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Abstract

High accuracy forecasts are essential to financial risk management, where machine
learning algorithms are frequently employed. We derive a new theoretical bound
on the sample complexity for Probably Approximately Correct (PAC) learning in the
presence of noise, and does not require specification of the hypothesis set |H|. We
demonstrate that for realistic financial applications where |H| is typically infinite. This
is contrary to prior theoretical conclusions. We further show that noise, which is a
non-trivial component of big data, has a dominating impact on the data size required
for PAC learning. Consequently, contrary to current big data trends, we argue that
high quality data is more important than large volumes of data. This paper addi-
tionally demonstrates that the level of algorithmic sophistication, specifically the Vap-
nik–Chervonenkis (VC) dimension, needs to be traded-off against data requirements
to ensure optimal algorithmic performance. Finally, our new Theorem can be applied
to a wider range of machine learning algorithms, as it does not impose finite |H| re-
quirements. This paper contributes to theoretical and applied research in the domain
of machine learning for financial applications.
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1 Introduction

Forecasting plays a fundamental role for financial risk management and is most crucially
concerned with random and unknown events that may have substantial impacts upon a
firm or a financial system. Examples include stock market crashes (Kirilenko, Kyle, Tuzun
and Samadi, 2017), the recent Global Financial Crisis with its prolonged effect, and ex-
change rate risks resulting from political elections, etc (García, 2017). Machine learn-
ing algorithms are increasingly used to improve forecasts in financial risk management
(Lacher, Coats, Sharma and Fant, 1995), (Mullainathan and Spiess, 2017), (Chandrinos,
Sakkas and Lagaros, 2018), (Xu, Chen, Coleman and Coleman, 2018). Machine leaning
provides a modelling and predicting methodology for data exhibiting non-trivial properties
that other modelling approaches are not be able to cope with (Varian, 2014). The ability
of machine learning algorithms to create hypotheses from data, rather than from a fixed
set of instructions, offers high flexibility to computational modelling. A particularly ad-
vantageous aspect of machine learning is that it can engage in iterative learning, where
learning and modelling are adapted to newly introduced data (Belloni, Chernozhukov
and Wei, 2013), (Mertens and Engel, 1997). This property alone has led to the develop-
ment of a wide range of important applications (Bajari, Nekipelov, Ryan and Yang, 2015),
(Blanco, Pino-Mejias, Lara and Rayo, 2013), such as sophisticated fraud detection and
learning human behaviour in investing or purchasing decisions.
PAC learning (Vapnik, 1998), (Vapnik and Chervonenkis, 1974) provides a mathematical
framework for machine learning. PAC learning determines if a potential hypothesis, aris-
ing from a classifier or oracle, is deemed to have learnt the correct function that maps in-
puts to their associated outputs. Valiant (Valiant, 1984) also proved that a minimum bound
exists for the (training) data required to obtain a hypothesis within quantified bounds of ac-
curacy. PAC learning is important to financial risk management as poor learning impacts
the accuracy of forecasts. Incapable modeling has been cited as one of the key causes
for the Global Financial Crisis. The issue of sample complexity is fundamental in machine
and PAC learning. It is still not completely known how many examples (size of the training
data) are needed for learning successfully in PAC learning (Simon, 2015). This is con-
cerned with the total number of training samples m required to achieve sufficient learning
accuracy, under the PAC learning framework and its respective assumptions. The funda-
mental importance of sample complexity or m is due to PAC learning theory implying that
the probability and amount of accuracy possible for a learning function is limited by m. If
we wish to obtain better learning, then this requires more training data m.
In addition to the impact of training data on the quality of learning, the training data size
m itself is important due to its impact on algorithmic implementation and analysis. Firstly,
a large m may be practically infeasible due to insufficient data availability. This can oc-
cur when a new financial product is created, as well as in other financial applications
associated with limited data available. Hence, m tells us the feasibility of implementing
some algorithms. Secondly, a large m value could lead to large computational complex-
ity, which requires powerful computational resources to enable that sufficient data can be
processed at a feasible timescale. Such issues are important in many real world applica-



tions, where computational resources and timescales are limited.
The majority of the work in machine learning is empirical research where the perfor-
mance of the algorithms are evaluated by their performance on the sample data sets.
Even though this is a useful simple approach for evaluating the individual algorithm’s
performance, it is difficult to compare different algorithms rigorously. The standard PAC
framework offers a useful analytical concept for machine learning. Earlier theorems in
the literature consider learning bounds for finite hypothesis set with noise free training
data sets. However the theory associated currently with this framework makes a number
of restrictive assumptions that negate usefulness to financial risk management applica-
tions. Firstly, some theorems typically require the hypothesis set |H| to be finite in order
to obtain informative bounds on m. Most machine learning algorithms, however, typi-
cally have |H| = ∞, particularly in the case in financial risk management, where a wide
and sophisticated range of machine learning algorithms are employed to forecast future
events. Therefore, in the case of such applications, bounds on sample complexity are not
realistic. Secondly, a significant volume of literature on learning theory assumes that little
or no noise exists (Kearns, 1998), (Blum, Kalai and Wasserman, n.d.). It is assumed that
the input data to a classifier is not corrupted by any noise (Bshouty, Eiron and Kushile-
vitz, 2002). This is not a realistic assumption in financial applications, as variables are
frequently modelled with noisy components. Stock market prices are typically modelled
with a Brownian motion to incorporating noise.
The presence of noise impacts the learning ability of any algorithm, since it is necessar-
ily harder to learn any relationship between input and output data. A simple analogy is
identifying a line of best fit, which is more challenging with noisy data compared to noise-
less data. For reasons such as feasibility of algorithms and impact on computational
resources, it is important to understand the impact of noise upon sample complexity. A
key question concerns the extent to which algorithms’ learning ability is affected by noise,
particularly for machine learning algorithms with infinite hypotheses sets. We would like
to understand m for such algorithms.
This paper investigates PAC learning in the presence of noise. We focus on PAC learning
when a noisy oracle or classifier exists and assigns, based on some noise level, an
incorrect output to an associated input. PAC learning in the presence of noise has been
addressed in a number of papers, due to the relevance of noise in real world applications.
In particular, Angluin and Laird’s seminal paper (Angluin and Laird, 1988) introduces
new results in the presence of (classification) noise, however requires a finite |H| for
their Theorem to be informative. Hence, their Theorem is not applicable in financial risk
management. Our paper makes the following contributions to the body of research on
PAC learning. Firstly, we derive a new bound on the sample complexity, specifically
the minimum sample length m, for a given level of learning accuracy in the presence of
noise classification. We further extend and generalize the results of Angluin and Laird’s
classic Theorem, because we do not require |H| in order to determine m as sample-
size bound. Secondly, using our bound we show that, contrary to the classic Theorem
(Angluin and Laird, 1988) that assumes finite |H|, machine learning algorithms require
very large values for m. Our results show that even for very low levels of noise data, very



