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Abstract. A commonly used dynamic epistemic logic is one obtained by adding com-

mon knowledge and public announcements to a basic epistemic logic. It is known from

[8] that adding public substitutions to such a logic adds expressivity over the class K of

models. Here I show that substitutions also add expressivity over the classes KD45, S4

and S5 of models.

Since the combination of common knowledge, public announcements and substitutions

was shown in [8] to be equally expressive to relativised common knowledge these results

also show that relativized common knowledge is more expressive than common knowledge

and public announcements over KD45, S4 and S5. These results therefore extend the

result from [3] that shows that relativized common knowledge is more expressive than

common knowledge and public announcements over K.

§1. Introduction. Two operators often added to a basic epistemic logic are
common knowledge and public announcements, as in [10, 1] and many subsequent
publications such as [7, 5, 3, 9, 2]. Public announcements can be used to model
information change. For example, in a card game an agent a can announce to
the other agents what his card is. After this announcement the other agents
will know what card a holds. Public announcements cannot however be used
to model changes of basic facts. For example, public announcements cannot be
used to model the event where an agent gives a card to another agent.

One way to incorporate factual change in a logic is to add an operator for
public substitutions, see for example [6, 4, 3, 8]. A public substitution [p := ϕ]
changes the extension of a propositional variable p to the extension of a formula ϕ
which allows us to model changes of basic facts. Suppose we use the propositional
variables p to indicate that a holds a certain card and q to indicate that b holds
that card. Then the event where a gives the card to b can be modeled by first
changing the extension of q to that of p∨ q1 and then changing the extension of
p to that of ⊥, so by the substitutions [q := p ∨ q][p := ⊥].

One important question when considering related logics—such as the ones that
differ only in whether they allow substitutions—is what their relative expressivity
is. That is, is it possible to translate formulas from one logic to the other in such
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sivity, KD45, S4, S5, Relativized Common Knowledge.
1The extension of q should be changed to that of p∨ q in stead of simply > or p to account

for the possibility that a does not have the card to begin with in which case the action fails.

Agent b ends up holding the card if and only if either agent a held it and then gave it to him,
or b himself held the card and the action failed.
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a way that truth is preserved? If one logic is more expressive than another then
the less expressive logic can be simulated in the more expressive one. When
comparing logics that differ only in whether or not they allow one operator this
means that the operator adds something fundamentally new to the logic if and
only if the logic with the extra operator is more expressive than the one without
it.2

It has been shown in [8] that if a logic L is one of basic epistemic logic, basic
epistemic logic with common knowledge or basic epistemic logic with public
announcements then the logic LS obtained by adding substitutions is equally
expressive as L. So for any LS formula ϕ there is an L formula ϕ′ such that
|= ϕ↔ ϕ′. We can therefore simulate substitutions using only L.

This changes if we start with a logic LCP that uses both common knowledge
and public announcements. In [8] it was shown that the logic LCPS that addi-
tionally uses substitutions is strictly more expressive than LCP over the class K
of models.

However, considering that we are working in an epistemic logic it is a salient
question whether the same holds if the class of models is taken to be one of
KD45, S4 or S5, as these classes are often used when modeling knowledge or
belief.

The proof in [8] is by showing that over K the logic LCPS is equally expres-
sive to a logic LR that is obtained by adding a different operator representing
relativized common knowledge3 to a basic epistemic logic. The logic LR was
shown in [3] to be more expressive than normal common knowledge with public
announcements over K. So if LCPS is equally expressive to LR then LCPS is
more expressive than LCP over K. However, the proof from [3] does not work
for KD45, S4 or S5, and up until now it has remained an open question whether
substitutions add any expressivity to LCP in KD45, S4 or S5.

Here I show that substitutions do add expressivity to LCP over KD45 and
S4 if there are at least two agents and over S5 if there are at least three agents.
By the equal expressivity of LCPS and LR proven in [8] this also shows that
relativized common knowledge is more expressive than the combination of com-
mon knowledge and public announcements over KD45, S4 and S5 if the set of
agents is sufficiently large.

Note that the nonexistence of a translation from one logic to another that
is truth-preserving for a class of models implies the nonexistence of a truth-
preserving translation for a superclass of that class of models. As such, the fact
that substitutions add expressivity to LCP over S5 implies that they add expres-
sivity over KD45, S4 and K as well. Likewise, the results that substitutions
add expressivity over KD45 and S4 both imply that they add expressivity over

2Of course there can be reasons to use an operator that does not add expressivity to the
logic. Such an operator might for example allow formulas to be expressed more succinctly

or in a more natural way. Consider propositional logic. The operators ∧ and → do not add

expressivity to a logic that already has ¬ and ∨ but we still usually add ∧ and →, albeit often
only as abbreviations.

3A relativized common knowledge formula CB(ϕ,ψ) can be read as “after announcing ϕ it
is common knowledge among B that ψ used to be the case before the announcement” or “if we
delete all ¬ϕ worlds, then go to any B-reachable world and un-delete the previously deleted

worlds ϕ will hold in that world”.
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K. However, the expressivity result for S5 requires at least three agents, the
expressivity results for KD45 and S4 require at least two agents and the result
for K even works if there is only a single agent. As such it is useful to have
separate proofs for each of the results.

