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Abstract

In Bayesian inverse problems sampling the posterior distribution is often a challeng-
ing task when the underlying models are computationally intensive. To this end, sur-
rogates or reduced models are often used to accelerate the computation. However, in
many practical problems, the parameter of interest can be of high dimensionality, which
renders standard model reduction techniques infeasible. In this paper, we present an
approach that employs the ANOVA decomposition method to reduce the model with
respect to the unknown parameters, and the reduced basis method to reduce the model
with respect to the physical parameters. Moreover, we provide an adaptive scheme
within the MCMC iterations, to perform the ANOVA decomposition with respect to
the posterior distribution. With numerical examples, we demonstrate that the proposed
model reduction method can significantly reduce the computational cost of Bayesian
inverse problems, without sacrificing much accuracy.

Keywords: ANOVA, Reduced basis methods, Bayesian inference, Markov Chain
Monte Carlo, Inverse problems.

1. Introduction

Inverse problems arise from many fields of science and engineering—whenever
parameters of interest must be estimated from indirect observations [1]. The Bayesian
inference method has become increasingly popular as a tool to solve inverse prob-
lems [2, 3]. The popularity of the method is largely due to its ability to quantify the
uncertainty in the solution obtained. Simply speaking, in the Bayesian framework,
the parameters of interest are cast as random variables to which a prior distribution is
assigned, and then the posterior distribution of the parameters conditional on the ob-
served data is computed via the Bayes’ rule. The posterior distribution thus provides a
probabilistic characterization of the parameters of interest in such problems.
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Though the idea behind the Bayesian inference method is quite straightforward,
the computation of the posterior distribution often poses challenges. In most practi-
cal problems, the posterior distributions do not admit a closed-form expression and
must be computed numerically. To this end, the Markov chain Monte Carlo (MCMC)
method [4] is often used to compute the posterior distributions. In particular, the
MCMC method draws samples from the posterior distribution and then any poste-
rior statistics can be evaluated with the obtained samples. As will be shown later,
the MCMC method requires to repeatedly evaluate the likelihood function and each
evaluation involves a full simulation of the forward function, i.e., the mapping from
the parameter of interest to the observables. In many practical problems, such as the
seismic inversion [5] and the inverse groundwater modeling [6], the forward functions
are often described by computationally intensive partial differential equations (PDEs).
On the other hand, often a rather large number of samples are required to accurately es-
timate certain posterior moments. In this case, the total cost of the MCMC simulation
may become prohibitively high.

To improve the overall computational efficiency of the MCMC simulation, we can
reduce either the number of samples required or the cost for generating each sample.
The first option is essentially to develop more efficient sampling schemes, which is
not in the scope of this work. We here consider the second option, i.e., to reduce the
cost for computing each sample. To this end, a natural idea is to construct compu-
tationally inexpensive surrogates/reduced models and use them in the MCMC proce-
dure. Substantial efforts have been made toward this direction and various types of
surrogate models have been used to approximate the forward functions, most notably,
the polynomial chaos expansion (PCE) [7, 8, 9, 10, 11], the Gaussian process surro-
gates [12, 13, 14], the sparse grid interpolation [15], and the reduced order models
(ROM) [16, 17, 18, 19, 20]. The performances of these methods (especially the PCE
and the ROM) for accelerating the Bayesian computation is detailedly compared and
discussed in [21].

The surrogate or reduced model based methods have been successfully applied to
a large variety of inverse problems, resulting in significant computational saving of the
Bayesian inference. Despite the success, the applicability of these methods is often
ultimately limited by the dimensionality of the unknown parameters. In many real-
world applications, the unknown parameters are often of very high dimensionality: for
example, in groundwater modelling one may want to estimate the hydraulic conduc-
tivity, and in seismic inversion it is the wave velocity that one is interested in; in these
problems, the unknowns are spatial fields, and if we represent the unknown fields with
mesh grid points, the resulting inverse problems can be of tens of thousands or more
dimensions. Doing Bayesian inference directly for such problems is often not possi-
ble, and in practice it often requires dimension reduction for the input space to make
the inference feasible. In particular, the truncated Karhunen-Loeve (KL) expansion is
often used to represent the unknown field that we want to estimate [8, 22] to reduce the
dimensionality. However, in many practical problems, the unknown fields are rough,
and in this case one still needs to use a rather large number of KL modes to represent it.
Constructing surrogate or reduced models for such high-dimensional problems directly
is a rather challenging task.

The main purpose of this work is to provide an approach to tackle the dimensional-



3

ity issue and construct reduced models for such problems. Specifically, we focus on the
Analysis of Variance (ANOVA) methods [23, 24, 25, 26, 27, 28]. The ANOVA meth-
ods, which are proposed for efficiently solving high-dimensional forward uncertainty
quantification (UQ) problems, aim to decompose a high-dimensional parameter space
into a union of low-dimensional spaces, such that standard surrogate/reduced mod-
elling strategies can be applied. For example, these include ANOVA based stochas-
tic collocation [29, 30], ANOVA multi-element collocation [31], and reduced basis
ANOVA [32, 33, 34]. However, how to develop an efficient ANOVA approach for
high-dimensional Bayesian inversion still remains an open question. The main diffi-
culty here is that, conducting ANOVA decomposition of high-dimensional models re-
quires the knowledge of the distribution of the input parameters, which in the Bayesian
inverse problems is the posterior that we want to compute. An approximate solution
is to perform ANOVA decomposition with respect to the prior distribution, but the
prior based ANOVA decomposition is often inefficient, especially when the prior is
significantly different from the posterior. Thus, we develop an adaptive reduced basis
ANOVA (RB-ANOVA) algorithm which allows us to construct a reduced model with
respect to the posterior distribution, which, as is illustrated by numerical examples, is
more efficient than that constructed based on the prior. To summarize, the main con-
tributions of this work are two-fold: first we propose to use the RB-ANOVA model
to accelerate the MCMC simulations for high-dimensional Bayesian inverse problems;
second, we develop an adaptive scheme to construct the RB-ANOVA model with re-
spect to the posterior distribution.

The rest of the paper is organized as follows. In Section 2 we describe the formula-
tion of the Bayesian inverse problems that will be considered in this work. In Section 3
we provide a scheme for constructing the RB-ANOVA model, and in Section 4 we
present our new RB-ANOVA based Markov chain Monte Carlo (RB-ANOVA-MCMC)
algorithm, which adaptively constructs the RB-ANOVA model with respect to the pos-
terior distribution within the MCMC iterations. In Section 5, with numerical exper-
iments we demonstrate that the proposed adaptive RB-ANOVA method can signif-
icantly accelerate the Bayesian computation. Finally some concluding remarks are
offered in Section 6.

2. Bayesian inverse problems

In this section we describe the problem setup that is used in this work. Suppose
that we are interested in an M-dimensional parameter ξ = [ξ1, . . . , ξM]T ∈ RM , and we
want to estimate it from some observed data d. Moreover we assume that there exists
a forward model G that maps the unknown parameter ξ to the data d:

d = G(ξ) + ε, (1)

where ε is the measurement noise. Let πε(ε) be the distribution of ε, and one can obtain
the distribution of d conditional on ξ:

π(d|ξ) = πε(d −G(ξ)) . (2)
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In a Bayesian formulation, one assigns a prior distribution π(ξ) on ξ encoding the prior
knowledge on the parameter of interest, and the posterior π(ξ|d) can then be calculated
via Bayes’ rule:

π(ξ|d) =
π(d|ξ)π(ξ)∫
π(d|ξ)π(ξ)dξ

, (3)

where the denominator is a normalization constant that makes the posterior a well-
defined probability distribution. We note here that, in practice it is usually reasonable
to assume that the sought parameters are in a (sufficiently large) bounded region, and
thus in this paper, we shall restrict our attention to the situation that the prior π(ξ)
has a bounded and connected support. Without loss of generality, we then assume the
support of π(ξ) is IM where I := [−1, 1] throughout this work.

