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The response of four dimensional quantum field theories to a Weyl rescaling of the
metric in the presence of local couplings and which involve a, the coefficient of the
Euler density in the energy momentum tensor trace on curved space, is reconsidered.
Previous consistency conditions for the anomalous terms, which implicitly define
a metric G on the space of couplings and give rise to gradient flow like equations
for a, are derived taking into account the role of lower dimension operators. The
results for infinitesimal Weyl rescaling are integrated to finite rescalings e2? to a
form which involves running couplings g, and which interpolates between IR and
UV fixed points. The results are also restricted to flat space where they give rise
to broken conformal Ward identities.

Expressions for the three loop Yukawa [-functions for a general scalar/fermion
theory are obtained and the three loop contribution to the metric G for this theory
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higher order than previously. It is shown that these are only valid when 8 — B,
a modified B-function, and that the equations provide strong constraints on the
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1. Introduction

The paradigm shift in our understanding of quantum field theories due to Wilson in
the 1970’s led to the understanding that quantum field theories are not isolated objects but
may be regarded as points on a manifold, with coordinates given by the couplings {g'},
where there is a natural flow under changes of the cut off scale realising the renormalisation
group. The perturbative RG flow equations are just first order equations determined by
the B-functions 87(g), which are vector fields on the space of couplings. Even in this
context the global topology of such flows has been less certain, the simplest scenario arises
when the flows link fixed points in the UV short distance limit to other fixed points in
the large distance IR limit. At the fixed points the quantum field theory is scale invariant
and moreover is naturally expected to become a conformal field theory. However more
complicated behaviours under RG flow, such as limit cycles or the flow becoming chaotic,
are also feasible. As was first suggested by Cardy [1] there may be additional constraints
for unitary quantum field theories in four dimensions due to the existence of a function
a(g) which has monotonic behaviour under RG flow, or more minimally a may be defined
at fixed points so that ayy — aijrg > 0. These two scenarios are here described as the
strong and weak a-theorem, such a distinction was made in [2]. If valid a strong a-theorem
constrains the RG flow without assuming any UV completion although it requires the RG
flow to be described by linear equations involving S-functions.

The proposal of Cardy was for a four dimensional generalisation of the Zamolodchikov
c-theorem, [3]. This constrains the structure of two dimensional quantum field theories
and has a simple elegant proof depending just on the properties of the two point correla-
tion function of the energy tensor. The crucial positivity constraint arises from unitarity
conditions applied to the two point function. No such approach works in four dimensions
[4], [5] but it was soon clear that only a, which is determined by the topological term
in the trace of the energy momentum tensor on curved space, is a viable candidate for a
monotonic flow between fixed points. The energy momentum tensor two point function in
conformal theories is determined by c, the coefficient of the square of the Weyl tensor in
the energy momentum tensor trace on curved space.

Much more recently Komargodski and Schwimmer [6] have described a proof of the
four dimensional weak a-theorem which has been further analysed in [7] with possible
extensions to higher dimensions discussed in [8]. This rests on coupling the theory to a
dilaton and constructing an effective low energy field theory for the dilaton. The essential
positivity requirement depends on positivity conditions arising from unitarity for the four
dilaton scattering amplitude. The starting point of the discussion in [6] is the response of a
conformal theory to a Weyl rescaling of the flat metric. The resulting expression determines
the couplings of the dilaton introduced as a compensator for the local anomalous terms
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which arise under a Weyl rescaling and which have a coefficient proportional to a. The
basic argument of Komargodski and Schwimmer is that coupling to a dilaton ensures a
matching of these anomalies between the UV and IR fixed points.

However the results of [6] and also [7] do not immediately extend away from conformal
fixed points. There is also no obvious connection with a perturbative version of the strong
a-theorem for four dimensional renormalisable quantum field theories. This was based on
an analysis in terms of dimensional regularisation [9] and also from Wess-Zumino consis-
tency conditions for the response of the theory on curved background to a Weyl rescaling
of the metric [10]. Instead of a dilaton as in [6] the usual linear RG equations describing
the response to a variation in the RG scale p were extended to a local infinitesimal Weyl
rescaling o(z) by allowing the couplings also to be local g’(z), with an arbitrary depen-
dence on z. Local RG equations for variations of o(z) reduce to the conventional linear
differential constraints for ¢ and g’ constant but contain additional local contributions
depending on the derivatives of g7, as well as the curvature. The consistency conditions
arise from the abelian nature of the group of Weyl scale transformations. Such an approach
has also been extended to six dimensions in [11] and three in [12].

In this paper we revisit some of the results in [10], with an hopefully improved notation
(although we apologise for alphabetical profligacy) and extensions. The essential result is

that there is a scalar function of the couplings A(g) such that

dg A(g) = dg"T14(9)B” (9), (1.1)

where at a fixed point 81(g.) = 0, ifl(g*) = a. The symmetric part of T7; defies a natural
metric Gy so that under RG flow

Blor A = G887, (1.2)

Away from fixed points A(g) is arbitrary up to

A(g) — A(g9) + 917(9)8%(9)8” (9) (1.3)

while correspondingly

Gry — Gry+Lsgrs, Lpgry = BX0kgrs + 0185 gk + 085 g1k - (1.4)

It is then sufficient in order to demonstrate the strong version of the a-theorem that
Gr1y+ Lggry is positive definite just for some particular gr;.

In two dimensions positivity of the metric, up to the freedom in (1.4), flows from
showing [10] that G1j + Lgg1, for suitable g;;, becomes the Zamolodchikov metric de-
termined by the two point function G1j(p?2?)zam = (2)?(Or(z) O;(0)), for {O;} scalar
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operators dual to {g’}, [3]. Variation of 2 in G z.m is equivalent to (1.4). However the
original analysis demonstrates (1.2) and does not directly imply (1.1), see also [13].

In four dimensions Gy is related to (O Ty, Oy), although the precise connection is
not fully clear and positivity, except at weak coupling when G ; can be calculated or at a
conformal fixed point, is however less apparent from such a series expression.

The consistency conditions such as (1.1), obtained previously in [10] and discussed
further in this work, are derived by considering the response to infinitesimal Weyl rescalings
of the metric. We also consider the response of the theory to finite Weyl rescalings of the
metric 7., — €297,,. The result is also expressed in terms of running couplings g/ together
with additional contributions also depending explicitly on o, involving derivatives up to
O(o*), and containing Gr; and related functions as well as derivatives of the couplings.
For four dimensional theories the final expression is quite involved but it extends the result
at a fixed point used as a starting point for the introduction of a dilaton field in [6] and
[7].

For four dimensional theories the local RG equations, from which (1.1) is derived, are
essentially equivalent to expressing the energy momentum tensor trace in terms of a basis
of scalar operators as well as contributions involving the curvature, defining ¢ and a, but
also scalars formed from derivatives of g/. However even on flat space with constant g’
there may be derivative terms so that

Ty = B (9)O1 + 0, (1.5)

Here J/ is a current associated with an element v of the Lie algebra of the symmetry
group Gg of the kinetic terms of the theory. Such terms may arise at three loops in
perturbative calculations for scalar fermion theories [14], [15]. A fixed point 8%(g.) = 0
would apparently give rise to scale but not conformally invariant theories if there is no
redefinition of T, which removes 9,J,/*. However the S-functions have an arbitrariness
related to the freedom to make transformations under G at the expense of a redefinition
of the couplings. This freedom cancels in (1.5) so that it can be rewritten as

n* T = B'(9)Or, (1.6)
where
B'(g) =B"(9) — (vg)", (1.7)

so that if the couplings are not all invariant under G g there may be a difference between 5!
and B!. If this possibility arises (1.1) holds for 37 — B! and hence the potential strong
a-theorem discussed here applies to the RG flow generated by Bf, and its vanishing,
Bf(g.) = 0, at a fixed point defines a CFT. The transformation from (1.5) to (1.6), in
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terms of the modified S-functions as in (1.7), assumes there are no anomalies in 9,,J/.
This should be the case in parity conserving theories when J,/* is a vector current.

The existence of A(g) satisfying (1.1) also requires integrability conditions which con-
strain the form of S-functions. This was explored in [9] and is investigated further in this
paper, see also [16]. The conditions require relations between the coefficients appearing
in B-functions at different loop orders and which correspond to graphs of very different
topologies.

As an application of the results obtained and for the analysis of the integrability
constraints on S-functions we consider here a model renormalisable scalar fermion theory
with Yukawa and quartic scalar couplings. Previously [9] the various quantities appear-
ing in the consistency conditions were calculated to lowest perturbative order for general
theories including gauge fields. To go beyond this requires three loop calculations. For
complex scalars coupled to Weyl fermions imposing a U(1) symmetry ensures that the
number of graphs necessary is O(10) rather than O(100), or more, for a completely general
scalar/fermion theory. We obtain results for three loop anomalous dimensions and Yukawa
B-functions without calculating more than a couple of graphs by reducing this theory to
one describing the standard model top/Higgs coupling, recently obtained by Chetyrkin
and Zoller [17], and also a general N' = 1 supersymmetric scalar fermion theory when the
relevant results have been known for some time [18]. The consistency conditions obtained
here allow calculations for 77y, initially defined in terms of a curved background, to be
reduced to flat space calculations and we determine the three loop contributions depending
on the Yukawa couplings in the specific model theory for which the three loop S-functions
were obtained. The result requires extracting the local divergences for two three-loop vac-
uum diagrams. The results can be checked by reducing to supersymmetry as a special
case when much simpler superspace methods are possible. As usual we use dimensional
regularisation which may be problematic at higher loop orders. These issues are discussed
in [17], but in the absence of gauge fields here such problems appear to be irrelevant to
the order considered here.

We consider in detail the application of these results to A/ = 1 Wess Zumino supersym-
metric theories, extending the discussion in [19]. For such theories the space of couplings
is naturally a complex manifold since they may be extended to chiral or anti-chiral super-
fields. We show that three loop calculations demonstrate that the metric is hermitian to
this order. Furthermore when redefinitions as in (1.4) are extended to the supersymmetric
case the assumption of a hermitian metric is preserved. There is no all orders proof of
hermiticity in the context of this paper, although for superconformal theories related re-
sults have been obtained by Papadodimas [20] and Asnin [21]. The results for the metric
can also be expressed in Kéhler form if allowance is made for potential redefinitions of the



couplings.

Although this paper is quite lengthy each section is substantially independent. In
section 2 we rederive the local RG equations and associated integrability conditions which
follow by considering the response to infinitesimal Weyl rescalings of the metric in theories
in which the couplings are allowed to be local. In section 3 the infinitesimal transformations
are integrated to obtain the change in the vacuum energy functional W under finite rescal-
ings. The results depend on running couplings g,/ and provide an interpolation between
UV and IR fixed points. In section 4 we restrict the equations to flat space and broken
conformal symmetry. This context is sufficient to allow the metric Gy, which is initially
defined for curved space backgrounds, to be recovered just from flat space calculations.

The scalar fermion theory used as an illustration is introduced in section 5 and the
various (-functions and anomalous dimensions listed. In particular three loop results for
the Yukawa [-functions and also the anomalous dimensions for this theory are obtained,
primarily using previous calculations and also the restriction to the supersymmetric case.
In section 6 we analyse the RG equations for this theory. It is shown how they impose non
trivial consistency conditions on the coefficients which are present in the general expansions
for the [-functions and associated anomalous dimensions. In particular it is shown that
at three loop order it is necessary to take account of (1.7) for (1.1) to be valid. The result
for v at this order is in agreement with the detailed three loop calculations of Fortin et
al [15] for scalar fermion theories. In section 7 we restrict to supersymmetric theories
and demonstrate the consistency of a hermitian metric. The results are compared with
expressions when a-maximization is extended away from superconformal fixed points by
introducing Lagrange multipliers and also the possibility of a Kahler form for the metric
is discussed. Sections 8 and 9 describe how the metric and related quantities can be
determined by flat space calculations using dimensional regularisation. Section 8 discusses
the general formalism for renormalisable theories with local couplings and sets up the
required RG equations. Section 9 applies these methods to the scalar/fermion theory and
determines the additional necessary field independent counterterms to three loops. These
determine the metric and, specialised to the supersymmetric case, show that it is hermitian
to this order.

There are four appendices containing further calculational details. Appendix A anal-
yses how particular contributions to the anomalous dimensions in supersymmetric theories
which are proportional to transcendental numbers can be extended to determine the re-
lated contributions to the metric and also a. Appendix B contains further details on the
derivation of local RG equations in the context of dimensional regularisation. The RG
equations are extended to allow for special conformal transformations as well as the usual
variations of scale. The methods used here to obtain the three loop counterterms for



Yukawa theories with dimensional regularisation are described in appendix C and are also
extended to four loops for scalar theories in appendix D.

