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Abstract

The a-function is a proposed quantity defined for quantum field theories which
has a monotonic behaviour along renormalisation group flows, being related to the
β-functions via a gradient flow equation involving a positive definite metric. We
construct the a-function at four-loop order for a general gauge theory with fermions
and scalars, using only one and two loop β-functions; we are then able to provide a
stringent consistency check on the general three-loop gauge β-function. In the case
of an N = 1 supersymmetric gauge theory, we present a general condition on the
chiral field anomalous dimension which guarantees an exact all-orders expression for
the a-function; and we verify this up to fifth order (corresponding to the three-loop
anomalous dimension).
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1 Introduction

It is natural to regard quantum field theories as points on a manifold with the couplings
{gI} as co-ordinates, and with a natural flow determined by the β-functions βI(g). At
fixed points the quantum field theory is scale-invariant and is expected to become a con-
formal field theory. It was suggested by Cardy [1] that there might be a four-dimensional
generalisation of Zamolodchikov’s c-theorem [2] in two dimensions, such that there is a
function a(g) which has monotonic behaviour under renormalisation-group (RG) flow (the
strong a-theorem) or which is defined at fixed points such that aUV − aIR > 0 (the weak
a-theorem). It soon became clear that the coefficient (which we shall denote 1

4
A) of the

Gauss-Bonnet term in the trace of the energy-momentum tensor is the only natural candi-
date for the a-function. A proof of the weak a-theorem has been presented by Komargodski
and Schwimmer [3] and further analysed and extended in Refs. [4, 5].

In other work, a perturbative version of the strong a-theorem has been derived [6]
from Wess-Zumino consistency conditions for the response of the theory defined on curved
spacetime, and with x-dependent couplings gI(x), to a Weyl rescaling of the metric [7].
This approach has been extended to other dimensions in Refs. [8, 9]. The essential result
is that we can define a function Ã by

Ã = A+WIβ
I , (1.1)

where A is defined above and WI is well-defined as an RG quantity on the theory extended
as described above, such that Ã satisfies the crucial equation

∂IÃ = TIJβ
J , (1.2)

for
TIJ = GIJ + 2∂[IWJ ] + 2ρ̃[I ·QJ ] . (1.3)

Here GIJ = GJI , ρ̃I and QJ may all be computed perturbatively within the theory extended
to curved spacetime and x-dependent gI ; for weak couplings GIJ can be shown to be
positive definite in four dimensions (in six dimensions, GIJ has recently been computed to
be negative definite at leading order [10]). Eq. (1.2) implies

µ
d

dµ
Ã = βI

∂

∂gI
Ã = GIJβ

IβJ (1.4)

thus verifying the strong a-theorem so long as GIJ is positive. Crucially Eq. (1.2) also
imposes integrability conditions which constrain the form of the β-functions and are the
focus of this paper. These conditions relate contributions to β-functions at different loop
orders.

We should mention here that for theories with a global symmetry, βI in these equations
should be replaced by a BI which is defined, for instance, in Ref. [6]; however it was shown
in Ref. [11, 12] that the two quantities only begin to differ at three loops; and in Ref. [13]
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that there is no difference to all orders in supersymmetric theories (see Ref. [14] for related
results). Hence for our purposes in this article we may ignore the distinction.

The analysis of Ref. [6] was recently further extended in Ref. [15] (related results were
also presented in Ref. [16]). Expressions for the three-loop Yukawa β-functions and for the
three-loop contribution to the metric GIJ were derived for a general fermion-scalar theory,
and Eq. (1.2) was checked up to this order; indeed it was shown that Eq. (1.2) places strong
constraints upon the form of the β-function at this order. The N = 1 supersymmetric
Wess-Zumino model was also considered as a special case. Moreover, here it was possible
to show that an exact formula for the a-function conjectured in Refs. [17–19] was valid
at this order; in previous work [20] this had been checked at the level of the two-loop β-
functions for a general, gauged N = 1 supersymmetric theory (in the rest of this paper we
shall describe this as a “two-loop check” although the corresponding a-function is actually a
four-loop quantity). A sufficient condition on the chiral field anomalous dimension for this
exact a-function to be viable was presented and shown (using the results of Ref. [21, 22])
to be satisfied up to three loops for the Wess-Zumino model.

Our goal in this article is to extend the work of Ref. [15] to the gauge case. In the
non-supersymmetric case, we show that the two-loop Yukawa β-function for the most
general renormalisable gauge theory coupled to fermions and scalars is compatible with
Eq. (1.2); indeed by imposing Eq. (1.2) we are able to obtain the terms in Ã containing
scalar or Yukawa couplings at this order up to only three free parameters, without any
further perturbative calculations–this approach has previously been applied in Ref. [23] to
the case of the standard model. (Of course a gradient flow for purely scalar quantum field
theories was postulated some time ago by Wallace and Zia [24].) As a bonus, we show
that this expression for Ã is also consistent with (and provides a stringent check upon)
the general three-loop gauge β-function derived by Gracey, Jones and Pickering [25]. As a
further check, we also compute Ã using the dimensional reduction version of the Yukawa
β-function and show that in the supersymmetric case, this reduces to the version of Ã
presented in Ref. [20] (and is hence compatible with Ref. [17–19]). Finally, again in the
context of supersymmetry, we extend the condition on the chiral superfield anomalous
dimension presented in Ref. [15] to the gauge case and show that it is satisfied at three
loops. We also derive the (very non-trivial) constraints that this condition imposes upon
the form of the three-loop anomalous dimension.

2 The non-supersymmetric case

We consider a general renormalisable gauge theory with a simple gauge group G and nϕ
real scalars ϕa, nψ two-component Weyl fermions ψi, where G ⊂ U(nψ) ∩ O(nϕ). For a
Yukawa interaction 1

2
ψi
TC(Ya)ijψj ϕa+h.c. and a quartic scalar interaction 1

4!
λabcdϕaϕbϕcϕd

and with a gauge coupling g the basic couplings are then

gI ≡ {g, Ya, Ȳa, λabcd} , Ya
T = Ya , Ȳa = Ya

∗ . (2.1)
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The (hermitian) gauge generators for the scalar and fermion fields are denoted respectively
tϕA = −tϕAT and tψA, A = 1 . . . nV , where nV = dimG, and obey

[tA, tB] = ifABCtC , (2.2)

and gauge invariance requires Ya t
ψ
A + tψA

T Ya = tϕAab Yb, t
ϕ
Aaeλebcdϕaϕbϕcϕd = 0. In order to

simplify the form of our results, it is convenient to assemble the Yukawa couplings into a
matrix

ya =

(
Ya 0
0 Ȳa

)
, ŷa =

(
Ȳa 0
0 Ya

)
= σ1yaσ1 , (2.3)

and

TA =

(
tψA 0

0 −tψ∗A

)
, T̂A = σ1TAσ1 = −TAT . (2.4)

This corresponds to using the Majorana spinor Ψ =

(
ψi

−C−1ψ̄iT

)
.

We should mention here that in our present calculations we have ignored potential parity
violating counterterms (i.e. containing ε-tensors). The analysis of Ref. [6] was recently
extended [28] to the case of theories with chiral anomalies, including the possibility of
parity violating anomalies. It would be interesting to carry out the detailed computations
necessary to exemplify the general conclusions of Ref. [28].

