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We consider Bayesian inference problems with computationally inten-
sive likelihood functions. We propose a Gaussian process (GP)–based
method to approximate the joint distribution of the unknown parame-
ters and the data, built on recent work (Kandasamy, Schneider, & Póc-
zos, 2015). In particular, we write the joint density approximately as a
product of an approximate posterior density and an exponentiated GP
surrogate. We then provide an adaptive algorithm to construct such an
approximation, where an active learning method is used to choose the
design points. With numerical examples, we illustrate that the proposed
method has competitive performance against existing approaches for
Bayesian computation.

1 Introduction

Bayesian inference is a popular method for estimating unknown parame-
ters from data, and a major advantage of the method is its ability to quantify
uncertainty in the inference results (Gelman et al., 2013). In this letter, we
consider Bayesian inference problems where the likelihood functions are
highly expensive to evaluate. A typical example of this type of problems
is the Bayesian inverse problem (Tarantola, 2005), where the parameters of
interest cannot be observed directly and need to be estimated from indi-
rect data. Such problems arise from many real-world applications, ranging
from carbon capture (Konomi, Karagiannis, Lai, & Lin, 2018) to chemical
kinetics (Golightly & Wilkinson, 2011). In Bayesian inverse problems, the
mappings from the parameter of interest to the observable quantities, often
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known as the forward models, are often computationally intensive (e.g., in-
volving simulating large-scale computer models).

Due to the high computational cost, common numerical implemen-
tations of Bayesian inferences, such as Markov chain Monte Carlo
(MCMC; Andrieu, De Freitas, Doucet, & Jordan, 2003) methods, can be
prohibitively expensive. A simple idea to accelerate the computation of the
posterior is to construct a computationally inexpensive surrogate or an ap-
proximation of the posterior distribution with a limited number of likeli-
hood function evaluations. To this end, a convenient choice for surrogate
function is the gaussian process (GP) model (Williams & Rasmussen, 2006).
The idea of using this model to approximate the posterior or the likeli-
hood function dates back to the so-called Bayesian quadrature (or Bayesian
Monte Carlo) approaches (O’Hagan, 1991; Rasmussen & Ghahramani, 2003;
Rasmussen et al., 2003; Kennedy, 1998), which were designed to perform
numerical integrations in a Bayesian fashion (e.g., to compute the evidence
in Bayesian inference problems; Osborne et al., 2012).

Unlike the Bayesian quadrature methods, the goal of this work is to con-
struct an approximation of the posterior distribution. To this end, recent
work (Kandasamy, Schneider, & Póczos, 2015) approximates the joint distri-
bution of the unknown parameter and the data (which can also be viewed as
the unnormalized posterior distribution) with an exponentiated GP model,
where the design points (the points where the likelihood function is eval-
uated) are chosen with an active learning strategy. In particular, they de-
termine the design points by sequentially maximizing the variance in the
posterior approximation. Other ideas for using GP approximation to accel-
erate Bayesian computation can be found in Conrad, Marzouk, Pillai, and
Smith (2016); Bilionis and Zabaras (2013), among others. The method pre-
sented in this letter also intends to approximate the unnormalized posterior
distribution. The main contribution of the work is as follows. We write the
unnormalized posterior distribution as a product of an approximate poste-
rior density and an exponentiated GP surrogate. The intuition behind this
formulation is that the GP model can be more effectively constructed if we
factor out a good approximation of the posterior (see section 2.3 for a de-
tailed explanation). As we may not know a good approximate posterior
density in advance, we develop an algorithm to adaptively construct the
product-form approximation of the unnormalized posterior distribution.
Another difference between our method and that in Kandasamy et al. (2015)
is the learning strategy for selecting the design points. We use the entropy
rather than the variance as the selection criterion, which can better represent
the uncertainty in the approximation. Numerical examples illustrate that
the proposed method can substantially improve the performance of the GP
approximation.

We note that other surrogate models, notably generalized polyno-
mial chaos (gPC) expansion (Li & Marzouk, 2014; Marzouk & Xiu, 2009;
Marzouk & Najm, 2009; Marzouk, Najm, & Rahn, 2007; Nagel & Sudret,
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2016), have also been used to accelerate Bayesian computation. Detailed
comparison of the two types of the surrogates is not discussed in this
work, and those who are interested in this matter may consult O’Hagan
(2013).