2. Local RG Equations and Integrability Conditions

As was demonstrated in [10], and more recently in [6], non trivial constraints on
the RG flow in quantum field theories can be obtained by considering the response to
infinitesimal local Weyl rescalings of the metric of the form

doYur = 20 Yy (2.1)

when the theory is extended to an arbitrary curved space background. Conformally invari-
ant theories are invariant under such rescalings up to local conformal anomalies induced
by the non vanishing of the energy momentum tensor on curved space. Equations for the
response to such Weyl rescalings for quantum field theories not at conformal fixed points
may be obtained if the couplings are extended to arbitrary local functions and at the same
time as (2.1) there is a flow in the space of local couplings. The resulting equations are
then an extension of the standard linear equations which determine the RG flow in terms
of the usual S-functions and are realised by restricting to constant o as well as constant
couplings. Choosing couplings {g’}, which are coordinates for a manifold M, the local
RG equations obtained in [10] by assuming the quantum field theories are extended to
arbitrary g’(z) as well as 7,,(z) are then generated in four dimensions by the functional
differential operator

5 5
A, = [ d* LAY .
/dm<2w P 59,), (2.2)

where the S-functions, which are contravariant vectors on Mg, have in general a linear
contribution

Bl (g) = —(d— Ar)g’ + O(¢g?). (2.3)

In (2.3), in the present context, the spatial dimension d = 4 and Ay is the scale dimension
of the operator O;, which is dual to g/, at the critical point when all g/ — 0. Initially
we restrict for simplicity to just marginal operators with A; = 4, as for renormalisable
theories when g7 = 0 is the free theory.

Acting on the vacuum energy functional W[y,,,g’], A, gives zero up to a residual
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local contribution, depending just on 7,,, g’ and their derivatives at z, so that

A, 16m2W = — /d4:c -y o ( —CF+ %AG-l— 71—2BR2 + EHY Guﬁuglﬁyg"
+ 1R (E/V?g + Fr 09 0,9”) — X)

) / dizy/=7 8,0 (EW Wid,g" + LR H10"g" + Y“) (2.4)
- /d4a: — V2o (%RD+Z) ,
where the curvature terms, apart from the Ricci scalar R, are
F=C""Chisp, G = 31€uope®P R gR" s, E" =R" — 14" R, (25)

so that G is the Euler density and E*” is the Einstein tensor. With the normalisations in
(2.4)
C’free = %(%ns +nw + 4nV) ’

(2.6)
Afree = % (nS + %TLW + 62nV) )

for ng real scalars, ny Weyl fermions and ny vectors. The remaining terms in (2.4),
X,Y* Z, areindependent of the curvature and involve just the local couplings g’ and their
derivatives. X, Y*, Z therefore remain on restriction to flat space and can be decomposed

in the form

X(9) =1 A1, V?¢'V?¢” + Bryx Vg 0%970,9" + & Cryk1 6"9" 0,97 8”9 0,9" ,
Y#(g) = S150"¢"V?g” + Tryx 09" 0”97 0,9™ ,

Z(g) =Ur V3g"' + Vi 049" 0,9” . (2.7)
Clearly G1jy, Fry,Fr5,V55 are symmetric while Bryjg = BI(JK), Trik = TI(JK) and
Crixr = Cusyxr) = Ckrys)- The notation in (2.4) and (2.7) is an adaptation of
that in [10], with suitable modifications to ensure later simplifications. Gy, A1, Sy are
covariant tensors under a redefinition of the couplings g/ — h’(g) while E;, Wy, H;, U are
vectors. Since V2g! — 9;hIV2g7 +0;0Kht 0" g7 0,9, the transformation of Brjk, Cryxr

under such a change in the couplings contains additional inhomogeneous terms. If Aj; is
invertible X may be written as

X = % Ar;D*g'D?g7 + % OIJKL 3“913n9J o g a,g" (2-8)
where D2g! is defined by
D?¢" = V?g' + Bk 0#970,9%, Bk =(A"")"Brxk, (2.9)
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with B acting as a connection on M. In (2.8) Crsxr, = Crsxr — BMrsBukr which
then also transforms as a tensor under redefinitions of the couplings.

Defining the energy momentum tensor and local operators Oy by

) s
2WW ==V =) (T (2)) 5gf(x)W = —/—7(z) (0;(z)), (2.10)

the result (2.4) then encodes the standard form for the trace anomaly

167* (" (Ty) = B'(O1))| 5y = CF — 1AG — ;BR? — g DV’R. (2.11)

The crucial consistency conditions arise from the fact that the group of local Weyl
transformations is abelian so that

[As,An] =0. (2.12)
Using, under Weyl rescalings of the metric as in (2.1),

6oF = —40F, §,G=-40G+8E"V, V,0, 6,R=—-20R—6V%0,

2.13
6o EM = — 40 EM — 2(VFVY —4*'V?)0o, 6, V% = =20 V? + 20,0 V¥, (2:13)

then the curvature dependent terms arising from imposing (2.12) give the integrability

condition
OrA =GB’ — LgWr, (2.14)

and relations which determine the R dependent terms
B=EB' - LD, (2.15)

and
Er= — A8’ — LUy,

Fiy=Grj— BkryB% — Uk 010,85 — LgVis, (2.16)
H; = 81,8 - Uy, Uy =Ur+0:87U; + VisB7,

together with the condition
E’IEEI-{—OIBJEJ—FF]JBJ:,CﬁHI. (2.17)

Further relations which constrain Wy, Gy are

oW = =517, (2.18)
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defining 3
Sty = Sry+ 0585 Sk + Tryx X, (2.19)

and
Gry— EﬁSIJ = /L'J =Ar;+ 815KAKJ + BJIKIBK s (2'20)

and also a consistency relation involving the derivative of G; which can be simplified to
Ty — L5T1ix = Brox = Bryx + 018" Bryx + Crryx B, (2.21)

for
Tk = 1(0,Grx + 0k Gry — 901G k), (2:22)

the Christoffel connection formed from Gjs. From (2.19) and (2.20) we may obtain

T kX + Gry+0;85Grx — LsS1y = Ary + 0,85 A1k + BryxBX . (2.23)

In the above relations Lg is the Lie derivative determined by B! so that
LW =p70; Wy +0:8" Wy,  LgD=p79;D, (2.24)
with obvious extensions for LgSr, £L5V1s, analogous to Lggrs in (1.4) and we also define
LTy = LaTryx + Srpds0xBY . (2.25)

The constraint (2.17) follows by combining (2.16) with (2.20). The Lie derivative preserves
tensorial properties under redefinitions of the couplings g/ — h!(g). Ui, Er, 51y, A1y are
also tensors. The relation for Fr; in (2.16) and also (2.21) are not manifestly invariant
under such redefinitions but covariance can be verified by combining different identities.
The result for F7; is thus equivalent to

Gry = (Fry— 0uEy) + (Brrs —TWk17)B% + Ls(Vig — 0aUsy — A1s),  (2:26)

where the three terms each transform as a tensor. (2.20) determines Gy, which is later
used as a metric on My, in terms of flat space results. It may be recast as

Grg=A4Ar;— %/BK,DKAIJ + Lg (S(IJ) + %AIJ) , (2.27)

where
DrxAry =0kAr;— Bjkr — Brk- (2.28)

The essential variation and RG equations (1.1) and (1.2) follow directly from (2.14)
for
/I:A—{-Wjﬂ], Ty =Gr54+0/Wy—0;W7g. (2.29)
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The coefficients in (2.4) have an intrinsic arbitrariness induced by adding to W local
terms of the same form as in (2.4) for o a constant. This freedom gives an equivalence

Wi~ Wi —01a+ grs87,
Hr~Hr+er+0187es + f1s87,
Sty ~ Sty + 915 —arg — 018%ask — by B™,
Tryx ~ Trox + Ty — bryx — 918 bryx — crrox B,
D~D-b+er,
Uy ~Ur—er—arsB’,
Viy ~Vis+ 915 — frs — bxrsB%,
Fry~ Fry+ Lgfry+01058%ex,
Brix ~ Brjx + Lgbryx + 0508 arr,

Crixr ~ Cryxr + Lgcrixr + 01058 byt + 0x 0B burs

(2.30)

as well as
(A,B,C,E1,G15,A15) ~ (A, B,C,E1,Grg,A15) + Lg(a,b,c,er,915,ar5).  (2.31)
With the definition (2.19) then from (2.30)

S1s~ 815 — 0 (9xB") + 915 + 3 Lsgrs

(2.32)
— (87 + 01B85) (65 + 058" )akr — 2ban kBT — 201 B bryyk B .
As a consequence of (2.30) we may set, if 6;/ + 9737 is invertible,
Suyn =Tk =D=U;=V;=0. (2.33)

To describe the RG flow of four dimensional quantum field theories it is necessary to
take into account contributions to the basic equations corresponding to relevant operators,
in addition to just the marginal operators with couplings {g’}. These may induce modi-
fications of the consistency conditions obtained above for the RG flow. We first consider
vector operators. A general analysis may be obtained by extending the global symmetry
group of the kinetic terms Gx to a local symmetry by introducing background gauge fields
a,(x) € gk, the Lie algebra corresponding to Gk, and extending all derivatives to covari-
ant derivatives D, = 8, + a,. The symmetry extends to the full quantum field theory if,
for any w € gg, the couplings g/ and a, transform as

Sug'(z) = — (wg)!(z) = —w's(z)g” (),

(2.34)
bway(z) = Dyw(z) = Ouw(z) + lau(z), w(z)].
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where w’; belongs to the appropriate representation of gx acting on the couplings {g’}.
Under such variations 6,87 (g) = w!;87(g). The corresponding covariant derivative acting
on the couplings is then

D.g" =0.9" + (an9)’,  (au9)’ =a.s97, (2.35)
with the curvature as usual
f,u.l/ = 0Ouly — auap. + [au.a av] - (236)

The generator of local Gk transformations as in (2.34) is then
A, = /d4:c <Duw C— = (wg)I—) ; [Au, A ] = A - (2.37)

The introduction of background gauge fields a,, so that now we take Wy, 9’, a,l,
allows (2.10) to be extended to define local vector currents by

1)
5 W=—-v—y()(J*=), J'egk. (2.38)
au(z)
For this paper we assume manifest background gauge invariance so that
AW =0, (2.39)

although in general there can be anomalies which involve e-tensor contributions. If present
there would be additional consistency conditions. If (2.39) holds then from the definition
(2.38) the current J* satisfies the conservation equation

w- D, (J*) = —(wg)*(O1), wE gk - (2.40)

Under Weyl rescalings of the metric there are additional contributions to the functional
differential operator in (2.2) involving a, given by

1)
Ayo = /d4$ (0 prDug’ — duov) - Sa. p1(g),v(9) € 9K » (2.41)
o

with - denoting an invariant scalar product on gx. Assuming (2.38) then (2.41) implies
(1.5). We assume that manifest covariance under G is maintained so that, for all w € gk,

Ay, Ay] = [Au, Asa] =0, (2.42)
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which implies
(wg)? 058" = (WB)',  (wg)’8spr + psw’r = [w,p1], (wg)’8sv=[w,0],  (243)

In this case (2.41) can be equivalently expressed as

ANgg = /d4w (O’ ﬁIDMgI —D,(o ’U)) . pr = pr+ 0v, (2.44)

9
da,

since, using (2.43),
D,v = 38,v+ [a,,v] =0rvD,g". (2.45)

For general quantum theories it is also necessary to consider the extra contributions
arising from operators { Oy} with canonical dimension two. The associated couplings { M }
are mass terms belonging to the dual space Vjs. The vacuum self energy now extends
to a functional W[y, g, a,, M]. The action of gauge transformations in (2.34) now
extends also to d, M (z) = M (z)wpr(z) —wp(x) M (x) for wps, was belonging to appropriate
representations of gx. There is also a corresponding additional term in A, in (2.37) which
requires that (2.40) is extended to

w-DH<J’“‘> = —(wg)I(OI) —(MwM—cDMM)-(OM>. (2.46)
for ﬁW = —/—7(Opn) and - also denoting the natural scalar product on Vs x Vj/*

As for g’ local RG equations require extension to arbitrary M(z) € V. In (2.4)
describing the response to Weyl rescalings of the metric, besides A, ,, it is necessary also
to include the additional term

Aom == /d49’ (U (2—=vm)M + §Rn+ 61 D*¢" + 15 D*¢"' D ,ug”) .
2

) .