As is mentioned earlier, one frequently employs the MCMC simulation to sample
the posterior distribution. Simply speaking, the MCMC method constructs a Markov
chain which asymptotically converges to the posterior distribution. In this work, we
adopt the popular Metropolis-Hastings (MH) MCMC algorithm outlined in Algorithm 1,
to generate N samples {ξ(1), . . . , ξ(N)} of the posterior of ξ. In Algorithm 1, π(·|ξ( j)) on
line 3 is a given proposal distribution which may be a multivariate normal distribution
with mean ξ( j), and U[0, 1] on line 5 refers to the uniform distribution on [0, 1].

Algorithm 1 The standard MH algorithm
1: Initialize the chain at ξ(1).
2: for j = 1 : N − 1 do
3: Draw ξ∗ ∼ π(·|ξ( j)).

4: Compute the acceptance ratio a = min
(
1, πε(d−GJ (ξ∗))π(ξ∗)

πε(d−GJ(ξ( j)))π(ξ( j))
π(ξ( j) |ξ∗)
π(ξ∗ |ξ( j))

)
.

5: Draw ρ ∼ U[0, 1].
6: if ρ < a then
7: Let ξ( j+1) = ξ∗,
8: else
9: Let ξ( j+1) = ξ( j).

10: end if
11: end for

It can be seen from the algorithm that, each MCMC iteration requires an evalua-
tion of the computationally expensive forward function G(·) (on line 4 of Algorithm 1),
which renders the MCMC procedure formidably expensive. In what follows we pro-
vide a reduced basis ANOVA based method to accelerate the MCMC computation.

3. The RB-ANOVA method

To begin with, details of the forward model considered in this paper are addressed
as follows. Let D denote a spatial domain (a subset of R2 or R3) which is bounded,
connected and with a polygonal boundary ∂D, and x ∈ D denote a spatial variable. The
physics of problems considered are governed by a PDE over the spatial domain D and
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boundary conditions on the boundary ∂D, which are stated as: find u(x, ξ) mapping
D × IM to R, such that

L (x, ξ; u (x, ξ)) = f (x) ∀ (x, ξ) ∈ D × IM , (4a)

b (x, ξ; u (x, ξ)) = g(x) ∀ (x, ξ) ∈ ∂D × IM , (4b)

where L is a partial differential operator and b is a boundary operator, both of which
can depend on the unknown parameter ξ. Here f is the source function and g specifies
the boundary conditions. Through specifying an observation operator c, e.g., taking
solution values at several grid points, we write the overall forward model as G(ξ) :=
c(u(x, ξ)). It is clear that each evaluation of the forward function requires to solve the
PDE (4), and this procedure needs to be performed repeatedly in the MCMC iterations.
As discussed earlier, we shall construct computationally inexpensive reduced models
and use them in the MCMC iteration to accelerate the computation. However, when
the parameter of interest is high-dimensional, constructing reduced models are rather
challenging. In this work, the ANOVA decomposition approach is used to decompose
the model so that the reduced model construction becomes feasible. The construction
of the RB-ANOVA surrogate for the forward models is discussed in this section, which
is an extension of the procedure outlined in [33], and the application of it to Bayesian
inversion is presented in the next section.

3.1. ANOVA decomposition
We present the ANOVA decomposition method in a generic setting. Namely, sup-

pose that we have a computationally intensive function u(x, ξ) where x ∈ D is the
physical variable and ξ ∈ IM is the random variable, and the goal here is to construct a
reduced model (or approximation) of u(x, ξ) with respect to the random variable ξ.

To proceed, the notation for indices are first set up following [27, 33]. In general,
any subset of {1, . . . ,M} denotes an index. For an index t ⊆ {1, . . . ,M}, |t| denotes the
cardinality of t, and we define |t| = 0 for t = ∅. For an index t , ∅, we sort its elements
in ascending order and express it as t = (t1, . . . , t|t|) with t1 < t2 . . . < t|t|. In addition, we
also call |t| the (ANOVA) order of t, and call t a |t|-th order index. For a given ANOVA
order i = 0, . . . ,M, the following index sets are defined

Ti := {t | t ⊂ {1, . . . ,M}, |t| = i} ,

T
?
i := ∪ j=0,1,··· , iT j,

T := T
?
M = ∪ j=0,1,··· ,MT j.

The sizes of the above sets (numbers of elements that they contain) are denoted by
|Ti|, |T?i | and |T| respectively. From the above definition, T0 = {∅} and |T0| = 1. For
a given index t = (t1, . . . , t|t|) ∈ T with |t| > 0, ξt denotes a random vector collecting
components of ξ associated with t, i.e., ξt := [ξt1 , . . . , ξt|t| ]

T ∈ I |t|, and we denote the
(marginal) prior probability density function of ξt by πt(ξt) and its (marginal) posterior
probability density function by π∗t (ξt) := πt(ξt |d).

While noting that there are other strategies to implement the ANOVA decompo-
sition [29, 30, 35], here we adopt the so-called anchored ANOVA method following
[29, 30, 28, 33]. In this method, one first selects an anchor point c = [c1, . . . , cM]T ∈
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IM , and then decomposes the function u(x, ξ) with respect to ξ = [ξ1, . . . , , ξM]T ∈ IM

as,

u(x, ξ) = u0(x) + u1(x, ξ1) + . . . + u1,2(x, ξ1,2) + . . .

=
∑
t∈T

ut(x, ξt), (5)

where we denote u∅(x, ξ∅) := u0(x) for convenience, and each term in (5) is specified
as

u∅(x, ξ∅) := u0(x) := u(x, c), (6a)

ut(x, ξt) := u(x, c, ξt) −
∑
s⊂t

us(x, ξs). (6b)

In the equation above, we have ξ∅ = c, and u(x, c, ξt) is defined as,

u(x, c, ξt) := u
(
x, ξ c,t

)
,

where

ξ c,t := [ξ c,t
1 , . . . , ξ c,t

M ]T , (7a)

ξ c,t
i :=

{
ci for i ∈ {1, . . . ,M} \ t
ξi for i ∈ t . (7b)

In what follows, ut(x, ξt) is called a child term of us(x, ξs) if s ⊂ t. It should be clear that
the decomosition (5) is exact and so itself does not provide us a reduced model of the
solution u(x, ξ). However, as discussed in [29, 30, 33], an efficient reduced model can
be obtained if one only keeps a small number of active terms in (5). We will discuss
how to select the active terms later. For now supposing that we have selected the active
terms, the sets consisting of selected important indices at each order are denoted by
Ji ⊆ Ti for i = 0, . . . ,M. We then define J?

i := ∪ j=0,...,iJ j and J := J?
M . A reduced

model of the solution u(x, ξ) is obtained:

u (x, ξ) ≈ uJ (x, ξ) :=
∑
t∈J

ut (x, ξt) , (8)

where ut is defined in (6b). In the following, uJ (x, ξ) is called the ANOVA model (or
approximation) of u(x, ξ).