In Section 2 I give definitions of the logics under consideration and in Section 3
I introduce the concepts needed to compare the logics on expressivity. In Section
4 I use reduction axioms to show the form LCPS formulas must have in order
to be untranslatable to LCP . In Section 5 I show that LCPS is more expressive
than LCP over KD45 and S4. Finally, in Section 6 I show that LCPS is more
expressive than LCP over S5.

§2. Language, models and semantics. For technical reasons related to
ease of notation it is convenient to define the logic LCPS and then consider LCP

as a fragment of that logic. First, let us consider the formulas of LCPS . Let a
finite nonempty set A of agents and a countably infinite set P of propositional
variables be given.

Definition 1. The formulas of LCPS are given by

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �aϕ | CBϕ | [ϕ]ϕ | [p := ϕ]ϕ

where p ∈ P, B ⊆ A and a ∈ A.

I use ∧,→,↔, >,⊥,
∨
,
∧

and ♦a in the usual way as abbreviations and omit
parentheses where this should not cause confusion. The intended reading of the
non-Boolean operators is as follows:

• �aϕ is read as “agent a knows that ϕ”,
• CBϕ is read as “it is common knowledge among the group B of agents that
ϕ”,

• [ϕ]ψ is read as “after ϕ is publicly announced ψ holds” and
• [p := ϕ]ψ is read as “after changing the extension of p to that of ϕ the

formula ψ holds”.

Note that in this definition substitutions can only have one assignment like
in [4], as opposed to the multiple simultaneous substitutions that are allowed in
[6, 3, 8]. This restriction does not however limit the expressivity of the logic,
as every formula with simultaneous substitutions can be translated to an equiv-
alent one containing only single-assignment substitutions. To see why this is
the case, consider a formula ψ = [p1 := ϕ1, · · · , pn := ϕn]ϕ containing multiple
simultaneous substitutions. The set P is infinite, so we can take n variables
q1, · · · , qn ∈ P that do not occur in ψ and use q1, · · · , qn to temporarily store
the values of ϕ1, · · · , ϕn. This allows us to construct ψ′ = [q1 := ϕ1] · · · [qn :=
ϕn][p1 := q1] · · · [pn := qn]ϕ that is equivalent to ψ but does not use simultaneous
substitutions.

For some of the proofs we also need a concept of depth for formulas.

Definition 2. Let ϕ,ψ be any LCPS formulas. The depth d(ϕ) of ϕ is given
inductively by

• d(p) = 0 for p ∈ P
• d(¬ϕ) = d(ϕ)
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• d(ϕ1 ∨ ϕ2) = max(d(ϕ), d(ψ))
• d(�aϕ) = d(ϕ) + 1
• d(CBϕ) = d(ϕ) + 1
• d([ϕ]ψ) = max(d(ϕ), d(ψ)) + 1
• d([p := ϕ]ψ) = max(d(ϕ), d(ψ)) + 1

A formula ϕ is of pure depth n if d(ϕ) = n and there is no subformula ϕ′ of ϕ
such that d(ϕ′) = n.

Note that the formulas of pure depth are the formulas that have a non-Boolean
main operator. The models for LCPS are the usual multi-agent Kripke struc-
tures.

Definition 3. A model M is a triple M = (W,R, v) where W is a set of
possible worlds, R : A → ℘(W×W ) is an accessibility relation and v : P → ℘(W )
is a valuation.

A model M = (W,R, v) is a KD45 model if for each a ∈ A the relation R(a)
is transitive, serial and euclidean.

A model M = (W,R, v) is an S4 model if for each a ∈ A the relation R(a) is
reflexive and transitive.

A model M = (W,R, v) is an S5 model if for each a ∈ A the relation R(a) is
an equivalence relation.

Now we can define the semantics of LCPS .

Definition 4. Given a model M = (W,R, v), a world w of M and ϕ,ψ
formulas of LCPS define the satisfaction relation |= by

M, w |= p ⇔ w ∈ v(p)
M, w |= ¬ϕ ⇔ M, w 6|= ϕ
M, w |= ϕ ∨ ψ ⇔ M, w |= ϕ or M, w |= ψ
M, w |= �aϕ ⇔ M, w′ |= ϕ for all w′ ∈W such that (w,w′) ∈ R(a)
M, w |= CBϕ ⇔ M, w′ |= ϕ for all w′ ∈W such that (w,w′) ∈ R(B)∗

M, w |= [ϕ]ψ ⇔ M, w |= ϕ implies that M[ϕ], w |= ψ
M, w |= [p := ϕ]ψ ⇔ M[p:=ϕ], w |= ψ.

where R(B)∗ is the reflexive transitive closure of
⋃

a∈B R(a). The updated models
are given by

• M[ϕ] = (W[ϕ], R[ϕ], v[ϕ]) with W[ϕ] = {w ∈ W | M, w |= ϕ}, R[ϕ](a) =
R(a) ∩ (W[ϕ] ×W[ϕ]) for all a ∈ A and v[ϕ](p) = v(p) ∩W[ϕ] for all p ∈ P,

• M[p:=ϕ] = (W,R, v[p:=ϕ]) with v[p:=ϕ](p) = {w ∈ W | M, w |= ϕ} and
v[p:=ϕ](q) = v(q) for all q ∈ P \ {p}.