large data sizes are required in order to produce sufficiently accurate forecasts. Thirdly,
this paper shows that the noise term significantly impacts the amount of data required for
forecasting, and that the required big data increases substantially with noise. We argue
that data cleaning techniques, or conversely high-quality or low-noise data, can be more
important than greater volumes of big data. This conclusion does not align entirely with
current trends in big data research, which emphasize greater volume of data rather than
higher-quality data (and cleaning techniques).
The paper is organized as follows. The next section provides the background of the
problem in focus, and introduces preliminaries and notations for the paper. In Section
3, we provide the main results and our contributions to PAC learning in the presence
of classification noise. The implications of our Theorem for financial risk management
applications are demonstrated in Section 4. Finally, Section 5 provides conclusions and
directions for further research.

2 Preliminaries

2.1 Introduction to Big Data and Machine Learning

Big data is currently receiving significant attention, due to the proliferation of data in the
modern world and due to the technological advances in capturing large volumes of data.
It is posited that big data will lead to a paradigm shift in data analysis and forecasting.
There is no consensus definition for the term ’big data’, but it typically refers to sizes
beyond the capabilities of traditional data-processing software, at least 1TB or higher
(Gandomi and Haider, 2015). Big data brings new challenges to storage, analysis, and
research.
Machine learning concerns the design of algorithms for learning mapping functions among
data domains (Finlay, 2014). Typically, this involves some input data and its associated
output data, and the aim of a learning algorithm is identifying the function that relates
inputs to outputs for all possible values. The algorithm is supplied with some training data
of length m and it is typically assumed that the data is supplied with the correct output,
also called classification or label, for each input data point. Let there exists some sample
data consisting of a pair (xi, yi), where xi is an input, i is an index, xi ∈ X, and X is the
instance space. Also, yi is the associated output, label, or classification of xi in (xi, yi),
where yi ∈ Y and Y is the output set. Typically, the classification is Boolean, yi ∈ {0, 1}
∀i, though it is possible to specify the classification as taking values in R, yi ∈ R ∀i. Since
in this work we concentrate on learning Boolean functions, in the remainder of this paper,
it is assume that the output set Y is Boolean unless stated otherwise.
The true relation between input and output data points is expressed with the target func-
tion or target concept, denoted with t(.):

yi = t(xi),∀i. (2.1)

The target function is unknown and the aim is to discover or "learn" this function, by
employing a learning algorithm. Here, t(.) ∈ C, and C is a set of possible target functions,



where C is the concept class. Let there exists a learning algorithm L that produces a
function or hypothesis h(.), where h(.) ∈ H and H is the hypothesis set: the set of all
hypotheses that can be computed by the algorithm L). The ultimate aim of L is to produce
a hypothesis h(.) that is as close to t(.) as possible. Let Z = X × Y , zi = (xi, yi) and
zi ∈ Z, L receives a sequence of training data z of length m:

z = (z1, z2, . . . , zm) = ((x1, y1), (x2, y2), . . . , (xm, ym)), (2.2)

where z ∈ Zm. The sample (x1, x2, . . . , xm) is drawn from Xm, and X is an associated
probability P (.), and so Xm is defined with a probability Pm(.) (see (Anthony and Bartlett,
1999) for more detail). After observing a sufficiently high number of training datapoints,
the learning algorithm L must output a hypothesis h estimating the target hypothesis t.
Therefore, the algorithm can be considered as a function mapping the set of all training
samples Zm, for all m, onto the hypothesis set H:

L : ∪∞m=1Z
m → H. (2.3)

An error in hypothesis h(.) is defined as a misclassification, that is

h(xi) 6= t(xi), xi ∈ X. (2.4)

We can consider an error in our hypothesis h(.) as a measure of the performance of h.
Errors tell us how accurate h(.) will be in correctly determining the outputs. We define
erP (h) as the error function for h(.), under the probability measure P :

erP (h) = P{h(xi) 6= t(xi)}, xi ∈ X. (2.5)

The sample error of hypothesis h, denoted with erz(h), is defined as follows:

erz(h) =
1

m

i=m∑
i=1

1{h(xi)6=yi}, (2.6)

where 1{.} is the indicator function. The sample error is also a measure of performance of
the hypothesis h(.) in terms of error. The function erz(h) is simple to determine and can
be used as an approximate estimate of erP (h), which is akin to the ’true’ error. Note that
erz(h) is an error measure over the (training) data z of length m. Consequently, erz(h) as
a measure of performance or error is dependent upon m, and so does not measure the
full error in the sense that it does not measure the error over the entire data.