The rest of the letter is organized as the following. In section 2, we present
the adaptive GP algorithm to construct the posterior approximation and ac-
tive leaning method to determine the design points. In section 3, we give
two examples to illustrate the performance of the proposed method. Sec-
tion 4 provides some concluding remarks.

2 The Adaptive GP Method

2.1 Problem Setup. A Bayesian inference problem aims to estimate an
unknown parameter x from data d. Specifically, it computes the posterior
distribution of x using the Bayes’ formula,

π (x|d) ∝ π (x, d) = l(d|x)π (x), (2.1)

where l(d|x) is the likelihood function and π (x) is the prior distribution of x.
When the Bayesian method is applied to inverse problems, the data and the
forward model enter the formulation through the likelihood function. Sup-
pose that there is a function (termed the forward function or forward model)
that maps the parameter of interest x to the observable quantity y,

y = G(x) + z,

where z is the observation error. Now we further assume that the distri-
bution density of the observation noise z, pz(z), is available, and it follows
directly that the likelihood function is given by

l(d|x) = pz(d − G(x)).

In what follows, we omit the argument d in the likelihood function and
denote it as l(x) for simplicity. It is easy to see that each evaluation of the
likelihood function l(x) requires evaluating the forward function G(x). In
practice, the forward function G(x) often represents a large-scale computer
model, and thus the evaluation of l(x) can be computationally demanding.
Due to the high computational cost, the brute force Monte Carlo simulation
cannot be used for such problems, and we resort to an alternative method to
compute the posterior distributions, using the GP surrogate model. A brief
description of the GP method is provided in next section.

2.2 The GP Model. Given a real-valued function g(x), the GP or the
Kriging method constructs a surrogate model of g(x) in a nonparameteric
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Bayesian regression framework (Williams & Rasmussen, 2006; Oakley &
O’Hagan, 2002; O’Hagan & Kingman, 1978). Specifically the target function
g(x) is cast as a gaussian random process whose mean is μ(x) and covariance
is specified by a kernel function k(x, x′):

COV[g(x), g(x′)] = k(x, x′).

The kernel k(x, x′) is positive semidefinite and bounded. Let us assume that
m evaluations of the function g(x) are performed at parameter values X∗ :=[
x∗

1, . . . x∗
m

]
, yielding function evaluations y∗ := [

y∗
1, . . . y∗

m

]
, where

y∗
i = g(x∗

i ) for i = 1, . . . , m.

Suppose that we want to predict the function values at points D :=
[x1, . . . xm′ ], that is, y = [y1, . . . ym′ ] where yi = g(xi). The sets X∗ and D are
often known as the training and the test points, respectively. The joint prior
distribution of (y∗, y) is

[
y∗

y

]
∼ N

(
μ(X∗)

μ(D)
,

[
K(X∗, X∗) K(X∗, D)

K(D, X∗) K(D, D)

])
, (2.2)

where we use the notation K(A, B) to denote the matrix of the covariance
evaluated at all pairs of points in sets A and B. The posterior distribution
of y is also gaussian:

y|D, X∗, y∗ ∼ N (u, �), (2.3a)

where the posterior mean is

u = μ(D) + K(D, X∗)K(X∗, X∗)−1(y − μ(D)), (2.3b)

and the posterior covariance matrix is

� = K(D, D) − K(D, X∗)K(X∗, X∗)−1K(X∗, D). (2.3c)

Here we provide only a brief introduction to the GP method tailored to our
own purposes. Readers interested in further details may consult the refer-
ences already mentioned.

2.3 The Adaptive GP Algorithm. Now we discuss how to use the GP
method to compute the posterior distribution in our problem. A straightfor-
ward idea is to construct the surrogate model directly for the log-likelihood
function log l(x); such a method has been used in Osborne et al. (2012) and
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Kandasamy et al. (2015). A difficulty in this approach is that the target func-
tion log l(x) can be highly nonlinear and fast varying, and thus is not well
described by a GP model. We present an adaptive scheme to alleviate the
difficulty.