The one- and two-loop gauge β-functions are given by

βg = −β0g
3 − β1g

5 − g3 1

2nV
tr[Cψ ŷaya] ,

β0 = 1
3
(11CG − 2Rψ − 1

2
Rϕ) ,

β1 = 1
3
CG(34CG − 10Rψ −Rϕ)− 1

nV
tr[(Cψ)2]− 4

nV
tr[(Cϕ)2] , (2.5)

where

tr[tψAt
ψ
B] = RψδAB, tr[tϕAt

ϕ
B] = RϕδAB,

Cϕ = tϕAt
ϕ
A, Cψ = TATA , Ĉψ = Cψ T , (2.6)

with TA as defined in Eq. (2.4). We follow Ref. [15] in removing factors of 1/16π2 which
arise at each loop order by redefining

λabcd → 16π2λabcd , Ya → 4πYa, g → 4πg . (2.7)

The one-loop Yukawa β-function is given by

β(1)
y a = 2 ybŷayb + 1

2
[ybŷb − 6g2Ĉψ]ya + 1

2
ya[ŷbyb − 6g2Cψ] + 1

2
tr[yaŷb]yb , (2.8)

and the one-loop scalar β-function is given by

1
4!
β

(1)
λabcd ϕaϕbϕcϕd =

(
1
8
λabefλcdef + 3

2
g4(tϕAt

ϕ
B)ab(t

ϕ
At
ϕ
B)cd − 1

2
tr[yaŷbycŷd]

− 1
2
λabceg

2(Cϕ)ed + 1
12
λabcetr[yeŷd]

)
ϕaϕbϕcϕd . (2.9)
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The leading terms in the metric GIJ in Eq. (1.2) may be written as [6]

ds2 = GIJdgIdgJ = 2nV
1

g2
(1 + σg2)(dg)2 + 1

6
tr[dŷadya] + 1

144
dλabcddλabcd , (2.10)

where σ is given (using dimensional regularisation, DREG) by [6,20]

σ = 1
6

(
102CG − 20Rψ − 7Rϕ

)
. (2.11)

We emphasise here that y and ŷ are not independent; and furthermore, the result of a
trace is unchanged by interchanging y and ŷ.

The lowest-order contributions to Ã are given implicitly in Ref. [20] as

Ã(2) =− nV β0g
2,

Ã(3) =− 1
2
nV g

4(β1 + σ β0)− 1
2
g2tr[yaŷaĈ

ψ]

+ 1
24

(tr[yaŷaybŷb] + 2 tr[yaŷbyaŷb] + tr[yaŷb] tr[yaŷb]) . (2.12)

They can easily be checked to satisfy Eq. (1.2) with Eqs. (2.5), (2.8).

To proceed to the next order, we shall need the two-loop Yukawa β-function in addition
to the one-loop scalar β-function in Eq. (2.9). The two-loop β-function is given in general
by Refs. [26, 27] in the form

β(2)
y a =

7∑
α=1

cα(Gy
α)a +

19∑
α=8

cα[(Gy
α)a + (Ĝy

α)a)

+ c20g
4(Ĉψya + yaC

ψ) + c21g
4ĈψyaC

ψ

+ c22g
4[(Ĉψ)2ya + ya(C

ψ)2] + c23g
4(Cϕ)ab(Ĉ

ψyb + ybC
ψ)

+
(
tr[c24 yaŷbycŷc + c25 yaŷcybŷc + c26 g

2Ĉψyaŷb]

+ c27 g
4(Cϕ2)ab + c28g

4(Cϕ)ab + c29 λacdeλbcde
)
yb . (2.13)

The contributions Gy
α are depicted in Table (1); Ĝy

α is the transpose of Gy
α. A solid or

open box represents g2Cψ or g2Cϕ respectively. A box with a letter “A” represents the
gauge generator gTA. Note that for each of Gy

α, there is an alternation between “hatted”
and “unhatted” y matrices, as can be seen in Eq. (2.13) for Gy

α, α = 20, . . . 28. To give a
couple of examples, Gy

4 represents

(Gy
4)a = λabcd ybŷcyd , (2.14)

and Gy
19 corresponds to

(Gy
19)a = g2ybC

ψ ŷayb, (Ĝy
19)a = g2ybŷa Ĉ

ψ yb . (2.15)
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G
y
1 G

y
2 G

y
3 G

y
4

G
y
5 G

y
6 G

y
7 G

y
8

G
y
9 G

y
10 G

y
11 G

y
12

A A

G
y
13 G

y
14 G

y
15 G

y
16

G
y
17 G

y
18 G

y
19

Table 1: The diagrams contributing to β
(2)
y a

We present here the results for the coefficients evaluated using standard dimensional
regularisation, DREG [26,27]:

c1 = 2, c2 = −1, c3 = −2, c4 = −2, c5 = −12,

c6 = 6, c7 = 0, c8 = −1
8
, c9 = 0, c10 = −3

8
, c11 = −1,

c12 = 0, c13 = −7
4
, c14 = −1

4
, c15 = 6, c16 = 9

2
, c17 = 0,

c18 = 3, c19 = 5, c20 = − 1
12

(
194CG − 20Rψ − 11Rϕ

)
,

c21 = 0, c22 = −3
2
, c23 = 6, c24 = −3

4
, c25 = −1

2
,

c26 = 5
2
, c27 = −21

2
, c28 = 1

12
(147CG − 12Rψ − 3Rϕ), c29 = 1

12
.

(2.16)

There are 33 coefficients altogether (counting c20 and c28 as three each). We do however
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have the freedom to redefine the couplings, corresponding to a change in renormalisation
scheme; at this order we may consider

δya = µ1 ybŷayb + µ2 (ybŷbya + yaŷbyb) + µ3 tr[yaŷb]yb

+ µ4 g
2(Ĉψya + yaC

ψ) + µ5 g
2Cφ

abyb ,

δg = (ν1CG + ν2R
ψ + ν3R

φ)g3 . (2.17)

This results in a change in the β-function

δβ(2)
y a =

(
β(1)
y ·

∂

∂y
+ β(1)

g

∂

∂g

)
δya −

(
δy · ∂

∂y
+ δg

∂

∂g

)
β(1)
y a . (2.18)

Using Eqs. (2.5), (2.8) this leads to

δc2 = µ1 − 4µ3, δc6 = −4µ5, δc7 = −µ5, δc9 = −µ1 + 4µ2,

δc10 = µ2 − µ3, δc11 = µ1 − 4µ2, δc13 = −6µ2 − µ4, δc14 = −6µ2 − µ4,

δc16 = −µ5, δc19 = −6µ1 − 4µ4, δc24 = −2µ2 + 2µ3, δc25 = −µ1 + 4µ3,

δc26 = − 12µ3 − 2µ4,

δc20 = 2CG
(
3ν1 − 11

3
µ4

)
+ 2Rψ

(
3ν2 + 2

3
µ4

)
+Rφ

(
6ν3 + 1

3
µ4

)
,

δc28 = − 1
3

(
22CG − 4Rψ −Rφ

)
µ5. (2.19)

We observe that the redefinitions corresponding to µ1−4 are not all independent; for in-
stance we may remove µ4 by redefining

µ1 → µ1 − 2
3
µ4, µ2 → µ2 − 1

6
µ4, µ3 → µ3 − 1

6
µ4,

ν1 → ν1 + 11
9
µ4, ν2 → ν2 − 2

9
µ4, ν3 → ν3 − 1

18
µ4, (2.20)

This is a general consequence of the form of the redefinition given by Eq. (2.18), which
implies that a redefinition

δya = β(1)
y a , δg = β(1)

g (2.21)

has no effect on β
(2)
y a ; however µ5 yields an independent redefinition due to the fact that

there happens to be no corresponding Cφ
abyb term in β

(1)
y a . It then follows that µ1−5 and

ν1−3 yield only 7 independent redefinitions; we therefore have 33 − 7 = 26 independent
coefficients in the two-loop β-function. Under the change Eq. (2.17)

δÃ(3) = −δg ∂

∂g
Ã(2) , (2.22)

which corresponds to taking δσ = 4
(
ν1CG + ν2R

ψ + ν3R
φ
)

in Eq. (2.10).

