is 

determined as follows. Each depot’s container net flow is monitored daily and, when its first net outflow 
occurs, the amount is recorded as the first Continuous Container Net Outflow (CCNOi); this is a negative 
number. CCNOi is updated according to the net flow in the following days. Once CCNOi is updated as a 
positive number, it is returned to zero and this round of CCNOi updating is finished. The next round of 
CCNOi updating starts with the next net outflow. This is repeated until the end of the planning horizon, and 
for each depot. During the first iteration LCCNOi is set as the largest negative CCNOi. At each further 
iteration, if there is a larger negative CCNOi then LCCNOi is updated, so it is the largest across all 
iterations. Appendix 3 summarises this process. 
 
LCCNOi is the inventory a depot requires to meet all its customer demands. If it has less, leasing is required. 
If it has more, these can be fed to other depots. Therefore, the LCCNOi values are used as the upper threshold 
values for surplus depots, encouraging them to transfer TCs. The lower threshold values for surplus depots 

are decided from LILi, LBOi and + . If LILi > 0, the lower threshold value for the depot is set as 1, 

which means, with the safeguard of the upper threshold, it needs no external help to meet its demand. If 
LILi = 0 and LBOi > 0, then even though this is a surplus depot, it still has a stock-out risk on a given day. 

Thus, minimum (LBOi, + ) determines whether this depot should call for help based on the inventory 

level falling below the level required to meet its average demand. 
 
For deficit depots, apart from the statistical indicators used above, Most Inventory Level (MILi) and ‘Largest 
that can be Repositioned Amount’ (LRA) in this region are also needed. MILi is the highest inventory level 
that this depot has ever reached. LRA is the total number of containers available for repositioning in the 

region. Maximum (MILi, + ) determines the lower bound for the deficit depot, helping it to call for 

more ETCR to increase the number of self-container jobs. The upper bound for deficit depots is set as 
minimum (LCCNOi, LRA). This is because ETCR can only be intra-regional for the TC industry, therefore, 
LCCNOi is the amount that allows the deficit depots to meet all demands with self-owned containers, but it 
cannot exceed LRA. Appendix 4 summarises the heuristic for threshold values. 
 
4.4 The Adapted Genetic Algorithm (AGA) 
Alternatively, the threshold value in Stage 1 can be obtained and optimized using an AGA; one of the most 
commonly used meta-heuristic optimization approaches in container operations research (e.g. Dong and 
Song, 2009; Dang et al., 2013). The AGA used here is built upon a modification of the ‘standard’ or default 
Genetic Algorithm (GA) implemented in Matlab using scattered crossover and Gaussian mutation 
(MathWorks, 2018). It is illustrated in Appendix 5.  
 
As the first operation, the standard GA is performed with respect to the underlying problem. For the genetic 
representation (chromosome), the candidate solution consists of the double threshold values for each depot, 
coded as a vector of non-negative integers denoted as {[Li, Ui] | iP}, where and are the lower and 
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upper bounds of the inventory thresholds for depot i. A valid chromosome should satisfy the constraint
. The initial population of solutions is generated randomly. Since the optimization is to 

maximize profit, the higher the objective function value (profit), the higher the solution fitness value should 
be. To achieve this,  is used to represent the total profits under the solution represented by 

chromosome q, then the fitness value of chromosome q is defined as , 

where  is the population size. For the parent selection process, roulette wheel sampling is used; each of 

two parents is selected from a binary tournament, which randomly picks two individuals from the entire 
population and retains the fittest. The two selected parents generate a child using scattered crossover. Fourth, 
probabilities are selected for crossover and mutation, and also, since pairs of elements in Stage 1 are formed 
by the lower and upper inventory bounds of a specific depot, these must be copied together to the offspring 
as a pair during crossover. Finally, all the parent and offspring chromosomes are sorted into descending 
fitness order and only the chromosomes with sequence numbers less than or equal to  are carried into 

the next generation. 
 
After the setting of the standard GA, the next operation will run the simulation module iteratively to find an 
improved variable range for the target variables. Because, as a pilot study indicated, the variable range 
bordered by the current constraints (i.e. ) is too broad to find a good result within an 

acceptable computation time, especially when the problem scale is large. Therefore, the range needs to be 
more precise (narrower) to help the GA to evolve fitter solutions within a shorter time. Specifically, this 
operation involves three major steps to reduce the variable constraints range and to fit the standard GA. 
First, the initial variable range is used to run the GA for a fixed number of generations to generate the first 
series of ‘optimized’ results. A value of 70 is used as the initial upper bound for the variable range because 
beyond this value the rate of convergence to optimality slowed down greatly in pilot experiments. Second, 
the upper threshold values (i.e. ) are gradually reduced concurrently, e.g. 65 to 61, and the simulation 

module is re-run to see if performance is affected. If it is not, it means the current value is too large and the 
range should be reduced further. This process is repeated until the evaluation results change, then values 
from the last run that made no changes to overall evaluation are used as the new variable range, and the GA 
optimization solver is run again to obtain the new series of ‘optimized’ results. In the final step, the GA 
parameters such as crossover and mutation probabilities, population size, stall generation limit (stop limit 
for no improvement) and selection methods are re-evaluated to determine the final results. 
 
