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Abstract The Particle filtering (PF) method is often used to estimate the
states of dynamical systems in a Bayesian framework. A major limitation of
the standard PF method is that the dimensionality of the state space increases
as the time proceeds and eventually may cause degeneracy of the algorithm. A
possible approach to alleviate the degeneracy issue is to compute the marginal
posterior distribution at each time step, which leads to the so-called marginal
PF method. In this work we propose a defensive marginal PF algorithm which
constructs a sampling distribution in the marginal space by combining the
standard PF and the EnKF methods. With numerical examples we demon-
strate that the proposed method has competitive performance against many
existing algorithms.
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1 Introduction

Assimilation of data into mathematical models is an essential task in many
fields of science and engineering, ranging from meteorology [11] to robotics [23].
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Simply speaking, data assimilation is to estimate the optimal prediction based
on both the output of the mathematical model, which is only an approximation
of the real-world system, and the observations that are subject to measure-
ment noise. Many commonly used data assimilation methods, most notably,
the Kalman filter [5,19], are based on linear control theory and optimization,
and their applications to nonlinear systems are usually challenging, which of-
ten require some linearization or approximation processes, e.g. the extended
Kalman filter [14] or the ensemble Kalman filter [10]; sometimes they can even
fail [16,21] when strong nonlinearity is present.

On the other hand, the sequential Monte Carlo (SMC) method (see e.g.,
[2]), also known as particle filtering (PF), can deal with problems with strongly
nonlinear models, without any linearization or approximation. The basic idea
of PF is the following. Suppose that the mathematical model is a nonlinear
stochastic dynamical system, and our goal is to estimate the hidden states
{xt}Tt=0 of the system from noisy partial observations {yt}Tt=0 of the system.
This can be done with the so-called Bayes filter (also known as the optimal
filter), where the posterior probability density function (PDF) of the hidden
states is estimated by the Bayes’ rule recursively [8]. As the posterior distribu-
tion usually does not admit an analytical form, the PF method approximates
the posterior distribution with Monte Carlo sampling (hence its name SMC).
That is, the PF method employs a number of independent random realizations
called particles, sampled directly from the state space, to represent the pos-
terior probability: namely, at each time t, the method first generates particles
and then updates the weight of each particle according to the observations yt.
For further discussions on the PF method and its applications, we refer to [2,
3,9,6] and the references therein.

The PF method in its very basic form can be understood as to draw
weighted samples according to the joint distribution π(x0:t|y0:t) using the
importance sampling (IS) technique. When t is large, the method thus per-
forms IS simulations in a high-dimensional state space, which may result in
degeneracy of the particles (the IS weights becoming zero for all but one par-
ticle) [9]. On the other hand, often in practice one is only interested only in
the marginal distribution π(xt|y0:t), which implies that it is unnecessary to
sample the high-dimensional joint distribution π(x0:t|y0:t). Instead, one can
perform IS only in the marginal space of π(xt|y0:t), and based on this idea, a
method called marginal particle filter (MPF) was proposed in [15] to alleviate
the degeneracy issue. The method later has found applications in the estima-
tion of filter derivative [20] and robot localization [18]. A key step in this kind
of methods is to construct an IS distribution that can well approximate the
marginal posterior π(xt|y0:t) at each time step. To this end, the MPF method
in [15] requires to do a kernel density estimation of the marginal posterior
π(ut|y0:t) from the weighted samples at each time t, which can be a rather
challenging task when the number of particles is limited. The main purpose of
this work is to provide an alternative approach to construct the IS distribution
in the marginal space. In particular, we consider the special case where the
observation operator is linear and the observation noise is Gaussian, and we
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propose a robust and efficiently method to compute the marginal IS distribu-
tion based on the ensemble Kalman filter (EnKF). A limitation of the EnKF
based IS distribution is that (just like the EnKF method itself) it may result
in poor performance when the posteriors are strongly non-Gaussian. To ad-
dress the issue, we introduce a defensive scheme to construct an IS distribution
by combining the EnKF and the standard PF methods, and with numerical
examples, we demonstrate that the new method performs well even when the
posteriors significantly deviate from a Gaussian distribution.