Applying Eq. (1.2), we require Ã(4) to satisfy

dyÃ
(4) = dy · T (3)

yy · β(1)
y + t1 gtr[dŷayaC

ψ] β(1)
g + t2 g(Cϕ)abtr[dŷayb] β

(1)
g

+ 1
12

tr[dŷaβ
(2)
y a ] ,

dλÃ
(4) = 1

144
dλabcd β

(1)
λ abcd , (2.23)
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GT1 GT2 GT3 GT4

GT5 GT6 GT7 GT8

GT9 GT10

Table 2: Contributions to dy · T (3)
yy · d′y

where dy = dy· ∂
∂y

, etc, the lower-order metric contributions were read off from Eq. (2.10)
and we write

dy · T (3)
yy · d′y =

10∑
α=1

TαG
T
α , (2.24)

The contributions to dy · T (3)
yy · d′y at this order are depicted in Table (2). Here a

diamond represents d′y and a cross dy. As an example, GT
1 represents

GT
1 = tr[dŷaybŷbd

′ya] . (2.25)

T
(3)
yy is symmetric up to the order at which we are working. The β-functions β

(1)
g , β

(1)
y

in Eq. (2.23) are given in Eqs. (2.5), (2.8). There are no “off-diagonal” fermion-scalar
contributions to this order. We parameterise Ã(4) as

Ã(4) =
28∑
α=1

AαG
A
α + O(g6) , (2.26)

where the different contributions GA
α are depicted in Table (3), with a similar notation to

Table (2). We have included GA
28 as a reflection of the general freedom to redefine

Ã→ Ã+ gIJβ
IβJ , (2.27)
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GA1 GA2 GA3 GA4

GA5 GA6 GA7 GA8

GA9 GA10 GA11 GA12

GA13 GA14 GA15 GA16

A A

GA17 GA18 GA19 GA20

B

A A

B

GA21 GA22 GA23 GA24

(1)y

(1)y

GA25 GA26 GA27 GA28

Table 3: Contributions to A(4) in the non-supersymmetric case
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together with a related redefinition of TIJ ; see Ref. [15] for further details. The purely g-
dependent contributions to Ã(4) of course cannot be determined from Eq. (2.23). Eq. (2.23)
entails the system of equations

6A4 = 1
6
c1, 2A11 + 4A28 = 1

2
T8 + 1

6
c2 = 2T6 + 2T5 + 1

6
c25 = 2T4 + 1

2
T7,

2A10 + 8A28 = 2T7 + 1
6
c3 = T8, 4A3 = 1

6
c4, 2A17 = 2T10 + 1

6
c5 = 1

6
c6,

4A20 = 1
2
T10 + 1

6
c7, 4A6 + 2A28 = 1

2
(T2 + T3) + 1

3
c8 = T1,

2A9 + 8A28 = 2T2 + 2T3 + 1
3
c9 = T7 + 1

2
T8 + 1

3
c11 = 2T1 + 1

2
T8,

2A7 + 2A28 = 1
2
(T2 + T3) + 1

3
c10 = 1

2
T1 + T4 = T6 + T5 + 1

6
c24,

2A14 − 12A28 = −3T1 + 1
2
T9 + 1

3
c12 =− 3T2 − 3T3 + 1

3
c14,

4A13 − 24A28 = −3(T1 + T2 + T3) + 1
2
T9 + 1

3
c13, 4A18 = 1

3
c15, 2A15 = 1

3
c16 = T10 + 1

3
c17,

2A16 − 48A28 = 2T9 − 3T8 + 1
3
c18 =− 6T7 − 3T8 + 1

3
c19, 2A26 = 1

3
c20,

36A28 + 2A23 = −3T9 + 1
6
c21, 36A28 + 2A22 =− 3T9 + 1

3
c22, 2A25 = −6T10 + 1

3
c23,

2A19 − 12A28 = −6T6 − 6T5 + 1
6
c26 =− 6T4 + 1

2
T9,

2A24 = 1
6
c27, 2A27 = 1

6
c28, 2A2 = 1

6
c29,

6A5 + 3A28 = 1
2
(T1 + T2 + T3), 6A8 + 3

2
A28 = 1

2
(T4 + T6 + T5) (2.28)

where the cα are given in Eq. (2.16). (The coefficients A1, A12 and A21 are determined
immediately by the second of Eqs. (2.23), so we simply list their values later in Eqs. (2.31).)
Solving Eqs. (2.28), we find the conditions

T2 + T3 = 2T1 − 2
3
c8, T4 = 1

2
T1 − 1

3
c8 + 1

3
c10,

T5 + T6 = T1 − 1
6
c24 − 1

3
c8 + 1

3
c10, T7 = 2T1 − 1

3
c11,

T8 = 4T1 − 8
3
c8 + 2

3
c9, T9 =− 6T1 + 2c24 + 1

3
c26, T10 = 1

12
(c6 − c5), (2.29)

together with conditions on the β-function coefficients

c2 = −1
4
c3 − c9 + 4c10, c11 = 1

4
c3 + 4c8 − c9,

c5 − c6 = −4(c16 − c17), c14 = 3
8
c3 − 3

2
c9 + c12 − 1

4
(c18 − c19)

c24 = 1
8
c3 + 2c8 − 1

2
c9 + 1

2
c25, c26 = −1

2
(c18 − c19)− 3c25. (2.30)

The conditions on T1−6 in Eq. (2.29) were already derived in Ref. [15]. Reassuringly, the
conditions Eq. (2.30) are satisfied by the coefficients in Eq. (2.16), and also by the redefi-
nitions in Eq. (2.19). These six constraints in principle leave only 19 of the 25 independent
coefficients in the two-loop β-function to be determined by perturbative computation.

It turns out that Eq. (2.23) is sufficient to determine the Yukawa or λ-dependent part
of Ã(4) up to three free parameters; here are the results for the case of dimensional regu-
larisation:
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A1 = 1
144
, A2 = 1

144
, A3 = − 1

12
, A4 = 1

18
, A5 = 1

144
, A6 = A11 = 0,

A7 = − 1
24
, A8 = − 1

288
, A9 = 1

12
, A10 = 1

6
, A12 = − 1

24
, A13 = − 7

24
,

A14 = −1
6
, A15 = 3

4
, A16 = −2

3
, A17 = 1

2
, A18 = 1

2
, A19 = 1

12
,

A20 = 3
16
, A21 = 1

4
, A22 = 3

4
, A23 = 1, A24 = −7

8
, A25 = −7

2
,

A26 = − 1
72

(194CG − 20Rψ − 11Rϕ)− t1β0,

A27 = 1
144

(147CG − 12Rψ − 3Rϕ)− t2β0, (2.31)

where β0 is given in Eq. (2.5). Since A6 only appears in Eq. (2.28) in the combination
4A6 + 2A28, we have set A6 = 0 in line with Ref. [15]. We note that under the redefinitions
in Eq. (2.17),

δÃ(4) = −
(
δy · ∂

∂y
+ δg

∂

∂g

)
Ã(3) + O(g6) . (2.32)

Moreover the effect of these redefinitions on the metric coefficients in Eq. (2.23) (as
parametrised in Eq. (2.24)) may easily be computed using Eq. (2.10) as

δT1 = δT2 =δT3 = −2
3
µ2,

δT4 = δT5 =δT6 = −1
3
µ3,

δT7 =1
2
δT8 = −1

3
µ1,

δT9 = −2
3
µ4, δT10 = −1

3
µ5,

δt1 = −4
3
µ4, δt2 = −2

3
µ5. (2.33)

Using Eq. (2.19)), these results are easily seen to agree with Eq. (2.29).