The above AGA is needed only for the Stage 1 threshold-value optimization problem, as the standard GA 
in Matlab is effective and efficient enough for the Stage 2 FF optimization. In Stage 1 the population size 
is 50, and the GA terminates after 100 generations or when the improvement in best fitness < 0.001 for 10 
consecutive generations. Stage 2 uses a population size of 20, and terminates after 20 generations or when 
the improvement in best fitness < 0.001 for 5 consecutive generations. Crossover rate is 0.8 and mutation 
rate is 0.2 for both stages. 

 
5. Numerical examples 
Computational tests of the model have been conducted with ‘real’ operational data from a major, global 
TCO.  These tests have three purposes: 

i. to investigate the feasibility of the model in solving realistically sized problems with basic PCs;  
ii. to benchmark against general practices to understand the economic significance of the proposed 

tool in achieving better decision-making. (Stage 1 compares the performance of the optimization 
system with the practices in managing TC inventory, Stage 2 compares it with the practices choosing 
FFs and using different customer demand predictions);  

iii. to quantify the influences of different factors on operational profits to generate managerial insights. 
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5.1 Model initialization 
Due to the different objectives of the two stages, two different simulation environments were created. For 
both stages, the simulation horizon (i.e. overall planning horizon) is 180 days discretized in days. In 
delineating the global operation, nine depots are picked across three regions as shown in Figure 6.   
 
 
 

 
Figure 6. The depots and their related regions 

 
 
Among the nine depots, the travel distances between any two are known and measured as shipping days. 
Transportation between any two depots is available but due to cost considerations, ETCR is only intra-
regional.  
 
During the 180 days in Stage 1, 1,003 customer demands occur. Every single demand represents one 
booking request and only one container is needed per booking. Demands are specified with origins, 
destinations, receiving date, execution date and expected revenues. The unit costs of inventory, lift-on/lift-
off, container cleaning and job rejection penalty are listed in Table 1. The transportation cost per self-owned 
TC between two ports is assumed to be the transit time in days multiplied by a constant of £10. If the job is 
fulfilled with pre-planned leasing containers, the pre-planned leasing cost is £100 per day. For emergent 
leasing containers, the cost is £130 per day. The revenue per container ranges from £287 to £6,769. These 
values are generalized from the case TCO’s data. 
 
The initial inventory levels at the depots are uniformly distributed. The initial fleet size is designed to match 
the overall demands. Taking the average demand per day, the demand standard deviation and the average 
duration time for one job into consideration, the fleet size is rounded to 135 units in total.   
 
Container cleaning duration is modelled as a random variable with a uniform distribution in the range 3 to 
7 days. Again, this is a generalization of industrial data. Later, the truncated Normal distribution is used to 
evaluate the influence of different variances.  
 
The model is implemented using Matlab 2015 and a PC with a four-core 3.30 GHz processor.  
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Table 1. Cost parameters per TC 
Inventory 
holding 
cost  

Lift on 
& off  

Job-
Rejection 
Penalty 

Cleaning Self-container 
transportation  

Planned 
leasing  

Emergent 
leasing  

FF 
cost 

 
£3/day 

 
£20 

 
£200 

 
£20 

 
£10/day 

 
£100/day 

 
£130/day £40 

 
 
 
5.2 Preliminary computational experiments 
This section presents preliminary computational experiments to test the models and solution procedures. To 
allow result reproducibility and future research, data used in this section (e.g. demands, revenues of 
individual jobs, job quote dates, job start dates, job origin and destination locations, travel times) is publicly 
available in Mendeley Data (https://data.mendeley.com/datasets/3jst3k2fyr/1) with DOI: 
10.17632/3jst3k2fyr.1. It should be noted that due to the Non-Disclosure Agreement with the industrial 
partners, the data used in this section are generated randomly using the statistical attributes of the ‘real’ data 
used in later sections.  
 
Firstly, the model is tested at Stage 1 focusing on seeking the ‘optimal’ inventory threshold values for each 
depot using the different ETCR methods, i.e. ETCR with AGA, ETCR with HSM, ETCR with RAIL and 
No ETCR. The results for operational performance in Table 2 show that in terms of total cost and profits, 
ETCR with AGA clearly outperforms the other methods.  
 