We first write the unnormalized posterior (i.e., the joint distribution
π (x, d)) as

f (x) = l(x)π (x) = exp(g(x))p(x),

where p(x) is a probability distribution that we are free to choose and

g(x) = log( f (x)/p(x)). (2.4)

It is clear that equation 2.4 may become problematic when p(x) = 0 and
f (x) �= 0, and to avoid the issue, we require that the support of p(x) be a
superset of that of f (x). We work on the log posterior distribution since the
log smoothes out a function and is more conducive for the GP modeling.
Also, by doing this, we ensure the nonnegativity of the obtained approx-
imate posterior. We then sample the function g(x) at certain locations and
construct the GP surrogate of g(x). It should be noted that the distribution
p(x) plays an important role in the surrogate construction, as a good choice
of p(x) can significantly improve the accuracy of the GP surrogate models.
In particular, if we take p(x) to be exactly the posterior π (x|d), it follows
immediately that g(x) in equation 2.4 is a constant. This then gives us the
intuition that if p(x) is a good approximation to the posterior distribution
π (x|d), g(x) is a mildly varying function that is easy to approximate. In other
words, we can improve the performance of the GP surrogate by factoring
out a good approximation of the posterior. Certainly this cannot be done in
one step, as the posterior is not known in advance.

We present an adaptive framework to construct a sequence of pairs
{pi(x), exp(ĝi(x))}, the product of which evolves to a good approximation
of the unnormalized posterior f (x). Roughly speaking the algorithm per-
forms the following iterations: in the nth cycle, given the current guess of
the posterior distribution pn(x), we construct a GP surrogate ĝn(x) of gn(x),
which is given by

gn(x) = log( f (x)/pn(x)),

and we then compute a new (and possibly better) posterior approximation
pn+1(x) using

pn+1(x) ∝ exp(ĝn(x))pn(x).
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Finally we want to specify stopping criteria for the iteration, and the itera-
tion terminates if either of the following two conditions is satisfied. The first
is that the maximum number of iterations is reached. Our second stopping
condition is based on the Kullback-Leiber divergence (KLD) between pn−1

and pn, which reads,

DKL(pn−1, pn) =
∫

log
pn−1(x)
pn(x)

pn−1(x)dx. (2.5)

Specifically the second stopping condition is that DKL(pn−1, pn) is smaller
than a prescribed value Dmax in K consecutive iterations. That is, if the com-
puted posterior approximation does not change much in a certain number
of consecutive iterations, the algorithm terminates. The complete scheme is
described in algorithm 1.

Some remarks on the implementation of algorithm 1 are listed in order:

• In line 6, we construct the GP model for gn(x) using the procedure de-
scribed in section 2.2. The hyperparameters of the GP model are de-
termined by maximizing the marginal likelihood function (Williams
& Rasmussen, 2006).

• In line 7, we resort to the MCMC method to draw a rather large
number of samples from the approximate posterior distribution. This
procedure, however, does not require evaluating the true likelihood
function and is not computationally expensive.

• In line 8, we need to compute the density function of a distribution
pn+1 from the samples Xn, and here we use the gaussian mixture
method (McLachlan & Peel, 2004) to estimate the density. We note
that an important issue in the gaussian mixture method is how to
choose the number of mixtures. In our numerical examples, we use a
fixed number of mixtures, but it is also possible to determine it with
an adaptive procedure (Vlassis & Likas, 2002). Certainly there will be
estimation errors in this procedure and so we denote the estimated
density as p̂n+1 to distinguish it from the true density pn+1.

• In line 9, we find that it is rather costly to compute the KLD between
pn−1 and pn. We instead use the KLD between p̂n−1 and p̂n, which is
much easier to compute as the distributions are available as gaussian
mixtures. The KLD can be efficiently computed with the Monte Carlo
method as we have stored the samples An−1 from p̂n−1 in the previous
iteration.

• In line 15, we need to determine the design points—the locations
where we evaluate the true function. The choice of design points is
critical to the performance of the proposed adaptive GP algorithm,
and we use an active learning method to determine the points, which
we present in section 2.4.
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2.4 Active Learning for the Design Points. In the GP literature, the de-
termination of the design points is often cast as an experimental design
problem, that is, we need to find the experimental parameters that can
provide us the most information. The problem has received considerable
attention, and a number of methods and criteria have been proposed to se-
lect the points: the mutual information criterion (Krause, Singh, & Guestrin,
2008), the integrated mean square error (IMSE; Sacks, Welch, Mitchell, &
Wynn, 1989), the integrated posterior variance (IVAR; Gorodetsky & Mar-
zouk, 2016), and the active learning MacKay (ALM; criterion MacKay, 1992),
to name just a few. Here we choose to use an active learning strategy that
adds one design point a time, primarily because it is easy to implement.