+ 28M091D'ugl -+ V20'7-) . W ,

where 0,01, €15 = €51,01,7 € Vay and yar : Var — Var . (2.42) is extended to [Ay,, A m] =
0.

The requirement that
[Aa + Aa,a + AO’,M’ Aa’ + Aa’,a + Acr’,M] = 0’ (248)
imposes further consistency conditions which follow by using

(A + Aa,a)DugI = 0u0 BT + UDugJ (aJBI + (ﬁJg)I) +0 (vDug)I,
(Ay + A, 0)D*¢" =V?0 B' +20,0 D,g" ;" + 0 D*g”D,g" Q' (2.49)
+0(—2D%" + D*¢’ (0,B" + (ps9)") + (D)),
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with B! the modified S-function defined in (1.7), gy as in (2.44), and

U, =6;"+0;B" + 1(ps9)",

| ) (2.50)
Qi = 0,0k B" + (0s5r)9)" +2(p(s) k) -

The Lie derivative defined by (2.24) is also extended to ensure that it transforms covariantly
under Gg rotations so that Lg Wr — L ; Wi where

EB,ﬁ WI = EBWI + (ﬁjg)JWJ . (2.51)

With these results, and £,,v = 0, the condition (2.48) requires

prBT =0, (2.52)
and
n=26B"—(Ls —ym)T. (2.53)
which determines 7, and
\IIIJ5J+€1JBJ= (ZB,ﬁ_’YM)eI- (2.54)

The property (2.52) ensures that the extended Lie derivative commutes with contraction
with B so that in (2.51) Bf EB,;, Wi = Lp(B!Wj). Furthermore we then, with the
definitions in (2.50),

[Lp;, 1] = Qrx? BX. (2.55)

The functional differential operators in (2.41) and (2.47) are essentially arbitrary up
to variations arising from purely local contributions which automatically maintain the
consistency conditions (2.52) and (2.53). Such variations can be generated by

4 (Aa + Aa,a + AU,M) = [Da Ay + Aa,a + AO’,M:| )

(2.56)
§(Av+ Ao+ Do) W =D (Ay + Dpo+ Aort) W,
for any local functional differential operator D. Choosing
4 r 0
D= /d zriD,g’ - —, rr(9) € 9k , (2.57)
da,
gives
5ﬁ1 = (Tjg)JﬁJ — (ﬁjg)J’r'J + (617‘] — 8JT'I)BJ, v = ’r’]BI ,
§B" = —B’(rsg)", 861 = (r1g9)’6s, 861 = (r19)”6,, (2.58)

Serg = (rig)exs+ (rug)“erx + (3(I?"J)9)K5K +2 5K(7"(I)KJ) .
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From this it follows that 5(23,5 01) = (rIg)JZB,ﬁ 0. In a similar fashion we may obtain

5?7: (ACB—’YM)h, 5T:—h+dIBI, 59[Z\IJIJdJ+61JBJ,

_ ~ o (2.59)
661 = (LB, —Ym)dr, derg = (L, —vm)ers + Q™ dr

for h,dr,ery € Vas. In consequence we may set 7 = 0.

The essential equation (2.4) is modified so that

(Ay + Ap o + Ay ar) 1602W
= — /d4x e (— CF+1AG+ 5BR*+ E" GryD,u9'D,g’
+ 1R (E;D%¢’ + Fr;D"¢' Dyg” +1- M) — X)

—2 / d*z/—y 8,0 (E“” WiD,g" + tRH;D"g" + w) , (2.60)

where for simplicity the part involving V2o is dropped since the relevant terms can be
set to zero by adding local contributions to W. In (2.60) I € Vj/* and X,Y now have
additional terms involving f and M,

X(g9,a,M) = 3A;; D*¢' D*¢” + By yx D*g" D*¢’D,,g%
+ %CIJKL D“QIDNQJ DVQKDVQL
+ 3" Bs fuv+5M- By M+ f* - PryD,g'Dyg?
+Jr-MD*¢' + Ky - MDVg'D,g”
Y*(g,a, M) = S;; D*¢'D*¢” + T1;x D*g' D” ¢’ D, g%
+ "+ QiDyg' + Ly - MD"g",

(2.61)

for Pry = —Py1,Q1 € 9k, J1, K17 = K1, L1 € Vo',

The presence of the additional terms in (2.61), together with the extension A, —
Ay + Ay o + Ag v leads to modifications of the previous consistency conditions together
with some further necessary relations. In general 37 — B!, assuming G x-covariance as in
(2.43) with additionally

(wg)KaKGIJ + GKJOJKI + G]KwKJ =0, (2.62)

etc, but there are further required changes. To avoid too much complication we focus on
the results related to the variation of A. The basic equation (2.14) becomes

1A= GryB’ —Lp;W;. (2.63)
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Taking into account

Aa,af;w = U([Ua f;w] + (f;wg)IﬁI + (8IﬁJ - 8JﬁI)ngIDugJ)

~ _ (2.64)
+ 0,0 pr D,,gl — 0,0 pr Dugl )
then instead of (2.18), with now Sry =W/ XSk +TryxBX,
Wy = =S+ L py Qu+ Ly 0. (2.65)

There are also extra relations from terms involving f,, which give, for any w € gx,

(wg)'Wr = —w-QrB', (2.66a)
(wg)JGIJ = —Ww:- EB,ﬁQI — (wg)JﬁJ . QI 4+ w- PIJBJ — %w -,Bf -ﬁj. (266b)

In (2.66b) the second term on the right hand side may be naturally absorbed in a extension
of Lp ; [22]. From (2.66a)

(r9)’Ws = —pr-QuB’, (2.67)
so that the essential result (2.63) can still be rewritten in the succinct form (1.1)
1A =T B’ (2.68)
where A, Ty are now defined, using (2.52), by an extension of (2.29) to
A=A+W;B", Tr;=Gr+20,Wyn+2p1-Qy. (2.69)
Furthermore from (2.66b), in conjunction with (2.66a),

(wg)'GryB? = —w-B'01(Q B”) — (wg) pr - Qs B’

_ (2.70)
= (wg)I(BJaJWI + (ﬁ]Q)JWJ) =+ (wBI)W] = (wg)IEB,;, W] y

which ensures that (2.63) implies (wg)!drA = 0.

The consistency conditions also generate additional relations for the terms in (2.60),
(2.61) containing M which take the form.

I+JBf =0, (2.71)

and
j[-{—ZB,ﬁL[-I-LI"YM:e['ﬂM, j]E\IfIJJJ-{—KIJBJ. (2.72)
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The relation (2.20), determining G, now becomes
Gry=Ars+ ZB,ﬁ Sry—Jy-0r—L;-6;, Ary=Y"Ag;+ BjxB*, (2.73)
which gives rise to a modification of (2.27),

Grr= A — 3 ((pr9)" Anx + BX Dk Ary)

g 1 (2.74)
+Lp,s(Sgy + 3A15) = I 05 — L - 0y,
with the definition of D Ar; unchanged from (2.28). Also (2.21) becomes
Tk =UFBryk + Croge BY + Q™ S + ZB,ﬁ Tk (2.75)

+ (01p(s — 0spr1) - Qr)y — Py - Pryr — Kyk 01 — L1 - €k -

The equivalence relations (2.30), (2.31) also extend to the more general case with
additional terms stemming from the presence of a,, M. In particular the essential equation
(2.68) is arbitrary up to the equivalence relations given by

A~A+g1;B'BY, Gry~Gry+ Zﬁ,p grg = Grj+ EB,ﬁ 917,

(2.76)
Wi ~ Wi+ gryB7, w-Qr~w-Qr—grrwg)’, wegk-

There are also extra relations arising from local contributions to W involving f,, such as

Qr~Qr+psB’, w-Pry=w-Prj+w- ZB,ﬁpIJ + (wg)%px - P17,
Crrix ~ Croyx + (0ps — 0pL) - Prky + (015 — O(sP1) - PLK) 5 (2.77)

Trjx ~ Tk — P * PIK) 5 Prj = —pJI € 9Kk -

This gives in (2.69) Try ~ Trs + 2011 -pJ]KBK so that T7;B” is invariant. From local
terms containing M

JINJ[-i-ZB,ﬁjI-i-jI")/M, Lr~Li—9/j;,
Er~Er+jr-n, Arg~Arg—2ju-905, Brk~Brk—jr €k, (2.78)
Sty ~Sry+3j5-0r1, Jjr € V.

For consistency with omitting V2o terms in (2.60) it is necessary to impose j; B! = 0.

3. Integration of Weyl Scaling

The consistency conditions obtained in the previous section are obtained as integra-
bility conditions for the response to local Weyl rescalings of the metric. Here we describe
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how results for the vacuum energy functional W{y,,, g'] for finite rescalings of the metric
can be obtained.

For simplicity we focus initially on two dimensional quantum field theories. With
the functional differential operator A, given by the corresponding form to (2.2) in two
dimensions the basic equation (2.4) becomes

A, 20 W = / a2z = (a (CR - Gry0"g'8,9”) — 20,0 Wr 6“91) RNERY

for C(g), Grs(g), W1(g) depending on the couplings g’. The consistency conditions flowing
from (2.12) are just [10]
01C = GryB7 — LW, (3.2)

which is essentially identical to the four dimensional result given in (2.14).

To integrate (3.1) we define g/ by

d

b1 _ I I _ I
% B (90) 5 g =9 , (3.3)

where such running couplings depending on o(x) were discussed in [14]. With this definition
(3.1) directly implies, for arbitrary do(x),

850 2nW €7 Yy, 92 ]

_ / 4%z = (50(0(90) (R —2V20) — G1s(95) 0”92 0,9.) — 20,0 Wi(g,) g2 ) ,
(3.4)
where on the right hand side the dependence on o is explicit. To integrate this we first

define C(o) by

2 80)=0lg),  G0)=0, (3.5)

and then (3.4), using (3.2) with the condition G;; = Gy, gives

3o <2ﬂW[e2"wu,gJ ] - / d>z/—y (é(a)R + (C(90) — Wi(95)B" (90)) 3“03u0)>
=— /d2ac\/—_fy 60 Gry(95) 0*94 0,95

—2 /d2:c\/—'y (0,60 Wi(gs) + 60 00 LsWi(gs)) 094 (3.6)

where we define
5;1.901 = a,u.gcrI - BI (ga) 6[1.0- . (37)
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Noting that
505;490{ =do aIﬂI(ga) gy,ga']a (38)

does not involve 0,60 and defining Gr s(0) by the solution to the differential equation

d 9

Eéu(a) + 818K (95)Gr (o) + 0585 (95)Grk (0) = Gr1(9s) Grs(0)=0, (3.9)

then we may finally obtain

21 (W(e* Yuv, 95 1 — Wy, 9']) = /d2$\/—7 w, (3.10)
where
W = é(U) R+ é(ga) 0*o0,0 — éIJ(U) 5“9,,1(‘5“9,;7 —2Wi(9s) 8“9!(%0. (3.11)

for C = C + WA

The differential equations (3.5) and (3.9) may be formally solved as an expansion in
o, noting that f(g,) = exp(cLg)f(g), in the form

%

C(o) = (exp(cLs) — 1) L5 'C(g), Gry(o) = (exp(oLp) —1)Lg 'Grs(g9), (3.12)

which gives rise to results corresponding to those in [22]. The behaviour for large o is less
apparent in this expression.

The result (3.10) with (3.11) provides an interpolation of the anomalous contributions
to the self energy functional W between UV fixed points as ¢ — oo and IR fixed points as
o — —oo assuming g4 is on a RG trajectory linking to fixed points satisfying 81 (g.) = 0. If
this holds then asymptotically C'(c) ~ C(g«)o and if the fixed point is a surface M, in the
space of couplings, corresponding to exactly marginal operators, then on M, 0;C(g«) =0
since then 9187 (g.) = 0.

It is also of interest to rewrite (3.10) to determine the response to just a Weyl rescaling
of the metric whichcan be achieved by letting 7, — € 277,,,. Apart from anomalous terms
arising from W the Weyl rescaling is realised by introducing the running couplings g4 since
(3.10) and (3.11) give

2 (Wle > Y, 971 = W, 951) = /dzwx/—v W, W =20"09,C-W. (3.13)

To complete this result it is necessary to determine 8uCV’. In general C(o), determined by
(3.5), depends also the initial g’. It is convenient to let g* — g,/, C' = C(0, g,) and then
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2+ B1(g,)0r. Hence 8,C = £C 8,0+ 9;C du9." = C(g,) 8,0 + 91C 9,9, . From

d _
4=
(3.5), (3.9) with (3.2) we may obtain

35 01C0) = C1y(0)87(00) + Wiar) 510
+ 018 (95) (0xC(0) — Gx.1(0)B7(95) + Wk (95)) = 0.

