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Abstract 

Dynamics of hydration water is essential for the functionality of bio 

macromolecules. Previous studies have demonstrated that water molecules exhibit sub 

diffusion on the surface of bio-macromolecules; yet the microscopic mechanism 

remains vague. Here, by performing neutron scattering, molecular dynamics 

simulations and analytic modelling on hydrated perdeuterated protein powders, we 

found that water molecules jump randomly between trapping sites on protein surfaces, 

whose waiting times obey a broad distribution, resulting in sub-diffusion. Moreover, 

the sub diffusive exponent gradually increases with observation time towards normal 

diffusion due to a many-body volume-exclusion effect. 

Introduction 

Water is the solvent of life, playing a crucial role in determining the native structure, 

dynamics and function of biological macromolecules [1-5]. The diffusive motions of 

water molecules not only aid the transportation of the function-required essential 

ingredients, e.g., protons, ions and substrates across membranes and into the catalytic 

site of enzymes [1,6,7], but also render internal flexibility to the bio macromolecules. 

This flexibility is likely to be crucial for the bio-function, as it is absent when the bio 

macromolecules are dehydrated [1-3,8]. On the other hand, as an active solute, the bio 

macromolecule will significantly alter the structure and dynamics of the hydration 

water molecules surrounding it [9-13]. Both experiments and simulations showed that 

the diffusive motion of the hydration water on the surface of various bio 

macromolecules: DNA [10], RNA [14], Proteins [11], and lipid membranes [12], are 

significantly retarded as compared to bulk water, and presents an anomalous sub 

diffusion [11,12,15,16]. This sub-diffusive motion is characterized by a fractional 

power-law dependence on time of the mean square atomic displacement (MSD), i.e., 

<X2(t)> ~ t with  < 1 [11,12,15,16]. Two plausible physical pictures have been 

proposed to explain sub diffusion of hydration water [17-19]: spatial disorder, i.e., the 
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rough surface of the bio macromolecules forms a fractal, percolated network to hinder 

the diffusion of water molecules; or temporal disorder, i.e., water molecules jump 

between traps on the surface of the bio-macromolecules with a broad distribution of 

trapping times  Due to lack of microscopic evidences, however, the precise physical 

mechanism remains largely unclear [17,18].  

In this work, we studied the diffusive dynamics of surface water on hydrated 

perdeuterated green fluorescent protein (GFP) and Cytochrome P450 (CYP) at 

physiological conditions by combining neutron scattering experiments with molecular 

dynamics (MD) simulations and analytic modeling. We showed that the dynamics of 

hydration water is sub-diffusive, and the sub-diffusion exponent gradually increases 

over the observation time. By analyzing the MD trajectories of individual water 

molecules, we directly observed the discrete trapping events of the water molecules on 

the protein surface, and found that the associated trapping times obey a broad 

distribution, leading to the sub diffusion. Moreover, we found that deep trapping sites 

are mostly occupied and thus water molecules prefer to jump among shallow traps, 

rendering a gradual increase of sub-diffusive power law with the observation time, 

towards normal diffusion. Finally, a lattice toy model, Many-Body Continuous Time 

Random Walk, is developed to provide a complete, quantitative description of all the 

relevant features of diffusive dynamics of the hydration water.   

Results and discussions 

Neutron scattering directly probes the fluctuation of nuclear position and is highly 

sensitive to hydrogen atoms. Hence, it is a powerful tool for the study of diffusive 

motion of water in variety of environments, from porous silica to carbon nanotube or 

the surface of bio macromolecules [11,16,20,21]. Here, the neutron scattering 

experiments were performed at 280 K on both perdeuterated GFP and CYP (see Figs. 

1A and B) at hydration level of 0.4 g water/g protein, using the backscattering 

spectrometer (BASIS) at oak ridge national lab (ORNL) [22]. This hydration level 

corresponds roughly to one single layer of water molecules covering the protein 

surfaces [1]. The perdeuterated proteins hydrated by H2O are the experimental key here 

to suppress the contribution from protein hydrogen atoms to the neutron signals, and 

the measured neutron data thus dominantly reflect the dynamics of hydration water. For 

quantitative comparison, all-atom MD simulations were performed at the same 

hydration level and temperature as experiments. Details of experimental and MD 

protocol are provided in the Supporting Information (SI). 