Table 2. Comparison of overall results for the model at Stage 1 with different ETCR methods 

Indicator ETCR 
with AGA 

No ETCR % 
change 
from 

ETCR 
with 
AGA 

ETCR 
with HSM 

% 
change 
from 

ETCR 
with 
AGA 

ETCR 
with RAIL 

% 
change 
from 

ETCR 
wit 

AGA 
Revenue £1,434,639 £1,434,639 0% £1,434,639 0% £1,434,639 0% 
Total cost £365,390 £469,001 +28.4% £496,046 +35.8% £434,607 +18.9% 
Profits £1,069,249 £965,638 -9.7% £938,593 -12.2% £1,000,032 -6.5% 

 
 
Secondly, the model is tested at Stage 2 for the three types of FF selection criteria (optimal, best and lowest 
cost). Based on the Stage 1 results, the inventory control policy obtained with ETCR with AGA is chosen 
as an input to Stage 2. A new series of demands is randomly generated, sharing the same statistical attributes 
as the data used in the first preliminary test. The TCO makes decisions on servicing new demands every 
day. Table 3 gives the operational performance under each FF selection criterion by averaging over ten 
experimental samples. Throughout the ten experiments, all the stochastic inputs (e.g. container cleaning 
time and successful repositioned containers) are randomly generated. By doing so, the operational 
performance tends to be robust statistically.  
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Table 3 Comparison of results (average of 10 samples) with different FF selection criteria 
   Indicators Optimal FF  Best FF % Diff. to 

optimal FF 
Lowest cost FF  % Diff. to 

optimal FF  
Self-container 
jobs 

768 766 -0.41% 769 -0.41% 

Planned-leasing 
jobs  

186 186 +0.57% 184 0.00% 

Emergent 
leasing jobs 

84 87 -1.33% 85 +1.33% 

Rejected jobs 32 30 +4.55% 32 +3.03% 
Revenue £1,387,483 £1,390,646 +0.23% £1,387,761 +0.02% 
Cost £271,100 £284,741 +5.03% £282,510 +4.21% 
Profit £1,116,382 £1,103,906 -1.12% £1,098,251 -1.62% 
Average FF 
level (measured 
by successful 
booking rate) 

0.62 1 N/A 0.4 N/A 

 
Tables 2 and 3 illustrate the effectiveness of conducting the optimisation processes in both Stage 1 and Stage 
2, especially the cost reduction from applying ETCR with AGA at Stage 1 and using the optimal FF at Stage 
2. Thus, albeit the different series of demands and uncertainties, higher profits are achieved with the 
proposed optimisation techniques for experiments from both stages.  
 
In the following sections, ‘real’ industrial data is used in performing a full and detailed analysis and 
exploration of the proposed models and solutions. However, this real data will be not be made publicly 
available due to data protection. 
  
  
5.3 Computation results in Stage 1 
Experimental results in Table 4 compare ETCR with AGA and No ETCR. Also, it is compared with two 
other ETCR approaches seen in TCOs. First, ETCR is guided by a ‘Regional Average Inventory Level’ 
(RAIL) for each region. RAIL is obtained by averaging the up-to-date inventory level of all depots in the 
region. Depots with inventories lower than RAIL are fed by depots with inventories above RAIL. Figure 7 
illustrates the process. Second, the threshold values of ETCR are determined heuristically by HSM.  
 
  



25 
 

Table 4. Comparison of results for No ETCR, ETCR with AGA, RAIL, and HSM 
Indicators ETCR 

with 
AGA  

No ETCR  % 
change 

from 
ETCR 

with 
AGA 

ETCR 
with RAIL 

% 
change 

from 
ETCR 

with 
AGA 

ETCR 
with 

HSM 

% 
change 

from 
ETCR 

with 
AGA 

Self-
container 
jobs 

730 685 -6.2% 784 +7.4% 708 -3.0% 

Planned-
leasing jobs 

230 242 +5.2% 157 -31.7% 228 -0.9% 

Emergent-
leasing jobs 

43 76 +76.7% 62 +44.2% 67 +55.8% 

Number of 
ETCR  

76 n/a n/a 458 +502.6% 21 -72.4% 

Total costs £320,469 £401,130 +25.2% £387,239 +20.8% £373,009 +16.4% 
Total profits £1,105,15

4 
£1,024,493 -7.3% £1,038,384 -6.0% £1,052,614 -4.8% 

Total 
inventory 
costs 

£37,869 £40,860 +7.9% £35,469 -6.3% £39,609 +4.6% 

Cost of self-
container 
jobs 

£84,890 £77,070 -9.2% £89,900 +5.9% £79,810 -6.0% 

Cost of 
planned-
leasing jobs 

£121,900 £165,200 +35.5% £87,400 -28.3% £148,800 +22.1% 

Cost of 
emergent 
leasing jobs 

£38,870 £84,240 +116.7% £109,590 +181.9% £69,940 +79.9% 

Utilization 67.1% 47.3% -29.5% 75.6% +12.7% 61.7% -8.0% 
Utilization 
for jobs 

62.9% 47.3% -24.8% 58.4% -7.2% 59.2% -5.9% 

 
 