Write M |= ϕ if M, w |= ϕ for every w ∈ W , |= ϕ if M |= ϕ for every model
M. Furthermore, for I ∈ {K,KD45,S4,S5} write |=I ϕ if M |= ϕ for every I
model M.

Unfortunately the definition of the new models created by the model changing
operators [ϕ]ψ and [p := ϕ]ψ requires some rather complicated notation. It
is however possible to give a relatively simple informal description of the new
models. The model M[ϕ] is the result of removing all ¬ϕ worlds from M. The
accessibility relations and valuation ofM[ϕ] are unchanged fromM except that
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they are restricted to the new set of worlds. The model M[p:=ϕ] is the result of
changing the value of p in every world to the value ϕ has in that world in the
modelM. The set of worlds and accessibility relations ofM[p:=ϕ] are unchanged
from M.

There is one thing that should be noted about the interaction between public
announcements and the class KD45 of models: KD45 is not closed under public
announcements, unlike the classes K, S4 and S5. In a KD45 model M there
may be worlds w such thatM, w |= ϕ∧�a¬ϕ. In such a case the modelM[ϕ] is
not a KD45 model because there are no accessible worlds for a in w so R[ϕ](a)
is not serial.

In the semantics as given here this is not a problem, M[ϕ] may not be a
KD45 model but it is a K model so it is defined whether M[ϕ], w |= ψ. In
a context where only KD45 models are available different semantics for public
announcements would have to be given. The simplest alternative semantics for
such a context are obtained by requiring public announcements to be not only
truthful but also consistent with the belief set of every agent. The result about
KD45 presented in this paper still holds under these alternative semantics.

Substitutions can be used to model a wide variety of factual changes. Examples
found in the literature include washing a child in the muddy children problem
[4], swapping or giving away cards in a card game [4, 3] and opening a window
[3]. The property of substitutions that I use for the proofs in this paper is that
they can be used to add memory to public announcements, as suggested in [8].

In general public announcements are ‘destructive’. After a public announce-
ment [ϕ] has been made it is no longer possible to recover the epistemic state of
the agents prior to the announcement. It is for example impossible to determine
from an updated modelM[p] whether or not for a given world w ofM[p] it holds
that M, w |= �ap. Substitutions can be used to store information about the
epistemic state before the announcement. From the model M[q:=�ap][p] it can
be determined whether or not for a given world w it holds that M, w |= �ap;
we have M, w |= �ap if and only if M[q:=�ap][p], w |= q. The substitution
[q := �ap] in this case can be thought of as the change caused by agent a writing
a note about whether she knows p. The announcement [p] destroys all informa-
tion about whether a knew that p before the announcement, but the agents can
regain this information by looking at the note.

§3. Expressivity. As mentioned above the logic LCP can be defined as a
fragment of LCPS .

Definition 5. Let C stand for common knowledge, P for public announce-
ments and S for substitutions. Then for any string X of characters the logic LX

is the fragment of LCPS that uses only the operators ∨,¬,�a and the operators
corresponding to a letter that occurs in X.

We now have all we need to define expressivity.

Definition 6. LetX,Y be strings of characters and let I ∈ {K,KD45,S4,S5}.
We say that LY is at least as expressive as LX over I if for every LX formula ϕ
there is an LY formula ψ such that |=I ϕ↔ ψ. Denote this by LX �I LY .
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Furthermore, LY is more expressive than LX , denoted by LX ≺I LY , if LX �I

LY and LY 6�I LX . Finally, LY and LX are equally expressive, denoted by
LX ≡I LY , if LX �I LY and LY �I LX .

Note that since LX and LY are fragments of LCPS the formula ϕ ↔ ψ can
always be seen as an LCPS formula so it makes sense to write |=I ϕ↔ ψ.

The next Lemma follows immediately from the definition.

Lemma 1. For any I ∈ {K,KD45,S4,S5} we have LCP �I LCPS.

Proof. For any LCP formula ϕ we have that ϕ is also an LCPS formula and
|=I ϕ↔ ϕ. a

The remaining questions are therefore whether LCP ≺I LCPS or LCP ≡I

LCPS for I = K, I = KD45, I = S4 and I = S5.
The first of these four questions was answered in [8] where it was shown that

LCP ≺K LCPS . The other three questions are answered in this paper, where I
show that LCP ≺KD45 LCPS , LCP ≺S4 LCPS and LCP ≺S5 LCPS .

§4. Reduction. One of the main tools in the study of expressivity is the use
of so-called reduction axioms.4 A reduction axiom for an operator X is a validity
of the form |= ϕ↔ ψ where ψ either contains fewer instances of the operator X
than ϕ, or the formulas inside the scope of X in ψ are less complex5 than the
formulas inside the scope of X in ϕ. Reduction axioms can be used to reduce
the complexity of the formulas inside the scope of X and sometimes even remove
instances of X entirely. The reduction axioms that are relevant to the logics
under consideration are the following.