For selecting the active terms (or indices) in the ANOVA model, the prior distribu-
tion πt of ξt is given in advance in this Bayesian inference setting, and thus a natural
idea is to construct the selection criterion using some prior statistics. While they are
not optimal choices, the prior statistics are used to illustrate the methods in this section,
and optimal selection criteria based on posterior distributions are presented in our new
algorithm in the next section. To this end, we adopt the relative mean approach used in
[33], while noting that other choices are also possible [29, 30]. Specifically, recalling
that the prior mean of ut is

E (ut) :=
∫

I |t|
ut (x, ξt) πt (ξt) dξt,
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we define the relative mean value to be

γt :=
‖E(ut)‖0,D∥∥∥∥∑s∈J?
|t|−1

E (us)
∥∥∥∥

0,D

,

where ‖ · ‖0,D denotes the L2 function norm over region D. In practice, the prior expec-
tation E (ut) can be computed with a Monte Carlo (MC) estimator:

Ẽ (ut) :=
1
N

N∑
j=1

ut

(
x, ξ( j)

t

)
, (9)

where {ξ( j)
t }

N
j=1 are N samples drawn from πt, and as a result, the relative mean value γt

can be approximated by

γ̃t :=

∥∥∥Ẽ(ut)
∥∥∥

0,D∥∥∥∥∑s∈J?
|t|−1

Ẽ (us)
∥∥∥∥

0,D

. (10)

Here we call a term ut important if the associated relative mean estimate is larger than
a prescribed threshold value tolanova. The set of active terms at each order is selected
with the following procedure. Namely, suppose that Ji is given, and one first selects
all important terms at order i, yielding the index set

J̃i := {t | t ∈ Ji and γt ≥ tolanova},

which is a subset of Ji. After that, as discussed in [29], the index set at order i + 1 is
constructed by

Ji+1 :=
{
t | t ∈ Ti, and any s ⊂ t with |s| = i satisfies s ∈ J̃i

}
. (11)

That is, if a term is found unimportant, the term itself is not removed from the ANOVA
model, but all its child terms are removed for the next order. To start the procedure,
we set J̃0 = J0 = T0 = ∅. On the other hand, the procedure terminates automatically
if no active term is found for the next order. The studies in [29, 30] indicate that for
most realistic physical systems the size of J is usually much smaller than that of T,
and moreover, J may only contain low order terms.

3.2. The RB approximation
In the present problem, u(x, ξ) is the solution of the parameterized equation (4).

As mentioned in the previous section, the ANOVA decomposition method yields a
reduced model in the random parameter space. Here we discuss how to perform model
reduction with respect to the physical parameter x, with the reduced basis (RB) method.

First, to use the ANOVA model (8), the terms u(x, c, ξt) in (6) for all t ∈ J need to
be computed. Here, u(x, c, ξt) is the solution of the following equations:

Lt (x, ξt; u (x, c, ξt)) = f (x) ∀ (x, ξt) ∈ D × I |t|, (12a)

bt (x, ξt; u (x, c, ξt)) = g(x) ∀ (x, ξt) ∈ ∂D × I |t|, (12b)
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where u(x, c, ξt) is defined by (7) and Lt and bt are defined through putting (7) into
(4). Eqs. (12) are referred to as a (parametrically) |t|-dimensional local problem, while
the global problem is Eqs. (4). It is easy to see that, if u(x, c, ξt) is evaluated by di-
rectly solving the local problem (12) with the same strategy for solving (4), evaluating
the ANOVA model (8) is actually much more expensive than solving the global prob-
lem (4) directly. This is because that the ANOVA model requires to solve the local
problem multiple times and a full solve of the local problem is about as costly as that
of the global problem. Thus, to make the ANOVA model useful for our problem, a re-
duced model for the local problem (12) needs to be constructed, so that it can be solved
more efficiently. We construct such a model using the RB method.

We start with the finite element approximation of the local problem (12). In general,
the variational form of the deterministic problem (12) corresponding to a given realiza-
tion of ξt is given by Bξt (u(x, c, ξt), v) = l(v). Given a finite element space Xh with Nh

degrees of freedom, a finite element formulation seeks a solution uh(x, c, ξt) ∈ Xh such
that

Bξt

(
uh(x, c, ξt), v

)
= l(v), ∀v ∈ Xh. (13)

As usual, a finite element solution uh is referred to as a snapshot. Next, the reduced
basis (RB) approximation is stated as: given a set of reduced basis functions Qt :=
{q(1)

t , · · · , q(Nr)
t } ⊂ Xh, find ur(x, c, ξt) ∈ span{Qt} such that

Bξt (ur(x, c, ξt), v) = l(v), ∀v ∈ span{Qt}. (14)

Two standard methods are used to generate the reduced bases Qt for all t ∈ J in
this paper. The first one is the proper orthogonal decomposition (POD) [36, 37, 38],
which can be briefly reviewed as follows. For a given finite sample set Ξ ⊂ I |t| with
size |Ξ|, a finite snapshot set is defined by

S t
Ξ :=

{
uh (x, c, ξt) , ξt ∈ Ξ

}
. (15)

The matrix form of S t
Ξ

is denoted by St
Ξ
∈ RNh×|Ξ|, i.e., each column of St

Ξ
is the

vector of basis function coefficients of a finite element solution. Assuming |Ξ| < Nh,
let St

Ξ
= UΣVT denote the singular value decomposition (SVD) of St

Ξ
, where U =

(q1, · · · ,q|Ξ|) and Σ = diag(σ1, · · · , σ|Ξ|) with σ1 ≥ σ2 ≥ · · · ≥ σ|Ξ| ≥ 0. The basis Qt

is then given by the first k left singular vectors (q1, . . . ,qk), of which the corresponding
singular values are greater than some given tolerance tolpod, i.e., σk/σ1 > tolpod but
σk+1/σ1 ≤ tolpod. As usual, to simplify the later presentation, this POD procedure for
generating Qt through S t

Ξ
is denoted by Qt := POD(S t

Ξ
).

The second one is the greedy sampling method [39, 40, 41, 42, 43, 44, 45]. This
method is to adaptively select parameter samples, where errors between the reduced
approximation and the finite element approximation are large. To assess the errors, we
use the residual error indicator which is also adopted by [46, 33, 47, 48]. Following our
notation in [46], when considering linear PDEs, the algebraic system associated with
(13) can be written as Aξt uξt = f where Aξt ∈ R

Nh×Nh , and uξt , f ∈ RNh . The algebraic
system of the reduced basis approximation (14) can be written as QT

t Aξt Qtũξt = QT
t f,

where ũξt ∈ RNr gives a reduced basis solution and Qt ∈ RNh×Nr is the matrix form
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of the reduced basis Qt = {q1, . . . , qNr }, i.e., each column of Qt is the vector of nodal
coefficient values associated with each qi, i = 1, . . . ,Nr. The residual indicator is
defined by

τξt :=
‖Aξt Qtũξt − f‖2

‖f‖2
. (16)

With this residual indicator, the greedy sampling procedure can be stated as follows.
First, take the first sample ξ(1)

t from a given sample set Ξ and initialize the reduced basis
as Qt := {uh(x, c, ξ(1)

t )}. Second, for each ξt ∈ Ξ, compute the residual error indicator
τξt using the current reduced basis Qt, and if τξt is larger than some given tolerance,
compute the snapshot uh(x, c, ξt) and augment Qt with uh(x, c, ξt). The second step is
repeated until Nr snapshots are obtained.