 
 

 
Figure 7. The process for RAIL-based ETCR 
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Compared to ETCR with AGA, the profit with No ETCR is 7.3% lower, ETCR with RAIL is 6% lower and 
ETCR with HSM is nearly 5% lower. The improvement with ETCR with AGA is mainly due to reductions 
in planned-leasing and emergent leasing costs. Specifically, No ETCR yields 35.5% higher planned-leasing 
cost and 116.7% higher emergent leasing cost, ETCR with RAIL yields 181.9% higher emergent leasing 
cost (reduction of planned-leasing cost for ETCR with RAIL is not enough to compensate for higher 
emergent leasing cost), and ETCR with HSM yields 22.1% higher planned-leasing cost and 79.9% higher 
emergent leasing cost. Strikingly, ETCR with RAIL results in approximately 6 times more ETRC 
movements than ETCR with AGA.  
 
To understand what is happening, first note that No ETCR yields 5.2% more planned-leasing jobs than 
ETCR with AGA, but the increase in the planned-leasing cost is nearly 7 times more at 35.5%. To 
understand this, consider an example with two depots starting with inventory levels of 2 and 8 self-owned 
containers respectively. Suppose each depot has 10 demands, 4 of which are long duration and 6 short 
duration. Without ETCR, the first depot would have to service 2 long duration demands with planned-
leasing containers. If instead the inventory had been rebalanced by ETCR, say to inventory levels of 4 and 
6, then there would be no need to service long duration jobs with planned-lease containers. Therefore, 
although the overall number of planned-leasing jobs would remain the same at 10, the cost would fall 
significantly. This means ETCR is not so much reducing the number of planned-leasing jobs as focusing 
them on to shorter duration demands by having more balanced inventories across the depots. 
 
The more balanced inventories are also spreading out the ability of inventory to provide a buffer to protect 
against stochasticity and subsequent emergent leasing, with ETCR with AGA reducing the number of 
emergent leasing jobs by 43% (No ETCR is 76.7% higher), and their cost by 54% (No ETCR is 116.7% 
higher).  If inventory is not balanced then low-inventory depots will arise and these are more likely to need 
emergent leasing. 
 
The very high volume of ETCR movements for ETCR with RAIL (approximately 6 times ETCR with AGA) 
means more inventory balancing is occurring, resulting in more self-container jobs, and therefore less 
planned-leasing, because the self-containers are more often in the right place for outflows. However, 
compared to ETCR with AGA this does not translate into higher profits. This is predominantly because 
ETCR with RAIL yields a big increase in the number (44.2%) and cost (181.9%) of emergent jobs in 
addition to the greatly increased amount of ETCR, which is not offset by a sufficient reduction in planned 
leasing. The increase in emergent-leasing costs is more than four times the increase in number of emergent-
leasing jobs. This means that ETCR with RAIL not only yields more emergent leasing, but this tends to be 
for more expensive longer duration jobs, i.e. a double or amplified shortcoming. Two more metrics were 
introduced to further analyse this phenomenon. ‘Utilization’ is the average total time TCs spend on job 
related activity or ETCR during the whole planning horizon (180 days), with job activity including laden 
delivery, holding by receiver, cleaning and return to inventory. ‘Utilization-for-jobs’ is just the average time 
TCs spend on job related activity excluding ETCR.  In Table 2, these show that while ETCR with RAIL is 
keeping TCs very busy, much of this activity is taken up with ETCR with the result that the Utilization-for-
jobs is less than for ETCR with AGA, which in turn is better than ETCR with HSM. 
 
What we are seeing is that ETCR with RAIL results in hugely excessive TC repositioning. It does yield 
higher profits than No ETCR, but these are still 6% less than ETCR with AGA yields with a sixth of the 
amount of repositioning. This is a very important result as ETCR with RAIL is a natural way for industry 
to work, demonstrating the practical value of the new ETCR with AGA. ETCR with RAIL is too focused 
on immediate rebalancing of inventories rather than planning using a longer-term perspective of net flows 
and inventory levels. For example, excessive ETCR can be caused when a long-term deficit depot 
temporarily has sufficient inventory, or a long-term surplus depot is temporarily deficient. ETCR with AGA 
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looks further ahead, making more considered decisions, rather than rushing to reposition based on current 
inventory levels. 
 