Lemma 2. For any LCPS formulas ψ,ψ1, ψ2, ψ3, any p ∈ P, any a ∈ A and
any B ⊆ A the following statements hold:

1. |= [ψ]p↔ (ψ → p),
2. |= [ψ1]¬ψ2 ↔ (ψ1 → ¬[ψ1]ψ2),
3. |= [ψ1](ψ2 ∨ ψ3)↔ ([ψ1]ψ2 ∨ [ψ1]ψ3),
4. |= [ψ1]�aψ2 ↔ (ψ1 → �a[ψ1]ψ2),
5. |= [ψ1][ψ2]ψ3 ↔ [ψ1 ∧ [ψ1]ψ2]ψ3,
6. |= [p := ψ]p↔ ψ,
7. |= [p := ψ]q ↔ q for q 6= p,
8. |= [p := ψ1]¬ψ2 ↔ ¬[p := ψ1]ψ2,
9. |= [p := ψ1](ψ2 ∨ ψ3)↔ ([p := ψ1]ψ2 ∨ [p := ψ1]ψ3),

10. |= [p := ψ1]�aψ2 ↔ �a[p := ψ1]ψ2 and
11. |= [p := ψ1]CBψ2 ↔ CB [p := ψ1]ψ2.

The first five validities of the Lemma were introduced in [10], the latter six in
[8]. They are also straightforward to verify using the semantics of LCPS .

All validities in Lemma 2 are reduction axioms for either public announcements
or substitutions. It either holds that the formula on the right-hand side of the

4Comparing expressivity is by no means the only use of reduction axioms. In fact, they

derive their name from the fact that if you add the reduction axioms for a certain operator X
to a complete axiomatization of a logic L that does not use X the result is in many cases a

complete axiomatization of the logic LX obtained by adding X as an additional operator to L.
5In the sense of requiring fewer steps in the inductive definition of formulas.
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equivalence contains fewer public announcement or substitution operators, or
that the formulas inside the scope of the public announcement or substitution
operator on the right-hand side of the equivalence have a lower complexity than
the ones on the left-hand side.

There are three combinations of operators for which there is no reduction
axiom; there are no reduction axioms for the combination of a public announce-
ment and common knowledge, the combination of a substitution and a public
announcement and the combination of a substitution with another substitution.
The lack of a reduction axiom for a substitution with another substitution is not
important for this paper, but the fact that there are no reduction axioms for the
other two combinations is important for the construction of an LCPS formula
that cannot be translated to LCP .

By repeatedly applying these validities it is possible to remove any public
announcement or substitution operator [X], as long a reduction axiom exists
for [X] and every operator inside the scope of [X]. For example, a formula
[p := ψ]�a(p ∨ q) is equivalent to �a[p := ψ](p ∨ q), which is equivalent to
�a([p := ψ]p ∨ [p := ψ]q) which is equivalent to �a(ψ ∨ q).

This allows us to say some things about the relative expressivity of certain
extensions of a basic epistemic logic L. The reduction axioms are used in [10]
and [8] to show that

• L ≡K LP because we can remove the public announcements from any LP

formula using the first four reduction axioms,
• L ≡K LS because we can remove the substitutions from any LS formula

using the sixth to tenth reduction axioms,
• LC ≡K LCS because we can remove the substitutions from any LCS formula

using the sixth to eleventh reduction axioms,
• L ≡K LPS because, even though we cannot change the order of a public

announcement operator and a substitution operator, we can always remove
the innermost public announcement or substitution operator using either
the first four or the sixth to tenth reduction axioms.

The reduction axioms can also help determine where to look if we want to find
an LCPS formula that cannot be translated to LCP . Any LCPS formula that
cannot be translated to LCP must obviously contain a substitution operator.
Furthermore, since LC ≡K LCS the untranslatable formula must also contain at
least one public announcement and since L ≡K LPS it must contain at least one
common knowledge operator.

Furthermore, using the reduction axioms we can move the substitution oper-
ator inward until it reaches a public announcement operator so we can assume
without loss of generality that there is a substitution operator immediately pre-
ceding a public announcement. Likewise, the public announcement operator can
be moved inward until it reaches a common knowledge operator. The untrans-
latable formula must therefore contain a subformula [p := ϕ][ψ1] · · · [ψn]CBχ.
Finally we can collapse [ψ1] · · · [ψn] into a single announcement ψ.

So if there is an untranslatable formula then there is an untranslatable for-
mula of the form [p := ϕ][ψ]CBχ. This is a particular instance of the use of
substitutions as memory; the propositional variable p is used to store the value
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of ϕ so that it is possible after the announcement of ψ to remember whether ϕ
held before the announcement.6

The formula that is used to show that LCP ≺K LCPS is indeed equivalent
to a formula of such a form, namely [q := ¬�ap][p]CAq. This formula cannot
however be used to show that LCP ≺S5 LCPS , since there is an LCP formula
that is equivalent to [q := ¬�ap][p]CAq on all S5 models.7 For the S5 case
we therefore need a slightly more complicated formula. The one I use is [q :=
C{a,b}p][p]CA¬q. For the S4 case the simpler formula [q := ¬�ap][p]CAq of the
K case could be used. However, in order to keep the proof for the S4 case similar
to the proof of the KD45 and S5 cases it is more convenient to use the formula
[q := CAp][p]CA¬q.