This has the solution, with the necessary boundary conditions at ¢ = 0,

8[6’(0') — é[](d)ﬂ'}(ga—) + W](go—) = W[(O’) (315)
so long as
%WI(U) + 0187 (g )Wy (o) =0, Wi (0) = Wilg). (3.16)

It is easy to check that W;(0)d.g." = Wi(9)dug’, Wi(0)8(95) = Wi(9)B%(g). With
these results (3.15) gives, since 0, = OMU% + 5,,90131,

8,C(0) = C(go) 840 — Wi(go) Ougs’ + G15(0) 8ugs’ B + Wi(g) Dug” . (3.17)
Subject to (3.17), (3.10) and (3.11) then entail in (3.13)
W' = —C(0) R+ C(g) *0d,0 + Gri(0) d*9L8,95 +2Wi(g) 9*g' 0,0, (3.18)

where the result has been simplified by using

~ v

C(9-) — C(9) = G1(0)B"(95)8” (95) = /O(Zit Grs(9:)8"(9:)87 (g¢) - (3.19)

This follows from 878;C = G877 which may be integrated, with the definition (3.9),
to give (3.19). Assuming Gr;(9')8%(¢')B7(¢’) > 0 for all g'f € (g%, gd) then from (3.19)
C(9,) < C(g) for o < 0.

A similar analysis may be extended to four dimensions starting from (2.4). For sim-
plicity we impose D = Uy = Vi; = 0, as in (2.33), although S;;,T; sk are not restricted
initially. The integrability conditions (2.15) and (2.16) then become

B=EB', E;=-Ar;8’, Fiy=Gr;—Bg1sf%, H;=S1p’. (3.20)

(2.13) extends to finite Weyl rescalings of the metric to give in four dimensions

F,=e Y F,
G, =e *(G+8E"V,V,0
—4V?*(0*0 8,0) +8VH(0,0 V?0) + 8 V(0,0 00 8,0)) , (3.21)
E = e 17 (E* — 2(VHVY —y**V?) 0 + 200 8V 0 + 4" 0*a Or0)
R, =e¢"% (R —6V20 —60t0 8ua) , V2 =e2 (V2 +20t0 8#) .
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It is also important in this case to extend (3.7) defining
Agd = V?gd — B (9,) V0 — 2088 (95) 8“ggj8ua + 37 (90) 058" (95) oMod,o, (3.22)
such that, analogous to (3.8),
6o Agl = 6o 3JBI(gc,) Agd + do 8J8Kﬂ1(ga-) 5“gaJ5ugaK , (3.23)

and for g* — b, Agd — O;hT Ag + 8,0k h! g5 8,9 K.

Using (2.4) it follows that the local anomalous response to Weyl rescaling can be
written as

65 16m2W[e*7 v, 9] = /d4x\/—'y A, (3.24)

where A is determined by (2.4) in conjunction with (3.21). Even with (2.33) the general
form is lengthy. Only the final expression is of possible interest but we include below
some intermediate steps in case of any desire to verify the calculational details. For the
curvature dependent terms, using (2.14), (2.17) as well as B = E;37,

Acurvature = 00 (C(ga) F— }IA(QU) G - 7i2EI (90)51 (ga)Rz — E* GIJ(QU) 5#.9(;,51190])

o (Er(9s)Ags + Fry(95) 0*95 0,95 ) - (3.25)
There are also contributions which remain on flat space and are independent of dg,

An =8, (Algs) (V2o + 1} 0%00,0)0"08,0)
+ 380 01A(90) (V295 +20%940,0(V30 + 8700,0))
+ 00 0105 A(go) 094 0498 — 80 LaA(95) (V30 + 3 0%00,0)0" 00,0
+20,0001A(g5) Mgl 0vod,0 .

(3.26)

The remaining contributions in (3.24) are also curvature independent but involve dg, in a
non trivial fashion. From the R dependent terms

e = 60 (Er(gr) (gl + 1 8'(9) (V20 + 09,0)) + Fr(a,) 003,07
+ LsH1(9) (2095 Ouo + B (g0) 8“00#0)) (V20 + 8%00,0)  (3.27)
+ 20,00 Hi(95) (095 + B (95)0"0) (V?0 + 8" 00,0).
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For the terms involving Wy, including those arising from A using (2.14) in (3.26),

Aw = — 6, (WI(gU) (Agd 8 00,0 + 28" 91,0 (V20 + 87 00,0))
+ 0;Wi(9s5) 5“gcft§uggj 0" 08,0 +Wi(9,)B (95) (2 Vo + % a“aﬁua) 0”0d,0
+ 20 W5 (9-) gl B’ (9) 0,0 0”00, 0
+ LsWi(g0) (2049 + B (95)0" ) 3N08”08,,U)
— 408,00 0uW1(95)(0"95 0" 95 + B (95)0"00" 95 + 2094 87 (950" 0) D, 0. (3.28)

In a similar fashion the corresponding contributions containing Gy, including contri-
butions from Fr; in (3.27) and from (3.26) with (2.14) may be written, noting that
duBX Gk +TunkBX = §LsG1y, as

Ag = — 0, (GIJ(go-) (3’“‘9015”90J 0,00,0 — % é“gcféugcf&,a&,a)
— 2G1s(90) B'(95)B7 (95)0" 00,0 8“08,,0)
— oo (GIJ(QU)(AQGJ + ﬂJ(ga)(VZU + 8“06“0)) + F(G)IJK(gg)g‘uggjéﬂggK)
x (20”95 0v0 + B (95) 0¥ 00, 0)

— 60 3(G1(90) + 0185 (95)G1k (95) + T 1sk (95)87 (95))
x (20%94 0,0 + B (95) O*00,0) (20 g5 8,0 + B (95) 8 0D,0) . (3.29)

For the corresponding result containing S;;,7T7;x we include also the terms arising from
from Hj in (3.27) and from 9;;Wj; in (3.28) using (2.18) we obtain, with S1; given by
(2.19),

.As = — 50 ((Sjj(ga-) AggJ + TIJK(go-) gugg‘]éuggK) (25”90131,0' + ﬁI(go) 8”0’3,/0')
+1 S17(95) (2095040 + B (g95) 0*00,0) (20”95 B0 + B (95) 8”081,0))
+ do (‘CﬂSIJ(ga) (AQUJ + BJ(QG)(Vz‘T + 8N0-8M0-)) + ‘CIBTIJK(ga)gugUJéugaK)
x (20"94 0,0 + B (95) 0*08,0)
+ o %L',Bg”(ga) (2 5“9[,18”0 + 8% (95) 6“0(9“0) (2 0”95 0,0 + B (g95) 3”08,,0) )
(3.30)

The expressions (3.29) and (3.30) combine so that we may use (2.20) and (2.21) and also
(2.23) so that the remaining terms, with the results in (3.27) applying (3.20), become

Aapc = 50(% Ary(90) Ags Ags + Bryx (95) Ags 095 0,95°

T (3.31)
+ 3 Crikr(90) 094 0ugs 0”94 Ovgs ) :
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With these results it is then possible to extend (3.10) to four dimensions in the form

1672 (W[e* Y, 96 — Wivuw, ")) = / diz/ =y W, (3.32)

with W a local function expressible as sum of contributions W;, Ws, W3. The curvature
dependent terms are contained in

Wi =C(o)F - 1A(0)G
+ A(go) (E**8,00,0 + V30 0 00,0 + 1 0"00,00"00,0) (3.33)
- CU;IJ(O-) (EIH/ + ,-),IJV%R) 511«90{51190'J -2 Wl(ga) Euyauggaua )
where C (o), A(0) are defined analogously to (3.5) and G;(o) is again given by (3.9), is an

evident extension of the two dimensional result in (3.11) with v** — E#¥. The additional
terms involving G, W, after some simplification, are given by

Wy = — ;1 Gri(9-)(20" 94 00 — B7(95)0"00,0) (20" 95 0,0 — B7(95)0" 08, 0)
+ 1 G15(95)0" 95 Ougs 0700, 0
— (Wi(go) V29d + 0:Wi(g,) 892 0,95) 8 00,0
—2Wi(g0) 8#9018/,1,0' (V2a + 0Y00,0).

(3.34)

The remaining contribution to W imposing, by a choice of ar; in (2.32),

g(IJ) (9)=0, (3.35)
then reduce to
Ws == (S12(90)(V04 +20997 8,0 + (AR — V2o — 0%00,0)6"(90))
+ 17k (90) 0*95 0,957 ) (20795 0,0 — B (g95) 8 50,0)
+ % AIJ(U) AQJAQUJ + BIJK(O') AQUI gugdjgugal{
+ 3 Cryxe(0) 094 9,9 0 950,95 -

(3.36)

In (3.36) R dependent terms have been absorbed in a redefinition of Ag,,
Ags = Ags +B'(90) §R, (3.37)
which satisfies the corresponding equation to (3.23).

In (3.36) Ar;(0) is defined similarly to G;s(o) in (3.9) while Brsx (o) is determined
by
d - N o
s k(o) + I:B (90)Bryk (o) + Jﬁu(g )Brrk (o) V (3.38)
+ 0k B"(9o)Brsr (o) + 850k 8" (95)Arr(0) = Bryx(9s), Brsx(0)=0,

22



with a corresponding equation for Crrx (o). Just as in (3.12) there is a formal solution

BIJK(U) = (eXP(Uﬁﬂ) - 1) 5,3_1 (BIJK(g) - 5J8K5L(9) Eﬂ_lAIL(g))

. L 1 (3.39)
+ (eXp(O'ﬁlg) — 1)5,3 (8J8Kﬂ (g)) Eﬁ AIL(Q) .
By obtaining analogous equations to (3.14) the relations (2.20) and (2.21) imply
G15(0) = S17(90) + S15(0) = U5 (9,) Ak 5(0) + B (0)8% (g95) (3.40)

U15x(0) = Trix(90) + Trix(0) = ¥1E(95) By (o) + Crrix (0)8% (90)

with S'IJ,IV’UK defined similarly to Wr in (3.16) and for ¥/ (g9) = 67 + 0187 (g). N
satisfies (3.38) with Brix — f‘”K, Brixk — Tk and A;p — Gyr and as a conse-
quence

Pk =TO , (3.41)

with T'(©) defined in terms of Gy as in (2.22). As a consequence of (3.35) we have from
(3.40)

v

Grs(0) + 3LG1(0) = U (95) 05" (95) Ars(0)
+ U5 (95) Bk (0)6% (95) + ¥1*(95) Brix (0)8% (95)  (3.42)
+ Crrix(9)B% (95)B% (g0) -

Applying (3.40) in (3.34) we may use

(S1s(0) Ags' + Ty (0) 997 0,95 ) Ovgs = (S1(9) V29” + Trik(g9) 09”7 0,9%)d,g"
S'IJ(U) 51/9;5](90) = S1s(9) 81/91»3J(g) ) (3.43)

and similarly for 8,9 — B%(g9,). By applying 8% to (3.9) so that it becomes a homoge-
neous equation, we may obtain

LsG1(0)0"980,95 = Gri(95) 0"940ugs — G1(9) 09" 0ug”, (3.44)

and also, as in (3.19),

~ v

A(g5) — A(g) = G15(0) B (95)8” (90) - (3.45)

Starting from (3.32), with (3.33), (3.34), (3.36), and letting v,, — e 27v,, then,
similarly to (3.13),

1672 (W(e > Yur, 6" — WY, 951) = /d‘lm\/ —~y W', (3.46)
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For an IR fixed point so that g/ — ¢! as ¢ — —oo then, assuming W[’ym,,g,f] —
Wivuw, gi] smoothly, W' determines the dependence on o in the neighbourhood of the
fixed point.