ETCR with HSM yields far fewer ETCR movements than ETCR with AGA (-72.2%) but far more emergent 
leasing (+55.8%) with an even bigger increase in emergent leasing costs (+79.9%). Quite simply, ETCR 
with HSM is simply not doing enough repositioning and this is resulting in a big increase in emergent leasing 
to cover for local shortages. Clearly, ETCR with AGA is yielding better results by achieving a better balance 
between over and under repositioning, compared with ETCR with RAIL and ETCR with HSM. 
 
The cleaning duration is stochastic. In order to evaluate the ETCR policy’s robustness and sensitivity to the 
spread of the cleaning times within the range [3,7], the time is modelled using a Normal distribution with 
mean 5 days and truncated beyond the [3,7] range. Then, three experiments were run with the variance set 
to 0.5, 1 and 2 respectively, with the results in Table 5. 
 
 

Table 5. Comparison of results under normal distribution with different standard deviations 
Indicators AGA with 

normal 
cleaning 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 
normal 

cleaning 
𝒃𝒊~𝑵(𝟓, 𝟏) 

Difference  
from 𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

AGA with 
normal 

cleaning 
𝒃𝒊~𝑵(𝟓, 𝟐) 

Difference 
from 

𝒃𝒊~𝑵(𝟓, 𝟎. 𝟓) 

Self-container jobs 732 734 +0.3% 727 -0.7% 
Planned-leasing 
jobs 

227 227 +0.0% 230 +1.3% 

Emergent-leasing 
jobs 

44 42 -4.6% 46 +4.6% 

No. of ETCR 
movements 

78 75 -3.9% 73 -6.4% 

Total costs £309,439 £311,549 +0.7% £316,434 +2.3% 
Total profits £1,116,184 £1,114,704 -0.1% £1,109,189 -0.6% 
Inventory costs £37,389 £37,569 +0.5% £37,704 +0.8% 
Cost of self-
container jobs 

£85,770 £85,660 -0.1% £85,200 -0.7% 

Cost of planned-
leasing jobs 

£122,200 £120,000 -1.8% £121,900 -0.3% 

Cost of emergent 
leasing jobs 

£27,040 £31,330 +15.9% £34,840 +28.9% 

 
 
Table 3 shows that the key effect of increased variability in cleaning times is a shift in costs to emergent 
leasing. This is understandable as emergent leasing is used to cope with unavailability of self-owned TCs. 
The practical implication is that TCOs should increase the reliability and certainty of the container cleaning 
process, not just the mean duration, to reduce emergent leasing costs and increase profits.  
 
5.4 Computation results in Stage 2 
In this stage, the model is advanced to apply the joint decision-making process associated with ETCR, job 
fulfilments and choice of FFs on a day-to-day basis. To reduce the computation complexity, the cost of the 
best FF is fixed at £40 per job (see Table 1) across all regions. In reality, the cost of an FF may be different 
from region to region or even from route to route. However, the simplified value used here is sufficient to 
demonstrate the effectiveness of the model. During real-time decision-making, TCOs do not need to 
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simulate such a long period as in the tests here, so their computation time will be less, allowing them to 
increase data complexity.  
 
This stage introduces a penalty cost for rejecting demands to achieve greater profits. It is first set as £200 
per job and varied later to test the model’s sensitivity to it. The two-week look-ahead approach observed in 
industry is used, so in ETCR calculations the adjusted inventory level will allow for predicted customer 
demands. The demands’ mean and standard deviations from Stage 1 are used to generate new demands. 
Decisions are then made on job fulfilment for demands received daily and the FF for ETCR based on the 
threshold values obtained from Stage 1. The simulation length is again 180 days, and performance is 
evaluated with indicators at the end of the planning horizon. Since the influence of different FFs over ETCR 
is subject to the stochasticity in the model, the simulation is run 10 times and the results averaged for each 
scenario. 
 
To articulate the significance of optimizing the FF choice with the proposed model, the best, lowest-cost, 
and random FFs (uniform probability) are also applied for comparison. Using best FFs represents TCOs 
who wish to guarantee smooth execution of their plans, i.e. to compete on service quality, although this is 
expensive. Using lowest-cost FFs represents TCOs competing on price by offering low-cost services, but to 
the detriment of service quality/reliability. Random FF represents TCOs with limited access to the FF market 
and limited market power in making choices; they have to take whatever they can get due to capacity 
constraints in the industry. 
 
Table 4 shows best FF yields better profits and job fulfilment than random FF and lowest-cost FF, but 
optimal FF yields the best profit. This is achieved by big reductions in FF cost (best FF is 114.9% higher) 
and the cost of emergent leasing jobs (best FF is 19.9% higher). Underlying the improvement is a substantial 
reduction in ETCR movements (best FF is 11.4% higher). From a strategic management perspective, this 
has advantages beyond just an increase in profit. It also means that the TCO is not beholden to just the best 
FF as another better FF can be identified due to its lower costs. Even if the profit differences are small, 
having a feasible alternative opens up competition that could drive costs lower, and having options in service 
providers is always strategically important.  
 