It is remarkable that no knowledge of the “metric” coefficients Tα is required to deter-
mine the Aα in this fashion; of course the ti in Eq. (2.31), which define the “off-diagonal”
fermion-gauge metric in Eq. (2.23), could be determined by a perturbative calculation
if required, as was accomplished for the fermion-scalar case in Ref. [15]. The results in
Eq. (2.31) will be used in Sect. 3 in a check of the three-loop βg.

In Ref. [15] the extension to three loops was accomplished by first inferring the three-
loop Yukawa β-function for a chiral fermion-scalar theory, using the three-loop results de-
rived in Ref. [30] for the standard model, combined with the results for the supersymmetric
Wess-Zumino model. Such an approach will not work in the gauged case, unfortunately;
the results of Ref. [30] are only for the SU(3) colour gauge group, which of course is not
sufficient to determine how the three-loop Yukawa β-function depends on a general gauge
coupling.

3 The three-loop gauge β-function

The three-loop gauge β-function was computed in Ref. [25] for a general gauge theory
coupled to fermions and scalars. In this section we shall show that our result for Ã(4) is
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compatible with this result via Eq. (1.2). In fact, our result for Ã(4) determines the 16 terms

in β
(3)
g with Yukawa couplings up to 4 (see later) unknown parameters. It is rather striking

that the two-loop calculation of β
(2)
y (and the one-loop result β

(1)
λ ) have thereby provided

so much information on a three-loop RG quantity. This is an example of the “3 − 2 − 1”
phenomenon noted in Refs. [23, 31]; namely that the gauge-gauge, fermion-fermion and
scalar-scalar contributions to the metric GIJ start at successive loop orders.

In our notation, β
(3)
g can be written

1
g
β(3)
g = 1

16nV

(
−2

3
GA

12 +GA
13 + 3GA

14 + 4GA
15 + 12GA

16 − 8GA
17 + 8GA

18

+ 7GA
19 −GA

20 + 8GA
21 − 10GA

22 − 2GA
23

− 28GA
24 − 64GA

25 − 48CGG
A
26 + 18CGG

A
27 + O(g6)

)
, (3.1)

where the GA
α are implicitly defined in Table (3). The purely g-dependent terms are not

determined in this analysis. It is then easy to show, using Eqs. (2.26), (2.31), that we can
write

g
∂

∂g
Ã(4) = T (1)

gg β
(3)
g + T (2)

gg β
(2)
g + T (3)

gg β
(1)
g + T (3)

gy · β(1)
y , (3.2)

in the form,

g
∂

∂g
Ã(4) = 2nV

1
g
β(3)
g + 1

3
gnV

(
102CG − 20Rψ − 7Rϕ

)
β(2)
g + T (3)

gg β
(1)
g

− g2 17
12

tr[ŷaC
ϕβ(1)

y a ] + g2(Cϕ)ab tr[ŷaβ
(1)
y b ] , (3.3)

where β
(1)
g , β

(2)
g are given in Eq. (2.5). We notice that T

(2)
gg agrees with the result for σ in

Eq. (2.11). T
(3)
gg takes the form

T (3)
gg = g

(
−10

3
+ 4t1

)
tr[ŷayaC

ψ] + g
(
−1

2
+ 4t2

)
(Cϕ)abtr[yaŷb] + O(g3) . (3.4)

Unfortunately we have no means of disentangling the separate purely g-dependent contri-
butions in Ã4 and in T

(3)
gg β

(1)
g , without a three-loop calculation; but all the Yukawa or λ

dependent contributions match exactly. If

t1 = −17
12
, t2 = 1 , (3.5)

then we would have TIJ symmetric at this order; but as demonstrated in Ref. [15], at three
loops TIJ is not symmetric even for a pure fermion-scalar theory for a general renormali-
sation scheme.

Had we not known β
(3)
g then it would have been determined by Eq. (3.2) up to the four

parameters consisting of the two coefficients in T
(2)
gy and the two coefficients in T

(3)
gg (the

values quoted for these quantities in Eqs. (3.3), (3.4) of course deriving from our current

knowledge of β
(3)
g ).
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4 The supersymmetric case

Here the analysis is extended to a general N = 1 supersymmetric gauge theory, which may
in principle be obtained from the general non-supersymmetric theory discussed in Sect. 2
by an appropriate choice of fields and couplings. Such a theory can of course be rewrit-
ten in terms of nC chiral and corresponding conjugate anti-chiral superfields, and indeed
perturbative computations are enormously simplified through the use of this formalism;
moreover, in the light of the non-renormalisation theorem and the NSVZ formula [32, 33]
for the exact gauge β-function, the renormalisation of the theory is essentially entirely
determined by the chiral superfield anomalous dimension γ (at least in a suitable renor-
malisation scheme). In this section we shall therefore start anew using results derived using
superfield methods. Nevertheless, in Sect 5 we show that (at least up two loops) the results
obtained using the two approaches match, as indeed they must.

The crucial new feature in the supersymmetric context is the existence of a proposed
exact formula for the a-function [17–19]. This exact form was verified up to two loops in
Ref. [20] for a general supersymmetric gauge theory, and up to three loops [15] in the case
of the Wess-Zumino model. Moreover in Ref. [15] a sufficient condition on γ to guarantee
the validity of this exact result was found and shown to be satisfied up to three loops;
related considerations appear in Refs. [18,19], see later for a discussion. In this section we
shall generalise this condition to the gauged case and check that it is satisfied up to three
loops, using the results of Ref. [22].

The couplings gI are now given by gI = {g, Y ijk, Ȳijk} with Ȳijk = (Y ijk)∗. The
supersymmetric Yukawa β-functions are expressible in terms of the anomalous dimension
matrix γi

j in the form
βY = Y ∗ γ , βȲ = γ ∗ Ȳ , (4.1)

where for arbitrary ω i
j we define

(Y ∗ ω)ijk ≡ Y ljkω l
i + Y ilkω l

j + Y ijlω l
k ,

(ω ∗ Ȳ )ijk ≡ ωi
l Ȳljk + ωj

l Ȳilk + ωk
l Ȳijl . (4.2)

We also introduce a scalar product for Yukawa couplings3

Y ◦ Ȳ = Ȳ ◦Y = 1
6
Y ijkȲijk , (4.3)

and it is further useful to define

(Ȳ Y )i
j = 1

2
ȲiklY

jkl ⇒ Y ◦ (ω ∗ Ȳ ) = (Y ∗ ω) ◦ Ȳ = tr
(
(Ȳ Y )ω

)
. (4.4)

The gauge β-function is assumed to have the form

βg = f(g) β̃g , β̃g = Q− 2n−1
V tr[γ CR] , f(g) = g3 + O(g5) , (4.5)

3The normalisation here is different from [15].
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where, with RA the gauge group generators,

Q = TR − 3CG, TRδAB = tr(RARB), CGδAB = fACDfBCD, (CR)i
j = (RARA)i

j ,
(4.6)

and nV is the dimension of the gauge group. For gauge invariance we must have

Y ∗RA = 0 , RA ∗ Ȳ = 0 . (4.7)

Under a change g → g′(g) = g + O(g3) then in Eq. (4.5)

f(g)→ f ′(g′) =
∂g′

∂g
f(g) , γ(g)→ γ′(g′) = γ(g) , (4.8)

assuming g′ is independent of Y, Ȳ . For an infinitesimal change δf = f ∂gδg − δg ∂gf and
δγ = −δg ∂gγ. The NSVZ form for the β-function is obtained if

f(g) =
g3

1− 2CG g2
. (4.9)

The resulting expression for βg originally appeared (for the special case of no chiral super-
fields) in Ref. [29], and was subsequently generalised, using instanton calculus, in Ref. [32].
(See also Ref. [33].) We note here that this result (called the NSVZ form of βg) is only valid
in a specific renormalisation scheme, which we correspondingly term the NSVZ scheme.
The exact expression generalises one and two-loop results obtained in Refs. [34–36]. These
results were computed using the dimensional reduction (DRED) scheme; though in any
case, the DRED and NSVZ schemes only part company at three loops [39].