A common active learning strategy is to choose the point that has the
largest uncertainty, and to this end we need a function that can measure or
quantify the uncertainty in the approximation reconstructed. In the usual
GP problems, the variance of the GP model ĝ(x) is a natural choice for such
a measure of uncertainty (which yields the ALM method), because the dis-
tribution of ĝ(x) is gaussian. In our problems, however, the function of in-
terest is the posterior approximation f̂ (x) = exp(ĝ(x))p(x) rather than the
GP model ĝ(x) itself, and thus we should measure the uncertainty in f̂ (x).
In Kandasamy et al. (2015), the variance of the posterior approximation f̂ is
used as the measure function. However, since the distribution of f̂ (x) is not
gaussian, the variance may not provide a good estimate of the uncertainty.
On the other hand, the entropy is a commonly used measure to quantify the
uncertainty in a random variable (Rényi, 1961; Shannon, 2001), and here we
use it as our design criterion.

Specifically, suppose that at point x, the distribution of f̂ (x) is π f ( f̂ ), and
the entropy of f̂ (x) is defined as

H( f̂ (x)) = −
∫

log(π f ( f̂ ))π f ( f̂ )d f̂ . (2.6)

Thus, we choose a new design point by

max
x∈�

H( f̂ (x)),

where � is a bounded subspace of the state space of x. In the present prob-
lem, the distribution of ĝ(x) is gaussian, and let us assume its mean and
variance are μ and σ 2, respectively. It follows that the distribution of f̂ (x) is
log normal and the entropy of it can be computed analytically:

H( f̂ ) = μ + 1
2

ln(2πeσ 2) + log p. (2.7)
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We want to emphasize that the entropy-based active learning method is dif-
ferent from the usual maximum entropy method for experimental design,
(Sebastiani & Wynn, 2000). The purpose of the maximum entropy method
in Sebastiani and Wynn (2000) is to find the design points that maximize
the information gain of an inference problem, while in our problem, we use
entropy as a measure of uncertainty.

Now suppose that we have a set of existing data points, and we want to
choose m new design points. We use the following scheme to sequentially
choose the new points:

1. Construct a GP model ĝ(x) for g(x) using data set S.
2. Compute x∗ = arg maxx∈� H( f̂ (x)).
3. Evaluate y∗ = g(x∗) and let S = S ∪ {(x∗, y∗)}.

Note that the key in the adaptive scheme is step 2, where we seek the point x
that maximizes the entropyH( f̂ (x)) in �. This is a challenging problem from
an optimization perspective, because the problem may have multiple local
maxima. However, in the numerical tests, we have found that our algorithm
does not strictly require the optimality of the solution, and it performs well
as long as a good design point can be found in each step. Thus, here we
use a stochastic search method, the simulated annealing algorithm (Kirk-
patrick, Gelatt, & Vecchi, 1983), to find the design point. We have tested
other metaheuristic optimization algorithms, and the performances do not
vary significantly.

3 Numerical Examples

3.1 The Rosenbrock Function. We first test our method on a two-
dimensional mathematical example. The likelihood function is

l(x) = exp
(

− 1
100

(x1 − 1)2 − (x2
1 − x2)2

)
, (3.1)

which is the well-known Rosenbrock function, and the prior π (x) is a uni-
form distribution defined on [−5, 5] × [−5, 5]. The resulting unnormalized
posterior is shown in Figure 1 (left). The function has a banana shape and
is often used as a test problem for Bayesian computation methods.

We now apply the proposed adaptive GP method to compute the poste-
rior for this problem. In this example, we let m0 = 20, and the samples in S0

were randomly drawn according to the prior distribution. We also choose
m = 10: 10 new design points are computed in each iteration. In the algo-
rithm, we need to sample from the approximate posterior distribution in
each iteration, and here we draw M = 2 × 104 samples with the delayed re-
jection adaptive Metropolis algorithm (DRAM; Haario, Laine, Mira, & Saks-
man, 2006). We restate that the 2 × 104 MCMC samples are generated from
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Figure 1: (Left) True posterior distribution. (Right) KL distance between pn−1

and pn, plotted against the number of iterations.