In order to evaluate the continued robustness of the model at this stage, a simulation was run with no ETCR 
and no job rejection, yielding a total profit of £1,042,336. This is clearly less than that achieved across Table 
6, demonstrating the continued effectiveness of ETCR.  
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Table 6. Results for Optimized and Non-Optimized FF choices 

   Indicators Optimal FF  Best FF % Diff. 
to 

optimal 
FF 

Random FF  % Diff. 
to 

optimal 
FF  

Lowest cost 
FF  

% Diff. 
to 

optimal 
FF  

Self-container 
jobs 

746 750 +0.5% 717 -3.9% 708 -5.1% 

Planned-leasing 
jobs  

230 231 +0.4% 241 +4.8% 258 +12.2% 

Emergent 
leasing jobs 

46 43 -6.5% 59 +28.3% 49 +6.5% 

Rejected jobs 53 51 -3.8% 58 +9.4% 60 +13.2% 
No. of ETCR 79 88 +11.4% 51 -34.5% 34 -57.0% 
Total revenue £1,387,056 £1,391,380 +0.3% £1,381,441 -0.4% £1,376,596 -0.8% 

C
O
S
T
S 

Inventory  £38,184 £38,151 -0.1% £39,129 +2.5% £39,717 +4.0% 
FF  £1,638 £3,520 +114.9% £1,427 -12.9% £544 -66.8% 
Penalty  £10,600 £10,200  -3.8% £11,600 +9.4% £12,000 +13.2% 
Self-
container 
jobs  

£94,300 £94,220 
 

-0.1% £92,760 -1.6% £91,350 -3.1% 

Planned-
leasing 
jobs 

£51,600 £52,200 +1.2% £55,400 +7.4% £52,300 +1.4% 

Emergent 
leasing 
jobs 

£46,800 £56,100 +19.9% £57,880 +23.7% £59,400 +26.9% 

Total  
(not sum 
of above) 

£280,852 £292,511 +4.2% £293,871 +4.6% £290,655 +3.5% 

Total profits £1,106,203 £1,098,869 -0.7% £1,087,570 
 

-1.7% £1,085,941 -1.8% 

 
The optimized and lowest cost FFs are a source of stochasticity due to their random reliability value. To see 
their effect, Figure 8 presents the profits from 10 repeated experiments with the same randomly generated 
stream of container cleaning times, but different random values for FF reliability. As the reliability of the 
best FF is constant at 100%, its profits are constant. The optimized FF gives higher profitability than the 
best FF in 7 experiments. The lowest cost FF yields the highest profit in 2 experiments when by random 
chance it produces high reliability, but it clearly gives the lowest profits on 5 occasions. The random FF 
yields a dynamic profit-making ability, but with lower average profits close to that of the lowest cost FF. 
 
The reliability of the optimized FFs during each experiment ranged from 50% to 80%, showing that this 
optimization is truly using the FF range and not just going for high reliability FFs. 
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Figure 8. Profit by experiment for different FF criteria 

 
Table 4 shows that optimizing the FF reduces leasing costs. If the penalty cost of rejecting a job were 
increased one would expect to see more leasing to accommodate a reduction in rejections. Table 7 presents 
the results when the penalty cost for rejecting jobs is varied. This shows that as the penalty cost, planned 
leasing cost or emergent leasing cost increase so FF optimization yields greater improvements in profit. This 
is due to large decreases in costs rather than increases in revenue that remain slightly lower in the 
experiments conducted.  
 
Table 7. Effect of Key Cost Coefficients on Change in Profit for Optimized FF compared to Best FF 

Penalty Cost Planned leasing Emergent leasing Profit Revenue Cost 
£100 £100 £130 -2.1% -1.2% +2.1% 
£100 £120 £130 -0.7% -0.3% +0.9% 
£100 £120 £150 +0.4% -0.6% -1.2% 
£500 £100 £130 +1.1% -0.5% -5.3% 
£500 £120 £130 +1.8% -0.5% -7.2% 
£500 £120 £150 +2.9% -0.3% -8.4% 
£1000 £100 £130 +2.4% -0.2% -8.1% 
£1000 £120 £130 +3.1% -0.3% -8.9% 
£1000 £120 £150 +4.4% -0.4% -9.6% 

 
In line with industrial practice, a 2-week forecast was used in optimizing ETCR and inventory planning in 
Stage 2. To understand the effectiveness of incorporating the 2-week forecast into the optimization (2-week 
forecast + ETCR with AGA), it is compared with not using the forecast in Table 8. This shows that including 
the forecast yields a substantial decrease in leasing, penalty and ETCR costs with a corresponding increase 
in profits. The increased visibility given by the forecast is allowing the plans to achieve more with self-
containers instead of resorting to leasing and excessive container repositioning. 
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To see if including the forecast changes the superiority of ETCR with AGA, Table 9 presents the change in 
performance seen when using ETCR with AGA compared to ETCR with HSM and ETCR with RAIL, with 
all three now using the 2-week forecast. This shows that ETCR with AGA is still the most profitable, 
increasing profit by 6.7% and 7.3% respectively, as it makes better use of self-containers resulting in lower 
leasing and ETCR costs. 
 