The one and two-loop results for γ are given by [37,38]

γ(1) = P ,

γ(2) = − S1 − 2g2CRP + 2g4QCR , (4.10)

where P and S1 are defined by

Pi
j = (Ȳ Y )i

j − 2g2(CR)i
j ,

S1i
j = ȲiknY

jmnPm
k . (4.11)

We use here the notation and conventions of Ref. [22].

In the supersymmetric theory Eq. (1.2) is assumed to now take the form

dY Ã = 1
2

dY ◦TY Ȳ ◦ βȲ + dY ◦TY g β̃g ,

dgÃ = dg
(
Tgg β̃g + TgY ◦ βY + TgȲ ◦ βȲ

)
, (4.12)

(with a similar equation for dȲ Ã). We have written the RHS in terms of β̃g, effectively
absorbing the factor f(g) in Eq. (4.5) into TY g and Tgg. We omit potential βY terms in
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the first of Eqs (4.12) since are not necessary to the order we shall consider. For N = 1
supersymmetric theories there is, at critical points with vanishing β-functions, an exact
expression for a [17] in terms of the anomalous dimension matrix γ or alternatively the
R-charge R = 2

3
(1 + γ). Introducing terms linear in β-functions there is a corresponding

expression which is valid away from critical points and this can then be shown to satisfy
many of the properties associated with the a-theorem [18], [19]. For the theory considered
here, with nC chiral scalar multiplets, these results take the form

Ã = 1
12

(nC + 9nV )− 1
2

tr(γ2) + 1
3

tr(γ3) + Λ ◦ βȲ + nV λ β̃g + βY ◦H ◦ βȲ , (4.13)

where β̃g is given by Eq. (4.5) and we require

Λ ◦ βȲ = βY ◦ Λ̄ . (4.14)

For the remainder of this section we omit for simplicity the term involving H in Eq. (4.13);
but return to it in Sect. 5. In Refs. [18] and [19] Λ, λ are Lagrange multipliers enforcing
constraints on the R-charges. At lowest order the result for Λ and also the metric G
obtained in Ref. [18] are equivalent, up to matters of definition and normalisation, with
those obtained here. The general form for Ã given by Eq. (4.13) was verified up to two-
loop order (for the anomalous dimension) in Ref. [20]. Λ may be constrained by imposing
Eq. (4.12). Then

dY Ã = tr
[
dY γ

(
(Ȳ Λ)− 2λCR − γ + γ2

)]
+ (dY Λ) ◦ βȲ + nV dY λ β̃g . (4.15)

We also have

dgÃ = tr
[
dgγ

(
(Ȳ Λ)− 2λCR − γ + γ2

)]
+ (dgΛ) ◦ βȲ + nV dgλ β̃g . (4.16)

Hence if Λ, λ are required to obey

(Ȳ Λ)− 2λCR = γ − γ2 + Θ ◦ βȲ + θ β̃g , (4.17)

where making the indices explicit Θ ◦ dȲ → Θi
j,klmdȲklm and θ → θi

j, Eq. (4.13) then
satisfies Eq. (4.12) if we take

1
2

dY ◦TY Ȳ ◦ dȲ = tr
[
dY γ Θ ◦ dȲ

]
+ dY Λ ◦ dȲ ,

dY ◦TY g = tr[dY γ θ] + nV dY λ ,

dg Tgg = tr [dgγ θ] + nV dgλ ,

dg TgȲ ◦ dȲ = tr
[
dgγΘ ◦ dȲ

]
+ dgΛ ◦ dȲ . (4.18)

Here TgY = 0. However from Eq. (4.14)

dgΛ ◦ βȲ − βY ◦ dgΛ̄ = tr
[
dgγ
(
(Λ̄Y )− (Ȳ Λ)

)]
, (4.19)
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which may be used to write Eq. (4.18) in equivalent forms with non-zero TgY .

A related result to Eq. (4.17), with effectively Θ, θ = 0, is contained in Ref. [18] and also
discussed in Ref. [19]. For supersymmetric theories, satisfying Eq. (4.17) is consequently
essentially equivalent to requiring Eq. (4.12), although terms involving Θ are necessary at
higher orders. However, the work of Refs. [18, 19] implies that at least in the pure gauge
case, there may be renormalisation schemes in which θ may be set to zero. It is striking
that only minor modifications to the condition proposed in Ref. [15] are required for the
extension to the gauged case.

The condition (4.17) does not fully determine λ, θ since we have the freedom

λ ∼ λ+ µ β̃g , θ ∼ θ − 2µCR , (4.20)

for arbitrary µ. There is also a similar freedom in Λ,Θ.

At lowest order Θ, θ do not contribute so that (4.17) becomes

(Ȳ Λ(1))− 2λ(1)CR = γ(1) , (4.21)

and we may simply take from Eqs. (4.10), (4.11)

Λ(1) = Y , λ(1) = g2 , (4.22)

from which
1
2

dY ◦TY Ȳ
(1) ◦ dȲ = dY ◦ dȲ , Tgg

(1) = 2nV g . (4.23)

At the next order we require

(Ȳ Λ(2))− 2λ(2)CR = γ(2) − γ(1)2 + Θ(1) ◦ βȲ
(1) + θ(1)Q , (4.24)

since β̃g
(1) = Q, with Q as defined in Eq. (4.6). We may parameterise Λ(2) and Θ(1) by

Λ(2) = Λ̃Y ∗ P , Θ(1) ◦ dȲ = Θ̃ (dȲ Y ) , (4.25)

since (Ȳ Y ∗P ) = S1 + (Ȳ Y )P and (βȲ
(1)Y ) = (P ∗ Ȳ Y ) = S1 +P (Ȳ Y ) with S1 as in Eq.

(4.11). We then find Eq. (4.24) requires, since (Ȳ Y )CR = CR(Ȳ Y ),

Λ̃− Θ̃ = −1 , (4.26)

and
−2λ(2)CR − θ(1) Q = 2 g4QCR . (4.27)

Hence
λ(2) = λ̃ g4Q , θ(1) = θ̃ g4CR , (4.28)

with
2 λ̃+ θ̃ = −2 . (4.29)

15



GΛ
1 GΛ

2 GΛ
3 GΛ

4

GΛ
5 GΛ

6 GΛ
7

GΛ
8 GΛ

9

Table 4: Contributions to Λ(3) ◦ dȲ

The freedom of choosing λ̃, θ while satisfying Eq. (4.29) is a reflection of Eq. (4.20).
From Eq. (4.18)

Tgg
(2) = 4λ̃ nV g

3Q . (4.30)

As a consequence of (4.20) λ̃ is arbitrary. The computation in Ref. [20] (specialising the
DRED version of Eq. (2.11) to the supersymmetric case; and adjusting for the differing
definition of the “gg” metric) for Tgg

(2) fixes

λ̃ = −5
2
, (4.31)

in this scheme.