the approximate posterior distribution, and thus it does not require evalu-
ating the true likelihood function. We also set the parameters that specify
the termination conditions to be nmax = 100, Dmax = 0.01, and K = 5. The
algorithm terminates with 13 iterations, and a total of 140 evaluations of
the true likelihood function are used. In Figure 1 (right), we plot the KL dif-
ference in two consecutive iterations, which is used as one of our stoping
criteria, against the number of iterations. To illustrate the performance of
our method, we use the KL distance and the Hellinger distance, defined as

DH (p1, p2) = 1
2

∫
(
√

p1(x) −
√

p2(x))2dx,

to quantify the difference between the computed approximation and the
true posterior. We plot the KL (left) and the Hellinger (right) distances
between the approximate posterior and the true posterior distribution in
Figure 2. It can be seen from the figures that the computed approximation
converges very well to the true posterior in terms of both distance mesures
as the iteration proceeds. We then plot the approximate posterior obtained
in the 7th, 9th, 11th, and 13th iterations in Figure 3, in which we can visualize
how the quality of the approximation increases as the iterations proceed. In
each of the plots, we also show the design points (red dots) that have been
used up to the given iteration. As a side product, we can obtain the variance
of the approximate posterior, which may provide the uncertainty informa-
tion of the approximation, and here we plot the variance in Figure 4. As a
comparison, we also compute the GP approximation of the posterior with
the Bayesian active posterior estimation (BAPE) method developed in Kan-
dasamy et al. (2015). In particular, we implement the BAPE method using a
total of 140 design points, which matches the number of design points of our
method. The results are shown in Figure 5. The figure on the left shows the
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Figure 2: KL (left) and the Hellinger (right) distances between the obtained ap-
proximation and the true posterior, plotted against the number of iterations.

Figure 3: Approximate posterior distribution obtained at the 7th, 9th, 11th, and
13th iterations respectively. The red dots are the design points that have been
used.
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Figure 4: Variance of the posterior distribution obtained with the AGP method.

Figure 5: (Left) GP approximation of the posterior distribution obtained with
the BAPE method using 140 design points (red dots). (Right) KL distance be-
tween the true posterior and the approximation computed with the AGP (solid
line) and the BAPE (dashed line) methods, plotted against the number of design
points used. The inset is the same plot on a logarithmic scale.

posterior distribution computed with all 140 design points (corresponding
to the 13th iteration in our method), and as one can see, the BAPE method
can also obtain a good approximation of the posterior distribution. To com-
pare the performance of the two methods, we compute the KLD between
the true posterior and the approximation obtained with different numbers
of design points by the BAPE and our adaptive GP (AGP) methods. We plot
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the KL distance against the number of design points in Figure 5 (left). One
can see from the figure that with the same number of design points, the ap-
proximate posterior obtained by the proposed AGP method is significantly
closer to the true posterior than the results of the BAPE method.

3.2 Genetic Toggle Switch. We now apply the proposed method to a
real-world inference problem; we consider the kinetics of a genetic toggle
switch, which was first studied in Gardner, Cantor, and Collins (2000) and
later numerically investigated in Marzouk and Xiu (2009). The toggle switch
consists of two repressible promoters arranged in a mutually inhibitory net-
work: promoter 1 and promoter 2. Either promoter transcribes a repressor
for the other one; moreover, either repressor may be induced by an external
chemical or thermal signal. Genetic circuits of this form can be modeled by
the following differential-algebraic equation system (Gardner et al., 2000):

du
dt

= α1

1 + vβ
− u, (3.2a)

dv

dt
= α2

1 + wγ
− v, (3.2b)

w = u
1 + ([IPTG]/K)η

. (3.2c)

In equations 3.2a to 3.2c u and v are, respectively, the concentration of re-
pressors 1 and 2; α1 and α2 are the effective rates of synthesis of the repres-
sors; γ and β represent cooperativity of repression of the two promoters;
and [IPTG] is the concentration of IPTG, the chemical compound that in-
duces the switch. Parameters K and η describe binding of IPTG with the
first repressor. (For more details of the model, see Gardner et al., 2000.)

We performed the experiments with several selected values of [IPTG]:
1 × 10−6, 5 × 10−4, 7 × 10−4, 1 × 10−3, 3 × 10−3, 5 × 10−3, respectively, and
for each experiment, we look the measurement of v at t = 10. The goal is
to infer the six parameters,

x = [α1, α2, γ , β, η, K],

from the measurements of v . We use synthetic data in this problem; specif-
ically we assume that the true values of the parameters are

xtrue = [143, 15.95, 2.70, 0.96, 2.34, 2.70 × 10−5].