The rest of the paper is arranged as follows. In Section 2, we first introduce
the basic setup of the filtering problem of dynamical models and then discuss
the standard PF and EnKF methods for solving this type of problems. In
Section 3, we present in detail our defensive MPF method. Numerical examples
are provided in Section 4 to compare the performance of the proposed method
and the existing ones, and finally Section 5 offers some concluding remarks.

2 The PF and the EnKF methods

We give a brief overview of the formulation of the PF and the EnKF methods
in this section.

2.1 State-Space Models

We consider the filtering problem in a dynamic state-space form:

ut = ft(ut−1) + εt, u0 ∼ π(u0), (2.1a)

yt = Htut + ηt, (2.1b)

where ut ∈ Rnu denotes the state vector at time t, and yt ∈ Rnv represents
the observed data at time t. In addition, εt and ηt are the propagation and
the observation noise respectively, and Ht is the observation operator. In a
filtering problem, the observation yt arrives sequentially in time and the goal
is to estimate the true state ut, based on the prediction by (2.1a) and the
measurement (2.1b). Finally we emphasize here that the dynamic model (2.1a)
is Markovian, in that any future ut+1 is independent of the past given the
present ut:

π(ut+1|u0:t,y0:t) = π(ut+1|ut) and π(yt+1|u0:t+1,y0:t) = π(yt+1|ut+1),
(2.2)

which will be used in the derivation of the SMC method.

2.2 The particle filter

In general, we can formulate the filtering problem in a Bayesian inference
framework: i.e., we try to infer state parameters u0:T from data y0:T for some
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positive integer T , and ideally we can compute the posterior distribution using
the Bayes’ formula:

π(u0:T |y0:T ) =
π(y0:T |u0:T )π(u0:T )

π(y0:T )
.

As is mentioned earlier, the posterior distribution π(u0:T |y0:T ) usually does
not admit an analytical form, and the sequential Monte Carlo method can be
used to address the issue. Simply speaking, SMC allows to generate (weighted)
samples, called particles, from the posterior distribution π(u0:T |y0:T ), which
can be used to evaluate any quantities of interest associated with the posterior
π(u0:T |y0:T ).

We now give a brief overview of the SMC method, and it is easier to start
with a standard MC estimation. Suppose that there is a real-valued function
h(·) : Rt×nu → R and we are interested in the expectation

I = Eu0:T |y0:T [h(u0:T )] =

∫
h(u0:T )π(u0:T |y0:T )du0:T

which can be estimated with a MC estimator:

Î =
1

M

M∑
m=1

h(um0:T ),

where {um0:T }Mm=1 are samples drawn from π(u0:T |y0:T ). It should be clear that

the MC estimator Î is an unbiased estimator of I. In many practical problems,
drawing samples from the target distribution π(u0:T |y0:T ) can be a challenging
task, and in this case, we can use the technique of importance sampling (IS).
The IS method introduces an importance distribution qt(u0:T ) and rewrites

I =

∫
h(u0:T )π(u0:T |y0:T )dun =

∫
h(u0:T )w(u0:T )q(ut|y0:T )dut

with wt(u0:T ) = π(u0:T |y0:T )/qt(u0:T ) is the IS weight. It yields directly an
IS estimator of I:

ÎIS =
1

M

M∑
m=1

h(um0:T )w(um0:T ),

where the samples{um0:T }Mm=1 are drawn from the importance distribution
qt(u0:T ), and it can also be verified that the IS estimator is also an unbi-
ased one for I. The IS requires to generate samples from q(u0:T ) and to draw
the joint sample u0:T from a joint distribution q(u0:T ). Using the Markovian
property in Eq. (2.2), we can write the posterior distribution π(u0:T |y0:T ) in
the form of

π(u0:T |y0:T ) =
1

Z T
π(y0|u0)π(u0)

T∏
t=1

π(yt|ut)π(ut|ut−1), (2.3)
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where ZT is the normalization constant. Similarly, we can also assume that
the importance distribution q(u0:T ) is also given in such a sequential form:

q(u0:T ) = q0(u0)

T∏
t=1

qt(ut|ut−1),

and the resulting IS weight function is

w0(u0) =
π(y0|u0)π(u0)

q0(u0)
, (2.4)

and

wT (u0:T ) =
1

Z
w0(u0)

T∏
t=1

αt(u0:t), (2.5)

for t > 0, where αt is the incremental weight function:

αt(u0:t) =
π(yt|ui)π(ut|ut−1)

qt(ut|ut−1)
. (2.6)

We note that, in the formulation above, we do not have the knowledge of the
normalization constant Z. In the implementation, however, we can simply set
the normalization constant Z = 1, and renormalize the weights computed.
Namely, suppose that we draw a set of samples {um0:T }Mm=1 from the IS distri-
bution q(u0:T ), and we compute the weights {wmT }Mm=1 of the samples using
Eqs. (2.4)-(2.6) (and taking Z = 1), and then renormalize the weights as,

wmT =
wmT∑M

m′=1 w
m′
T

. (2.7)

The SMC algorithm performs the procedure described above in a recursive
manner:

– At t = 0, sample {um0 }Mm=0 ∼ q0(u0), and compute {wm0 = w0(um0 )}Mm=1

using Eq (2.4); renormalize the weights: wm0 = 1∑M
m′=1

wm′
0

wm0 .

– At t > 1:

– prediction step: for each m = 1...M , draw umt ∼ qt(ut|umt−1) ;
– updating step: for each m = 1...M , compute the incremental function
αmt from Eq. (2.6); update the weights wmt = αmt w

m
t−1, and renormalize

them as wmt = 1∑M
m′=1

wm′
t

wmt for each m = 1...M .

In the standard SMC method, one simply takes q0(u0) = π(u0) and

qt(ut|ut−1) = π(ut|ut−1),

and as a result, w0 = π(y0|u0), and the incremental weight function becomes

αt(u0:t) = π(yt|ut). (2.8)
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In the SMC algorithm, the variance of the importance weight wt(u0:t) will
increase over time, and thus at the time t increases, the IS weights will become
negligibly small for all but one sample, an issue known as particle degeneracy.
To address the issue, a resampling step is often performed to obtain a set of
equally weighted particles: namely one first draws U1 from uniform distribution
U [0, 1/M ] and then defines Um = U1 + (m− 1)/M for m = 1...M .

2.3 The ensemble Kalman filter

As is mentioned in Section 1, we consider in this work a special case where the
observation operator Ht is linear and the observation noise ηt is Gaussian. In
this case, the marginal posterior distributions π(ut|y0:t) can be approximated
by the EnKF method. The basic idea of the EnKF method is the following.
Suppose that at time t, the observation noise is ηt ∼ N(0, Rt) and the prior
π(ut|y0:t−1) can be approximated by a Gaussian distribution with mean µ̃t
and covariance Σ̃t. It follows that the posterior distribution π(ut|y0:t) is also
Gaussian and its mean and covariance can be obtained analytically:

µt = µ̃t +Kt(yt −Htµ̃t), Σt = (I −KtHt)Σ̃t, (2.9)

where I is the identity matrix and

Kt = Σ̃tH
T
t (HtΣ̃tH

T
t +Rt)

−1 (2.10)

is the so-called Kalman gain matrix. Moreover, when the prior π(ut|y0:t−1) is
exactly Gaussian, this formulation becomes the standard Kalman filter.

In the EnKF method, one avoids computing the mean and the covariance
directly in each step. Instead, both the prior and the posterior distributions
are represented with a set of samples, known as an ensemble. Specifically, let
{ũmt }Mm=1 be a set of samples drawn from the prior distribution π(ut|y0:t−1),
and we shall compute a Gaussian approximation of π(ut|y0:t−1) from the sam-
ples. Namely we estimate the mean and the covariance of π(ut|y0:t−1) from
the samples:

µ̃t =
1

M

M∑
m=1

ũmt , Σ̃t =
1

M − 1

M∑
m=1

(ũmt − µ̃t)(ũ
m
t − µ̃t)

T , (2.11)

and as is mentioned earlier, the prior distribution π(ut|y0:t−1) can be approx-
imated by N(µ̃t, Σ̃t). It follows immediately that the posterior distribution is
also Gaussian with mean µt and covariance Σt given by Eq. (2.9). Moreover
it can be verified that the samples

umt = ũmt +Kt(yt − (Htũ
m
t + ηmt )), ηmt ∼ N(0, Rt), (2.12)

follow the distribution N(µt, Σt), provided that ũmt ∼ N(µ̃t, Σ̃t) for all m =
1...M . That is, {umt−1}Mm=1 is the (posterior) ensemble at step t. Given the
ensemble {umt−1}Mm=1 at time t−1, the EnKF algorithm performs the following
two steps at time t:
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– prediction step: for each m = 1...M , draw ũmt = ft(ũt|umt−1) + εmt ;
– updating step: for each m = 1...M , compute umt = ũmt +Kt(yt −Htũ

m
t ).