At third order we require now in order to satisfy Eq. (4.17)

(Ȳ Λ(3))− 2λ(3)CR = γ(3) − γ(2)γ(1) − γ(1)γ(2) + Θ(2) ◦ βȲ
(1) + θ(2)Q

+ Θ(1) ◦ βȲ
(2) + θ(1)β̃g

(2), (4.32)

where we write

Λ(3) ◦ dȲ =
9∑

α=1

ΛαG
Λ
α

+ g2(Λ10Q+ Λ11CG) (Y ∗ P ) ◦ dȲ + g4(Λ12Q+ Λ13CG) (Y ∗ CR) ◦ dȲ , (4.33)
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GΘ
1 GΘ

2 GΘ
3 GΘ

4

GΘ
5 GΘ

6

Table 5: Contributions to Θ(2) ◦ dȲ

where P is defined in Eq. (4.11), and the other distinct terms contributing to Λ(3) ◦ dȲ are
shown diagrammatically in Table (4). Here a “blob” represents an insertion of the one-loop
anomalous dimension. The 3-point vertices alternate between Y and Ȳ . As an example,
GΛ

6 represents a contribution

Λ(3) ◦ dȲ = g2 Y iklPk
m(CR)l

ndȲimn , (4.34)

and Eq. (4.4) then implies a contribution to (Ȳ Λ(3)) of the form

(Ȳ Λ(3))i
j = g2

(
ȲimnY

jklPk
m(CR)l

n + S1i
k(CR)k

j + S2i
kPk

j
)
. (4.35)

Here P, S1 are given in Eq. (4.11) and S2 is defined by

S2i
j = ȲiknY

jmn(CR)m
k . (4.36)

Similarly we write

Θ(2) ◦ dȲ =
6∑

α=1

ΘαG
Θ
α + g2

(
Θ7Q+ Θ8CG) (dȲ Y

)
,

λ(3) = g4λ̃1 tr[PCR]/nV + g6
(
λ̃2 tr[C2

R]/nV + λ̃3Q
2 + λ̃4QCG + λ̃5C

2
G

)
θ(2) = g4θ̃1 S2 + g4θ̃2 PCR + g6

(
θ̃3QCR + θ̃4CGCR + θ̃5C

2
R

)
, (4.37)

where the GΘ
α are shown diagrammatically in Table (5). A term in S1 is apparently pos-

sible in θ(2) but is excluded since there is no contribution to γ(3) involving g2QS1. As a
consequence of (4.20) the resulting equations depend only on 2λ̃3 + θ̃3, 2λ̃4 + θ4.

We expand the three-loop anomalous dimension as

γ(3) =
24∑
α=1

γαG
γ
α, (4.38)
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G
γ
1 G

γ
2 G

γ
3 G

γ
4

G
γ
5 G

γ
6 G

γ
7

G
γ
9 G

γ
10

Table 6: Contributions to γ(3)

with

Gγ
8 = g2S1CR, Gγ

11 = g4PC2
R, Gγ

12 = g4S2CR, Gγ
13 = g4CGS2,

Gγ
14 = g4CGPCR, Gγ

15 = g4QPCR, Gγ
16 = g4QS2, Gγ

17 = g4tr[PCR]/nV CR,

Gγ
18 = g6C3

R, Gγ
19 = g6CGC

2
R, Gγ

20 = g6QC2
R, Gγ

21 = g6Q2CR,

Gγ
22 = g6QCGCR, Gγ

23 =g6C2
GCR, Gγ

24 = g6tr[C2
R]/nV CR, (4.39)

and with Q, P , S1,2 as defined in Eqs. (4.6), (4.11), (4.36). The remainder of the distinct
tensor contributions are depicted in diagrammatic form in Table (6). The basis for γ(3) is
restricted by the absence of one particle reducible contributions such as P 3, P 2CR, S1,2P ,
PS1,2.

Using Eqs. (4.10), (4.25) in Eq. (4.32) leads to a large number of consistency equations
which constrain γ(3). If g = 0 they reduce to

2Λ1 = γ1 + Θ3 + 2Θ4 = 2Θ1 + 2Θ2 ,

2Λ2 = 2γ2 + 2Θ3 = 1 + 2Θ1 − Θ̃ ,

2Λ3 = γ3 + 2Θ4 − Θ̃ = 1 + 2Θ2 + Θ3 ,

3Λ4 = γ4 , (4.40)

which requires
γ1 − 2γ2 − γ3 = −2 . (4.41)
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These results were obtained in Ref. [15]. The other special case is for Y, Ȳ = 0 when

γ(3) = (γ18 − 2γ11) g6C3
R +

(
(γ19 − 2γ14)CG + (γ20 − 2γ15)Q

)
g6C2

R

+
(
γ21Q

2 + γ22QCG + γ23C
2
G + (γ24 − 2γ17) tr[C2

R]/nV
)
g6CR . (4.42)

In this case applying Eq. (4.32) with Λ,Θ→ 0 it is necessary to require the conditions

γ18 − 2γ11 = −16 , γ19 − 2γ14 = 0 , (4.43)

as well as

γ20 − 2γ15 = − 8− θ̃5 + 2θ̃2 , γ21 = −2λ̃3 − θ̃3 , γ22 = −2λ̃4 − θ̃4 ,

γ23 = − 2λ̃5 , γ24 − 2γ17 = 4λ̃1 − 2λ̃3 − 4θ̃ . (4.44)

The relations in Eq. (4.41) were obtained in Refs. [18, 19].

For the general case Eq. (4.32) implies additional relations which further constrain γα.
From terms which start at O((Y Ȳ )2) and using Eq. (4.40)

2Λ5 = γ5 + Θ6 + 4Θ4 − 2Θ̃ = 4 + 2Θ5 − 2Θ̃ ,

Λ6 = γ6 + Θ6 = 0 , 2Λ7 = γ7 = Θ6 ,

Λ6 + 4Λ3 = γ8 + 2Θ5 − 2Θ̃ ,

Λ10 = Θ7 , Λ11 = Θ8 , (4.45)

which then entail, using Eq. (4.40) to eliminate Λ3,

γ8 + γ5 − γ6 = 4 + 2γ3 , γ6 + γ7 = 0 . (4.46)

The remaining conditions arise from terms at O(Y Ȳ ) which become, using Eq. (4.45) to
eliminate Λ5,

2Λ8 = γ9 = γ11 − 8 ,

Λ9 = γ10 , 2Λ9 + 4Λ7 = γ12 ,

Λ12 = γ16 + 2Θ̃ + θ̃1 ,

Λ12 + 2Λ10 = γ15 − 4 + 2Θ7 + 2Θ̃ + θ̃2 ,

Λ13 = γ13 , Λ13y + 2Λ11 = γ14 + 2Θ8 ,

−2λ̃1 = γ17 − 2θ̃ , (4.47)

which then give

2γ7 + 2γ10 − γ12 = 0 , γ9 − γ11 = −8 , γ13 = γ14 . (4.48)

As a consequence of Eq. (4.20) the freedom δθ̃ = −2µ requires also δλ̃1 = −2µ. We may
combine Eq. (4.44) with Eq. (4.47) to give γ24 = −2λ̃2.
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Altogether Eqs. (4.41), (4.43), (4.46), (4.48) give eight conditions which are all satisfied
by the coefficients as calculated [21,22]:

γ1 = −1, γ2 = −1
2
, γ3 = 2, γ4 = 1

4
κ, γ5 = −2κ+ 4,

γ6 = −κ, γ7 = κ, γ8 = κ+ 4, γ9 = −5κ, γ10 = κ,

γ11 = −5κ+ 8, γ12 = 4κ, γ13 = −κ, γ14 = −κ, γ15 = −2,

γ16 = −4, γ17 = −12, γ18 = −10κ, γ19 = −2κ, γ20 = −8,

γ21 = 2, γ22 = 4κ+ 12, γ23 = 12κ, γ24 = −4κ, (4.49)

where κ = 6ζ(3). As mentioned earlier, the NSVZ form of the gauge β-function βg is
valid only in a specific renormalisation scheme (which differs from DRED at three loops).
We are therefore obliged for consistency to use the result for the anomalous dimension
corresponding to this NSVZ scheme. The required transformation was presented in Ref. [39]
and its effect on γ(3) given in Ref. [40]. In fact it is only γ17 and γ22 which are affected.