The data are simulated using the model described by equations 3.2a to
3.2c, with the true parameter values and measurement noise then added
to the simulate data. The measurement noise here is assumed gaussian
and zero-mean, with a variance σ 2. In the numerical experiments, we
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Table 1: Prior Domains of the Parameters.

α1 α2 γ β η K

n [120, 200] [15.0, 16.0] [2.1, 2.9] [0.85, 1.15] [1.3, 2.7] [2.3, 3.7] × 10−5

consider a large-noise case where σ 2 = 5 × 10−4 and a small-noise case
where σ 2 = 1.25 × 10−4. We assume that the priors of the six parameters
are all uniform and independent of each other, where the domains of the
uniform priors are given in Table 1.

We use this example to make a detailed comparison of the proposed AGP
algorithm with some other popular methods. Thus, we employ four meth-
ods to compute the posterior distribution in this example: the direct MCMC
algorithm with the true likelihood function, the proposed AGP algorithm,
the BAPE method (Kandasamy et al., 2015), and the spectral likelihood ex-
pansion (SLE) method (Nagel & Sudret, 2016), which constructs the gPC
surrogate for the likelihood function using nonintrusive approaches.

We first consider the large-noise case. We draw 3 × 105 samples from
the true posterior distribution with a DRAM algorithm and use the results
as the reference posterior distribution. We then apply the AGP method to
approximate the posterior distribution, where we use m0 = 50 initial de-
sign points randomly drawn from the prior and m = 50 design points in
each iteration. We also choose the termination parameters to be nmax = 100,
Dmax = 0.05, and K = 5. The algorithm terminates in 18 iterations, resulting
in a total of 950 evaluations of the true likelihood function. We note that
each evaluation of the likelihood function involves a full simulation of the
underlying model described by equations 3.2a to 3.2c. After obtaining the
approximate posterior distribution, we draw 3 × 105 samples from it using
a DRAM MCMC simulation.

We then compute the approximate posterior with the BAPE method us-
ing 950 likelihood evaluations and draw 3 × 105 samples from it using a
DRAM MCMC simulation. Finally, we approximate the posterior with the
SLE-gPC method where the gPC expansion coefficients are computed us-
ing the least squares method with design points determined by the Sobol
sequences–based quasi–Monte Carlo (QMC) method. The gPC degree is au-
tomatically determined by the algorithm using leave-one-out (LOO) cross-
validation, and in the QMC scheme, we set the number of design points at
950.

We now compare the results of these methods. First, we estimate the pos-
terior distributions of the six parameters by all four methods and show the
results in Figure 6. One can see from the figure that the distributions com-
puted by both the BAPE and the AGP methods are rather close to those
of direct MCMC (which are regarded as the true posteriors), while the re-
sults of SLE-gPC deviate from the MCMC results, especially for the two
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Figure 6: Genetic toggle example: large-noise case. The marginal distributions
of the six parameters computed with the four different methods.

Table 2: Large-Noise Case: The KLD between the Marginal Posterior Distribu-
tions Computed with the Three Approximate Methods and Those Computed
with Standard MCMC.

Method α1 α2 γ β η K

KLD AGP 1.5 × 10−4 0.0069 0.0020 0.014 0.0041 0.0075
BAPE 4.5 × 10−3 0.043 0.0022 0.039 0.0095 0.013
SLE 1.8 × 10−3 0.44 0.0012 0.18 0.0078 0.0013

parameters α2 and β. As for the comparison of BAPE and AGP, the figures
show that both methods can produce reasonably good approximations of
the posterior distributions in this case. So for a quantitive evaluation of the
performance of the methods, we compute the KLD from the approximate
posterior distributions to the true posterior densities and show the results
in Table 2. We can see from the table that the posterior distributions com-
puted by the AGP method are closer (in terms of KLD) to the true posteriors
than the other two methods for all six parameters.