3.3. The RB-ANOVA model
With the local problem (12) solved by the RB method, we obtain a RB-ANOVA

model:

ur
J

(x, ξ) :=
∑
t∈J

ur
t (x, ξt) , (17)

where

ur
∅(x, ξ∅) := uh(x, c), (18a)

ur
t (x, ξt) := ur(x, c, ξt) −

∑
s⊂t

ur
s(x, ξs). (18b)

In (18), ur(x, c, ξt) is the RB solution of the local problem (14), and uh(x, c) is the snap-
shot at the anchor point (i.e., the solution of (13) with t = ∅). Constructing the RB-
ANOVA model in our setting is equivalent to generating four pieces of data: the anchor
point c, the snapshot uh(x, c) at the anchor point, the index setJ , and the reduced basis
Qt for each t ∈ J . We call these data the RB-ANOVA model data. With them, a RB-
ANOVA approximation ur

J
(x, ξ) at any input sample point ξ ∈ IM can be cheaply com-

puted. The procedures for generating the RB-ANOVA data {c, uh(x, c), J , {Qt}t∈J } are
as follows.

First, suppose that we are given a set of realizations of the random variable ξ,
denoted by Ξ. As discussed in [27], for a given distribution of ξ, the optimal anchor
point c with respect to this distribution is its mean point. However, the goal of this work
is to generate samples for the posterior distribution, of which the exact mean point is
not admitted. As an alternative, the anchor point in this work is taken to be the sample
mean of Ξ.

We set J0 := {∅}, and compute the snapshot uh(x, c). The zeroth order RB is
constructed using this snapshot Q∅ := {uh(x, c)}, and the mean estimate for the zeroth
order ANOVA term is set to Ẽ(u∅) := uh(x, c). Moreover, it is easy to see that J̃0 = J0,
which immediately implies that J1 := {1, . . . ,M}. Now we consider an ANOVA order
i ≥ 1. That is, given the index set Ji and the reduced bases for order i − 1, {Qs}s∈Ji−1 ,
we need to find the set J̃i and the reduced bases {Qt}t∈Ji . Now recall that, the set J̃i is
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obtained by estimating the relative means with MC approximation. It should be clear
that here if the Monte Carlo samples of {ut(x, ξ( j)

t )}Nj=1 for each t ∈ Ji are computed with
the PDE model with finite elements, the total cost may become prohibitively high. To
reduce the cost, we consider the reduced basis MC method which incorporates greedy
RB methods in MC simulations [43], and extend it to yield both the set J̃i and the
reduced bases {Qt}t∈Ji with low costs.

To start the greedy procedure, the hierarchical approach introduced in [33] is used
to initialize the reduced basis Qt for t ∈ Ji, which reuses the bases generated at the
previous order based on the nested structure of ANOVA indices:

1. grouping all reduced basis functions associated with subindices of t with order
|t| − 1 together, we define Q0

t := ∪s∈Λt Qs where Λt := {s | s ∈ J|t|−1 and s ⊂ t};
2. we apply POD to Q0

t to result in an orthogonal basis to serve as an initialization
of Qt, i.e., we initially set Qt := POD(Q0

t ) (details of POD are discussed in
Section 3.2).

After the initial basis is generated, a sample set of ξt for t ∈ Ji needs to be specified to
conduct the MC simulation. Since the sample set Ξ is given for the global parameter ξ
and each ξt for t ∈ J is a collection of components of ξ, it is trivial to define a sample
set of ξt by a collection of the components of samples in Ξ, i.e., the samples of ξt are
taken to be Ξt := {ξ( j)

t , ξ( j) ∈ Ξ for j = 1, . . . , |Ξ|} ⊂ I |t|. Then, looping over the sample
points, we compute the reduced solution ur(x, c, ξ( j)

t ) (see (14)) for each ξ( j)
t ∈ Ξt, and

the residual indicator τξ( j )
t

(see (16)):

1. if the residual indicator is smaller than a given tolerance tolrb, use ur(x, c, ξ( j)
t ) to

serve as a MC solution sample;
2. if the residual indicator is larger than or equal to tolrb, compute the snapshot

uh(x, c, ξ( j)
t ) through solving (13), use the snapshot to serve as a MC solution

sample and update the reduced basis Qt with this snapshot.

When all |Ξt |MC samples are generated through the above greedy approach, we com-
pute the relative mean values using (10) and construct the important index set J̃i, which
consequently yields Ji+1. As is mentioned in Section 3.1, the above procedure is re-
peated until Ji+1 = ∅. This RB-ANOVA procedure is formally stated in Algorithm 2.
It should be noted that this algorithm only requires a set of realizations of ξ, Ξ, as its
input, and this is an important property for the adaptive algorithm that will be presented
in the next section. We also note that, a major difference between Algorithm 2 and that
developed in [33] is that, in [33] the RB-ANOVA model is constructed with the tensor
grid collocation points, while here MC samples are used.

We next discuss how to use the resulting RB-ANOVA model (17) to predict the
system output G(ξ) for an arbitrary input sample of ξ, as is required in the MCMC iter-
ations. First, we set ur

∅
(x, ξ∅) := uh(x, c) as (18a). Second, the reduced basis approxima-

tion ur(x, c, ξt) of the solution of each local system (12) for t ∈ J is computed through
solving (14) with the reduced basis Qt. After that, ur

t (x, ξt) is computed through (18b),
and the overall reduced basis ANOVA approximation ur

J
(x, ξ) are computed through

(17). Finally, applying the given observation operator c on ur
J

(x, ξ), the overall system
output is estimated, i.e., we denote Gr

J
(ξ) := c(ur

J
(x, ξ)). This prediction procedure is

summarized in Algorithm 3.
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Algorithm 2 Constructing the RB-ANOVA model

1: Input: a finite sample set Ξ :=
{
ξ( j), j = 1, . . . , |Ξ|

}
⊂ IM .

2: Compute the anchor point c := 1
|Ξ|

∑|Ξ|
j=1 ξ

( j).
3: Set J0 := {∅}, compute uh(x, c) (see (13)) and set u∅(x, ξ∅) := uh(x, c).
4: Set Q∅ := {uh(x, c)}, Ẽ(u∅) := uh(x, c).
5: Set J1 := {1, . . . ,M}, initialize J := J0 ∪ J1, and let i = 1.
6: while Ji , ∅ do
7: for t ∈ Ji do
8: Construct Q0

t := ∪s∈Λt Qs where Λt := {s | s ∈ J|t|−1 and s ⊂ t}.
9: Initialize Qt := POD

(
Q0

t

)
, (see Section 3.2 for details of the POD method).

10: Construct the sample set Ξt :=
{
ξ

( j)
t , ξ( j) ∈ Ξ for j = 1, . . . , |Ξ|

}
⊂ Ii.

11: for j = 1 : |Ξt | do
12: Compute the reduced solution ur

(
x, c, ξ( j)

t

)
through solving (14) and the

error indicator τξ( j )
t

through (16).
13: if τξ( j )

t
< tolrb then

14: Set u
(
x, c, ξ( j)

t

)
= ur

(
x, c, ξ( j)

t

)
in (6b) to obtain ut

(
x, ξ( j)

t

)
.