 

Table 8. Change in ETCR with AGA performance after including 2-week forecast 
Indicator Change in performance 

with 2-week forecast 
Revenue +3.4% 
Profit +4.7% 
Total Cost -9.6% 
Cost of self-container jobs +2.1% 
Cost of planned-leasing jobs -6.4% 
Cost of emergent-leasing jobs -8.2% 
Penalty cost -9.2% 
ETCR cost -12.3% 

 
 

Table 9. Change in performance when using ETCR with AGA compared to other optimization 
methods after including 2-week forecast  

Indicator ETCR with HSM  
& 2-week forecast 

ETCR with RAIL  
& 2-week forecast 

Revenue +3.7% +2.8% 
Profit +6.7% +7.3% 
Total Cost -18.7% -22.4% 
Cost of self-container jobs +9.4% +3.5% 
Cost of planned-leasing jobs -15.7% -34.7% 
Cost of emergent-leasing jobs -17.1% -87.1% 
Penalty cost -14.1% -19.1% 
ETCR cost -4.4% -476.7% 
 
 
Having seen the benefits of incorporating a 2-week forecast into the optimization, sensitivity to the length 
of the forecast period was investigated. Table 10 compares the results for 1, 2, 3 and 4-week forecasts with 
optimized FF. The 3-week forecast yields the highest profit through increasing the number of self-container 
jobs, resulting in decreased leasing jobs, and particularly the cost of these as it is longer more expensive 
jobs that are being switched to self-containers. The 1-week and 4-week forecasting periods result in 
increased ETCR. In the case of 1-week this is because it is too short to take into account future demands for 
the surplus depots, i.e. it is approaching no ETCR, so TCs are shipped to deficit depots too readily. In the 
case of 4-week forecasting, although more of the future demand forecast is considered, the forecast demand 
only tells where the origin is, but not the destination. Therefore, when the inventory is planned for the future, 
some of the future arrivals are not clear. However, if containers are reserved or repositioned for the whole 
4-week forecast, too many TCs may be kept or moved, as the cleaned arrival TCs replenish the inventory 
as well.  
 
Considering the current average job and cleaning durations, most containers will be ready for their next job 
within three weeks. Combining this with the above result the inference is that it is not beneficial to forecast 
beyond the typical job plus cleaning time. As the average job plus cleaning duration may be subject to 
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change, due to changes in demand patterns, transport facilities or cleaning processes etc., it follows that 
TCOs should monitor this and adjust the forecast period accordingly. 
 
 

Table 10. Sensitivity analysis to forecast period with optimized FF 
Indicators Forecast Period 
 1-Week 2-Week 3-Week 4-Week 
Self-container jobs 724 746 763 733 
Planned-leasing jobs  244 230 221 241 
Emergent leasing jobs 49 46 43 46 
Rejected jobs 58 53 48 55 
No. of ETCR 92 79 71 88 
Total revenue £1,384,251 £1,387,056 £1,391,093 £1,385,596 

Costs 

Inventory costs £35,772 £38,184 £36,594 £43,683 
FF cost £1,940 £1,638 £1,149 £1,868 
Penalty costs £11,600 £10,600 £9,600 £11,000 
Cost for self-
container jobs  

£91,630 £94,300 £98,820 £92,350 

Cost for planned-
leasing jobs 

£54,200  £51,600 £49,200  £53,300 

Cost for emergent 
leasing jobs 

£48,100 £46,800 £38,740 £45,240 

Total  
(not sum of above) 

£297,537 £280,852 £271,093 £294,651 

Total profits £1,086,714 £1,106,204 £1,120,000 £1,090,945 
 
 
6. Conclusions 
To improve Tank Container (TC) operations management, this study has proposed a two-stage model that 
enables optimization of a double-threshold inventory control policy for tank Container Operators (TCOs) 
to gain better operational profits, as well as demand fulfilment, during the quotation-booking process. On 
top of the optimized inventory policy, the model simulates and optimizes the choice of Freight Forwarders 
(FFs) under a more realistic operational environment including job rejections under a two-week demand 
forecast, on a rolling planning basis. The effectiveness of the two-stage model in optimization has been 
demonstrated through a series of numerical tests. Sensitivity analysis has articulated the managerial insights 
associated with the model with respect to different uncertainty levels, different FF costs and different 
demand forecast lengths.  
 