We then consider the small-noise case where we use the same imple-
mentation configurations as in the large-noise case. In this case, the AGP
algorithm uses 1200 true likelihood evaluations; as before, we compute the
posterior using the SLE and the BAPE methods with the same number of
true likelihood evaluations. We then compute the posterior directly with
3 × 105 MCMC samples and use the results as the true posterior. In Figure 7
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Figure 7: Genetic toggle example for the small-noise case. The marginal distri-
butions of the six parameters, computed with the four different methods.

Table 3: Small-Noise Case: The KLD between the Marginal Posterior Distribu-
tions Computed with the Three Approximate Methods and Those Computed
with Standard MCMC.

Method α1 α2 γ β η K

KLD AGP 0.0032 0.015 0.0039 0.012 0.0096 0.014
BAPE 0.015 0.036 0.028 0.057 0.0075 0.074
SLE 0.0035 1.1 0.021 0.46 0.050 0.010

we compare the marginal posterior distributions with the four methods.
Similar to the large-noise case, the figure shows that the results of the
SLE-gPC are of very low accuracy, while both the AGP and the BAPE meth-
ods yield rather good results. Once again, we show in Table 3 the KLD from
the marginal posterior distributions computed with the three approximate
methods to the true posterior (those computed by the direct MCMC). These
quantitive comparison results indicate that the AGP method yields better
results than the other two methods in terms of the KLD. Thus, we can con-
clude that our AGP method has the best performance in both the large- and
the small-noise cases.

3.3 The Human Body Sway Problem. Finally, we apply the proposed
method to a human body sway problem. This problem has received
considerable attention as body sway may provide information about a
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person’s physiological status (Tietäväinen, Gutmann, Keskivakkuri, Coran-
der, & Hæggström, 2017). Several mathematical models have been pro-
posed to describe the sway motion, and here we consider the single-link
inverted pendulum (SLIP) model proposed in Asai et al. (2009), which as-
sumes that the body is maintained in an upright position by an active and
a passive proportional-derivative controller.

Specifically, the SLIP model is given by the following stochastic delay
differential equation (SDDE) (Asai et al., 2009):

Iθ̈ (t) = mghθ (t) − [Kθ (t) + Bθ̇ (t) + fP(θ (t − �)) + fD(θ̇ (t − �))] + ξ (t).

(3.3)

In this equation, I is the moment of inertia of the body, θ is the tilt an-
gle (θ̇ and θ̈ are its first and second derivatives, respectively), m denotes
the body mass, g is the gradational acceleration, h is the distance between
3D center-of-mass (COM) and the ankle joint, and ξ is a zero-mean gaus-
sian noise with variance σ 2. K and P are the passive stiffness and passive
damping parameters, and fP(θ (t − �)) and fD(θ̇ (t − �)) are active stiff-
ness and active damping terms, where � is the time delay. We now spec-
ify the active stiffness fP(θ (t − �)) and the active damping fD(θ̇ (t − �)).
We first define two functions c1(θ (t − �)) = θ (θ̇ (t − �) − asθ (t − �)) and
c2(θ (t − �)) = θ (t − �)2 + (θ̇ (t − �))2. We then have

fP(θ (t − �)) =
{

Pθ (t − �), if c1(θ (t − �)) > 0 and c2(θ (t − �)) > r2;
0, otherwise;

(3.4)

and

fD(θ̇ (t − �)) =
{

Dθ̇ (t − �) if c1(θ (t)) > 0 and c2(θ (t)) > r2;
0, otherwise;

(3.5)

where r is the radius of the quiet zone (active control is off). The slope as

depends on the level of control, CON, as as = − tan(π (CON − 0.5)). In this
model, five key parameters (P, D, �, σ , and CON) cannot be measured di-
rectly and need to be inferred from the body sway measurements, while the
other parameters can either be measured or specified in advance (Tietäväi-
nen et al., 2017). The COM signal,

COM(t) = h sin(θ (t)), (3.6)

is measured and used to infer the five unknown model parameters. The ab-
solute value of the COM amplitude, velocity, acceleration, and the power
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Figure 8: Simulated COM signal.