15: else
16: Compute the snapshot uh

(
x, c, ξ( j)

t

)
(see (13)).

17: Set u
(
x, c, ξ( j)

t

)
= uh

(
x, c, ξ( j)

t

)
in (6b) to obtain ut

(
x, ξ( j)

t

)
.

18: Augment the reduced basis Qt with uh
(
x, c, ξ( j)

t

)
, i.e. Qt = Qt ∪{

uh
(
x, c, ξ( j)

t

)}
.

19: end if
20: end for
21: Compute Ẽ (ut) using (9) with samples {ut (x, ξt) , ξt ∈ Ξt}.

22: Compute the relative mean value γ̃t =
∥∥∥Ẽ (ut)

∥∥∥
0,D

/ ∥∥∥∥∑s∈J?
i−1

Ẽ (us)
∥∥∥∥

0,D
.

23: end for
24: Set J̃i := {t | t ∈ Ji, and γ̃t ≥ tolanova }.
25: Set Ji+1 := {t | t ∈ Ti+1, and any s ⊂ t satisfies s ∈ J̃i}.
26: Update the index set J := J ∪Ji+1 and update i = i + 1.
27: end while
28: Output ANOVA model data:

{
c , uh(x, c) , J , {Qt}t∈J

}
.
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Algorithm 3 Predication via reduced basis ANOVA model

1: Input: a sample of ξ and the RB-ANOVA model data
{
c, uh(x, c), J , {Qt}t∈J

}
.

2: Set ur
∅
(x, ξ∅) := uh(x, c).

3: for t ∈ J \ {∅} do
4: Compute ur (x, c, ξt) through solving (14) with the reduced basis Qt.
5: Obtain ur

t (x, ξt) through (18b).
6: end for
7: Assemble ur

J
(x, ξ ) using (17).

8: Set Gr
J

(ξ ) := c
(
ur
J

(x, ξ)
)

where c is the given observation operator.
9: Output: Gr

J
(ξ ).

4. The adaptive RB-ANOVA method to accelerate MCMC

In Section 3.3, the schemes for constructing and using the RB-ANOVA surrogate
for the forward models are presented. In the MCMC iterations, the computationally
intensive finite element method can be replaced with the RB-ANOVA model to reduce
the computational cost. As discussed in Section 3.3, a simple way of doing this is
to construct the RB-ANOVA model with respect to the prior distribution before per-
forming the MCMC simulation, which means that the sample set used to construct the
reduced model in Algorithm 2 is generated from the prior distribution π(ξ). An issue
here is that, the goal of the Bayesian inference is to sample according to the posterior
distribution, and in this case, constructing the reduced model with respect to the prior
distribution may become ineffective, especially for problems in which the posterior dif-
fers significantly from the prior [49]. Ideally one should construct the reduced model
with respect to the posterior distribution for such problems, but this certainly can not
be done in advance as the posterior is not available in advance. To address the issue, we
here present an algorithm that can adaptively construct the RB-ANOVA model accord-
ing to the posterior distribution. Specifically, the new method updates the RB-ANOVA
model inside the MCMC iterations, and for conciseness we shall refer to the whole
procedure as the RB-ANOVA-MCMC alogorithm in the following.

In this section, the number of samples for generating the RB-ANOVA model is
denoted by Nmodel, i.e., |Ξ| = Nmodel on line 1 of Algorithm 2. To begin with, we
construct an initial RB-ANOVA model using Algorithm 2 with Nmodel samples drawn
from the prior distribution π(ξ), and start the MCMC iterations with this initial model.
Initializing a Markov chain Ξ∗ := {ξ(1)} where ξ(1) is a sample from the prior π(ξ), for
each j ≥ 1, we first draw a candidate sample ξ∗ from a proposal distribution which
is denoted by π(·|ξ( j)), and evaluate the system output corresponding to ξ( j) using Al-
gorithm 3, which is denoted by Gr

J
(ξ( j)). After that, a Metropolis acceptance ratio is

computed through

a := min

1, πε
(
d −Gr

J
(ξ∗)

)
π(ξ∗)

πε
(
d −Gr

J

(
ξ( j))) π (

ξ( j)) π
(
ξ( j)|ξ∗

)
π
(
ξ∗|ξ( j))

 . (19)

With probability a, the candidate sample is accepted, i.e., ξ( j) := ξ∗; otherwise, the
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candidate sample is rejected, i.e., ξ( j) := ξ( j−1). The Markov chain is then augmented
with ξ( j), i.e., Ξ∗ = Ξ∗ ∪ ξ( j). After Nmodel posterior samples are generated, the RB-
ANOVA model is updated—the RB-ANOVA model data {c, uh(x, c), J , {Qt}t∈J } are
reconstructed using Algorithm 2 with these Nmodel posterior samples. The MCMC pro-
cedure continues with the new RB-ANOVA model. The RB-ANOVA model is recon-
structed periodically every Nmodel MCMC iterations, until certain stoping conditions
are satisfied. Namely, as the number of MCMC samples increases, it is expected that
the resulting RB-ANOVA model may not vary much. Thus, we terminate the recon-
struction procedure if the new model data and current model data are similar. Specifi-
cally, the index setJ is used to serve as the stoping criterion: the model reconstruction
procedure is stopped if the new and the current index sets are the same.

This new adaptive RB-ANOVA-MCMC procedure is formally presented in Algo-
rithm 4. In the inputs of this algorithm, N refers to the desired number of posterior
samples to generate, and Nmodel is the sample size to generate the RB-ANOVA model.
The variable Update Label is used to label whether to stop updating the RB-ANOVA
model during the MCMC iterations.

Finally, we provide some discussions on how the use of the posterior distribution
may improve the performance of the model reduction. The improvement is two-fold:
it improves the efficiency of both the ANOVA model (for the random parameters) and
the reduced basis model (for the physical parameters). First, for the ANOVA model,
both the anchor point and the important terms are selected based on some statistical
moments of the random parameters. In particular, it has been discussed in [27] that
the efficiency of an ANOVA expansion depends critically on the choice of the anchor
point—to achieve a given level of accuracy, a properly chosen anchor point can lead
to a small number of expansion terms in (5) or (17), and they have suggested that an
effective choice of the anchor point is the mean of the random parameters [27]. More-
over, the active terms of the ANOVA model are also selected using the relative means.
In a Bayesian problem, the random parameters are essentially distributed according to
the posterior rather than the prior, and thus estimating these moments with respect to
the posterior distribution should yield a much more accurate ANOVA representation
than that with the prior. On the other hand, constructing the input sample set to gen-
erate the RB-ANOVA model from the posterior can also improve the performance of
the reduced basis model and the argument here is similar as that in [49, 16]: since the
RB functions are chosen with respect to the input samples, constructing input samples
from the posterior can ensure that the basis functions are mostly distributed in the high
probability regions of the posterior, and the resulting RB model may be of higher accu-
racy in those regions. We will demonstrate that the proposed method can significantly
improve the performance in Section 5.