§5. The expressivity of factual change over KD45 and S4. With the
preliminaries out of the way let us consider the proof that LCP ≺KD45 LCPS and
LCP ≺S4 LCPS . I first state the theorem, then give some auxiliary definitions
and lemmas and finally give a proof of the theorem.

Theorem 1. If |A| ≥ 2 then the logic LCPS is more expressive than the logic
LCP over KD45 and S4.

For the rest of this section assume that |A| ≥ 2. It was already shown that
LCP �KD45 LCPS and LCP �KD45 LCPS so in order to prove Theorem 1 it
remains to be shown that LCPS 6�KD45 LCP and LCPS 6�KD45 LCP .

In order to do this it is sufficient to show that there is an LCPS formula ϕ
with the property that there is no LCP formula ψ that is equivalent to ϕ either
on all KD45 models or on all S4 models.

For this purpose I define sets {Mn = (Wn, Rn, vn) | n ∈ N>0} and {M′n =
(Wn, R

′
n, vn) | n ∈ N>0} of KD45 and S4 models respectively such that the

LCPS formula ϕ = [q := CAp][p]CA¬q can distinguish between the worlds
s2n−1 ∈Wn and t2n−1 ∈Wn for all n ∈ N>0 but there is no single LCP formula
that for all n ∈ N>0 distinguishes the worlds.

6Those familiar with relativized common knowledge may also recognize formulas of this
form as similar to how relativized common knowledge can be simulated in LCPS ; if p does not

occur in ψ then [p := ϕ][ψ]CBp is equivalent to the relativized common knowledge formula

CB(ψ,ϕ). This is of course no coincidence, one of the interpretations given to CB(ψ,ϕ) in [3]
is “if ψ is announced it becomes common knowledge among B that ϕ was the case before the

announcement”. This is also a good description of [p := ϕ][ψ]CBp if the substitution is seen
as memory.

7The smallest LCP formula that I know to be equivalent to [q := ¬�ap][p]CAq on all S5

models grows exponentially with the size of A and is already quite complicated for small sets

of agents. To give some idea of the form of this translation, consider the case A = {a, b, c}.
Then the translation is |=S5 [q := ¬�ap][p]CAq ↔ (¬p ∨ [¬p → ♦a(p ∧

∨
d∈A ♦d�ap)](ψa ∧

ψab ∧ ψabc ∧ ψac ∧ ψacb)) where

• ψa = [
∨

d∈A ♦d¬p→ ♦a¬p]CAp,
• ψab = [¬p→ ♦b(p ∧

∨
d∈A ♦d(p ∧ ¬ψa))][

∨
d∈A ♦d¬p→ ♦b¬p]CAp,

• ψabc = [¬p→ ♦c(p ∧
∨

d∈A ♦d(p ∧ ¬ψab))][
∨

d∈A ♦d¬p→ ♦c¬p]CAp,
• ψac = [¬p→ ♦c(p ∧

∨
d∈A ♦d(p ∧ ¬ψa))][

∨
d∈A ♦d¬p→ ♦c¬p]CAp,

• ψabc = [¬p→ ♦b(p ∧
∨

d∈A ♦d(p ∧ ¬ψac))][
∨

d∈A ♦d¬p→ ♦b¬p]CAp.

The proof of this equivalence is long, not very hard and outside the scope of this paper. I

therefore omit it.
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s0 s1 s2
· · ·
s2n−1 s2n

¬p
t2n

¬p
t2n−1

· · ·
t2 t1 t0

b a a b a a b

Figure 1. Model Mn or model M′n, depending on which
worlds are accessible from themselves. In M′n all worlds are
accessible for themselves for all agents. In Mn all worlds other
than s1 are accessible from themselves for all agents and s1 is
accessible from itself for all agents other than agent b. Reflex-
ive arrows are not drawn and p holds in every world except
where it is stated otherwise. Note that the leftmost arrow is
one-directional, unlike all other arrows.

The sets of models are defined as follows. Let a, b ∈ A be two distinct agents
and let p ∈ P. For n ∈ N>0 let Mn = (Wn, Rn, vn) where

• Wn = {si | 0 ≤ i ≤ 2n} ∪ {ti | 0 ≤ i ≤ 2n}
• Rn(a) = {(s2i, s2i−1), (s2i−1, s2i), (t2i, t2i−1), (t2i−1, t2i) | 1 ≤ i ≤ n} ∪
{(w,w) | w ∈Wn}

• Rn(b) = ({(s2i, s2i+1), (s2i+1, s2i), (t2i, t2i+1), (t2i+1, t2i) | 0 ≤ i ≤ n − 1} \
{(s0, s1)})
∪{(s2n, t2n), (t2n, s2n)} ∪ {(w,w) | w ∈Wn \ {s1}}

• Rn(c) = {(w,w) | w ∈Wn} for all c ∈ A \ {a, b}
• vn(p) = Wn \ {s2n, t2n}
• vn(q) = ∅ for all q ∈ P \ {p}

Furthermore, let

• R′n(a) = Rn(a)
• R′n(b) = Rn(b) ∪ {(s1, s1)}
• R′n(c) = Rn(c) for all c ∈ A \ {a, b}

and M′n = (Wn, R
′
n, vn). See also Figure 1 for a visual representation of Mn

and M′n. The proofs using the models Mn are completely analogous to those
using the models M′n, so choose any N ∈ {M,M′}. I give the proof for the
models Nn, thus simultaneously proving the result for KD45 and S4.