Once the conditions on the γα in Eqs. (4.41), (4.43), (4.46), (4.48) are satisfied, the
Λα, Θα etc maybe be assigned in accord with Eq. (4.47), with considerable arbitrariness;
there is little to be gained from stating the residual relations amongst them.

In the Wess-Zumino case considered in Ref. [15] the existence of an a-function satisfying
Eq. (1.2) implied that γ1− 2γ2− γ3 was an invariant (in a sense described in Ref. [15]) but
did not impose a specific value; thus showing that Eq. (4.17) is sufficient but not necessary.
We might expect similar remarks to apply to the other conditions in Eq. (1.2). It is all
the more striking that these conditions are in fact satisfied by the anomalous dimension as
computed.

We may count the independent parameters in the anomalous dimension as we did in
Section 2 for the Yukawa β-function. The essential Eqs. (4.13) and (4.17) are invariant
under redefinitions of g as in Eq. (4.8) and taking δY = Y ∗ h where

δβY = Y ∗ δγ , δβȲ = δγ ∗ Ȳ , (4.50)

and also assuming δβ̃g is given in terms of δγ in accord Eq. (4.5), for

δγ = −
(
δg∂g + (Y ∗ h) ◦ ∂Y

)
γ + βȲ ◦ ∂Ȳ h . (4.51)

Taking

h = α̃ S1 + β̃ g4S2 + γ̃ g2PCR + δ̃ g4C2
R + (ζ̃ Q+ ξ̃ CG)g4CR ,

δg = g5(µ̃ Q2 + ν̃ QCG + ρ̃ C2
G + σ̃ tr[C2

R]/nV ) , (4.52)
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GNP
1 GNP

2

Table 7: Non planar Feynman diagrams used to define γ′(3)

results in

δγ1 = 2α̃, δγ2 = α̃, δγ5 = 2α̃ + β̃ − γ̃, δγ6 = β̃,

δγ7 = −β̃, δγ8 = γ̃ − 2α̃, δγ9 = −δ̃, δγ11 = −δ̃,
δγ12 = −2β̃, δγ13 = −ξ̃, δγ14 = −ξ̃, δγ15 = −ζ̃ ,
δγ16 = −ζ̃ , δγ18 = −2δ̃, δγ19 = −2ξ̃, δγ20 = −2ζ̃ ,

δγ21 = 4µ̃, δγ22 = 4ν̃, δγ23 = 4ρ̃, δγ24 = 4σ̃, (4.53)

which leave Eqs. (4.41), (4.43), (4.46), (4.48) invariant. Allowing for such variations the
number of independent parameters is therefore 24 − 10 = 14 but the eight constraints
in Eqs. (4.41), (4.43), (4.46), (4.48) reduce the number of free parameters in γ(3) to be
reduced to six.

In the g = 0 case, the only coefficient in γ(3) with a κ-dependence, γ4, corresponds
to a non-planar graph. In the general case there is no such obvious association between
non-planar Feynman graphs and coefficients in γ(3) with κ-dependence (evaluated using
DRED). However, an intriguing observation is that a redefinition given by choosing

β̃ = κ, γ̃ =− κ, δ̃ = −2κ,

ν̃ = −κ, ρ̃ =− 3κ, σ̃ = κ , (4.54)

(and the remaining coefficients in Eq. (4.52) set to zero) gives a redefined γ(3)

γ′(3) = γ(3)|κ=0 + γ4G
γ
4 + κGNP

1 + 2κGNP
2 , (4.55)

where

GNP
1 = Gγ

9 +Gγ
10 + g4(−2CRS2 + PC2

R + CGS2 − CGPCR) + 2g6(C3
R − CGC2

R),

GNP
2 = Gγ

9 −G
γ
10 + g4(PC2

R + CGPCR) + 2g6(C3
R + CGC

2
R) , (4.56)

are the contributions corresponding to the Feynman diagrams shown in Table (7). The
implication is that there is a scheme in which the κ-dependent terms in γ(3) are generated
solely by non-planar diagrams.
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5 Reduction of non-supersymmetric results to super-

symmetric case

In this section we shall check that the a-function obtained using the methods of Section 2
for a general theory is compatible, upon specialisation to the supersymmetric case, with
the a-function presented in Section 4 (at least up to two loops). The reduction of the
non-supersymmetric theory presented in Section 2 to the supersymmetric case (with nψ =
nV + nC , nϕ = 2nC) may be accomplished by writing

ϕa →
(
φi
φ̄i

)
, φ̄i = (φi)

∗ , ψi →
(
ψi
λA

)
, i = 1 . . . nC , (5.1)

and with yaϕa = yiφi + ȳiφ̄
i,

yi →


Y ijk 0 0 0

0 0 0 0

0 0 0
√

2g(RB)j
i

0 0
√

2g(RT
A)ik 0

 ,

ȳi →


0

√
2g(RT

B)j i 0 0√
2g(RA)i

k 0 0 0
0 0 Ȳijk 0
0 0 0 0

 , (5.2)

where λ is the gaugino field. ˆ̄yi and ŷi may be obtained from ȳi and yi by interchanging
the upper left and lower right 2× 2 blocks of the 4× 4 matrices. We also have

tϕA →
(
RA 0
0 −RT

A

)
, tψA →

(
RA 0
0 Rad

A

)
, (Rad

A )BC = −ifABC , (5.3)

and consequently, from Eq. (2.6),

Rϕ → 2TR, Rψ → TR + CG . (5.4)

The scalar potential is now given by

V = 1
4
ȲijmY

klmφ̄iφ̄jφkφl − g2 1
2
(φ̄RAφ)(φ̄RAφ) . (5.5)

In making the reduction from the general theory to the supersymmetric case, we must
start from two-loop β-functions corresponding to DRED, since the RG functions used in
Section 3 were evaluated using this scheme; as we mentioned earlier, the DRED and NSVZ
schemes coincide up to the two-loop order we are considering in this Section. We use the
results given in Ref. [42], which may be obtained from the DREG results by a coupling
redefinition as in Eq. (2.17) given by

µ4 = −1
2
, µ5 = 1, ν1 = 1

6
, (5.6)
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GS1 GS2 GS3 GS4

GS5 GS6 GS7 GS8

Table 8: Contributions to A(4) in the supersymmetric case

with all other coefficients set to zero.4 We list here the values of the coefficients in Eq. (2.16)
which change under this redefinition (as may be easily checked using Eqs. (2.19), (2.16)):

cDR
6 = 2 cDR

7 = −1, cDR
13 = −5

4
, cDR

14 = 1
4
, cDR

15 = 7
2
,

cDR
19 = 7, cDR

20 = − 1
12

(
138CG − 12Rψ − 9Rϕ

)
,

cDR
26 = 7

2
, cDR

28 = 1
12

(59CG + 4Rψ +Rϕ), (5.7)

The DRED β-function leads to the following alterations in the coefficients in Eq. (2.26);
the others are the same as in Eq. (2.31).

ADR
13 = − 5

24
, ADR

14 = − 1
12
, ADR

15 = 7
12
, ADR

16 = −1
3
, ADR

17 = 1
6
,

ADR
19 = 1

6
, ADR

20 = 5
48
, ADR

22 = 1
4
, ADR

23 = 1
2
, ADR

25 = −5
2
,

ADR
26 = − 1

72
[138CG − 12Rψ − 9Rϕ]− t1β0,

ADR
27 = 1

144
[59CG + 4Rψ +Rϕ]− t2β0, (5.8)

These changes are a consequence of making the transformations Eq. (5.6) and also

δg = − g3

72nV
tr[yaŷaĈ

ψ
R] , (5.9)

upon A(3) and A(2) respectively in Eq. (2.12). Presumably the transformation in Eq. (5.9)
represents a part of the two-loop transformation from DREG to DRED (namely the Yukawa
dependent contribution to the transformation of g). To the best of our knowledge this has

4In general the DRED β-functions obtained using (5.6) do not correspond to a diagrammatic calcu-
lational scheme. There is an alternative implementation of DRED based on a calculational scheme, but
involving the use of additional “evanescent” couplings. It is this scheme we referred to specifically as
DRED in Ref. [42]. The two versions of DRED agree in the case of supersymmetry, which is our focus of
interest here; but see Refs. [44, 45] for further discussion of the general case.
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not been computed in full, though results have been given for the pure gauge case in
Ref. [43].