5. Numerical study

The numerical examples considered are steady flows in porous media. Letting
a(x, ξ) denote a unknown permeability field and u(x, ξ) the pressure head, we consider
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Algorithm 4 The adaptive RB-ANOVA-MCMC algorithm
1: Input: N and Nmodel.
2: Compute the RB-ANOVA model data

{
c, uh(x, c),J , {Qt}t∈J

}
using Algorithm 2

with Nmodel samples drawn from the prior distribution π(ξ).
3: Draw a sample ξ(1) from the prior, and initialize the Markov chain Ξ∗ :=

{
ξ(1)

}
.

4: Let Update Label := 1.
5: for j = 1, . . . ,N − 1 do
6: Draw ξ∗ ∼ π

(
·|ξ( j)

)
.

7: Compute the RB-ANOVA output Gr
J

(ξ∗) using Algorithm 3.
8: Compute the acceptance ratio

a = min

1, πε
(
d −Gr

J
(ξ∗)

)
π(ξ∗)

πε
(
d −Gr

J

(
ξ( j))) π(ξ( j))

π
(
ξ( j)|ξ∗

)
π
(
ξ∗|ξ( j))

 .
9: Draw ρ ∼ U[0, 1].

10: if ρ < a then
11: Let ξ( j+1) = ξ∗,
12: else
13: Let ξ( j+1) = ξ( j).
14: end if
15: if j mod Nmodel = 0 and Update Label = 1 then
16: Store the current ANOVA index set J ′ = J .
17: Update the RB-ANOVA model data

{
c, uh(x, c),J , {Qt}t∈J

}
using Algorithm

2 with the last Nmodel samples in the chain
{
ξ( j−Nmodel+1), . . . , ξ( j)

}
⊂ Ξ∗.

18: if J is the same as J ′ then
19: Stop future RB-ANOVA model updates through setting Update Label := 0.
20: end if
21: end if
22: end for
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the following diffusion equation,

−∇ · (a (x, ξ)∇u (x, ξ)) = 1 in D × IM , (20a)

u (x, ξ) = 0 on ∂D × IM , (20b)

where D ⊂ R2 and the dimension of the parameter M is specified when we pa-
rameterize the permeability field next. Given a realization of ξ, defining H1(D) :=
{u : D → R,

∫
D u2 dD < ∞,

∫
D(∂u/∂x1)2 dD < ∞ and

∫
D(∂u/∂x2)2 dD < ∞} and

H1
0(D) := {v ∈ H1(D) | v = 0 on ∂DD}, the weak form of (20) is to find u(x, ξ) ∈ H1

0(D)
such that (a∇u,∇v) = (1, v) for all v ∈ H1

0(D). We discretize in space using a bilinear
finite element approximation [50, 51]. The spatial domain in the following numerical
studies is taken to be D = (0, 1) × (0, 1). The problem is discretized in space on a
uniform 65× 65 grid (the number of the spatial degrees of freedom is Nh = 4225). Our
deterministic forward model G(ξ) is defined to be a set collecting solution values corre-
sponding to measurement sensors—{u(x, ξ), ξ ∈ d} where the sensor set d in this work
is defined to be the tensor product {xi} ⊗ {yi} of the one-dimensional grids: xi = 0.125i,
yi = 0.125i, for i = 1, . . . , 7. We set the measurement noise ε in (1) to independent and
identically distributed Gaussian distributions with mean zero and standard deviation
0.001. Figure 1 shows locations of sensors with the finite element grids and the true
permeability field used to generate the test data.
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(a) FEM grids and sensors (b) The actual permeability field

Figure 1: Setup of the numerical test.

We parameterize the permeability field a(x, ξ) by a truncated Karhunen–Loève
(KL) expansion [52, 53, 54] of a random field with mean function a0(x), standard
deviation σ and covariance function

Cov(x, y) = σ2 exp
(
−
|x1 − y1|

α
−
|x2 − y2|

α

)
, (21)

where α is the correlation length. The KL expansion is expressed as

a(x, ξ) = a0(x) +

M∑
k=1

√
λkak(x)ξk, (22)
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where {ξk}
M
k=1 are random variables, M is the number of KL modes retained, ak(x) and

λk are the eigenfunctions and eigenvalues of (21). We set a0(x) = 1 and σ = 0.25 in
the numerical studies. The priori distributions of {ξk}

M
k=1 are set to independent uniform

distributions with range I = [−1, 1]. Different values of the correlation length α are
studied. As usual, we set M large enough, such that 95% of the total variance of the
exponential covariance function are captured [55].

5.1. The impact of priors
Different priors are tested for this problem and we shall see how the priors affect

the inference results. We specifically test the prior permeability fields associated with
four different values of the correlation length α in (21): 5, 5/2, 5/4 and 5/8. To capture
95% of the total variance of the covariance function, we set the number of KL modes
retained (the dimension the patermeter ξ) as: M = 4 for α = 5, M = 8 for α = 5/2,
M = 23 for α = 5/4 and M = 73 for α = 5/8.

To generate posterior samples for comparison, the MCMC method described in
Algorithm 1 is first performed with the forward model evaluated by the finite element
method, which is referred to as the full MCMC method. We here draw N = 106

posterior samples using full MCMC with each of the above four priors. In all our
numerical tests, the proposal distribution π(·|ξ( j)) on line 3 of Algorithm 1 (and on
line 6 of Algorithm 4) is set to a multivariate Gaussian distribution with mean ξ( j)

and covariance matrix 0.032I, where ξ( j) is the j-th sample in the Markov chain and
I ∈ RM×M is an identity matrix. The acceptance rates (numbers of accepted samples
divided by the total sample size) are 47%,46%,42% and 26% for M = 4, M = 8,
M = 23 and M = 73 respectively, which indicates that the proposal is properly chosen
[56]. In addition as expected, the acceptance rate decreases as the parameter dimension
increases.

Figure 2 shows the estimated posterior mean permeability fields generated by the
sample means of full MCMC, each of which is defined as

EΞ∗ (a (x, ξ)) :=
∑
ξ∈Ξ∗

a (x, ξ)
|Ξ∗|

, (23)

where Ξ∗ is the set of MCMC samples and |Ξ∗| is its size. It is clear that, as the correla-
tion length α reduces (the dimension of the parameter M increases), the estimated mean
permeability field becomes visually similar to the actual field shown in Figure 1(b). In
particular, for a large correlation length α = 5, while the prior is very smooth, the esti-
mated posterior mean permeability is also too smooth compared with the actual field.
For a smaller correlation, e.g., α = 5/8, the prior becomes less smooth, and the es-
timated posterior mean permeability becomes more accurate. To assess the accuracy
of the estimated posterior mean permeability, we introduce the following quantity of
errors