An important thing to note about these models is that the arrow from s1 to
s0 is one-directional, unlike all other arrows. As a result of this one-directional
arrow we have Nn, s0 |= CAp even though Nn, w 6|= CAp for all other worlds
w. We can use this to distinguish between s2n−1 and t2n−1 by first using the
substitution [q := CAp] to store this difference between s0 and all other worlds,
then removing the ¬p worlds that connect s2n−1 to t2n−1 and finally checking
whether there is a q world reachable. Written as a formula this means that
Nn, s2n−1 6|= [q := CAp][p]CA¬q while Nn, t2n−1 |= [q := CAp][p]CA¬q.

Another key property of these models is that there is no single LCP formula
that for every n ∈ N>0 distinguishes s2n−1 from t2n−1. This is shown by in-
duction, but in order to keep the induction hypothesis relatively simple it is
convenient to restrict to a certain subset of formulas.
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Definition 7. An LCP formula ϕ is in ab-form if all CB operators in ϕ have
B = {a, b} and are immediately preceded by a [ψ] operator and all [ψ] operators
in ϕ are immediately succeeded by a CB operator.

The following lemma shows that we can restrict to formulas in ab-form without
loss of generality.

Lemma 3. For every LCP formula ϕ there is an LCP formula ϕ′ such that ϕ′

is in ab-form and for all n ∈ N>0 and all w ∈ Wn it holds that Nn, w |= ϕ ⇔
Nn, w |= ϕ′.

Proof. Let ϕ be any LCP formula. The only agents for which there are
arrows from one world to another in Nn are a and b. We can therefore replace
any operator CB in ϕ by CB′ with B′ = B ∩ {a, b} without changing the truth
value on Nn. If this B′ is a singleton CB′ can be replaced by either �a or �b

and if B′ = ∅ it can be removed entirely, again without changing the truth value
on Nn. Call the formula obtained by modifying ϕ in these ways ϑ.

Recall the reduction axioms

• |= [ψ]p↔ (ψ → p)
• |= [ψ1]¬ψ2 ↔ (ψ1 → ¬[ψ1]ψ2)
• |= [ψ1](ψ2 ∨ ψ3)↔ ([ψ1]ψ2 ∨ [ψ1]ψ3)
• |= [ψ1]�aψ2 ↔ (ψ1 → �a[ψ1]ψ2)
• |= [ψ1][ψ2]ψ3 ↔ [ψ1 ∧ [ψ1]ψ2]ψ3

that were shown to hold in [10]. If a public announcement occurs immediately
preceding any LCP operator other than a common knowledge operator they allow
us to either change the order of the public announcement and the other operator
or collapse two announcements into one. We can therefore find a formula ϑ′ that
is equivalent to ϑ and that only contains public announcements immediately
preceding C{a,b} operators. Finally, we can take ϕ′ to be the formula obtained
by adding a [>] operator before every C{a,b} operator in ϑ′ that is not yet
immediately preceded by a public announcement. This ϕ′ is in ab-form and
satisfies Nn, w |= ϕ⇔ Nn, w |= ϕ′ for all n ∈ N>0 and all w ∈Wn. a

It is relatively easy to show that formulas in ab-form cannot distinguish be-
tween worlds si and ti of Nn unless they are of sufficient depth.

Lemma 4. Let n ∈ N>0 be given. Then for any k ≤ n and for any 2k < i ≤ 2n
there is no LCP formula ϕ that is in ab-form and of depth at most k such that
ϕ distinguishes between si and ti in Nn.

Proof. By induction on k. The statement trivially holds for k = 0. Now
suppose as induction hypothesis that k > 0 and that the statement holds for all
k′ < k. Fix any i with 2k ≤ i ≤ 2n and let ϕ be any LCP formula in ab-form
with depth ≤ k. To show is that ϕ does not distinguish between si and ti.

Suppose towards a contradiction that ϕ does in fact distinguish between si and
ti. If a Boolean combination of formulas distinguishes two worlds then at least
one of the combined formulas also distinguishes between them, so we can assume
without loss of generality that ϕ is of pure depth ≤ k. Since ϕ is in ab-form this
implies that ϕ is either of the form �xϕ1 or of the form [ϕ1]C{a,b}ϕ2 where
x ∈ A, ϕ1 and ϕ2 are in ab-form and ϕ1 and ϕ2 are of depth ≤ k − 1. Suppose
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· · ·
s2(k−1)

· · ·
si−1 si

· · ·
ti ti−1

· · ·
t2(k−1)
· · ·b a b b a b

Area where ϕ1 cannot distinguish sj from tj .