The experimentally measured quantity is the so-called dynamic structure factor 

S(𝑞,ν), which presents the amplitude-weighted distribution of the dynamic modes in 

the sample over frequency at a given wave vector, q. It is informative to represent 

neutron scattering spectra as the imaginary part of the dynamic susceptibility, χ’’(𝑞,ν)= 

S(𝑞,ν)/𝑛𝐵(ν), 𝑛𝐵(𝑣) being the Bose factor 𝑛𝐵(𝜈) = [exp (
ℎ𝑣

𝑘𝑇
) − 1]−1. The physical 

significance of χ’’(𝑞 ,ν) is that it highlights the quasi-elastic components in the 

neutron signals and feature relaxation processes on different time scales as distinct 
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peaks with associated characteristic relaxation times as tc=1/(2π νpeak) [15,23,24].  

Figs. 2A and B present experimental and MD-derived susceptibility spectra χ’’ for 

hydration water on CYP and on GFP at various q, respectively, which are in good 

mutual agreement. The Cole-Cole distribution function [15,23] (see Eq. (S2) in SI) is 

applied to model both the experimental and MD-derived susceptibility spectra χ’’, 

providing the value of characteristic relaxation time, tc at a given q, i.e., roughly the 

time for water molecules to diffuse a distance of value ~ 2/q. The q-dependence of the 

resulting tc  is presented in Fig. 2C on a double logarithmic scale for both experimental 

and simulation systems, which are again in quantitative agreement, validating the 

simulation systems on the time scales from 10 ps to 1 ns. The wave vectors measured 

experimentally (Fig. 2C) range from 0.7 to 1.7 Å-1, corresponding to a spatial range of 

4 Å – 1 nm. Different power-law dependences, tc  ∝ q-n, are observed for hydration and 

bulk water. For hydration water on either CYP or GFP, n is found to be 2.5 ± 0.1 , 

indicating a sub-diffusive motion <X2(t)> ~ t with = 2/n=0.8±0.03 in the time 

window probed (10ps to 1ns).  In contrast, a normal diffusion is observed in bulk 

water, which corresponds to n=2, =1 (Fig. 2C). Fig. 2D presents the MD-derived 

<X2(t)> for both hydration water and bulk water in the same time window as probed 

experimentally, an effective power-law fit provides, =0.8 and =1, respectively, 

confirming the values derived from the neutron susceptibility spectra. The value of  

for the protein hydration water obtained in the present work is in quantitative agreement 

with the values reported in early neutron experiments and MD simulations [11,15,17-

19]. 

Moreover, the characteristic relaxation time tc for hydration water is found to be 

about an order magnitude longer than that of bulk water, which is in agreement with 

earlier neutron results [11,15,23], indicating the diffusion of hydration water is highly 

retarded near the protein surfaces. All these results are likely to be quite general for 

hydration water on proteins, since the two proteins studied here differ considerably in 

both secondary and tertiary structures (Figs. 1A and B): whereas GFP consists of mostly 

of -sheets wrapped into a barrel-like structure, CYP consists of comparable amounts 

of -sheets and -helices and forms three closely-packed domains [25].  

Two distinct physical pictures have been previously proposed to heuristically 

understand the sub diffusion of hydration water, which may be conveniently called the 

scenario of spatial disorder and that of temporal disorder [17-19]. In the scenario of 

spatial disorder, the protein surfaces have rough and fractal structures, which slow down 

the dynamics of hydration water and lead to sub diffusion. Mathematically, <X2(t)> 

of diffusing molecules scales as t to the power of df /ds, where df is the fractal dimension 

of the network of the jump motions, and ds is the spectral dimension and is related to 

the connectivity of the network [17,18]. In the alternative scenario of temporal disorder, 

water molecules are assumed to jump stochastically between many trapping sites with 

a broad distribution of trapping times, which is defined as the time a molecule spends 

at a trapping site before its next jumping trial. In the simple toy model called 

Continuous Time Random Walk (CTRW), the distribution of trapping time is assumed 

to be power-law like with the divergent expectation of the mean value: P() ~ 
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 −(+)      The exponent of the sub diffusion is thus fully determined by  as 

<X2(t)> ~ t  [17,18,26]  We note however these two scenarios are NOT necessary to 

be mutually exclusive in principle. Hybrid theories involving both mechanisms have 

been proposed in literature, e.g., to explain the sub-diffusive protein internal dynamics 

[27]. 