2.2 PAC Learning and Noise

In order to determine whether a potential hypothesis has learnt a function to a sufficient
standard, we require some criterion. Valiant introduced in his seminal paper the concept
of PAC learning (Valiant, 1984), and defined a good hypothesis as having a specifically
low classification error, for a specified level of probability. A key contribution of the PAC
learning theory was the relation between machine learning and computational complex-
ity, essentially the intensiveness of the computational resources required to implement



a learning algorithm. Valiant proved that a good hypothesis can exist, provided that the
training data of length m is sufficiently large. Hence, m and sample complexity become
critical aspects in PAC learning. PAC learning is a standard criterion for supervised learn-
ing, and has been a major area of research in the past 30 years.
In PAC learning, a good hypothesis is defined as follows: there exists some chosen
(small) constant ε > 0, and a constant 0 < δ < 1 relating to probability, so that

P (erP (h) ≤ ε) > 1− δ. (2.7)

Valiant also proved that the minimum training sample length m required to obtain a good
hypothesis is given with

m ≥ 1

ε
log

(
|H|
δ

)
. (2.8)

Notice that the minimum sample length value is a function of ε and δ, hence the level
and probability of accuracy required in our hypothesis is directly related to the training
data used. The learning algorithm L can produce hypotheses from the hypothesis set
H, and it is of interest to have some measure of the capability of the set of functions in
H. The capability is intuitively defined as meaning the complexity, flexibility and general
richness of functions. The Vapnik-Chervonenkis (VC) dimension provides such a method
for measuring capability and is denoted here with V C(H). The VC dimension is also
important because a larger VC dimension implies that it is harder to learn all the correct
functions possible. So more data samples will be needed to identify the correct function.
So far we have assumed that a perfect labelling is received from the target function t(.),
and so the training data provided to L is uncorrupted. In many real world applications,
however, the training data is corrupted and yi 6= t(xi) for some i values. This is known
as classification noise. To make this principle clear, we say that there is either a normal
oracle EX or a corrupted oracle EXη. The normal oracle means that the training data is
not corrupted: yi = t(xi), ∀i. For a corrupted oracle: yi 6= t(xi) for some i values. The
noise parameter η, where 0 < η < 1

2 , determines the level of corruption. In the case of
binomial probability: P (yi = t(xi)) = 1 − η, and P (yi 6= t(xi)) = η. The noise η can
be used to model any generic noise in the data or our system. Given that training data
has yi 6= t(xi) for some i, the disagreement number is defined as the number of labelled
instances (xi, yi) in the training sample which are such that yi 6= t(xi). By definition, a
corrupted Oracle must have a disagreement number larger than 0.
In order for classification methods to be effective, it is essential that data is correctly
labelled. Zhu and Wu (Zhu and Wu, 2004a), as well as many other authors, have demon-
strated that noise can adversely affects the performance of classifiers. In financial risk
management applications, data or measurement systems may be corrupted by noise
and so the learning algorithms receive corrupted labels. It is also typically impractical,
too time consuming or uneconomical to obtain training data without noise. Hence, it is
of great practical importance to develop learning algorithms in the presence of noise,
and this has been of significant interest to the machine learning community. A number
of such approaches have been proposed (Kearns, 1998),(Zhu and Wu, 2004b). Some
of the methods are based on designing learning algorithms that are naturally robust to



noise, so that the noise itself cannot affect the learning (Blum et al., n.d.). There exist
practical algorithms that are resistant to noise, however such algorithms are not always
applicable to financial forecasting and risk management. Furthermore, in cases where
Pr(yi 6= t(xi)) = η, the algorithm cannot simply be made insensitive to the noise. A sec-
ond type of approaches to deal with noise and improve learning is to provide better-quality
training data. This is effectively achieved by applying a filter to the data to remove or atten-
uate noise. Noisy data is either eliminated from the training data, or assigned a different
(and more correct) value. For financial risk management applications, filters are cheap
and simple to implement, however a major disadvantage is that filters typically remove
too much data prior to training (Sen and Darabi, 2011),(Jensen and Christensen, 1995).
Thus, the reduction in data-size can impair the learning algorithm’s performance.
A more flexible approach is to understand learning algorithms and assume that some
data will be noisy, due to corruptly labelled data. In such a situation, it is important to
understand the sample complexity and related issues for reasons previously outlined,
such as the impact on computational resources, data requirements and feasible com-
putation times. The seminal paper on PAC learning under classification noise (Angluin
and Laird, 1988) provides the following result that relates the noise parameter η to the
disagreement number, when the output labels are Boolean.

Theorem 2.1 (Angluin and Laird). Let ηb be a known upper bound on η, where η ≤ ηb,
and ηb < 1

2 . If we draw a sample of size m from EXη(t, P ) , where t ∈ H, m is given by

m ≥ 2

ε2(1− 2ηb)2
ln

(
2|H|
δ

)
, (2.9)

and find any hypothesis h ∈ H with a minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ. (2.10)

Angluin and Laird’s (AL) Theorem answers the fundamental question, under its given
assumptions about the sample complexity (size m), for a given ε and δ, in the presence
of a corrupted oracle EXη(t, P ). It is also worth pointing out that more than one h can
exist with a minimal disagreement number.