To determine W' we use (3.21) for 0 — —o and the corresponding equation to (3.17)
and discard total derivatives as appropriate. Writing W' = W' + W% + W3 the result,
using (3.40), (3.42), (3.43), (3.44), (3.45), is

Wh= —C(o)F+LA(0)G
+ A(g) (E*0,00,0 — V0 0*00,0 + § 0#00,0 0¥ 00,0) (3.47)
+Gri(0) (B + 4" §R) 8,95 0,95 +2Wi(g) B 8,9"0,0,

and
Wh = — § Gr5(9) (209" 040 + B (9)8"00,0) (20" g” 8,0 + 57 (9)0” 08,0)
+5G1s(9)0"9"0ug” 0”00, 0 (3.48)
- (WI(Q) V2! + 0:Ws(g) 3“glc'?ugJ) 0" 00,0 )
—2Wi(g) 09" 8,0 (V20 — 0¥00,0),
and,

W's = (S15(9) (V29”7 — 2097 0u0 + (AR + V0 — 0"50,0)B87 (9))
+ T17x(9)0"9” 0,9%) (20 " 0,0 + B (9)0" 00, 0)
— 1 Ars(0) (V294 + LRB (95)) (V295 + LRB7(95)) (3.49)
— Bryk(0) (V294 + tRB(95)) 095 095"
- % éIJKL(U) 3“galaugaJ 3”901(31190{3 .
1, W, W'3 may also be obtained from Wy, W5, W3 by letting g, — ¢ and then o — —o.
The contributions involving G 1J, as well as A 1Js B TJK (:’1 sk 1 depend on the RG trajectory

linking g and g,, for variations arising from (2.30), (2.31) the associated freedom becomes
a difference of contributions from the end points of the RG flow.

These expressions simplify if we assume that the z-dependence in g, arises only from
o, so that in solving (3.3) g’ is a constant. In this case we may take 8,94 = 8%(g9,)0,0,
Vgt + %R,@I(ga) = ﬁI(gg)%R + U ;1(9,)87 (95)0*00,,0 for %}V% = %R + V20 — 0#0d,0
and then

W = —C(o)F + ifvl(a) G
(90) (E**8,00,0 — V0 O 00,0 + 3 0*00,0 0" 50,0)
—1 Gr17(95)8"(95)B” (95) 0" 08,0 0" 00,0

%R SIJ(QU)/BI(QU)/BJ(QU) oModyo — %(%R)2 leJIJ(‘T)ﬁl(gtr)ﬁ!](gcr) .

(3.50)
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Of course at a fixed point with a vanishing beta function this coincides with the result
used in [7] for 0 — 7 and a similar expression was obtained in [22].

Although lengthy, and tedious to obtain, the extended result (3.46), with (3.47), (3.48),
(3.49), is still relatively simple and potentially allows for the analysis of dilaton couplings
away from conformal fixed points.! Setting the curvature terms to zero and o — 7 (3.47)
becomes part of the lagrangian determining couplings of scalar fields O; to the dilaton 7
in the dilaton effective action. The results used in [6] and [7] depend also on imposing
additional boundary conditions whose generalisation is less apparent.

4. Broken Conformal Symmetry

The results obtained in section 2 depend on extending the quantum field theory to a
curved space background. In this section we show how a subset of the consistency relation

1 If all B terms are set to zero in (2.4) and the various conditions for integrability are imple-
mented along with (2.33) then (2.4) becomes

A, 167°W = /d4a:\/_—7 o (C’F —LAG+ LG (D' D¢’ —2(B* + LRY"") 9" 0ug”)
+ % Crixr 3“918,49‘] BugKa,,gL)

- 2/d4x\/—'y Ouo <E“”W13u91 - 0uWy 3“QIV29J> )

where D2gI is defined as in (2.9) with Ary — Grs, Brox — %), ;x and we must also im-

pose 1A = 0. This may be integrated straightforwardly to give 167%(W[e* vu] — Wvuw]) =
fd4w\/—'y Werp where

Wep = J(CF ~1AG+ LG (D' D¢’ — 2(B* + LR~")dug"ug”)
+ % Crixr B”gIBMgJ BugKa,,gL)
+ A(E*"8,00,0 + V0 3*08,0 + 1 8"00,0 8" 0d,0)
— G17(0"9'0" g’ 8u00,0 — L 8*g' 0,97 0¥ 00,0)
—2W; E**0,g" 0,0 + 20, W 8*g' Vg’ 0,0
—2W; 0*9" 8,0 (Vo + 8% 08,0) — (WiV3g" + 0:W;0"g"8,.97) 8" 0d,0 .

This result is relevant at a fixed point when {g’} are the couplings for exactly marginal operators
and so parameterise the moduli space. The terms proportional to Gy can be expressed in terms
of the Riegert operator, a conformally covariant 4th order differential operator acting on dimen-
sionless scalars. On the moduli space A is constant, whereas C may vary, and we expect, since
(wg)"Wr = 0, Wr = 0 f for some scalar f, and so by virtue of the freedom in (2.30) we may then
set Wr = 0.
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equations can be defined by restricting to flat space and considering broken conformal
symmetry. These are derived by considering diffeomorphisms, as well as Weyl rescalings.
Their intersection defines the conformal group

In general quantum field theories on curved space, within appropriate regularisation
schemes, are invariant under diffeomorphisms. This may be expressed, for arbitrary smooth

v¥(x), as

0 0
d* o Yuy —— L9,q" — = 4.1
/ .’E(ﬁ ’)’N ~ +v 8Ng 5gI)W 07 ( )

Y
where
LoYuw = Vv, +Vyu, . (4.2)

Conformal Killing vectors satisfy
Vv, + Vv, =20y Yuu (4.3)

and for any such conformal Killing vector acting on W we may take from (4.1) and (2.2)
4 I n 9
Ay, = Ay = [ d'z(—v g +a,,/3)5—1. (4.4)
g
Defining the commutator of two diffeomorphisms by
[v,0']# =¥, v'* — 0" H, v*, (4.5)

(4.3) implies
VO oy — VM0, 0y = 07y 0] - (4.6)

It is then easy to verify that, from the definition (4.4),

[Ay, Ay] = Apyn - (4.7)

On flat space the solutions of (4.3), for V, — 0y, Yu — 7Muv, are of course the usual
conformal Killing vectors

v (z) = a* + Wt z¥ + AP + b — 227b, 2t ov(x) =A—22b,, (4.8)

for w,, = —w,,. Combining (4.1) with (2.4) gives a condition on the flat space vacuum
energy functional W|g!] which reduces, since 8?0, = 0, to

A, 16T°W = / d*z (0y X — 20,0, Y"), (4.9)
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for X(g),Y*(g) given by (2.7), albeit V> — 02. 1In Y*, since S 0*g'0%¢7 =
Sy (0% (8#g"0,97) — 5 0*(0 9" Dug”)) and 8,8,0, = 0, the symmetric part of S;; may
be dropped. (4.9) expresses broken conformal symmetry?, valid so long as the couplings
are local functions of .

Linear conditions on correlation functions for the operators Oy, which reduce to stan-
dard RG equations for v#(z) = Az* and g’ constant, can be obtained from

) ) )
A T _9 J J o
| = @0 - o) (487 0 (o)) 5 0 (@0
with d = 4 here again. With the definition (2.10) then
1672 (Av<01> +40,(01) + 0, 0r87(05) + U“@N«')I)) =Ar, (4.11)
for 5
Ar = ot d*z (0y X — 20,0, YH). (4.12)

To impose (4.7) making use of (4.6) we note that
A, /d4a: ((J’UI X —20,0, Y") — Ay /d4:c (av X —20,0, Y“)
= / d*z (o7v,01 X —20,070,01 Y*) + / d*z (2k, K" + 41, L"),
ky, = 0y 0,0, — 04y 0,04, Ly = 0poy 0,0y — 0,0, 00y = 8b'[“ by, (4.13)
for

K* = (Ary+ 0185 Ajk + By 8% + LS1)0 9" 0%g”
+ (Brox + 018" Bryk + CiroxB" + S11.0,0kB" + LgT15x) 09" 0" 978, 9™ ,
LM = — (St — 0uB™ Sk + Tk B%) 049" 0" g” . (4.14)

Hence (4.7) is satisfied, assuming (4.9), if the terms involving K* and L*¥ in (4.13) vanish.
As o0, is just linear in x the conditions in this case do not require either K* or L*” to be
zero. For the term involving /,,,,, since this is a constant, it is necessary and sufficient only
that LM is a total derivative so that we require

L = ol (W01 (4.15)

2 Broken conformal Ward identities were first discussed at the same time as the usual RG

equations [23] but in [24] ‘appear to be useless’. For other approaches see [25].
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for some W;, which is then equivalent to the result (2.18) for d;;W; and hence W7 is
determined in terms of S;;,7T7;x up to the freedom W; ~ W; — Ora. For the term
containing &, in (4.13) then since

Owky =0, (4.16)

it is sufficient to require
K* =0,(G1s0"9'0"g”) — 1 0*(G1509"0,97), Gi1s=Gur, (4.17)

choosing the relative coefficients to match the form of K* in (4.14). Combining (4.14) and
(4.17) is equivalent to (2.20) and (2.21) with the definition (2.22).

Although restricting to broken conformal symmetry on flat space does not directly
determine A, which plays the role of a c-function, the relations defining W; and Gj; are
sufficient to reconstruct the critical result (2.14). Using (2.20) and (2.21)

o (GnxB) = 0uB™ G — TV B”
= 085 Anx — BirxB™
+ 3[15K£[35J]K - S LaJ]aKﬁL/J)K - ['BT[IJ]KﬁK
= Gy — Aigy — LS + TuneBY) + 018" LaSnk — Sir 10,0k 8" B*
= Ls(0yWy) = 0 LsWy, (4.18)

using (2.18) and Gy = Ajpy) = 0. (4.18) is the necessary condition for the inte-
grability of (2.14) so that A may be calculated in terms of the flat space quantities
Ary,Brji,Sr7, Ty up to a g-independent constant.

If in (4.14)
AS1y =417, ATk =Tk, (4.19)
then
AKH* = L3915 0"9"0%g” + (0xLsgrs — 2 01LsgsK) 09" 0 970,95, (4.20)
ALY = 8 (gnrB™) 0*g"0"g” .
and it is easy to see that this implies
AGry = L3917, AW; = g1787, (4.21)
in accord with (2.30) and (2.31).
At a fixed point, assuming
ap’|,_, =—(4—-Ans’, (4.22)
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then with (2.10) the identity (4.9) requires, by considering sgléﬁ (mjsw and then restricting
to constant couplings,

(v"(2)Ous + A1 0u(2) +v*(4) 0y + Ay 00 (1)) (O1(2) Os(y))

. . \ (4.23)
= 16n2 A1y 05 0y (av(x)d (x — y)) .

There is a potential term involving S;; but this cancels for S;; = —Sy;7. The conformal
identity (4.23) has a solution only for Ay = A; = A when

Crs 1 Arg 2024
— _ 128,264 (1 —
<OI($) OJ(y)> ((:v—y)Q)A 1672 2(4—A) 0 8y (w y)
=L(82)3 Crs 1 Ay 1
A—4 64(A —=3)2(A—2)2(A—1) ((z—y)*)23  287%) (z—y)* /)
(4.24)
For this to be well defined for z ~ y we must have (272)2Cr; = 24 Ar; + O(A — 4).
With the definition (2.11) and restricting to flat space then (T#") satisfies
0,(T*) +8"g" (O1) =0, (4.25a)
1672 (1, (TH) — B(O1)) = X +29,Y*, (4.25b)
and also, with A, as in (4.4), a corresponding broken conformal identity
1672 (A (TH) + 6.0 (TH) + Ly(TH)) = A, (4.26)
Lo(TH) = 09 9,(T#) — 0% (T#) = 80" (TH), |
where
AR =2 /d4x V= (0 X —28,0Y%)
57}“/ Ypr 2 NMpv,0 0y
(4.27)

+ 18 — 010" (0u(Er0*g" + F150%g" 0ag’) + 2000y Hi9%g")
+ DHrYOoP (O-’U GIJacrgIéng + 2 aaav WIang) ’

with D#*¥?°P defined so that
DHYOPf = OV 4 970 fr, — 200D, f)7 4 (BRD” — O P frp,  (4.28)

for any fop = fpo-

The form for A" in (4.26) is constrained by (4.25a,b) in conjunction with (4.11).
Using 0,,(Ly + 60,)TH = (Ly + 60,)0,T* + 8”0, N5,T°P we may obtain from (4.25a)

AW + 09t A = 00, (X +20,YH), (4.29)
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and from 7, (L, + 60,)TH* = (vP0, + 40y)nuT* from (4.25b)
Nuw A" — BT Ar = (Ay + 40, +049,) (X +28,Y7). (4.30)
(4.30) constrains the additional derivative terms in (4.27) as it reduces to

H? (av(Efang + FIJB“gfaugJ) +20,0, Hla“gf)
—2(n* 0% — 9"0”)(0y G150ug" 0rg” + 20,0, W1d,9")
= —0%(0y(A1,0°9"B7 + Bk1,0" 970,97 B¥) — 20,0, S1,0"9" B7)
+ 80, (0,00 Sry 0*g70%g”)
+2 (8,00 + (0u04)) ((A1s + LS15)0"g" 897
+ (Bryx + LgTryx + 3J3KBLSIL)8’“‘918”9J6,,9K) ,

(4.31)

for Sry, A7y, Bryx as in (2.19), (2.20), (2.21). Since

(n* 0% — 0*9") (O’U GIJaugI&,g" +20,0, Wlaygl)
= % o2 (O'U GIJB’“‘gI(‘)NgJ) +40, (8,,% 3[IWJ]8“918”9J) (4.32)
— (000 + 2(8,04)) (G1509" *g” + Ty 0*g" 8" g7 8,9,
(4.31) reduces to the consistency relations (2.16), (2.18), (2.20) and (2.21). Hence the
broken conformal identity (4.26), with (4.27) may be used to define Gr;, W and also
Ep, Frj, Hy just in terms of correlation functions involving the energy momentum tensor
on flat space.