εΞ∗ := ‖EΞ∗ (a (x, ξ)) − aactual‖0
/
‖aactual‖0 , (24)

where aactual is the actual permeability field shown in Figure 1(b). Figure 3 shows the
errors with respect to the correlation lengths, where it is clear that small correlation
lengths lead to small errors for our test problem. This motivates us to focus on priors
with small correlation lengths, which require high-dimensional parameterization.
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Figure 2: Full MCMC results.
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5.2. Performance of RB-ANOVA surrogates
We here focus on the two high-dimensional cases in our test problem (α = 5/4

with M = 23 and α = 5/8 with M = 73), and test the RB-ANOVA-MCMC approach
for these two cases. For comparison, an unadaptive version of RB-ANOVA-MCMC
is also tested in addition to the the adaptive RB-ANOVA-MCMC (Algorithm 4). The
unadaptive version, which is referred to as the prior RB-ANOVA-MCMC method in the
following, uses samples from the prior distribution to generate the RB-ANOVA model
through Algorithm 2 and performs the MCMC iterations using this model. There are
three tolerance parameters that need to be specified for generating the RB-ANOVA
model in Algorithm 2: tolpod for selecting singular vectors in POD on line 9 (details
are discussed in Section 3.2), tolrb on line 13 and tolanova on line 24. Following the
discussion of our work [33], we set them all to 10−4 in this work. For both prior
and adaptive RB-ANOVA-MCMC, 103 samples are used to generate the RB-ANOVA
model, i.e., Nmodel = 103 in Algorithm 4. Figure 4 shows estimated mean and variance
fields for the case α = 5/4 with M = 23, generated by the three approaches: full
MCMC, prior RB-ANOVA-MCMC, and adaptive RB-ANOVA-MCMC respectively
with 106 samples. Here, the estimated mean fields are computed through (23), and the
estimated variance fields are computed through

VΞ∗ (a (x, ξ)) :=
∑
ξ∈Ξ∗

1
|Ξ∗|

(
a (x, ξ) − EΞ∗ (a (x, ξ))

)2
, (25)

where EΞ∗ (a(x, ξ)) is defined in (23) and Ξ∗ is the posterior sample set generated by
each of the three approaches. From Figure 4, the estimated mean and variance fields
generated by prior and adaptive RB-ANOVA-MCMC look very similar to those gen-
erated by full MCMC. For the case α = 5/8 with M = 73, Figure ?? shows that the
estimated mean and variance fields generated by the three approaches are also very
similar.

As discussed in Section 1, the main cost of the MCMC procedure comes from
evaluating the forward model. For full MCMC, the forward model is evaluated using
the finite element method, while it is evaluated using the RB-ANOVA model in our
RB-ANOVA-MCMC approach. To assess the costs, we adopt the computational cost
model for reduced basis methods developed in our recent work [33], which is based
on counting relative sizes of linear systems (algebraic versions of (13) and (14)). In
this cost model, for a given finite element degrees of freedom Nh, the cost for solving
a full system (13) is defined to be a cost unit, which is assumed to be independent of
the parameter ξ. The cost of solving a reduced problem (14) with size Nr is modelled
by Nr/Nh. So, the cost of full MCMC is the number of forward model evaluations
(see Algorithm 1), and the cost of our adaptive RB-ANOVA-MCMC is the sum of the
costs for solving reduced systems (14) and full systems (13) involved Algorithm 4. In
addition, it is clear that the cost of prior RB-ANOVA-MCMC is the sum of the costs in
the construction procedure (Algorithm 2) and the costs of using Algorithm 3 to evaluate
forward models in the MCMC iterations.

Figure 6 shows the costs with respect to the number of samples generated by the
three methods. It is clear that, our adaptive RB-ANOVA-MCMC is the cheapest in the
these three methods. From Figure 6(a), to generate 106 posterior samples for the test
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Figure 4: Estimated mean and variance fields for α = 5/4 with M = 23.
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Figure 5: Estimated mean and variance fields for α = 5/8 with M = 73.
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problem with M = 23, the cost of adaptive RB-ANOVA-MCMC is around only one
percent of the cost of full MCMC, and it is also much smaller than that of prior RB-
ANOVA-MCMC. Note that the cost of full MCMC is slightly smaller than the sample
size, since the prior distribution of the parameter ξ is set to a uniform distribution in
[−1, 1]M and the proposed samples are rejected without evaluating the forward model
if they are outside of [−1, 1]M . For the case of M = 73 shown in Figure 6(b), the cost
of adaptive RB-ANOVA-MCMC to generate 106 samples is around ten percent of full
MCMC, and it is less than half of the cost of prior RB-ANOVA-MCMC. From both
Figure 6(a) and Figure 6(b), at an early stage when the MCMC sample sizes are around
103, adaptive RB-ANOVA-MCMC is more expensive than prior RB-ANOVA-MCMC.
Moreover, for the case of M = 73 shown in Figure 6(b), adaptive RB-ANOVA-MCMC
is even more expensive than full MCMC at this early stage. The extra cost of adaptive
RB-ANOVA-MCMC here comes from the reconstruction procedure (line 17 of Algo-
rithm 4). However, as the MCMC iteration continues, the reconstruction procedure
quickly stops, and the overall cost of adaptive RB-ANOVA-MCMC becomes much
smaller than the costs of prior RB-ANOVA-MCMC and full MCMC.
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Figure 6: Computational costs of full MCMC, prior RB-ANOVA-MCMC and adaptive RB-ANOVA-
MCMC.

To assess the accuracy of RB-ANOVA-MCMC, we evaluate the errors in mean and
variance estimates through the following quantities,

εmean := ‖EΞ∗ (a (x, ξ)) − Eref‖0
/
‖Eref‖0 , (26a)

εvar := ‖VΞ∗ (a (x, ξ)) − Vref‖0
/
‖Vref‖0 , (26b)

where EΞ∗ (a(x, ξ)) and VΞ∗ (a(x, ξ)) are defined in (23) and (25), and the reference mean
estimate Eref and the reference variance estimate Vref are generated by full MCMC with
106 samples using (23) and (25). Figure 7 and Figure 8 show the errors of full MCMC,
prior and adaptive RB-ANOVA-MCMC with respect to computational costs for the
test problems with M = 23 and M = 73 respectively. It is clear that, the adaptive RB-
ANOVA-MCMC method has the smallest errors when the costs are not very small. For
very small cost values, e.g., around 103 in Figure 8(a), the inefficiency of adaptive RB-
ANOVA-MCMC (large errors in mean estimates) here is caused by the reconstruction
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procedure. As the MCMC iteration continues and the cost values increase, cost spent
in the reconstruction procedure of the adaptive approach becomes invisible, and the
adaptively constructed model becomes significantly efficient . For example, for the case
with M = 23 shown in Figure 7(a), to achieve an accuracy in estimating the mean with
error smaller than 0.01, the cost required by adaptive RB-ANOVA-MCMC is less than
2000, which is less than a quarter of the cost required by prior RB-ANOVA-MCMC
and is only around five percent of the cost of required full MCMC. From Figure 7(b), to
achieve an accuracy in estimating the variance with error smaller than 0.2 in this case,
the cost of adaptive RB-ANOVA-MCMC is only around 1000, which is only around
twenty percent of the cost required by prior RB-ANOVA-MCMC and is around two
percent of the cost required by full RB-ANOVA-MCMC. Similarly, for the case with
M = 73, Figure 8(a) and Figure 8(b) show that to achieve given accuracies in mean and
variance estimates, adaptive RB-ANOVA-MCMC requires much less costs than prior
RB-ANOVA-MCMC and full MCMC.

Finally, the acceptance rates for generating 106 posterior samples using the three
approaches are shown in Table 1. It is clear that for both cases (M = 23 and M = 73),
the acceptance rates of prior and adaptive RB-ANOVA-MCMC are consistent with the
rates of full MCMC—they are the same up to two decimal places.
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Figure 7: Errors in mean and variance estimates (εmean and εvar) of full MCMC, prior RB-ANOVA-MCMC
and adaptive RB-ANOVA-MCMC, for α = 5/4 with M = 23.

Table 1: Acceptance rates of full MCMC, prior RB-ANOVA-MCMC and adaptive RB-ANOVA-MCMC to
generate 106 posterior samples.