spectral density (PSD) are extracted from the signal. The mean, vari-
ance, skewness, and kurtosis of each physical quantity are calculated as
the data y (a 16-dimensional vector) to infer the model parameters: x =
(P, D, �, σ, CON ). Computing the posterior in this problem is rather chal-
lenging as the likelihood function p(y|x) is not available, which make the
standard Bayesian inference computation methods such as the MCMC al-
gorithms infeasible. In Tietäväinen et al. (2017), the parameters were in-
ferred with the approximate Bayesian computation (ABC) method, which
does not use the likelihood function. A major issue in the ABC method
is that its performance is often sensitive to the choice of the tolerance pa-
rameter (Barber, Voss, & Webster, 2015). Here as an alternative, we com-
pute the posterior with the proposed method. In particular, we compute
the likelihood function using the following procedure. For a given param-
eter value x, we perform a Monte Carlo simulation for the SDDE model,
equation 3.3, with a given number of samples. For each yi for i = 1, . . . , 16,
we estimate the resulting conditional density function pi(yi|x) with the ker-
nel density estimation method, and then we take the likelihood function
to be

p(y|x) =
16∏

i=1

pi(yi|x).

We note that a single evaluation of the likelihood function requires repeat-
edly simulating equation 3.3 a large number of times, which renders the
evaluation highly intensive.

In the numerical experiments, we use simulated data; in particular, the
true parameter values are set to be P = 145 Nm/rad, D = 10 Nms/rad,
� = 0.2 s, σ = 0.45 Nm and CON = 0.75, and the other parameter values
are g = 9.81 m/s2, m = 68 kg, h = 0.87 m, I = mh2, K = mgh × 0.8 Nm/rad,
B = 4 Nms/rad, and r = 0.004 rad-rad/s. The COM signal generated from
the model, equation 3.3, with these parameter values is shown in Figure 8. In
the inference, we impose a uniform distribution on each of the five parame-
ters on the following intervals: P ∈ [80, 160], D ∈ [0.05, 30], � ∈ [0.05, 0.5],
σ ∈ [0.05, 0.6], and CON ∈ [0.05, 0.85]. Moreover, for each evaluation of the



3090 H. Wang and J. Li

Figure 9: Posteriors of the parameters in the SLIP model, computed by the
BAPE method. Also shown are the 60% confidence interval (dashed vertical
lines) and the true parameter values (solid vertical lines).

likelihood function π (y|x), we use 10,000 simulations of equation 3.3, and as
a result, a direct MCMC simulation of the posterior distribution is compu-
tationally infeasible. We apply our AGP method to compute the posterior
distribution, and the algorithm parameters are the same as those in the sec-
ond example. The algorithm terminates in 14 iterations, so the total number
of true likelihood evaluations is 750. As a comparison, we also perform the
BAPE method with the same number of true likelihood function evalua-
tions. To compare the performance of the two methods, we plot the poste-
rior marginals of the model parameters computed by BAPE in Figure 9 and
those computed by AGP in Figure 10. We also show the true parameter val-
ues, as well as the 60% confidence interval in the figures. Here, one can see
that for all the posteriors computed with the AGP method, the true param-
eter values fall in the 60% confidence intervals, while for the results of the
BAPE method, the true values of D and � fall outside the 60% confidence
intervals, which suggests that the posteriors computed by the AGP method
may be more accurate and reliable than those by BAPE.

4 Conclusion

We have proposed an algorithm to construct GP-based approximations
for the unnormalized posterior distribution. The method expresses the
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Figure 10: Posteriors of the parameters in the SLIP model, computed by our
AGP method. Also shown are the 60% confidence interval (dashed vertical lines)
and the true parameter values (solid vertical lines).

unnormalized posterior as a product of an approximate posterior density
and an exponentiated GP model, and an adaptive scheme is presented
to construct such an approximation. We also provide an active learning
method that uses maximum entropy as the selection criterion to deter-
mine the sampling points. With numerical examples, we show that the
method can obtain a rather good approximation of the posterior with a
limited number of evaluations of the likelihood functions. We believe the
proposed method can be useful in a wide range of practical Bayesian infer-
ence problems where the likelihood functions are difficult or expensive to
evaluate.

Several issues of the proposed algorithm deserve further study. First,
while our numerical experiments illustrate that the algorithm may converge
in these examples, a rigorous convergence analysis of the algorithm is lack-
ing. Second, for a posterior distribution with an unbounded domain, the
resulting approximation may become improper, and thus certain modifica-
tions of the algorithm may be needed to address the issue. Finally, we note
that selecting a good kernel function for the GP model is an important is-
sue for GP-based methods, and to this end, an interesting question is how to
choose kernel functions that are specifically suitable for the log posteriors.
We plan to study these issues in future work.
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