Area where ϕ1 must hold
for N , si |= �aϕ1.

Area where ϕ1 must hold
for N , ti |= �aϕ1.

Figure 2. The formula ϕ = �aϕ1 cannot distinguish between
si and ti, since Nn, wi |= ϕ ⇔ (Nn, wi |= ϕ1 and Nn, wi−1 |=
ϕ1) for w ∈ {s, t}, and by the induction hypothesis ϕ1 cannot
distinguish either si from ti or si−1 from ti−1.

ϕ = �xϕ1. Then ϕ1 cannot distinguish between sj and tj for 2(k− 1) ≤ j ≤ 2n,
so in particular it cannot distinguish between si and ti, between si−1 and ti−1 or
between si+1 and ti+1. From this it follows that ϕ cannot distinguish between
si and ti. See Figure 2 for a visual representation of the case where x = a and i
is even.

Suppose then that ϕ = [ϕ1]C{a,b}ϕ2. The worlds si and ti are {a, b}-reachable
from each other. In order for ϕ to distinguish between the two points it is
therefore necessary that ϕ1 fails to hold for some sj or tj with j ≥ i. But by the
induction hypothesis ϕ1 cannot distinguish sj from tj so ϕ1 must fail to hold on
both worlds. But since j ≥ i this implies that after such an update neither of
the ¬p worlds is reachable from either si or ti. As a result si and ti are bisimilar
after the update, and therefore indistinguishable by any LCP formula. So in
particular they are not distinguishable by ϕ2. The formula ϕ therefore does not
distinguish between the two worlds.

In both possible forms for ϕ we arrive at a contradiction with the assumption
that ϕ distinguishes between si and ti. The assumption must therefore be false,
so ϕ does not distinguish between si and ti. This completes the induction step
and thereby the proof. a

Note that in particular Lemma 4 implies that an LCP formula in ab-form must
be of length at least n to distinguish between the worlds s2n−1 and t2n−1 of Nn.
The proof of Theorem 1 now follows easily.

Proof of Theorem 1. From Lemma 1 it follows that LCP �KD45 LCPS

and LCP �S4 LCPS .
Let ϕ = [q := CAp][p]CA¬q and take any N ∈ {M,M′}. For any n ∈ N>0

we have Nn, s2n−1 6|= ϕ and Nn, t2n−1 |= ϕ. The LCPS formula ϕ therefore
distinguishes between s2n and t2n for every n ∈ N>0. From Lemmas 3 and 4 it
follows that there is no single LCP formula ψ that for every n ∈ N>0 distinguishes
between s2n−1 and t2n−1.

There is therefore no LCP formula that is equivalent to ϕ on all KD45 models
or on all S4 models, so LCPS 6�KD45 LCP and LCPS 6�S4 LCP . a
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s0 s1 s2
· · ·
s2n−1 s2n

¬p
t2n

¬p
t2n−1

· · ·
t2 t1 t0

c a a bc a a bc

Figure 3. Model M′′n. Reflexive arrows are omitted and p
holds everywhere except where it is stated otherwise.

§6. The expressivity of factual change over S5. What remains to be
shown is that substitutions add expressivity over S5. The models Mn and M′n
are not S5 models so they cannot be used for expressivity results over S5. The
models can be modified to S5 models, but this requires the use of an extra agent.

Theorem 2. If |A| ≥ 3 then the logic LCPS is more expressive than the logic
LCP over S5.

Apart from some technicalities that are necessary due to the extra agent, the
proofs of Theorem 2 and its auxiliary lemmas are analogous to that of Theorem
1 and its auxiliary lemmas. I therefore give only a sketch of the proofs here.
First, let us define the set {M′′n | n ∈ N>0} of S5 models. Let a, b, c ∈ A be
three distinct agents and let p ∈ P. For n ∈ N>0 let M′′n = (Wn, R

′′
n, vn) where

• R′n(a) = Rn(a)
• R′n(b) = Rn(b) \ {(s1, s0)}
• R′n(c) = R′n(b) ∪ {(s0, s1), (s1, s0)}
• R′n(d) = {(w,w) | w ∈Wn} for all d ∈ A \ {a, b, c}

See also Figure 3 for a visual representation of M′′n.
Like in the S4 case we can restrict to formulas in a certain form.

Definition 8. An LCP formula ϕ is in abc-form if all CB operators in ϕ have
B ∈ {{a, b}, {a, c}, {a, b, c}} and are immediately preceded by a [ψ] operator and
all [ψ] operators in ϕ are immediately succeeded by a CB operator.

Lemma 5. For every LCP formula ϕ there is an LCP formula ϕ′ such that ϕ′

is in abc-form and for all n ∈ N>0 and all w ∈ W ′n it holds that M′′n, w |= ϕ⇔
M′′n, w |= ϕ′.