3 Main Results

The AL Theorem is important equation understanding learning under noise. However,
it requires finite |H| for the bound to be informative. For financial applications, this is a
significant disadvantage, since there typically |H| = ∞. We alternatively derive here a
Theorem that provides a bound on m and does not require |H|. Our main contribution is
stated next, in terms of our Theorem:

Theorem 3.1. Let d be the VC dimension of the hypothesis set H. Let us also assume
that the output set Y is Boolean valued, that is Y ∈ {0, 1}. For an oracle EXη(t, P ), where



η < 1
2 , if we draw a sample of size m, where

m ≥ 64

(1− 2η)2ε2

[
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

)]
, (3.1)

and we find any hypothesis h ∈ H with minimal disagreement number, then

Pm(erP (h) > ε) ≤ δ. (3.2)

Theorem 3.1 provides a useful result, which gives the minimum sample length m, for
a given level of error, hence we have quantified the sample complexity. Our Theorem
further involves the VC dimension d, rather than |H|, and so is more widely applicable to
financial risk applications. The following Sub-sections will discuss and elaborate on each
step in deriving our Theorem.

3.1 Probability Bounds for the Error Function
in the Presence of Noise

In this sub-section, we derive in detail the PAC bound in the presence of noise, which
also helps with deriving the main new Theorem in the subsequent Sub-section. We begin
with deriving a relation between erQ(h) and erP (h), that is the error term for the noisy (or
corrupt) oracle in terms of the noiseless oracle.

Lemma 3.2. Let Q in erQ(h) be the probability measure equivalent to the probabilities
obtained when the inputs in X are corrupted by noise. From the construction of the
probability measure Q, it is clear that ∀ h ∈ H,

erQ(h) = η + (1− 2η)erP (h). (3.3)

Proof:
Under a noiseless oracle EX, we have ∀xi ∈ X , erP (h) = P{h(xi) 6= t(xi)}. Under a
noisy oracle we receive noisy data, so that t(xi) :7→ t′(xi). Similarly, the error function for
EXη can be written as

erQ(h) = Q{h(xi) 6= t(xi)}. (3.4)

Alternatively, this can be written as

erQ(h) = P{h(xi) 6= t′(xi)}, (3.5)

and w can rewrite this equation as:

erQ(h) = P{h(xi) 6= t(xi)}(1− η) + P{h(xi) = t(xi)}η (3.6)

The last equation can be explained as follows. Here, erQ(h) can have errors, h(xi) 6=
t′(xi), due to 2 sources. Firstly, t(xi) = t′(xi) when the corrupt oracle EXη does not alter
the output compared to EX, however the hypothesis h itself is wrong. Hence, h(xi) 6=



t(xi) and this occurs with probability 1− η. Secondly, when the corrupt oracle EXη alters
the output compared to EX, this is when t′(xi) 6= t(xi) or alternatively when h(xi) = t(xi),
and this occurs with probability η. A minor note here is that observing the first and third
definition of erQ(h), it is apparent that

Q(.) = P (.)(1− η) + (1− P (.))η). (3.7)

We can now re-write the equation for erQ(h) using

P{h(xi) 6= t(xi)} = erP (h) =⇒ P{h(xi) = t(xi)} = 1− erP (h), (3.8)

so that
erQ(h) = (1− η)erP (h) + η(1− erP (h)). (3.9)

and rearrange to obtain the final solution expressed as

erQ(h) = erP (h)− ηerP (h) + η − ηerP (h),

= η + (1− 2η)erP (h). �

Let us assume that erP (h) ≥ ε, where ε is some arbitrarily chosen small constant, using
our first Lemma to obtain

erQ(h) = η + (1− 2η)erP (h),

erQ(h) ≥ η + (1− 2η)ε,

≥ η + s,

where s denotes s = (1− 2η)ε. Hence,

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
= Pm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
,

where P (a, b) denotes the joint probability of events a and b, under P . Now, given that
Q(.) = η + (1 − 2η)P (.), then Q(.) is linear in η, 0 < η < 0.5. Therefore, with respect to
η, Q(.) is a minimum at η = 0 and Q(.) = P (.), and Q(.) is a maximum at η = 0.5 where
Q(.) = 0.5, ∀ P (.). In PAC learning, we assume P (.) ≤ υ, where 0 < υ < 0.5, to ensure
a good learning algorithm. Therefore, Q(.) ≥ P (.), and we can substitute with Qm in the
last equation to obtain

Pm
(
erP (h) ≥ ε, erz(h) < η +

s

2

)
≤ Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

We next express an upper bound on Pm(erP (h) > ε) as

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η + s

2

)
+ Pm

(
erP (h) ≥ ε, erz(h) < η +

s

2

)
,

Using a result in [1], this upper bound can be explained as follows. The probability
Pm(erP (h) > ε) must be bounded above by (i) firstly the probability of the sample er-
ror of t′ for erz(t′) ≥ η+

s

2
, as well as by (ii) the probability that the hypothesis h has error



function erP (h) ≥ ε, when the sample error of h is erz(h) ≤ η+
s

2
. With this upper bound,

the right hand term is now expressed in terms of Qm, producing

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η + s

2

)
+Qm

(
erQ(h) ≥ η + s, erz(h) < η +

s

2

)
.