The relations (4.25a,b) and (4.26) which are expressed in terms of local couplings
can be translated into equivalent constraints on various correlation functions involving the
energy momentum tensor and with g/ constant. We describe here the simplest results
for the three point function (T*¥(x) O;(y) Ok(z)) in the conformal limit assuming (4.22)
with Ay = Ag = A. In this case we can drop contributions arising from Hj, Sy, Wy.
Suppressing the argument = the conformal Ward identity becomes

1672 (Lo + 6 0 + 07 (Y) Oy + A 0y (y) + v#(2)0uz + Ay (2)) (T O4(y) Ok (2)) (4.33)
= Ak (y, 2), '
with
AL (y, 2) = A (205, 0¥) (0, 8%6,) + 20 (0, 0%6,) V)6,
— 1 (8P8, B,(0y D28,) + 8P (0, 828,) 8,0, + 0, D25, D%5.))
+ 1 9? — 949¥) (0y (4 — A) Ay (%3, 8, + 6, 0%6,) + 2 G sk 078, 0,0,))
+2G sk D*? (04 050y 0,)0)) (4.34)
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for 6, = §*(z — y), 6, = 6*(z — 2) and where we have let E; — —A1;87, Fr; — G-
Corresponding to (4.25a,b) we have
8M<T‘“’ OJ(y) OK(Z)> —_ 8”5y <OJ OK(Z)> —_ 6y5z <0J(y) 0K> = 0,
1672 (N (T* Oy (y) Ok (2)) (4.35)
(B =95, (05(6) Ok(2)) + (A~ 4)3. (04(4) Ox(2))) = Assc 06, 55 .

It is again somewhat non trivial to check consistency of (4.33) and (4.35), the necessary
condition reduces to
Gk = (A_3)AJK, (436)

which is equivalent to (2.20) in the conformal limit.

5. Beta functions for Scalar Fermion Theory

We consider as an example for the application of the general consistency relations a
general scalar fermion field theory involving n.,n, two component chiral spinor fermion
fields 1, x, of opposite chirality, and ng complex scalars ¢;, © = 1,...ng, with a Lagrangian
of the form

L=-0¢"8¢; —Pio -9y —xio-Ox —xm(¢) Y —Ypm(d) x — V($,9), (5.1)

where 0-a5-a = —a® 1, tr,(0-a 5-b) = —2 a-b with - in this context denoting contraction of
Lorentz indices. In (5.1) we assume

m(¢) =y'di+pu, m(@)=8G+n, V(g,¢) =31\ &'¢dudi+0(¢°¢,9¢%). (5.2)

The Yukawa coupling y¢ is a n, X ny matrix and g; = (y*)". Also (\;*!)* = \gf?. For
ny, = Ny (5.1) can be re-expressed in terms of four component Dirac fermions. The
Lagrangian (5.1) has a U(1) x U(1) symmetry for the dimension four interactions under

ey, x—oeTx, ¢V, (5.3)

This is sufficient to significantly reduce the number of Feynman diagrams at each loop
order.
The B-functions associated with the couplings y, A in £ can be expressed as
By =By + ey ¥ 1+ ¥ 5% 5.0
By =By + VI i'bi + ¢4’ Vi,
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for

: 0 0
J— = __ V. .
Vv 8¢jV’ V; -V (5.5)

In addition
Byi = (ﬂyi)T . (5.6)

In giving results for 8 and related functions it is convenient to rescale
)\ijkl — 16%2)\1']'“ , yi — 47 yi ,  Yi — 4 Yi (57)

thereby removing factors of 1/1672 which arise at each loop order. The anomalous dimen-

sion matrices at one and two loops are given by

. o 1) ; _

=35, wP =15y, % =@y, (5.8)
and _ , , .

w® = - §v'y e - (v vy,

w® = = 5wy - o' m) 5y’ (5.9)

2) 4 mn % = = = = .0
Vo5t = E AR A = 3 (60 9* T v') + e v 55 01) -
The S-functions are then given by (5.4) with [26]

B =0, B =2¢g vy vF — 2N  yim ok,
30 = Ly, v — 2te(mmmm),
38 = — Ly, v Vi — 2t f) (VFViy + ViFVRY) (5.10)
+ 2tr(y® mytm) Vig + 2 tr(ge m gy m) V
+ 2(tr(ykgjk mmmm) + tr(ge y*mmmm) + 2tr(y*mm g mm)) ,
where a,b” = a'b; + a;b* and Vg, V,, are defined by obvious extensions of (5.5). In
consequence 1 V.,V = V;; V¥ + ViVt

Two special cases are of particular interest. Assuming n, = r, ny =0, ng = n we
require

and there is then a manifest U(n) symmetry (for the scalar couplings the symmetry extends
to O(2n)), with x, x singlets, and the couplings reduce to just A, y, . In the above formulae

)\ijkl — A(dfdjl + 5il5jk) , ’yz gj — gy (Sji , gzyl — g’y 1n . (512)
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The anomalous dimensions are no longer matrices and from the above we get
_ 1 _
: =lngy, Y =roy,
(6r+n) (7y)®, 1w =-16r+n(gy)?, (5.13)
2 _
Y = (n+1) (3N~ §r (Gw)?)

with r arising from the trace due to additional fermion degrees of freedom. Furthermore
from (5.10)

B, =0,  BD =2y’ -m+1gyNy, AV =2n+4)N -4r ),
B = —4(5n 4+ 11)A% — 4(n + 4) A25y + 8r Mgy)? + 4(n + 3)r (7y)*, (5.14)
where now
By=By+(x+rw+7)y,  Ba=Br+4rA. (5.15)
Combining (5.14) and (5.13) for n = 2 reproduces standard model results in [17].3
The other special case corresponds to N' = 1 supersymmetry. This is achieved by
letting n, = ng = nc and imposing

x—=9=9TC, x—¢=-C9PT, (5.16)

with CT = —C C6C~' = —07, and then rescaling 1,1 to achieve a canonical kinetic
term. ¢;,1); and ¢*, 1 form ng chiral supermultiplets and a general renormalisable A = 1
supersymmetric Lagrangian is achieved by letting

V(g,¢) =u'(9)ai(9), mY () =u"(¢) =m"(¢), Mi;(¢) = ti;($) = my;i(e),
Yk = btk = YOk Vg =t = Yigny s At = Vg Y™ (5.17)

(5.16) is compatible with (5.3) if 7 = —6 so that U(1) x U(1) — U(1)g corresponding to
the usual R-symmetry. Standard supersymmetry results based on superspace ensure that
the B-functions are determined in terms of the anomalous dimension

By* =YUky Ly ity d vty ko By =% Yk + v Yae + w! Vi (5.18)
Hence with the definitions (5.4)
By =0,  Bv(d,¢) =24 (d)n’ u;(9). (5.19)

3 Assuming (5.12) the detailed relation with the results of [17] at each loop order £ is given

by IBA(Z)|7L:2 = 4/8>\(Z)|>\—>%A,gs=07 ,By(l)|n:2 = 2ﬂyt(Z)|)\—?%>\793:0’ ’W(Z)l":? = 7;,L(Z)|A—>%A,gs:0’

1Ol=2 = Y104 12,000 a0 6 Olnmz = 12Ol 1 4o Where § =y = g and r = d.
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The results for anomalous dimensions and beta functions for (5.1) with (5.17) reduce to
the supersymmetric form so long as the coeflicient of all traces, which each correspond to
a fermion loop, have an additional coefficient % This reflects the restriction (5.16). Then

we have

With the modification of the trace coefficients the results (5.8) and (5.9) are compatible
with (5.20) for

AV =1(vY)?, ABI =1V (YY), Y™, (5.21)

The results in (5.13) and (5.14) also correspond to a single field supersymmetric theory
forn=1,r= % it A= %gy.

At three-loop order the general expressions for the anomalous dimensions are restricted
to correspond to one particle irreducible graphs and have the form for the fermions

N = ay'y; vV ok vF v + 0y vF e v 0 + ey g vF g
+dy Y Aim™ N ™ + ey Uk v g Aij ™
+ £ (e o v*0:) + tr (v 06 v ) ¥'T;
+gtr(’9:) v'uk vy + htr(y’5:) v '
+ite(y'ge) tr(y* %) y'5;

v® = aGi VT v Ry + T VI YT Y+ eV TRy T Y
+d T Y Xim" Na™ + e Tk YTy Ni™
+ F (@ Tk v ) + e R v 5)) 95 0
+gte(y 5i) 55 v e y' + htr(y’ 5:) Gk y'G; y"
+ite(y gn) tr(y*5:) 7597,

. (5.22)

and for the scalar field

155 = 0 (k™ AmnP pg ™ + ANk At P M)
+ 0 (NjE™ Amn' + 2 Xjm ™ Aen™) tr(y* 71)
¢ (¢r(F YT y™) Mem™ + X"t (Gr ¥ G )
d (tr(y; v o v' 0y + tr(n v 01y 9 v°)) (5.23)
+e (g v* uy' wy') + trn v'ui " 43 9"))
+ @ v 5 v Ty + 9 (T v v YY)
+ ' (b (g v yt) + (@ y® g vh)) tr(y uk) -
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The individual contributions in (5.22) and (5.23) are all hermitian except for those in-
volving the coefficient ¢’ where the two terms are hermitian conjugates. Furthermore the
expressions are constrained by v, <> 7, and 7¢(3)ji — 7¢(3)ij for y* <> Fi, Aij® — A

everywhere.

Restricting to the U(n) case given by (5.12)

w® =n(a+nb+c+rin+1)f+r(g+h)+r6)(gy)* +n(n+1)(2d N5y + e A(gy)?) ,
’Y«/)(3) = (n*a+nb+c+r(n+1)f+rn(g+h)+r7i)(gy)° + (n+1)(2d Ny + e A(7y)?) ,
1,2 = 2(n + 1) (2(n +4) a’ X + 36 N2y + ¢ M7y)?)

+r((n?+1)d +2ne +nf +g +r(n+1)K)(7y)°. (5.24)

Comparing with [17] for n = 2 we may obtain

a:_3%7 2b—{—C:—%+%C(3), d:_:%’ e=f=1, g+h’:1£6’ i:_%’(5'25)

, W=2, 5d+4e+2f +4¢ =-2+3(3). (5.26)

The graphs associated with a’,b’, ¢’ were calculated in [14], the numerical values given are
consistent with (5.26) if an additional factor of 2 for fermion loops is supplied due to the

absence of a symmetry factor here.

In the supersymmetric case given by (5.17) there are four independent terms [18] so
that

Y = Vi (AYY ) (YY)™ + CYP (YY), Vg )Y

_ _ _ T : 5.27
+ Y (BYY) (YY) + DY YUY, Voo )Y (5-27)
From (5.22) and (5.23)
A=a+gi=d+d, B=39=30+f), (5.28)
C=b+d+f+3h=b+€e+3ih, D=c+e=2d++37g". '
According to [18]
A=-i, B=-3 C=1, D=0 (5.29)
This resolves the freedom present in (5.25) by requiring in addition
b=1, ec=-1+33), g=-1, h=4%, (5.30)
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with two additional linear constraints on the coefficients also satisfied. If the results for
a', b, h' in (5.26) are used in (5.28) with (5.29) then

d,:_%a elz%’ fI:%7 g,:_2+3C(3) (531)
With these values 5d’ + 4e’ + 2f’ + ¢’ is compatible with (5.26) providing a further check.