Finally we should note that, as the dynamical model is generally nonlinear, the
EnKF method can only provide an approximation of the true posterior distri-
bution, no matter how large the sample size is, which is certainly a significant
limitation of the method.

3 The defensive marginal PF algorithm

As is discussed in Section 2.2, the standard SMC method aims to perform IS
for the joint posterior distribution π(u0:t|y0:t), where the dimensionality of the
state space grows as t increases. On the other hand, in many practical filtering
problems, one is often only interested in the marginal posterior distribution at
each step, π(ut|y0:t), rather than the whole joint distribution. This then yields
a simple idea: if we perform IS in the marginal space, the dimensionality of
the problem is thus fixed and much smaller than that of the joint parameter
space. For any time t, suppose that there is a function defined on the marginal
space: ht : Rnu → R, and we are interested in the posterior expectation of
ht(ut):

I =

∫
ht(ut)π(ut|y0:t)dut

We shall construct an IS distribution qt(ut|y0:t), and estimate I as

ÎIS =
1

M

M∑
m=1

ht(u
m
t )wt(u

m
t ), (3.1)

where umt are drawn from qt(ut) and wt(u
m
t ) = π(ut|y0:t)/qt(ut). The key

issue here is certainly to find a good IS distribution qt(ut), and ideally this IS
distribution should approximate the marginal posterior π(ut|y0:t). In [15], a
kernel-based IS distribution is suggested:

qt(ut) =

M∑
m=1

wt−1(umt−1)Qm(ut|umt−1),

where each Qm is obtained using a weighted Kernel density estimation (KDE)
method. As a result the method requires to perform a weighed KDE procedure
at each time step, which can be computationally intensive even with some
fast KDE algorithms (e.g. the dual-tree methods). We also note that another
special choice of the IS distribution is

qt(ut) = π(ut|y0:t−1), (3.2)

and it should be clear that the associated weight becomes wt(ut) = π(yt|ut)
and the algorithm is essentially equivalent to the standard PF method.
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In our setting, the EnKF method can naturally yield such an approximate
marginal posterior distribution in a very efficient and effective manner. Loosely
speaking, at a given time, we first compute an ensemble of the marginal pos-
terior distribution using the EnKF scheme, estimate the associated Gaussian
approximation from the ensemble, and use it as the IS distribution in the
marginal SMC. Specifically, let {umt }Mm=1 be the posterior ensemble at time
t obtained with the EnKF formulation, we use the following procedure to
compute the IS distribution:

Algorithm 1: Estimating the IS distribution from the ensemble

1. estimate the mean and covariance from the posterior ensemble {umt }Mm=1:

µEn =
1

M

M∑
m=1

umt , ΣEn =
1

M − 1

M∑
m=1

(umt − µEn)(umt − µEn)T ; (3.3)

let q′EnKF(u) = N(µEn, ΣEn);
2. draw M samples u1t , ..., u

M
t from q′EnKF, and compute the weight of each

sample:

wm =
π(ut|y0:t)
q(ut)

;

3. estimate the mean and covariance of the weighted ensemble {(umt , wm)}:

µupdated =

M∑
m=1

wmumt , Σupdated =

M∑
m=1

wm(umt − µupdated)(umt − µupdated)T ;

(3.4)
let qEnKF = N(µupdated, Σupdated).

It is worth noting that, the EnKF ensemble does not exactly follow the
posterior distribution, and so in the procedure above, instead of using qEnKF,
i.e., the Gaussian approximation estimated directly from the EnKF ensemble,
we introduce an additional step, in which we first generate a weighted ensemble
according to the true posterior, and then update the Gaussian approximation
according to this weighted ensemble. By doing so we ensure that the Gaussian
approximation is constructed with respect to the true posterior ensemble.