The second term on the right hand side is next re-written, considering the condition
erz(h) < η +

s

2
or alternatively

η > erz(h)−
s

2
, (3.10)

Therefore,

erQ(h) ≥ η + s,

erQ(h) ≥ erz(h)−
s

2
+ s,

≥ erz(h) +
s

2
.

and

Pm(erP (h) > ε) ≤ Pm
(
erz(t

′) ≥ η + s

2

)
+Qm

(
erQ(h) ≥ erz(h) +

s

2

)
,

≤ Pm
(
erz(t

′) ≥ η + s

2

)
+Qm

(
|erQ(h)− erz(h)| ≥

s

2

)
,

which gives us a bound on the probability for Pm(erP (h) > ε). Thus, the probability
that the error function will exceed ε for a hypothesis h, is bounded above by the two
probabilities on the right hand side. This useful inequality gives us a means to quantify
the accuracy or error of our hypothesis h with a degree of statistical confidence. Such
quantification is important in financial forecasting applications.
The inequality also demonstrates that the probability of the error function exceeding ε is
not only dependent on the sample error erz(h) but also on the level of noise itself. Both
+η and −η related terms (such as s) are present in the inequality, and so noise impacs
on the probability of the error function in both directions. This is a reassuring result, as
one would expect noise to affect algorithms’ accuracy, demonstrating the importance of
noise for algorithmic performance.

3.2 Application of the Vapnik-Chervonenkis Inequality

In the previous Sub-section, we have derived a bound on the probability of the error
function, providing a useful quantity in terms of the accuracy of a learning algorithm.
However, this quantity does not tell us about sample complexity or training data length
(m) required for PAC learning. Sample complexity is fundamental to machine learning,
and to financial forecasting applications involving machine learning, and has significant
implications on various aspects of algorithms. The Vapnik and Chervonenkis inequality
(Vapnik and Chervonenkis, 1971), (Vapnik, 1998) is an important Theorem in machine
learning theory (see Theorem 4.3 in (Anthony and Bartlett, 1999) for more information),
and helps quantify sample complexity. The VC inequality relates to the last term in our
equation for m, and provides useful information anout m. The VC inequality, as given in
(Anthony and Bartlett, 1999), is as follows:



Lemma 3.3 (Vapnik and Chervonenkis Inequality). Suppose that H is a set of {0, 1} -
valued functions defined on a set X and that P is a probability on Z = X × {0, 1}. For
0 < ε < 1, m a positive integer, with VC dimension d, then we have for every h ∈ H

Pm{|erP (h)− erz(h)| ≥ ε} ≤ 4

(
2κm

d

)d
e

−ε2m
8 , (3.11)

where κ = e is the exponential constant (we use a different letter from e for clarity in
derivation), and d denotes the VC dimension of the hypothesis set H (as defined earlier).

The VC inequality importantly shows that provided the training sample is large enough,
then with a sufficiently high probability we can conclude that for any h ∈ H the sample
error of h and the "true" error of h are extremely close. Additionally, the inequality is
bounded by a negative exponential in m, implying that the boundary will rapidly approach
0 as m increases, assuming the bracketed expression grows at a slower pace. Hence,
training datam is important to reducing error in any learning algorithm. This is a key result
for ensuring that one is able to obtain good estimations in forecasting applications. The
VC Inequality is a particularly relevant Theorem to financial forecasting applications, be-
cause this inequality is independent of any probability distribution. Hence, the inequality
is pertinent to a wide range of forecasting applications in finance, where a diverse range
of distributions exists. We would like our learning algorithms to be distribution indepen-
dent, as dependency would impose a significant constraint on forecasting applications.
Next, we apply the VC inequality in deriving our new Theorem. Since s = (1 − 2η)ε ⇒
ε > s⇒ e−ε < e−s. Therefore, then using Lemma 3.3 produces

Pm (|erP (h)− erz(h)| ≥ ε) ≤ 4

(
2κm

d

)d
e

−ε2m
8 ⇒

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

(s/2)2m
8 .

If we rewrite the last inequality then then the result is that ∃ h ∈ H, such that

Qm
(
|erQ(h)− erz(h)| ≥

s

2

)
≤ 4

(
2κm

d

)d
e−

s2m
32 . (3.12)

Let us assume that δ is bounded below by

4

(
2κm

d

)d
e−

s2m
32 ≤ δ

2
, (3.13)

which in a rearranged version is

s2

4
≥ 8

m
ln

(
8

(
2κm
d

)d
δ

)
, (3.14)

or rearranging alternatively gives us

m ≥ 32

s2

(
d lnm+ d ln

(
2κ

d

)
+ ln

(
8

δ

))
. (3.15)



Using the VC inequality, we have therefore now derived a bound on m. A bound on m

is typically more useful than a probability bound, as m has significant implications on
computation and forecasting.
The application of the VC inequality provides interesting insights. Firstly, our equation
shows that the bound on m is dependent on the VC dimension d, implying that the VC
dimension is important to forecasting regardless of any distributions. Secondly, the in-
equality contains s in such a way that as noise increases, the required training-data length
(m) also increases. Therefore, algorithms achieve PAC learning in the presence of noise
only if the training-data size m increases.

3.3 Sample Complexity Bound in the Presence of Noise

Though our Eq. (3.15) provides an inequality for m, it does not provide a particularly
tractable boundary on m. Eq. (3.15) contains m on both sides of the inequality, and
one cannot easily understand the behaviour and impact of m. Further, it is not possible
to separate out terms, so that m’s boundary is expressed in terms of other variables.
Therefore, the boundary on m is not easily tractable or understandable, particularly if we
wish to understand the impact on financial forecasting applications in risk management.
In order to obtain a more useful bound on m and to prove our main Theorem, we first
introduce and prove our Lemma:

Lemma 3.4 (Logarithmic Bound on m). The following logarithmic bound on m exists:

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1. (3.16)

Proof: First, let us consider the function

f(y) = ey − y,

and differentiate it to produce

f ′(y) = ey − 1 =⇒ f ′(0) = 0.