An important difference between the two physical pictures is that walking steps for 

a single particle are expected to be strongly correlated over the entire jumping progress 

in the scenario of spatial disorder, because of the intrinsic long range correlation in the 

percolated fractal network of the jump motions, while no such correlation is expected 

in the scenario of temporal disorder [26,28].  

To explore the microscopic mechanism of the sub-diffusive dynamics (Fig. 2), we 

analyze quantitatively the MD trajectories of each water molecule on the protein surface. 

Fig. 3A is a projection of the MD trajectory of the oxygen atom of one selected water 

molecule on CYP recorded continuously at every 100 picoseconds over 100 

nanoseconds, and a video displaying this trajectory is presented in SI. More examples 

of such projected MD trajectory of water molecules on CYP and GFP are presented in 

Fig. S2 (SI). Up on observation of these trajectories, it becomes clear that the water 

dynamics consists of two modes: rattling within one trapping site (basin) at short time 

scales and jumping over to neighboring traps at longer time scales. The typical jump 

distance is about 2-3Å, even though longer jumps do exist. (More statistical analysis on 

jump distances is displayed in Table ST1 in SI.)  This provides a strong support for 

the scenario of temporal disorder. Moreover, the typical size of trapping basins is about 

1~2Å. It is very unlikely that two water molecules occupy the same basin at the same 

time, as the inter water molecule distance is about 3 Å as evident by the radial 

distribution function of hydration water molecules (Fig. S3 in SI). 

For statistical analysis, the trajectories of all water molecules in the simulation of 

hydrated CYP were projected similarly as Fig. 3A, all trapping events were identified, 

and all jumping displacements 𝑠𝑖 were determined. The correlation function between 

distinct jump displacements for a given water molecule is defined as [26,28] 

𝐶(𝑘) =< 𝑠𝑖*𝑠𝑖+𝑘 >,            (1) 

where 𝑠𝑖 and 𝑠𝑖+𝑘 are, respectively, the displacement vectors for the i-th and (i+k)-th 

jumps of the molecule, and the bracket indicates ensemble average over all the 

hydration water molecules, and the results are presented in Fig. 3B for CYP and in Fig. 

S4B for GFP. Virtually zero correlation is observed, which clearly excludes the scenario 

of spatial disorder.   

Using MD trajectories, we also analyzed the distribution of waiting times w, 

defined as the time a water molecule spends at a site before jumping out. As shown in 

Figs. 4A and 5A, the distribution P(w) is very broad. Analyses of protein surface 

structures indicate that residues with charges and local concave geometry tend to have 

longer waiting time. Details are discussed in SI.10. It is also evident from Figs. 4A and 

5A that the log-log plot of P(w) continuously bends downwards as w increases, and 

the effective slope steadily increases from 0.3 to 1.3 over the observation time from 10 
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ps to 100 ns. Concomitantly, MD-derived <X2(t)> exhibits a cross-over from sub 

diffusion to normal diffusion (Figs. 4B and 5B) with the observation time, and the 

effective power law,  changes gradually from ~ 0.75 to ~ 0.95 over the time window 

studied (see Figs. 4C and 5C). A simple CTRW model is clearly incapable of explaining 

these behaviors. It is of importance to note that there is no significant time-window 

where the exponent stays constant, and the exponent, 0.8, obtained in Fig. 2D is an 

effective fit averaging over the experimental time window from 10 ps to 1ns. 

The model CTRW treats all water molecules on the protein surface independently, 

i.e., it ignores interaction between neighboring water molecules. At the hydration level 

of h=0.4 studied here, about 48% of the trapping sites on CYP surface and 46% on the 

GFP surface are covered by water. (This occupancy rate is estimated as the ratio 

between the number of water molecules and that of trapping sites on the protein surface 

discovered in MD.)  Consequently, there would be a substantial probability that a 

molecule jumps into an occupied site if it follows CTRW model. This is clearly 

unphysical, since the trapping sites (Fig. 3A) are not large enough to hold two water 

molecules. On the other hand, a deep trap is most likely occupied for long time by one 

given molecule, and therefore inaccessible to jumping molecules. Hence, water 

molecules should preferentially jump to shallow traps, and therefore effectively diffuse 

faster.  