M Full Prior Adaptive
23 0.4175 0.4193 0.4159
73 0.2605 0.2656 0.2642
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Figure 8: Errors in mean and variance estimates (εmean and εvar) of full MCMC, prior RB-ANOVA-MCMC
and adaptive RB-ANOVA-MCMC, for α = 5/8 with M = 73.

6. Conclusions

Conducting posterior-oriented model reduction is one of the fundamental concepts
for solving high-dimensional Bayesian inverse problems. With a focus on ANOVA,
this paper proposes a novel adaptive reduced basis ANOVA (RB-ANOVA) model with
respect to posterior distributions to accelerate MCMC procedures. The first novelty
of our new approach is the adaptive ANOVA decomposition based on the posterior
mean estimates. It is known that the efficiency of the ANOVA decomposition is de-
pendent on the choices of anchor points. Through adaptively updating the anchor point
by posterior mean estimates during MCMC iterations, an efficient ANOVA decom-
position is obtained. Second, for all ANOVA terms, physical reduced bases are gen-
erated based on the posterior samples, which restricts the greedy algorithm to these
samples so as to obtain optimal physical approximation bases for the Bayesian inver-
sion problem. Numerical results demonstrate the overall efficiency of the proposed
RB-ANOVA-MCMC algorithm. As our algorithm is based on ANOVA decomposition
with a single anchor point, it currently can only be applied to Bayesian inversion prob-
lems with unimodal posterior distributions. For multimodal distributions, a possible
solution is to do ANOVA decomposition with multiple anchor points. Designing and
analyzing ANOVA decomposition with multiple anchor points for both forward and
inverse UQ problems will be the focus of our future work.

Acknowledgments: Q. Liao is support by NSFC under grant number 11601329
and J. Li is supported by the NSFC under grant number 11771289.

Reference

References

[1] A. Tarantola, Inverse problem theory and methods for model parameter estima-
tion, SIAM, 2005.



24

[2] A. Tarantola, Popper, Bayes and the inverse problem, Nature physics 2 (8) (2006)
492–494.

[3] J. Kaipio, E. Somersalo, Statistical and computational inverse problems, Vol. 160,
Springer Science & Business Media, 2006.

[4] C. P. Robert, G. Casella, Monte carlo statistical methods (springer texts in statis-
tics).

[5] J. Virieux, S. Operto, An overview of full-waveform inversion in exploration geo-
physics, Geophysics 74 (6) (2009) WCC1–WCC26.

[6] W. W.-G. Yeh, Review of parameter identification procedures in groundwater hy-
drology: The inverse problem, Water Resources Research 22 (2) (1986) 95–108.

[7] Y. Marzouk, D. Xiu, A stochastic collocation approach to Bayesian inference in
inverse problems, Communications in Computational Physics 6 (4) (2009) 826–
847.

[8] Y. M. Marzouk, H. N. Najm, Dimensionality reduction and polynomial chaos
acceleration of Bayesian inference in inverse problems, Journal of Computational
Physics 228 (6) (2009) 1862–1902.

[9] Y. M. Marzouk, H. N. Najm, L. A. Rahn, Stochastic spectral methods for efficient
Bayesian solution of inverse problems, Journal of Computational Physics 224 (2)
(2007) 560–586.

[10] J. B. Nagel, B. Sudret, Spectral likelihood expansions for Bayesian inference,
Journal of Computational Physics 309 (2016) 267–294.

[11] L. Yan, L. Guo, Stochastic collocation algorithms using l 1-minimization for
Bayesian solution of inverse problems, SIAM Journal on Scientific Computing
37 (3) (2015) A1410–A1435.

[12] I. Bilionis, N. Zabaras, Solution of inverse problems with limited forward solver
evaluations: a Bayesian perspective, Inverse Problems 30 (1) (2013) 015004.

[13] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3) (2001)
425–464.

[14] H. Wang, J. Li, Adaptive Gaussian process approximation for Bayesian inference
with expensive likelihood functions, arXiv preprint arXiv:1703.09930.

[15] X. Ma, N. Zabaras, An efficient Bayesian inference approach to inverse problems
based on an adaptive sparse grid collocation method, Inverse Problems 25 (3)
(2009) 035013.

[16] T. Cui, Y. M. Marzouk, K. E. Willcox, Data-driven model reduction for the
Bayesian solution of inverse problems, International Journal for Numerical Meth-
ods in Engineering 102 (5) (2015) 966–990.



25

[17] D. Galbally, K. Fidkowski, K. Willcox, O. Ghattas, Non-linear model reduction
for uncertainty quantification in large-scale inverse problems, International jour-
nal for numerical methods in engineering 81 (12) (2010) 1581–1608.

[18] C. Lieberman, K. Willcox, O. Ghattas, Parameter and state model reduction for
large-scale statistical inverse problems, SIAM Journal on Scientific Computing
32 (5) (2010) 2523–2542.

[19] J. Wang, N. Zabaras, Using Bayesian statistics in the estimation of heat source in
radiation, International Journal of Heat and Mass Transfer 48 (1) (2005) 15–29.

[20] C. Nguyen, G. Rozza, D. B. P. Huynh, A. T. Patera, Reduced basis approx-
imation and a posteriori error estimation for parametrized parabolic PDEs;
Application to real-time Bayesian parameter estimation, in: L. Tenorio, B. van
Bloemen Waanders, B. Mallick, K. Willcox, L. Biegler, G. Biros, O. Ghattas,
M. Heinkenschloss, D. Keyes, Y. Marzouk (Eds.), Large Scale Inverse Problems
and Quantification of Uncertainty, no. Chapter 8 in Wiley Series in Computa-
tional Statistics, John Wiley & Sons, UK, 2010, pp. 151–178, ePFL-IACS report
11.2008.
URL http://augustine.mit.edu/methodology/methodology_

technical_papers.htm

[21] M. Frangos, Y. Marzouk, K. Willcox, B. van Bloemen Waanders, Surrogate and
Reduced-Order Modeling: A Comparison of Approaches for Large-Scale Statis-
tical Inverse Problems, John Wiley & Sons, Ltd, 2010, pp. 123–149.

[22] J. Li, A note on the Karhunen–Loève expansions for infinite-dimensional
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[53] I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic
partial differential equations with random input data, SIAM Journal on Numerical
Analysis 45 (2007) 1005–1034.

[54] H. Elman, C. Miller, E. Phipps, R. Tuminaro, Assessment of collocation and
Galerkin approaches to linear diffusion equations with random data, International
Journal for Uncertainty Quantification 1 (2011) 19–34.

[55] C. Powell, H. Elman, Block-diagonal preconditioning for spectral stochastic
finite-element systems, IMA Journal of Numerical Analysis 29 (2009) 350–375.



28

[56] G. O. Roberts, J. S. Rosenthal, Optimal scaling for various metropolis-hastings
algorithms, Statistical Science 16 (2001) 351–367.


	1 Introduction
	2 Bayesian inverse problems
	3 The RB-ANOVA method
	3.1 ANOVA decomposition
	3.2 The RB approximation
	3.3 The RB-ANOVA model

	4 The adaptive RB-ANOVA method to accelerate MCMC
	5 Numerical study
	5.1 The impact of priors
	5.2 Performance of RB-ANOVA surrogates

	6 Conclusions
	Bibliography