A novel dynamic ‘rolling horizon’ for planning has been introduced to emulate the TC quotation-booking 
process seen in industry. The length of a given day’s planning horizon varies with the latest execution date 
of the future jobs being planned on that day. This rolling horizon is different to the static rolling horizons 
seen in the literature, e.g. Di Francesco et al. (2013). 
 
In filling the academic vacuum in TC operations studies, this paper has built a more comprehensive picture 
of TC operations on top of the existing literature. Especially, it has modelled the overall quotation-booking 
process with the incorporation of more practical issues such as uncertain container cleaning times, choice 
of FFs, emergent leasing and customer demand forecast.  
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Due to the incorporation of various key real-world features of TC operations, this research has practical 
value for industry. Not only can practitioners benefit from more efficient and effective real-time booking 
quotations, they can also benefit from better decision-making support with the evaluation of different 
scenarios for both short-term and long-term TC operations. Further, within a dynamic external environment, 
the model can help TCOs to find a better position for their own interests when their bargaining power varies 
and the cost of FFs fluctuates.    

 
Through numerical experiments understanding of the economics behind the decisions in this important 
industrial operation has been gained. Common practices including inventory control policy, choice of FFs 
and customer demand prediction have been emulated and their performance compared with that of the new 
optimization model presented here. Key findings from the experiments include: 
 

i. The optimized inventory control policy has shown great advantage in controlling the inventory 
cost, increasing TC utilization for self-container jobs, reducing emergent leasing (which is 
particularly expensive) and improving overall profits under dynamic market conditions. From 
the strategic perspective, the optimized inventory control policy has produced more precise 
resource allocation, allowing TCOs to exploit market opportunities better in the long-term 
regardless of various uncertainties 
 

ii. The benefits of optimizing with respect to profits the choice of FF for empty TC repositioning 
(ETCR), rather than always using the most reliable and therefore expensive FF, have been 
demonstrated. From a strategic management perspective, this has important advantages beyond 
just profits as it means that the TCO is not dependent on just the most reliable FF. Even if the 
profit differences are small, having a feasible alternative opens up competition that could drive 
costs down and service quality up. 

 
iii. The importance of including stochastic TC cleaning times has been demonstrated, as this is a 

source of uncertainty that leads to emergent leasing when TCs are held up. Experiments have 
shown that increased reliability (reduced variation) in cleaning times results in higher profits 
due to reduced emergent leasing due to increased certainty in planning. This means that TCOs 
should aim for more reliable (less variable) cleaning times and not just shorter cleaning times. 

   
iv. Taking into consideration a demand forecast in the optimization can reduce excessive ETCR 

that would cause higher costs and less profits. Experiments with ETCR guided by regional 
average inventory levels (ETCR with RAIL), which emulates a natural industrial practise, have 
revealed that not taking a longer-term perspective in planning and simply repositioning TCs 
based on current inventory levels results in hugely excessive repositioning, as well as more 
emergent-leasing and this tends to be for expensive, longer distance jobs. The greatly reduced 
repositioning, and thereby greater profits, achieved with ETCR with adapted GA (AGA) using 
demand forecasts, demonstrates the validity of the novel approach presented here, and in 
particular the value of taking a longer-term perspective of net flows and inventory levels in 
planning ETCR. To this end TCOs should aim to develop their forecasting capabilities to 
achieve more accurate forecasts. Results have shown that the forecast horizons should 
correspond to the typical TC job plus cleaning times for best results, and it is recommended that 
TCO’s monitor their average job plus cleaning times with a view to revising forecast horizons 
accordingly. 

 
Whilst this paper has contributed new fundamental knowledge to be used in improving profits from TC 
operations, it should also inspire others to research into this important industrial topic that has been largely 
neglected in the literature to-date.  
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This study could be expanded in two directions. First, at the operational level and in respect of demand 
fulfilment, the current simulation model assigns different job types in a rule-based fashion. Instead, 
decisions on self-container jobs, planned-leasing jobs and rejected jobs could be optimized simultaneously 
and solved by mathematical programming techniques. Second, at the strategic level, the TC fleet size in the 
experiments is developed from the given TCO data, but it is not optimized. The model could be developed 
further to optimize the fleet size, particularly as TCs are an expensive asset. In addition, different types of 
TCs could be considered. 
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Appendix 1. The Simulation Module in Stage 1 
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Appendix 2. The Simulation Module in Stage 2 
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Appendix 3. Process of obtaining LCCNO value 
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Appendix 4. The Heuristic Search Method 
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Appendix 5. The flow chart of AGA 
 
 

 