In a similar fashion we may write
B = ayl gk vt Mi™ Ama ™ + By Gk v N At ™+ XA ™)
+ 9 (0 Tm) YTV + (G Tm) YTy ™) N+ St (@y™) ¥ T vF A"
+ e (VP Um ™95 v + VU Y Imy) A + 1 (V0 Y Im Y + Y O 0G5 0) A
+ ¢ Ym Y Un v A™"
o (P av' oy + v oy Y ) e ) + 5 (Ve Y + v oy’ tr (@ vE oy
+ Wy v u vy + v uytue vy o)
+v (ykﬂl Y 95 Y'Yk v+ yFy Y05 ¥ Uk yl)
+0 (Ve ' s v yv* + ¥Ry v'ae y’) - (5.32)
This reduces to
B = (n+1)(2a+ (n+3)B) Ngyy + (n+1)(2y + 8) rA(7y)* y
+(n+1)((n+1e+2n+¢) Muy)?y (5.33)
+ (2e+ (n+Dr)r(gy)’y+ (n+ 1) (e +v+0) (yy)°y.
Comparing with [17]
20+58=8, 2y+86=5, 3e+2n+(=2, 20+3k=-2, p+v+6=-6. (5.34)
In the supersymmetric case then 5,(3)* = 0 requires
a+36+20=0, Fy+e+5.+p=0, B+n+3iC+36+60=0. (5.35)

Each term in (5.32) corresponds to a particular Feynman graph. By calculating the relevant
integrals corresponding to individual graphs we found

a:%’ ﬂ:’y:l, 5:3’ 6:%, ?7:<:2, (5-36)

which are consistent with the first three relations in (5.34). In [14] those graphs corre-
sponding to «, 3,7, d, €, were also calculated, the numbers quoted for each graph appear
to be in accord with the coefficients in (5.36) up to factors of 2 which are a consequence
of the different symmetry factors for the theory considered here. By using (5.34) and also
(5.35) with (5.36) it is easy to obtain

N[
e

t=-1, k=0, pu=- vV=—

. 0=—4, (5.37)

7

so that the three-loop Yukawa beta function for the theory described the lagrangian (5.1)
is fully determined.

36



6. Gradient Flow Properties

Based on the results for the scalar fermion S-functions we explore at low loop order the
constraints arising from the flow equation (1.1). Here we initially neglect the distinction
between the standard perturbative S-function and the modified B-function given by (1.7).
If Tr; = Gy is symmetric and Gy is positive definite then (1.1) defines a gradient flow.
For purely scalar theories a gradient flow was postulated and investigated by Wallace and
Zia [27], who showed how Gj; may be found by diagrammatic arguments to quite high
loop order. In general an antisymmetric part in 77 is necessary to ensure (1.1) remains
valid under the equivalence relations (2.76) which correspond to the freedom in (1.3) and
(1.4).

We assume here the lowest order results found in [9] determining G;. Applied to the
theory defined by (5.1), so that g = {y*, %, \;;*'}, then at two-loop order

Trf? dg'd'g” = G1/ dg'd'g” = 3 (tr(dy’ d'i) + tr(dgs d'y)) , (6.1)

for dg’ = {dy*,dg;,d\;;*'}, d'g’ = {d'y?, d'g;,d’\i;j*'}. With the one-loop result for 3,
given by (5.4) and (5.8)

A® = L (e @iv's; o) + e B ' 5;) + § 0@ y?) (g, ¢F) - (6.2)
At the next order the three-loop contribution to 77; must be of the general form
Tr ¥dg'd'g’ = L dr;F d' M
+ (@ (br(dgs d'y* g y7) + tr(dgs v/ ; d'y"))
+ B (tr(dgs d'y’ g5 y*) + tr(dgi y'y; d'y’))
+7 (tr(dgs v* d'y; ) + tr(dga v’ d'y; 47))

+ 0 tr(dg; d'y?) tr(7; ") + 7 tr(dgi ) tr(g; d'y’)
+ € tr(dg; y?) tr(d'g; ) + conjugate) ,

where the first term was calculated in [9]. The remaining terms correspond to three-loop
vacuum diagrams, with one and two fermion loops, with two vertices selected. The result is
also required to be invariant under conjugation when y <> 4. Although this is not imposed
the expression (6.3) is symmetric under dg’ <+ d’g’ so that at this order T; /3 = G ,3).

The real coefficients &, 3,7, 6,7, € in (6.3) have not been determined hitherto. Without
explicit determination the integrability conditions necessary for (1.1) provide constraints
on these coefficients and also on the S-functions themselves, as was also demonstrated to
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two-loop order in [9]. The dependence of A® on ) is determined in terms of 8,V and
then this fixes the A\-dependent terms in ﬂy(z). Using the results for (1)

I@)\(l)ijkl — Aijmn)\mnkl + 4)\m(zn(k)\_7)nl)m + 2tr(g(z ym) )\j)mkl +92 )\”m(k tr(ym yl))

— 8tr (g(z y(k gj) yl)) , (6.4)

and 3,(? from (5.9) and (5.10) in (1.1), with (6.1) and (6.3), requires the three integrability
conditions on &, 3,7, 6,7, €

e
)
+
:ﬂ
Il
S
Qi
+
=
Il
[\
Qi
+
(o9
+
N[
Il
|
+
M

(6.5)
Subject to these conditions

AW = & (G M Amn ™+ 404 N N ™)
+ 1—12 )\ijkl tr(G y™) Mem ™ — % )\ijkltr(gk Yo y’)
+ 2@ U 'Y 0F) + 7 (bt @' U v e vF) + (' v v k)
— 5 (v’ v*g;) + (@ v' 55 9°)) tr (@ v’) — 15 007 y7) (95 9 tr(Tr )
+ 2atr (B, B1) . (6.6)

Precise results for G(®); ; can be obtained in terms of flat space calculations by applying
(2.74), noting that Di Ar; is zero at three loops. This gives, with the aid of results from
section 9,

d:_%a B:_liga 7:07 8:_%a ﬁ:_1_78’ E:—% (67)
These of course satisfy (6.5). The freedom associated with (2.76) corresponding to letting
A A+z tr(B,By:) is realised at this order by

a~a+iz, B~pB+z, 6~64+2, N~f+2z, (6.8)

[

under which (6.5) is invariant. In this case we have correspondingly
WiBdg" ~ WBdg" +d 12(tr(7: v/, v°) + tr(y'G; v/ T:) + 2t (@i y?) tr(g5v7)) . (6.9)

Higher order results become more involved. At the next order the metric for the
purely scalar couplings has the general form

Gr/M dg'dg’|,, = G (A;™ dAmn™ dAit™ + 4 X, *™ dX ™ dN ) (6.10)

J|)\)\
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where G is essentially arbitrary due to the freedom in (1.4) but has been calculated in a
minimal subtraction scheme below. The A-terms do not generate any consistency condi-
tions, in accord with [27], giving

ABN | = e MM X ™ AP g — 35 Ais™ (A ™ Amp  Ang”® + Mo ™ Anp Mg ™)

+ %G ﬂ)\(l)ijklﬂk(l)klij . (6.11)

With the results for S-functions in the previous section we may extend these results
to include mixed scalar Yukawa contributions for the theory defined by (5.1). There is

then an additional four loop contribution so that instead of (6.10)
Gr/ M dg'dg’|,, = G (\ij™ ™ dAt™ + 4 X *™ AN ™ AN V) (6.1
+ H d\i" e y™) dhem™ . '

In addition we assume

Ty dg'd'g? |, = AdAg* Ma™ tr(Gm d'y?) + B dXi™ t2(51d'y™) N 6.15)
_ ) ) 6.13
+C d)\” kl tr(yk ylyl dlyj) ,

with a corresponding result for 77 % dg’d’g”’ ‘ G In terms of (6.12) and (6.13), using the
one and two loop SB-functions from the previous section,
AP = 0 ey Y G )
+(C+ DA™ (G v Ik Y DY) + (Y Y ¥ Uk ¥’ T1))
+(C+ 3) X" (0(G y™) 00T ¥' 01 y) + e (G v* Gry™) t2 (G v7))
+ 6 A ™ At (T Y 1Y)
+5(A+ B = ) X" M (62(F5 5" Gn y™) + 2(55 4" In v")) (6.14)
+ (A+ B — 15) '™ A ™ tr(y; ™) tr(yn v°))
— & (™ Amn ™ 4 2 Xin M N ™) tr (O y7) tr(G yY)
o 11_2 ()‘ij mn}‘mnpq)‘quk + 4 Xij mn)‘mqu)‘nqpk) tr(Ye ?Ji)
+ 3G ﬂx(l)ijklﬂ,\(l)klij|)\yg :
There is one integrability constraint which is used to eliminate H,

H=2G-1. (6.15)

=

The result (6.14) may be used to constrain A contributions to ,By(3) by considering
dl—,fl(5). For generality we must include further possible A-dependent terms in 77, for
which the relevant contributions are

Ty Y (ig,’<1'g"|gA = A tr(dg; y™) Am; ™ A A?® + B’ tr(dyr y™) Ai; ™ d A ¥

_ ) (6.16)
+ C" tr(dy; y*y; ') d' A
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and
T ngdng‘gy = Dtr(dg; d'y’) Ajm"™ Aua™
+ E (tr(dgs d'y* g5 ¢') + tr(dgi y*7; d'y")) ™ (6.17)
Tr /™ ngdng‘gg = Ftr(dg; v* d'g; v') Au” .
If T; 4% is symmetric then A’ = A, B'=B, C' =C.
At this order it is necessary to take into account the potential necessity of modifying
the perturbative S-function as in (1.7). For the theory defined by (5.1)
v=—vl = {vg:!, 08,0y}, (6.18)
and (vg)! is obtained by using, for any v € g,

(Vy)' = vy — y'uy — gt (VD) = veli — Tivy + Ve T
l

(6.19)
('U )‘)l]kl — U¢imAmjkl =+ Uq&jm)\imkl _ )\ijmlv(ﬁmk _ Az]kquSm )

At three loops all contributions to ¢(3)ji, 'Vx(3) , 7¢(3) in (5.22), (5.23) are separately hermi-
tian except the terms involving ¢’ in (5.23). Hence there is a unique three loop possibility

3) i — - m i m — — A
Ut = (b (@ YT Y™) Mem® = At 60T Y G y)) - (6.20)

Applying (1.1) for dzA®) given by (6.14) requires combining (6.16) with 8\(!) and
(6.17) with 8,1, B;1). Using also (6.1) in conjunction with the A\ dependent contributions
to the three-loop Yukawa beta functions given by (5.32), (5.22), (5.23) and (6.3) for ¥ =0,
combined with the corresponding two loop results determined by (5.10) and (5.9), then to
Oo(A)

51=30=35 (6.21)
and
te—28=—-2a+3E=3e+3(E+F)=C+1,
1 +u)—27—-8B =L6+C' +F=-25+C (6.22)
=3(—u)—2¢-8A' =3y+C'+E=C+%-8G
To O()\?)
1p+2C"= —-16G,
sa+3C' =:5-4G,
sV +3(A+B)= -4 +G, (6.23)
2d+3B=3a+D=A+B-1%,
in+B +D=306+e+A=4A+B-L +G,



and to O()\3)

sd+ A +B' =-% +2G. (6.24)

The coefficient of G is arbitrary as expected since (6.22), (6.23), (6.24) are invariant
under

G—-G+¢, AsA+¢, BB +¢, C—=C -8 (6.25)
as this corresponds to the freedom A — A + 1€ Bri;*' Brr* . Furthermore

(tl‘(ﬂy(l)iﬁfg(z)i) + tr(ﬁy(z)iﬂy(l)i)) |>\yg
= — 20" (40 (Ym Y™ U Y U1 Y) + (Y Ym ¥ Uk Y W)

o one e SR e (6.26)
+tr(Th y™) tr(Tm ¥* G y’) + tr(Gk v T y™) tr(Gm y’))
+ 3 Ak N (60T 9" Tn y") + (T Y e v7) + 200(F5 y") tr(Gn y))
so that letting A — A + z tr(8,/B5:) corresponds in (6.14) to
A+B—A+B+3%iz, C—C-2z. (6.27)

The consistency constraints (6.22), (6.23), (6.24) are then invariant if, along with (6.8), at

the same time

A—-A+31z, B—-B -1, D»D+%i:, E5E-22, F—F—2z. (6.28)

The conditions (6.23), (6.24) entail various constraint equations for the coefficients
appearing in the general expressions for the three-loop Yukawa g-function and associated
anomalous dimensions. Together with (6.22) the full list is

— _ _ _1
n=¢=2, 2—-3=2, 0+v-2e—-p=2, d -V =7,

, (6.29)
2¢c —B+v—2e—16d =6.