Therefore, the minimum value of f is at y = 0, with f(0) = 1, and for any other y,

f(y) ≥ 1.

Next, by substitution,

ey − y ≥ 1,

and by rearrangement, we have ∀y ∈ R,

1 + y ≤ ey.

Let us substitute y with y = αx − 1, ∀x where x > 0 and α is a positive constant α > 0.
Therefore,

1 + (αx− 1) ≤ eαx−1,

αx ≤ eαx−1.



Now take logarithms on both sides of the expression, and rearrange

ln(αx) ≤ αx− 1,

ln(α) + ln(x) ≤ αx− 1,

lnx ≤ αx− lnα− 1.

Next, we make the substitutions x = m and α =
s2

64d
, and produce

lnm ≤ s2

64d
m− ln

(
s2

64d

)
− 1. (3.17)

This proves our Lemma. �
Now we will prove our Theorem. The logarithmic inequality in m is applied to Eq. (3.15),
so that

32
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(
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(
8

δ

) )
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− 32d
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If we now simplify further the right hand side, then
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and using Eq. (3), the inequality on m from Eq.(3.15)) now becomes:

m ≥ m

2
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Finally, we derive
m ≥ m0,

where recalling that s = (1− 2η)ε), we obtain

m0 =
64

(1− 2η)2ε2

(
d ln

(
128

(1− 2η)2ε2

)
+ ln

(
8

δ

))
. �

This proves our main Theorem and tells us the minimum sample length m required to
achieve learning within the PAC framework. The sample length significantly impacts the
practicability of any computation. A large m may mean large computation times, signifi-
cant computational resources, and may render a method impractical or unworkable.



4 Implications for Financial Risk Management

In this section we analyse the implications of our Theorem in terms of financial risk man-
agement applications. In order to examine PAC learning for algorithms used in such
applications, we must first consider the requirements for ε and δ. They both should be as
small as possible, as ε denotes the error in the algorithm, and δ denotes the percentage
of bad hypotheses. Consequently, ε and δ represent a source of model risk in our algo-
rithms. In the financial sector, risk is typically measured in terms of Value at Risk (VaR)
and usually set at the 99th percentile. By analogy, although there is no fundamental the-
ory for choosing the 99th percentile, we apply this percentile choice to our model for ε and
δ and set ε < 0.01, δ < 0.01.

4.1 PAC Learning: Big Data Implications

Theorem 3.1 does not require |H|, which is a key advantage. The AL Theorem requires
|H|, and can only be informative for finite |H|. However, machine learning algorithms
typically work with |H| = ∞ (see (Mehryar, Rostamizadeh and Talwalkar, 2012), for
example). Consequently, a the requirement for a finite |H| is highly restrictive. In fi-
nancial applications, there further exist highly complex and non-trivial patterns and data
sources, and typically non-trivial algorithms are employed (Blanco et al., 2013), (Belloni
et al., 2013). An assumption of finite |H| is unrealistic for financial risk maangement appli-
cations. Furthermore, Theorem 3.1 does not require |H| but rather involves d. Although
d is related is to |H|, a condition |H| = ∞ does not imply d = ∞. For a wider class
of algorithms, it is more likely that |H| = ∞ than d = ∞. Hence, our Theorem is more
applicable to a wider range of algorithms than the AL Theorem, and provides us with the
flexibility to determine m or data bounds for a wider range of algorithms in finance.
Using our Theorem, we now calculate m, or the number of datapoints required, for PAC
learning. For the benefit of clarity, we set η = 0.00001 and d=2, and do not vary them.
We will investigate d and η later on, and note that varying either parameters would not
significantly affect the results in Table 1. The calculation of m is perfomred for different
values of ε and δ, noting that their typical values for financial risk management applica-
tions would be set to ε = 0.01 and δ = 0.01.(Note that AL also assumed values for ε and
δ in [1].) Table 1 provides the values of m, according Theorem (mT ), for different vales
of ε and δ, and it is observed that mT is in the order of millions. We also observe that
mT is in the order of 100, 000 only if ε is of the order of 0.1 or above. However, financial
applications require high accuracy and expect ε ≤ 0.01.



Table 1: Sample size mT according to our Theorem, for different δ and ε values

ε δ mT

0.01 0.01 22,278,928
0.01 0.1 20,805,215
0.01 0.3 20,102,075
0.01 0.5 19,775,133
0.01 0.7 19,559,783
0.01 0.9 19,398,935
0.02 0.01 5,126,100
0.04 0.01 1,170,617
0.05 0.01 726,344
0.08 0.01 264,927
0.1 0.01 163,841

Figure 1: Graph of mT (y − axis) against δ (x− axis) for ε = 0.01

.



Figure 2: Graph of mT (y − axis) against ε (x− axis) for δ = 0.01

.