Model and analyses 

To capture these nontrivial consequences of volume-exclusion interaction, we 

modify and generalize the CTRW model. We require that each site can hold at most one 

molecule, and assume that a fraction 𝜂 of sites are occupied. As in the CTRW model, 

each trapping site is characterized by an intrinsic trapping time (ITT), denoted as 𝜏, 

whose physical significance is the average time that a particle stays on this site, if all 

other sites are empty. The probability distribution of 𝜏  follow a power law 𝑓(𝜏) 

= 𝜇 𝜏0
𝜇

𝜏−1−𝜇. A water molecule at a site with 𝜏 tries to jump to a randomly selected 

site with probability 1/𝜏 per unit time, and the jump is successful only if the target site 

is empty. If the target site is already occupied, the jumping molecule is bounced back to 

the original site. We call the modified model the Many-Body Continuous Time 

Random Walk (MB-CTRW) model. 

We note that 𝜏 is an intrinsic property of a trapping site, and is different from the 

waiting time w observed in MD at a given hydration level. The latter depends not only 

on the potential well of the trapping site, but also on the occupancy rate of neighboring 

traps. Given the distribution of 𝜏, the probability distribution of waiting time w can be 

calculated using the mean-field approximation. With technical details relegated to SI, 

the final result is 

    𝑃(w) = 𝜇 𝜏0
𝜇(1 − 𝜂) ∫ 𝑑𝜏

𝜏−2−𝜇

1−𝜂+𝐶 𝜏
𝑒−

𝜏𝑤(1−𝜂)

𝜏
∞

𝜏0
 ,     (2) 

where C is a function of 𝜏0, 𝜇, and 𝜂, defined in Eq. (S7) in SI. The values of these 

three parameters are determined by fitting Eq. (2) to MD-derived distribution of waiting 
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time. The key result of MB-CTRW is the gradual change of 𝑃(w), because the many-

body volume-exclusion effect will enhance the sampling rates of shallow trapping sites 

over the deep ones, which will gradually modify 𝑃 (w) to continuously bend 

downwards. This is the essential feature of 𝑃(w) found in MD. As shown in Figs. 4A 

and 5A, a remarkable agreement of 𝑃(w) between MB-CTRW and MD simulation for 

hydration waters on both CYP and GFP is achieved by choosing proper values of 𝜏0, 

  𝜇  and 𝜂 . The values of 𝜂  resulting from fittings are 0.52 and 0.49 for hydration 

waters on CYP and GFP, respectively, very close to the value directly estimated from 

MD, which provides a strong support for the plausibility of our model. We also use Eq. 

(2) to simulate <X2(t)> (see details in SI), and find remarkable agreement with MD 

results, as shown in Figs. 4C, 4D, 5C and 5D for hydration waters on CYP and GFP, 

quantitatively validating our model, MB-CTRW.  

    

Conclusion 

We have developed a comprehensive and compelling physical picture for the 

diffusion of hydration water on protein surfaces. We have demonstrated the existence 

of trapping basins for hydration water, and have shown that the sub-diffusive motion 

arises from the broad distribution of trapping times.  The deep trapping sites are 

however mostly occupied, and thus diffusing water molecules preferentially jump to 

shallow sites. This many-body volume-exclusion interaction leads to biased sampling 

of trapping time, and resulting in continuous increase of the effective diffusion 

exponent  as observation time, i.e., gradual crossover from sub diffusion to normal 

diffusion. All these features are accurately captured by our mean field lattice toy model 

(Many-Body Continuous Time Random Walk) with remarkable precision.  