A well-known issue in the EnKF method is that, due to the nonlinearity of
the model, the ensemble computed by the method may become increasingly
inaccurate as the time increases; as a result the IS distribution obtained with
the EnKF method may deviate significantly from the true marginal posterior,
leading to poor performance or even failure of the IS estimator in Eq. (3.1). To
address the issue, we use the idea of defensive importance sampling (DIS) [13].
The basic idea behind DIS is quite straightforward: namely, to prevent the
failure of the IS distribution computed with the EnKF method, one uses a
mixture of the Gaussian approximation computed by EnKF and a safe or de-
fensive distribution, which in our case is the standard PF distribution. Namely,
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our defensive IS distribution is:

qt(ut) = aqEnKF(ut) + (1− a)qPF(ut), (3.5)

where qEnKF is the Gaussian distribution computed with the EnKF procedure
described above, qPF is the distribution given by Eq. (3.2), which, as discussed
earlier, is equivalent to the standard PF, and a ∈ [0, 1] is the weight of the
EnKF component. An important issue here is how to compute the IS weight
of each sample. It is easy to see that the weight function is

wt(ut) =
π(ut|y0:t)

aqEnKF + (1− a)qPF
=

1
a

wEnKF
+ (1−a)

wPF

, (3.6)

where

wEnKF =
π(yt|ut)π(ut|y0:t−1)

π(yt)qEnKF(ut)
, wPF = π(yt|ut). (3.7)

Computing wPF is rather straightforward, but computing wEnKF involves the
evaluation of the integral:

π(ut|y0:t−1) =

∫
π(ut|ut−1)π(ut−1|y0:t−1)du0:t−1. (3.8)

In practice, this integral is approximated by

π(ut|y0:t−1) ≈
M∑
m=1

wmt−1π(ut|umt−1),

where {umt−1}Mm=1 are the samples generated in the previous step and wmt−1
is the associated weight of each sample umt−1 (namely, the weighted ensemble
{(umt−1, wmt−1)}Mm=1 follows the distribution π(ut−1|y0:t−1)). Finally e provide
the complete defensive marginal PF (DMPF) algorithm in Algorithm 2.

Algorithm 2: The DMPF algorithm

1 At t = 0:

2 Prediction: sample {ũm0 }Mm=1 from π0(·);
3 Updating: um0 = ũm0 +K0(y0 −H0ũ

m
0 ) for m = 1...M ;

4 Compute qENKF using Algorithm 1 and particles {um0 }Mm=1;
5 Draw M particles from q0 from Eq. (3.5) for t = 0, and compute the weights

using Eq. (3.7), yielding {(um0 , wm)}Mm=1;
6 for t=1...T do
7 Prediction: for each m = 1...M , draw ũmt = ft(ũt|umt−1) + εmt ;

8 Updating: umt = ũmt +Kt(yt −Htũmt ) for m = 1...M ;

9 Compute qENKF using Algorithm 1 and particles {umt }Mm=1;
10 Draw M particles from qt given by Eq. (3.5), and compute the weights using

Eq. (3.7), yielding {(umt , wm)}Mm=1;

11 end
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4 Numerical examples

In this section we provide several numerical examples to demonstrate the per-
formance of the proposed DMPF method. In all these examples, we also im-
plement the standard PF and the EnKF method for comparison purposes.

4.1 Lorenz 63 system

Our first example is the classical Lorenz 63 system [17], an often used bench-
mark problem for testing data assimilation algorithms. Specifically the system
is described by,  ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz.

(4.1)

For simplicity, we consider a discrete-time version of the system with additive
noise: xt+1 = xt + σ(yt − xt)∆t+ ξxt ,

yt+1 = yt + (xt(ρ− zt)− yt)∆t+ ξyt ,
xt+1 = zt + (xtyt − βzt)∆t+ ξzt ,

(4.2)

where ∆t is the discrete-time step size. Here we assume that the model noise
ξxt , ξ

y
t and ξzt are all i.i.d zero-mean Gaussian with standard deviation σξ.

Moreover at each time t the observed data is taken to be xdt = xt + ηxt ,
ydt = yt + ηyt and zdt = zt + ηzt , where the observation noise ηxt , ηyt and ηzt are
once again assumed to be i.i.d. zero-mean Gaussian with standard deviation
ση.

In our numerical tests we take the parameters to be σ = 10, ρ = 28,
β = 8/3, ∆t = 0.01, and the initial condition to be

[x0, y0, z0] = [1.51, −1.53, 25.46].