Inserting Eqs. (5.2), (5.3), (5.5) into the expressions for the various contributions to
Ã(4), depicted in Table (8), we find

GA
1 → 2(GS

1 − 9GS
3 + 6GS

4 + 6GS
5 − 12GS

6 − 3(CG − 2TR)GS
7 + 4GS

8 . . .)

GA
2 → 6(GS

2 + 2GS
3 − 4GS

4 − 6GS
5 + (CG − 2TR)GS

7 + . . .)

GA
3 → −5GS

3 + 16GS
5 − 16GS

6 + 4CGG
S
7 + 2GS

8 + . . .

GA
4 → 2(9GS

5 − 6GS
6 + 3CGG

S
7 +GS

8 + . . .), GA
5 → 2(GS

1 − 6GS
3 + 12GS

5 + . . .)

GA
6 → 2(GS

2 − 4GS
4 + 4GS

6 − 8TRG
S
7 + . . .),

GA
7 → 2S2 − 4GS

3 − 12GS
4 + 24GS

5 + 16GS
6 − 8TRG

S
7 + . . . ,

GA
8 → 2GS

1 − 24GS
3 + 96GS

5 + . . .

GA
9 → 2(GS

3 + 2GS
4 − 2GS

5 − 4GS
6 + 2TRG

S
7 + . . . GA

10 → 2(−GS
3 + 4GS

5 + . . .)

GA
11 → 4(2GS

3 − 8GS
5 + . . .), GA

12 → 4(GS
4 + 2GS

5 + . . .)

GA
13 → 2(GS

3 − 4GS
5 + . . .), GA

14 → 2(GS
4 − 2GS

6 + 2CGG
S
7 + . . .)

GA
15 → 2(GS

4 − 2GS
5 − 2GS

6 + . . .) GA
16 → 2(GS

5 + 2GS
6 − CGGS

7 + . . .), GA
17 → 8GS

5 + . . .

GA
18 → 1

2
GS

3 − 4GS
5 − 2CGG

S
7 + . . . , GA

19 → 2GS
4 − 4GS

5 − 8GS
6 + 4CGG

S
7 + . . . ,

GA
20 → 2GS

3 − 16GS
5 . . . , GA

21 → 3GS
5 − 2GS

6 + 1
2
CGG

S
7 + . . . , GA

22 → 2GS
5 + . . .

GA
23 → 2GS

6 + . . . , GA
24 → 4GS

5 + . . . , GA
25 → 4GS

6 + . . .

GA
26 → 2GS

7 + . . . , GA
27 → 2GS

7 + . . . ,

GA
28 → 3

2
GS

1 + 3GS
2 + 12GS

3 + 24GS
4 + 24GS

5 + 48GS
6 + . . . , (5.10)

where again we do not display the purely gauge-coupling dependent terms.

It is then straightforward to show, using the DRED values of the coefficients from
Eqs. (2.31), (5.8) that Ã(4) reduces as

Ã(4) → 1
3
tr[(γ(1))3] +

(
α− 1

36

)
β

(1)
Y

◦ β
(1)

Ȳ
+
[
−1

2
+ 8(t1 + t2)

]
β(1)
g gtr[PCR] . (5.11)

This expression can readily be shown, with the aid of Eqs. (4.10), (4.5), to be equivalent
at this order to Eq. (4.13). The explicit form at this order was already given in Ref. [20];
with our notation and conventions, this corresponds to Λ(1) = Y as in Eq. (4.22) and with

βY ◦H ◦ βȲ = αβY ◦ βȲ , (5.12)

and

λ = g2 + λ̃g4Q+
λ̃1

nV
g4tr[PCR] + . . . , (5.13)

where we have picked out the terms which can contribute to Qtr[PCR]. We find using
Eqs. (4.5), (4.31), (4.47), (4.49), (5.11) that we require

t1 + t2 =
29

16
. (5.14)
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These coefficients correspond to a three-loop calculation (see Eq. (2.23)) and, in view of
Eq. (4.47), depend on the value of γ17, which has a different value for the NSVZ scheme
than for DRED. It is beyond the scope of this article to consider how Eq. (5.14) would be
modified within DRED or indeed within DREG. Since our whole approach is predicated on
the NSVZ scheme, it would probably be naive to assume that the DRED form of Eq. (5.14)
would be obtained simply by using the DRED result for γ17.

Eq. (5.11) extends the result of Eq. (7.30) in Ref. [15] (with a = 3α− 1
12

) to the gauge
case–once again, modulo pure gauge terms which are not captured by the methods used in
Section 2. We see again the ambiguity in the form of Ã expressed in general by Eq. (2.27).

Of course this check is guaranteed to work but nevertheless given the indirect manner
in which we have obtained Ã and the possibility of subtleties regarding scheme dependence,
it is satisfying to “close the loop” in this fashion.

Finally, we remark that although the form for Ã presented in Eq. (5.11) is appealingly
simple (arguably even more so than Eq. (4.13)), the obvious extension to higher loops does
not appear to be viable.

6 Conclusions

In this article we have extended the results of Ref. [15] to the case of general gauge theories.
In the non-supersymmetric case we have constructed the terms in the four-loop a-function
containing Yukawa or scalar contributions, using the two-loop Yukawa β-function and one-
loop scalar β-function. Our main result here is Eq. (2.26) with Eq. (2.31). This enabled
a comparison with similar terms in the three-loop gauge β-function. In general, as a
consequence of the properties of the coupling-constant metric, one can obtain information
on the (n+ 1)-loop gauge β-function from the n- (and lower-) loop Yukawa β-function and
the (n− 1) (and lower) loop scalar β-function. This is reminiscent of the way in which the
(n+ 1)-loop gauge β-function is determined by the lower order anomalous dimensions in a
supersymmetric theory, via the NSVZ formula.

In the supersymmetric case we have given a general sufficient condition for the exact
a-function of Refs. [17–19], given in Eq. (4.13), to be valid, and shown that it is satisfied
by the three-loop anomalous dimension. This condition is displayed in Eq. (4.17) and is
our main result for the supersymmetric case.

One feature of interest is that Eq. (4.17) imposes extra conditions on the anomalous
dimension beyond the mere requirements of integrability from Eq. (1.2); but which are
nevertheless satisfied by the explicit results as computed. Indeed we remark here (without
giving further details since it is beyond our remit in this article on the gauged case) that we
have observed similar features in the Wess-Zumino model at four loops, using the results
of Ref. [41].

These properties certainly hint that there might be some underlying reason why Eq. (4.17)
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must be satisfied; it would be interesting to explore this further. If this were indeed the
case, one could imagine exploiting Eq. (4.17) to expedite higher-order calculations of the
anomalous dimension such as the full gauged case at four loops; possibly combined with ad-
ditional information such as the necessary vanishing of γ in the N = 2 case. Unfortunately,
a preliminary check indicates that these constraints are far from sufficient to determine γ
completely, even at three loops; and therefore a considerable quantity of perturbative cal-
culation would still be unavoidable.

Finally, in Ref. [15] we explored in some detail the freedoms to redefine the various
quantities we have considered, and it would be interesting to extend these discussions to
the current gauged case. In particular it would be useful to extend Eq. (4.17), which in
its current form is predicated upon the NSVZ renormalisation scheme, to a form valid for
any scheme.
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