Sketch of proof. The proof is analogous to that of Lemma 3; every CB

operator with B 6∈ {{a, b}, {a, c}, {a, b, c}} can be replaced by either CB′ with
B′ ∈ {{a, b}, {a, c}, {a, b, c}} or by a normal knowledge operator. The reduction
axioms can then be used to make [ψ] and CB only occur together. a

Formulas in abc-form cannot distinguish between s2n and t2n in M′′n unless
they are of sufficient depth.

Lemma 6. Let n ∈ N>0 be given. Then for any k ≤ n and for any 2k < i ≤ 2n
there is no LCP formula ϕ that is in abc-form and of depth at most k such that
ϕ distinguishes between si and ti inM′′n.

Sketch of proof. The induction on k is analogous to that in the proof of
Lemma 4. Suppose the lemma holds for all k′ < k. A formula �xϕ with d(ϕ) ≤
k − 1 can only distinguish between si and ti if ϕ distinguishes between some sj
and tj with j ≥ i− 1 but that is impossible under the induction hypothesis.
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K KD45 S4 S5
|A| = 1 ≺ ≡ ≡ ≡
|A| = 2 ≺ ≺ ≺ ?
|A| ≥ 3 ≺ ≺ ≺ ≺

Table 1. The relative expressivity of LCP and LCPS with dif-
ferent numbers of agents in different classes of models. A ≺
entry means that LCPS is more expressive than LCP in that
case, a ≡ entry means that LCPS and LCP are equally expres-
sive.

A formula [ϕ]CBψ with d(ϕ) ≤ k − 1 must have B ∈ {{a, b}, {a, c}, {a, b, c}}
so si and ti are B-reachable form each other. In order for [ϕ]CBψ to distinguish
between the worlds it is therefore necessary that [ϕ] remove at least one world
sj or tj with j ≥ i. But by the induction hypothesis it then also removes the
other world, making si and ti completely indistinguishable in the remaining part
of the model. a
The proof of Theorem 2 then follows easily.

Proof of Theorem 2. From Lemma 1 it follows that LCP �S5 LCPS . Let
ϕ = [q := C{a,b}p][p]CA¬q. For any n ∈ N>0 we have M′′n, s2n−1 6|= ϕ and
M′′n, t2n−1 |= ϕ. The LCPS formula ϕ therefore distinguishes between s2n−1 and
t2n−1 for every n ∈ N>0. From Lemmas 5 and 6 it follows that there is no single
LCP formula ψ that for every n ∈ N>0 distinguishes between s2n−1 and t2n−1.

There is therefore no LCP formula that is equivalent to ϕ on all S5 models,
so LCPS 6�S5 LCP . a

§7. Conclusion. I showed that LCPS is more expressive than LCP over
KD45, S4 and S5. Since the logic LR obtained by adding relativized com-
mon knowledge to a basic epistemic logic was shown to be equally expressive to
LCPS in [8] this also shows that LR is more expressive than LCP over KD45,
S4 and S5. The results presented here can therefore also be seen as an extension
of the results in [3] that LR is more expressive than LCP over K.

One limitation of the proofs of LCP ≺KD45 LCPS , LCP ≺S4 LCPS and
LCP ≺S5 LCPS given in this paper is that they require a minimum number
of agents. For the proofs of LCP ≺KD45 LCPS and LCP ≺S4 LCPS we need
|A| ≥ 2 and for the proof of LCP ≺S5 LCPS we need |A| ≥ 3. If |A| = 1 then
common knowledge reduces to normal knowledge in KD45, S4 and S5 due to the
transitivity of the accessibility relation. This implies that LCP ≡KD45 LCPS ,
LCP ≡S4 LCPS and LCP ≡S5 LCPS if |A| = 1, as it has been shown in [8] that
LP ≡K LPS .

It was also shown in [8] that LCP ≺K LCPS for any number of agents, so the
relative expressivity of LCP and LCPS can be summarized as in Table 1.

One obvious question for further research is whether LCPS is more expressive
than LCP in S5 with exactly two agents. I do not have a conjecture about this
question, as there seem to be good reasons for assuming either position.

On the one hand, the two-agents S5 case is unlike the other cases in several im-
portant ways. In particular, consider LCPS formulas of the form [q := ϕ][ψ]CBq.
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This is the only combination of operators that is hard to translate to LCP . This
formula holds in M, w if and only if ϕ holds in every world that is reachable
from w by passing over only ψ worlds.

In the two-agents S5 case it holds that if two adjacent worlds w1 and w2 of
M satisfy M, w1 |= ϕ and M, w2 6|= ϕ then there must be some propositional
variable r with the property thatM, w1 |= ♦d(ϕ)+1r∧♦d(ϕ)+1¬r. In other words,
there must be nearby worlds that are distinguishable by an atomic formula. Since
distinguishability by an atomic formula is retained under public announcements
this difference can often be used as a witness after the announcement for the
existence of a world that did not satisfy ϕ before the announcement. This
technique can be used to translate several large fragments of LCPS to LCP

for two-agent S5.
On the other hand, this method is not immediately applicable if ψ contains

common knowledge operators. And while some auxiliary tricks can be used for
simple ψ containing common knowledge such as ψ = CAp it is not clear whether
this technique generalizes to all LCPS formulas.
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