The fact that mT is in the order of millions has important implications. For financial data
for example, given that a stock price is typically quoted to 4-6 significant figures, the
learning algorithms will require approximately 1TB of data (Bholat, 2015), (Daas, Bart,
Van Den and Puts, 2015). As mentioned earlier, there is currently no strict definition of
big data but 1TB has been a proposed definition. Therefore, our Theorem implies that
learning algorithms in the presence of noise require big data, for the purposes of financial
risk management applications. This big data requirement is a revealing conclusion, since
such conclusion is not necessarily revealed using the AL Theorem. Table 2 provides
m according to the AL Theorem (mA), for different ε and δ values. We set ε = 0.01,
δ = 0.01, and η = 0.1, to give more realistic values. The results show that mA is in the
range of 10, 000− 100, 000, and so AL does not imply that big data is required for financial
applications. We expect |H| to be large for financial applications, due to the sophisticated
algorithms required to analyse complex data. However, Table 2 shows that even when |H|
increases exponentially, its impact on datapoints required (mA), according to AL, does
not increase significantly and hardly reaches 1 million. This is due to the logarithmic
dependence on |H| in ln(2|H|/δ) in the AL inequality, which leads to |H| having little
impact on mA.
If m is calculated using our Theorem, which does not depend on |H|, then the equivalent
value of mT for all different values of mA in Table 2 is mT = 35, 701, 927. In this calcula-
tion, we set d = 2 so that mT gets a lower limit value. In real world applications, d>2 and
mT increases further (this can be understood by examining the equation). In summary,
AL does not imply big data and our Theorem does conclude big data is required. The im-
plication that big data is required for financial risk management applications is significant.
In such applications, risk may be re-evaluated frequently, i.e. calculating VaR on a daily
basis, which implies that not only good-learning algorithms but also fast algorithms are



Table 2: Sample size mA according to Angluin and Laird’s Theorem

|H| mA

5 215,867
10 237,528
100 309,484
1000 381,440
104 453,396
105 525,351
106 597,307
107 669,263
108 741,219
1010 885,130
1012 1,029,042

required. Big data can require significant processing time and so fast learning algorithms
are a must in finance. A second implication is that fast computation time will require
higher-end hardware to cope with learning algorithms for big data on financial risks. Data
storage issues and data curation (organisation and collation) also need consideration
when 1TB is required just for learning purposes in 1 round. A third implication of our
Theorem is that some types of financial forecasting may not be possible with learning
algorithms, due to limited historic data-points.

4.2 Impact of Big Data Quality (Noise)

Noise or corruption of data can occur for a number of reasons in real world applications.
A conclusion in (Zhu and Wu, 2004a) is that noise is unavoidable in affecting data. Noise
exists in any measurement or recording system, distorting the original data. Sometimes,
data can be transformed, e.g. discretising data or converting it into a binary form, which
can lead to noise in the data in various ways (Zimek, Schubert and Kriegel, 2012). To
understand the impact of noise on data requirements, we calculatemT for different values
of η, where we recall that 0 < η < 0.5. As before, the other parameters are set to ε = 0.01,
δ = 0.01, and d = 2. For comparison, we also calculate mA and set |H| = 1012 to give
an optimistic calculation of mA. Table 3 gives the m values under AL (mA) and under our
Theorem (mT ), with the final column giving the percentage increase. The results show
that the impact of noise is significant. Approaching η = 0.4 − 0.45 leads to the required
data reaching the billion datapoint range, hence the demands for big data processing
become even more important for noisy data. However, it should be noted that it is unlikely
financial data will approach a level of 50% noise.



Table 3: Sample sizes mA and mT for different levels of noise

η mT mA Percentage increase (%)

10−5 22,278,928 658,613 3283
10−4 22,287,412 658,850 3283
0.01 23,250,422 685,742 3291
0.1 35,701,927 1,029,042 3369
0.15 47,328,722 1,344,055 3421
0.2 65,515,832 1,829,408 3481
0.25 96,209,771 2,634,347 3552
0.3 153,898,064 4,116,167 3639
0.35 281,779,514 7,317,631 3751
0.4 659,953,674 16,464,669 3908
0.45 2,817,260,376 65,858,677 4178
0.49 80,731,912,034 1,646,466,924 4803

Figure 3: Graph of percentage difference between mT and mA (y − axis) against noise
(x− axis)

An insight from our Theorem is that the impact of noise is far more significant than what
may be assumed under AL. Under AL, though the requirement for data is in the order
of millions when η approaches 0.1, the bound for mA is still in the millions range until
η = 0.49, and such a figure is unrealistic with financial data. We also note that this is an
optimistic estimate from AL, as we have set |H| at a high value. However AL assume finite
|H|, which is unrealistic for financial applications. On the other hand, our Theorem does
not assume finite |H| and we have provided a conservative estimate by setting d to 2. The
impact of noise increases the data requirements from multi-millions to billions, and the



incremental increase in mT is far higher than in mT . The difference on noise dependence
by examining the equations. This is due to mT having a logarithmic dependence on the
reciprocal of 1 − 2η in our Theorem, and mA depending only on the reciprocal of 1 − 2η

in the AL Theorem.
Given that noise is practically always present in real world applications, our Theorem
provides an insight into impact of noise. This is particularly important when dealing with
big data volumes, because noise is typically far more complex in big data than in conven-
tional data sizes. A larger dataset is more likely to contain more complex noise processes
than shorter datasets. Additionally, the quality of data captured in big data can vary far
more than in traditional data, with more gaps and potential distortions in the data. Hence,
eliminating noise from big data is typically harder to achieve than in smaller datasets. It is
further well known that noise in financial data is highly non-trivial; in fact, many analysts
have stated it is the noisiness of financial data that prevents identifying their patterns, and
so prevents managing risk better.
Another insight from our Theorem is that noise, or equivalently data quality, can have
a more significant impact on computational productivity than assumed before by other
authors. In other words, having high-quality data (η = 0.1) rather than low-quality data
(η = 0.4) leads to a reduction of data by a factor of approximately 20. With all other
factors equal, this would lead to a processing speed of 20 times faster and a significant
productivity gain. This is an important conclusion as the current trend in big data analysis
is that higher volume is generally better. Our analysis shows that data quality is rather
significantly effective in providing for better learning outcomes. Consequently, we suggest
that big data applications should focus more on data cleaning applications and producing
high-quality data, rather than focussing on higher-volume data that can be very noisy.
The additional advantage of focussing on data cleaning methods is that they are normally
cheap and easy to implement, unlike other big data techniques.