The noise standard deviations are σε = 0.5 and ση = 1. We generated a true
state and the associated data points from the model, which are shown in Fig. 1.

As is mentioned at the beginning of Section 4, we estimate the states from
the simulated data with the proposed DMPF method, as well as the stan-
dard PF and the EnKF methods. We note here that in all the three examples
we use a = 0.6 in the DMPF method. With each method, we generate 104

particles. We also perform a PF simulation with 105 particles and regard the
results as the true posterior. We first compare the posterior mean computed
with the different methods in Fig. 2, and note here that all these results for
posterior mean agree very well with each other and so all the plots in Fig. 2
are indistinguishable. We then compare the posterior variances computed by
all the methods and show the results in Fig. 3. One can see from the figure
that, for the variances, the results of both the EnKF and the DMPF methods
agree reasonably with the true posterior variance, while those of the standard
PF (with 104 particles) are subject to much stronger fluctuations than the
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Fig. 1 The true state (dashed lines) and the simulated observations (dots) of the Lorenz
63 model.

other ones. These results suggest that for problems where the posterior dis-
tribution can be well approximated by the EnKF approximation, our DMPF
method which utilises the EnKF approximation can substantially improve of
the performances over the standard PF.

4.2 Bernoulli model

Our second example is the the Bernoulli equation,

dx

dt
− x = −x3, x(t0) = x0, (4.3)

which admits an analytical solution,

x(t) = M(x0) = x0 × (x20 + (1− x20)e−2∆t)−1/2, (4.4)

where∆t = t−t0. Here for simplicity we use the analytical solution to construct
the discrete-time model:

x0 ∼ N (µ0, σ0),
xk = M(xk−1) + ξk,
yk = xk + ηk,

(4.5)
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Fig. 2 The posterior means computed by the different methods for the Lorenz 63 model.

where ξk and ηk are the model and observation noise respectively. In this
example we set x0 ∼ N (−0.1, 0.22), ∆t = 0.3 and the total number of steps
to be 50. Moreover, we assume that both ξk and ηk follow zero-mean Gaus-
sian distributions with standard deviation 0.01 and 0.8. This is an often used
example which admits strongly non-Gaussian posteriors [1,22].

In this example we also use a simulated true state and generate noisy data
from it, where both of them are shown in Fig. 4. We first estimate the states
using the PF method with 5 × 105 particles which we use to represent the
true posteriors. We then perform the DMPF, standard PF and the EnKF
methods to obtain the posterior statistics, with 3 × 104 particles for each
method. We compare the posterior means and variances computed by all the
methods in Fig. 5. One can see from the plots that, as both the PF and the
DMPF methods yield results in a good agreement with the truth, those of
the EnKF significantly depart as the time proceeds. The poor performance
of the EnKF method in this example can be understood by examining the
posterior distributions: in Fig. 6, we plot the posterior distributions computed
by all methods at steps 5 and 10 respectively (the distributions of the PF and
DMPF methods are obtained by performing a kernel density estimation with
the particles). As one can see here, while at k = 5 the EnKF approximation
remains rather close to the true posterior distribution, it significantly deviates
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Fig. 3 The posterior variances computed by the different methods for the Lorenz 63 model.
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Fig. 4 The true state (dashed lines) and the simulated observations (dots) of the Bernoulli
model.

from the the true posterior at k = 10 because of the cumulation of the non-
Gaussianlaity as time increases. It is important to note that our DMPF method
can nevertheless produce results agreeing with the true posteriors, even though
the EnKF method fails.
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Fig. 5 Left: the posterior means computed by the different methods. Right: the posterior
variances computed by the different methods.
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Fig. 6 Left: the posterior distributions at k = 5. Right: the posterior distributions at k = 10.
In both plots, the solid lines are the true posteriors (results of PF with 50,000 particles) and
the dashed ones are the EnKF approximations.