It has been widely demonstrated that dynamics of water is strongly coupled to that 

of the enclosed protein molecule, e.g., through hydrogen bonds [24,29]. The mobility 

of water can thus be passed on to the protein through such coupling, and then influences 

or even controls the dynamical behaviors of functional importance, such as the 

fluctuation rate of the protein among different enzymatic states and the migration rate 

of ligands in and out of the catalytic pocket of the protein molecule, etc [30]. The 

present work shows that the many-body volume-exclusion effect makes water 

molecules to jump preferentially among shallow sites as the deep ones are likely to be 

occupied, and thus effectively diffuse faster. The resulting greater mobility in water can 

be eventually delivered to the enclosed protein molecule to gain sufficient flexibility 

required for its function. This might provide a mechanism to explain why certain 

hydration (about 20% in weight) is required for enzymes to present appreciable 

anharmonic dynamics and bioactivity [1] as such many body effect will be insufficient 

when the hydration level is too low. 
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Figure 1: Representative structures of (A) GFP and (B) CYP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Neutron susceptibility spectra, χ’’(𝑞 ,ν), for hydration water derived from  

experiment and from MD simulation on perdeuterated CYP (A) and GFP (B) [15] at 

various q values. More detailed experimental and simulation protocols can be found in 

SI. C: q dependence of the characteristic relaxation time, tc, of hydration water and bulk 

water derived by fitting the χ’’ spectra to the Cole-Cole function (Eq. (S2) in SI). Solid 

symbols represent experimental values while empty ones denote the MD-derived ones. 

Spheres denote hydration water on GFP, prisms correspond to hydration water on CYP 

and hexagons represent bulk water, where the experimental data of bulk water and 

hydration water on GFP were taken from Ref. [15]. D: the MD-derived MSD for both 

hydration and bulk water in the time window from 10 ps to 1 ns, black (bulk water), red 
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(hydration water in GFP) and blue (hydration water in CYP). Solid lines are power-law 

fits, with the exponents displayed accordingly. 

 

 

 

 

 

 

 

Figure 3: A:  The projected MD trajectory of a selected water molecule on CYP. The 

position of oxygen atom of the water molecule is projected to a scatter plot at every 100 

ps for a continuous trajectory of 100 ns long. B: The step-step auto correlation function 

of jump displacements, C(k) (Eq. (1)) ensemble averaged over all the hydration water 

molecules on CYP. More example MD trajectory of water molecules on CYP and GFP 

are presented in Fig. S2 of SI. C(K) derived for hydration water molecules on GFP is 

presented in Fig. S4B in SI. 
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Figure 4: Statistical results derived for hydration water molecules on CYP. A: Black 

dots denote the distribution of waiting time, P(w), derived directly from MD. The red 

curve represent a fit using Model MB-CTRW (Eq. (2)), yielding 𝜇 = 0.24157, 𝜏0 =

10.362𝑝𝑠 and 𝜂=0.52172. The arrow points out a small population of frozen water 

molecules (~ 1% of the total water molecules), which are stuck in deep traps on the 

protein surface for the entire 100 ns MD simulation. The inset presents the dependence 

of the effective power law of P(w) on the observation time, which is obtained by power-

law fitting in one decay long time window. B: Mean square atomic displacement (MSD), 

<X2(t)>, derived from MD (black solid square). Green and red lines represent power-

law fits in time window from 10ps to 100ps and from 10ns to 100ns respectively. C: 

Effective sub-diffusive exponent,  obtained by performing power law fits to MSD 

derived  from MD (black dots) and from Monte Carlo simulation based on MB-CTRW 

(red dots). Here,  is estimated by fits in different time windows, with each window 

being one decay long. D: MSD calculated directly from MD (black dots) and from 

Monte Carlo simulation based on Model MB-CTRW (red dots, see more details in SI).  
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Figure 5: Statistical results derived for hydration water molecules on GFP. A: Black 

dots denote the distribution of waiting time, P(w), derived directly from MD. The red 

curve represent a fit using Model MB-CTRW (Eq. (2)), yielding 𝜇 = 0.32167, 𝜏0 =

8.3114𝑝𝑠 and 𝜂=0.49157. The inset presents the dependence of the effective power 

law of P(w) on the observation time, which is obtained by power-law fitting in one 

decay long time window. B: Mean square atomic displacement (MSD), <X2(t)>, 

derived from MD (black solid square). Green and red lines represent power-law fits in 

time window from 10ps to 100ps and from 10ns to 100ns respectively. C: Effective sub-

diffusive exponent,  obtained by performing power law fits to MSD derived  from MD 

(black dots) and from Monte Carlo simulation based on MB-CTRW (red dots). Here, 

 is estimated by fits in different time windows, with each window being one decays 

long. D: MSD calculated directly from MD (black dots) and from Monte Carlo 

simulation based on Model MB-CTRW  
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