4.3 Impact of Algorithmic Capability

The dependence of training data upon the VC dimension d, is also a new insight from our
Theorem. The VC dimension d captures the capabilities of the algorithms used for learn-
ing, in terms of general sophistication and flexibility. Given that financial data is non-trivial
and that incorrect modelling can lead to significant financial losses, highly sophisticated
algorithms are typically required to ensure better financial risk management. on the other
hand, the AL Theorem does not include the VC dimension and does not tell us how d

impacts data requirements. This in itself could be more harmful to financial risk manage-
ment than using more simplistic algorithmics, since a sophisticated but badly trained or
calibrated model can perform worse than a simple but well calibrated model. In fact, such
issues have been cited as a major cause of poor risk management. It is also well known
in the financial sector that many parsimonious models are preferred to more sophisticated
models, due to the data requirements imposed by them.
To investigate the impact of d on data requirements, we calculate mT next using our
Theorem, for different values of d. For the benefit of clarity, we set η = 0.1, ε = 0.01, δ =



Table 4: VC dimension d and sample size mT

d mT

1 21,193,269
2 35,701,927
5 79,227,900
7 108,245,216
10 151,771,189
12 180,788,505
15 224,314,478
20 296,857,766
25 369,401,055
30 441,944,344

0.01, and then vary d from 1 to 30 to observe the impact of VC dimension upon data
requirements. We chose the upper limit at 30, similar to the range used in the analysis
of VC dimension of neural networks in (Mertens and Engel, 1997). Given that neural
networks are used in financial applications and represent more sophisticated algorithms,
the upper limit of 30 is a suitable value for our study. The results are presented in Table
4, and show that the data required grows proportionately with d. Therefore, d is important
in big data. For the benefit of comparison, we also calculate mA using the AL Theorem
for the equivalent parameter values, and set |H| = 1012 to provide optimistic calculations.
For all values of d in Table 4, the AL data requirement is mA = 1, 029, 042. Therefore,
even for large |H|, the AL does not provide an adequate estimate of data requirements.
An important insight from our Theorem is that the data required is significantly dependent
on d.
Furthermore, our Theorem reveals that d provides a direct "proxy" on the data require-
ments, as mTm increases linearly with d. This is important in financial risk applications,
because non-trivial relationships in financial data call for complex learning algorithms but
the more complex algorithms lead to larger data requirements (through increasing d) and
may not be preferable. Hence, our Theorem tells that the linear relation between mT and
d implies there is a direct trade-off between algorithmic complexity and sample complex-
ity.

5 Conclusion

In this paper we investigate Probably Approximate Correct learning in the presence of
noise. We derive new theoretical results in relation to big data Probably Approximate
Correct learning. In particular, we derive a new a Theorem on the theoretical bounds on
the training data required for Probably Approximate learning, in the presence of noise. A
direct consequence of this derivation is that we extend the classic Theorem of Angluin
and Laird, by including algorithms that do not require finite |H|. Hence our Theorem is



more widely applicable.
This paper makes the following contributions. Firstly, contrary to prior theoretical analy-
ses, we show that big data is necessary for training algorithms used for realistic financial
applications where |H| =∞. Secondly, we demonstrate that noise has a more substantial
impact on the data size required for PAC learning. Consequently, contrary to current big
data trends, we demonstrate that higher quality data can be more important than larger
volumes of data. Thirdly, we show that the level of algorithmic sophistication, specifically
the Vapnik–Chervonenkis dimension, is not necessarily advantageous to learning algo-
rithms, as it can impose high training data requirements. Hence, a trade-off is required
between the Vapnik–Chervonenkis dimension and the data required for training.
In terms of future areas of work, we would like to develop our model for specific computa-
tional applications eg. fraud detection, marketing applications, transportation applications
etc.. Whilst computational methods have applications for a range of areas, many compu-
tational methods can be optimised, in terms of processing speed and quality of results,
by adapting their methods for specific tasks. This can potentially produce a new line of
research with high impact.
Another potential area of future research that we would like to investigate is methods
with respect to data filtering, to reduce noise in any given set of data. As mentioned and
analysed in our paper, the issue of noise (especially in the context of big data) is a key
topic, and the nature of the noise itself can fundamentally differ compared to small sample
datasets. Moreover, the removal of noise from data is an important factor in improving
the learning performance for Probably Approximate Learning algorithms.
Finally, we would like to develop our results further for the purposes of financial risk
management. For example, we would like to apply our results to Extreme Value Theory,
and examine the impact of Probably Approximate Correct learning theory upon modelling
extreme value events. Given that extreme events, such as the Global Financial Crisis,
have a significant impact on economic, political and social issues, this would also be a
productive research area. Our paper provides a more realistic learning model, taking into
account non-finite |H| and noise. Therefore our paper will be of interest to commercial
industry, where PAC based machine learning and noisy data have important applications.
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