4.3 Localization of a car-like robot

Finally we consider a real-world problem, in which the position of a remotely
controlled car-like robot is inferred from the on-board GPS data. The kine-
matic model of the car-like robot is described by the following non-linear
system [15]:

ẋ = v cos(θ),
ẏ = v sin(θ),

θ̇ = v
L tan(φ),

φ̇ = ω,

(4.6)

where (x, y) are the position coordinates of the vehicle, L is its length, θ is the
steering orientation angle, φ is the front wheel orientation angle, and v and ω
are the linear and angular velocities respectively. The schematic illustration of
the model is shown in Fig. 7. In this problem, we assume the linear and the
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angular velocities v and ω are controlled as follows:

v = 0.7| sin(t)|+ 0.1,
ω = 0.08 cos(t),

(4.7)

The discreet-time version of the model is described by:


xt+1

yt+1

θt+1

φt+1

 = M(t,


xt
yt
θt
φt

) +


εx
εy
εθ
εφ

 (4.8)

where M stands for the standard fourth-order Runge-Kutta solution of Eq. (4.6)
with ∆t = 0.05. In Eq. (4.8), εx, εy, εθ and εφ are the errors in the state pro-
cess. In particular all these errors are taken to be zero mean Gaussian with
standard deviation 0.3.

On the other hand, the GPS makes measurements of the pose (x, y, θ) of
the vehicle, and specifically these measurements are taken to be

x̂ = x+ ηx, ŷ = y + ηy, θ̂ = θ + ηθ,

where ηx, ηy and ηθ are the observation noise following N(0, 0.32). We shall
estimate x, y, θ and ω from these measurements for a time period T = 5
that is discretised into 100 steps. The true states of the system are randomly
generated and the measurement data are simulated from the generated true
states using the prescribed model; both the true states and the associated
measurements are plotted in Fig. 8. We emphasise here that no observations
are made on the front-wheel angle φ and so only the true states of it are plotted
in Fig. 8. Once again we apply the three methods to estimate the states of
the four parameters in this problem, and with each method we generate 104

particles. We then compare the results of the three methods with the true
posterior statistics, which are obtained by using the standard PF with 5× 105

particles. We show the comparison of the results in Fig. 9 (posterior mean)
and Fig. 10 (posterior variance). From Fig. 9 we can see that all the posterior
means computed by all the methods agree very well with the true posterior
mean for parameters x, y and θ; for parameter φ on which we do not have direct
observation, the results of the EnKF method deviate significantly from those of
the others after around 70 steps. For the posterior variance shown in Fig. 10,
we observe that for all four parameters, the results of the standard PF are
subject to much fluctuations than those of the DMPF and the EnKF methods
; moreover similar to the posterior mean, the posterior variance estimated by
the EnKF method also deviate from the true result after about 70 steps. Thus
for this problem, the proposed DMPF method has the best overall performance
in all the three methods.
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Fig. 7 The schematic illustration of the car-like robot model.
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Fig. 8 The true state (dashed lines) and the simulated observations (dots) of the car-like
robot model.

5 Conclusions

In summary, we have presented a marginal particle filtering method that sam-
ples the posterior distribution in the marginal state space. In particular, we
propose a defensive scheme to construct an IS distribution in the marginal
space by combining the PF and the EnKF methods, which ensures that the al-
gorithm performs well even when the posterior is strongly non-Gaussian. With
numerical examples, we demonstrate that the proposed method has competi-
tive performance against the PF and the EnKF methods. We believe that the
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Fig. 9 Left: the true posterior distribution. Right: the KL distance between pn−1 and pn,
plotted against the number of iterations.
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method can be useful in a wide range of practical data assimilation problems
where the other popular existing methods may not perform well.

The proposed method can be improved in several aspects. First, in this
work we have mainly considered problems where the marginal state space is of
rather low dimensions. On the other hand, for problems of high dimensions, it
becomes very challenging to accurately estimate the IS weights in each step.
This issue needs to be addressed and so the MPF type of methods can apply to
high dimensional problems. Second, as has been discussed in [15], computing
the IS weights in each time step is of M2 complexity where M is the number
of particles, and as a result the method become prohibitively expensive for
problems requiring a large number of particles. It has been suggested in [15]
that some approximation techniques such as the fast multipole method [12]
can be used to reduce the computational cost, but further improvement of the
efficiency is still needed to make the method useful in large scale problems.
Finally in the present form of our method, the EnKF approximation is taken
to be a Gaussian distribution, but this restriction can be relaxed by using, for
example, mixtures to represent the marginal posteriors [4,22,7]. We plan to
study these issues and improve the MPF method in the future.
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