Reassuringly these relations are in accord with the results (5.25), (5.26) and (5.36). In
addition
u=—-1y—e—8d=2. (6.30)

This demonstrates that the RG equations such as (1.1) hold only for the modified (-
function determined by a non zero v as in (6.20). The coefficient appears to be exactly
in accord with that determined by Fortin et al [15] by explicit three loop calculation for
a general scalar fermion theory.* It is interesting to note that v = ¢/. There are also

4 They considered couplings to real scalars and there was also a purely Yukawa contribution

to vg® which is absent in the model discussed here.
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constraints on the three-loop metric given by (6.3) with ¥ =0

20— 6 =g(—2c+6) =3,
B-0=+B+2+2) =2, (6.31)
28—€e—n=13(e—c —4d')=0,

which are equivalent to (6.5), and so (6.31) provides an additional confirmatory check on
the three loop results obtained in section 5.

From (6.23), (6.24)

A+B=a-5;, C=-4a- (6.32)

so that A®)|y,; is determined in (6.14) up to the freedom of choice for G and that cor-
responding to (6.27). We also have A’ + B’ = 2G — %, C' = —8G — % so there is the
potentiality of a symmetric T;7,(%) if we take & = 2G but this need not be true in general

renormalisation schemes (with dimensional regularisation & = —:2, G = —572).

7. Supersymmetry

For supersymmetric theories with just N' = 1 supersymmetry there are further con-
straints which simplify many details significantly. The results obtained in [9] were restricted
to supersymmetric field theories previously in [19]. Here the analysis is extended to a gen-
eral N' = 1 Wess-Zumino supersymmetric scalar fermion theory, which may be obtained
from (5.1) by imposing (5.16), (5.17), to a higher order. Such a theory can of course be
rewritten in terms of ne¢ chiral and corresponding conjugate anti-chiral superfields. The
local couplings may also be extended so that Y4/%, Yi;x for this theory are also chiral, anti-
chiral superfields. Divergences which arise in a perturbative expansion are cancelled by
counterterms which are integrals of local polynomials in the fields and couplings of dimen-
sion two over full N' = 1 superspace. This restriction crucially ensures that S-functions for
Yk Y, 1, are determined in terms of just the anomalous dimension matrix v as in (5.18)
but further conditions on the functions which are present in local RG equations also arise.
The various RG functions are further constrained by assuming manifest U(n¢) symmetry.

The formalism of section 2 can be adapted to this case by taking

QI = (Yijk,Yz'jk)a (WQ)I = (_ (Y w)ijka (w* Y)ijk) ; w;’ € gl(nc,C), (7.1)

Where .. . . . . ..
(Y " w)z]k = Yl]kwlz + Yzlkwlj + Y'L]lwlk ’

) ) ) ) (7.2)
(w*Y)ijr = wil Vijr + wi' Yag + wi! Yigi -
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With this notation the result for the Yukawa supersymmetric 3-functions (5.18) becomes®

Pr=Yxvy, Pyr=7xY. (7.3)

To avoid explicit indices where possible we also define, in this section and appendix A, a
scalar product - on Yukawa couplings so that for instance Y oY = Y¥kY, ;.

Besides the [g-functions other expressions appearing in the equations of section 2
are determined in terms of the anomalous dimension matrix v. Based on a superspace
framework Fortin et al [28] showed that p; to all orders is given by (a related result is
given in appendix C of [29])

(p1(9)dg’)i? = —dyy? + dyvi? (7.4)

for dy = dY <8y, dy = dY «9dy. In a similar fashion to the derivation of (7.4) we may
also obtain in (2.47) results which are determined just in terms of ~;7,

(6:1(9)dg")i? =0,  (ers(9)dg’dg”)/ =2dpdyvi?, (7.5)

The result (7.4) implies pr(g) g' = 0 which in turn ensures that in the supersymmetric
case
v=0. (7.6)

Thus there is no modification of the S-function as in (1.7). The necessary constraint (2.52)
on py applied to (7.4) requires

By ° Oy il = By o Ogyi? . (7.7)

This is a special case of the identity, for any w;7,

(w*¥)edy — (Y xw)e0y) 7’ = [w,9]i7, (7.8)
taking w — 7. The result (7.8) was obtained in [30]® and is a consequence of ;7 (Y,Y)
transforming as a (1,1) tensor under U(ng) with w = —@ € u(ng), the associated Lie
algebra.

5 More generally we may have By =Y xv, By = 7 * Y. This form is preserved under transfor-
mations Y% — Y G GG = Y% Vi = Gi'G;™Gr™Yimn = Y'ijx for G € Gl(nc,C).
In this case By =Y ' x+', B =7 *Y' withy = GG+ GG, 7 = GyG ' + GG for
G = (By ° Oy + By °dy)G and similarly for G. For U (nc) transformations G = G~'. Requiring
then G + %(’7 — )G = 0 ensures 4" =4’ so the general case can be reduced to v = 4 by virtue of

U(nc) symmetry.
6 See eq. (A.7).
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In the supersymmetric theory the equation (1.1) is assumed to now take the form

dyA=1(dY +T+By +By-K-dY), K" =-K, 79)

dyA=1(By-T-dY +dYV-K-8y), KT'=-K, '
so that

(By <Oy + By < 0y)A=Py -Gy, G=3(T+T). (7.10)

By U(nc) invariance (By <8y — By -8y)A = 0 so for consistency we should require
By o T+ fy = By «T-Py. T, K may be determined by perturbative calculations but from
the perspective of just analysing the integrability conditions flowing from (7.9) and using
known results for -functions, as is considered mainly in this section, there is an ambiguity
such that 7', K satisfy the equivalence relations

T~T+T, K~K+K if dYoT «By + By oK' -dY =0. (7.11)

The result (2.69) constrains the form of K and T'— T. Writing

Widg' = 3(dY-W +W-dY),  Qrdg’ =3(dY-Q—Q-dY)ecu(nc),  (7.12)
then ~ _
d'YoKodY =d'YeodyW —tr(d'YQ dyy) —d'Y + dY, (7.13)
dY o 2(T —T)odY =dyW-dY + tr(dyy Q-dY) — conjugate. '
The relation (2.66a) requires
3(YW)—-3(WY)=Q-By —By-Q, (7.14)

defining (YW), (WY) € gl(nc,C) by
(Y xw)e W =3tr(WY)w), We(w*Y)=3tr(YW)w), wegl(neC). (7.15)

If WodY corresponds to a £-loop vacuum graph then (YW) may be represented by an
associated (£ — 1)-loop graph with two external lines. For any @', Q’ such that

Q' -By =By -Q, (7.16)

then Q ~ Q + Q', Q ~ Q + Q' since (7.13) ensures that the corresponding 7", K’ satisfy
(7.11). Up to this equivalence (7.14) determines @, Q in terms of W, W.

The RG flow equations (7.9) are invariant under
AA=Pyogefy+ (By -0y +Py-0v)a, g=47, (7.17)
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when
dY - AK-dY =2dYogo(dyy*Y)+d Y odygefy —dY < dY,
dY c AT odY =2dy ((Y x7)cg) odY +2dY o go(dgy*Y)
+dY o (Byedy + Byo0y)godY —dY odygefBy — By cdygedY .

(7.18)

For AK, AT given by the conjugate equations to (7.18) then AG = (AT + AT) is

therefore

1
2

dY e AG-dY =dY o (By <0y + By o 0y)godY + (dY *7)ogodY +dY o go(y xdY)
+2(Y xdyy)egedY +2dY o go(dgy xY). (7.19)
(7.18) and (7.19) correspond exactly to the freedom in (2.76) assuming (7.4) and demon-

strate that it is consistent to require that G defines a hermitian metric for supersymmetric
theories. Corresponding to this freedom there are associated variations in Wy, Q)1 given by

AWodY = By og-dY — 2dya, dY. AW =dY o g- Sy — 2dya,

_ _ _ _ - 7.20
AQodY = —3(godVY) + By opodV, dVoAQ=—3(YdYeg)+dYep-By, (7.20)

with (godY Y), (Y dYeg) defined similarly to (7.15) and dYe.p-dY € gl(nc,C). These
results ensure that (7.13) is compatible with (7.18), variations in Q, Q arising from p satisfy
(7.16). We may also verify the invariance of (7.14), so long as (Y *w) - 8ya = (w*Y) - Oya.

There is also freedom corresponding essentially to a choice of scheme. For this we
consider variations
SA=—(Y xh)eOyA=—(h*xY)c05A, (7.21)

for arbitrary h;? (Y, Y). We assume that there is a corresponding variation in 7y of the form
0By =Y %6, 0By =0y *Y, (7.22)
for
0y =Py o0ph— (Y *xh)-0yy. (7.23)
This expression for §y may be rewritten in various equivalent forms using (7.8) for w — h
or for w — 7, v = h. In consequence 6y = §v if hf = h,¥" =~ and also if h corresponds
to a 1PI graph then so does §v as well. Assuming (7.21) and (7.22), (7.23) the essential
equations (7.9) are invariant if
d'YedKodY = —d'Yo((Y xh) o0y K)-dY
- d/y(Y * h)OKOdY — dIYOKOdy(Y*h),
dY 06T odY = —dY o (Y *h) o0y T) -dY
—dy (Y *h)eTodY —dY e TodyhxY .

(7.24)
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since then 2dydA = dY o T 68y + 6By « K odY + dY o 6T« By + By o 6K odY.

The basic equations (7.9) may be verified using perturbative results. For convenience
we adopt a notation where the one and two loop contributions to the anomalous dimension
7 in (5.21) are given by () = 1 (YY), v® = -1 (YYYY). Restricting the metric (6.1)
to the supersymmetric case gives

dY o T® ody = 1dy -dY = L tr((dVdY)), (7.25)
and in general
dY o T®) o dY = a tr((dYdY) (YY)) + b tr((dYY) (YdY)), (7.26)

where we note that tr((Y1Y2Y3Ys)) = tr((Y1Ya) (Y3Y2)). To this order K,K = 0 and
T =T = G. For integrability we require

2a—b=-1, (7.27)

which accords with the constraints for supersymmetric theories described in [19].7 If we
let
dY o g® od¥ = zdY -dY, (7.28)

then (7.18) gives at this order AK = 0 and AT is determined by
Aa = 3z, Ab =6z, (7.29)

under which (7.27) is invariant. Integration of (1.1) subject to (7.27) then gives

AB) =14((YY)?),
] _

. (7.30)
AW = Lt ((YY)?) + LaBy o gV .

[\

,b=26+

Qi
+
N[ =
(o9}

7 and hence from (6.7)

N[

Reducing the results in (6.3) requires a = 75 + 2
a:—%, b:—%, (7.31)

which of course satisfy (7.27).

This discussion can be extended to the next order using as input the form of the
three-loop 7 given by (5.27). It is convenient to summarise this in the form

7(3) =Ava+Bys+C~yc+Dnp, (7.32)

7 In terms of the parameters in [19] a = 2a,8 = 2b,y = 0.
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where the coefficients A, B, C, D are given in (5.29). However there is potential scheme
dependence since if in (7.23) we take h = v (YYYY) and By — By, v — v(!) then

0A =, 0B = zv. (7.33)

N

From (5.29) it is evident that we may use this freedom to set A = B = 0 but C is scheme
independent. At this order there are three relevant connected 1PI vacuum graphs with
different topologies and to determine T¥ it is necessary to choose for each graph one Y
vertex and one Y vertex in inequivalent ways. The number of possible terms multiply but
this procedure gives the general expression
dY o T®W odY = a1 tr((dYdY) (YYYY)) + ag tr((dYY) (YYYdY))

+ a3 tr((dYY) (YdY YY)) + a4 tr((YY) (dY YYdY))

+ a5 tr((YdY) (dY YYY))

+ by tr((dYdY) (YY)?) + by tr((dVY) (YdY) (YY)

+ b3 tr((dl_/Y) (YY) (YdY))
tedVi dY P Y g, Y Y

(7.34)

In this case tr((Y1Y2) (Y3YaY5Ys)) = tr((YsYs) (Y3Y2Y1Y5)). At four loops there may also
be contributions to K in (7.9) so that, following a similar prescription as for T but
choosing two Y vertices and antisymmetrising, there are two possible terms

dY - K®WodY =etr((Yd'Y) (YYYAY)) + f tr((YA'Y) (YAY) (YY)

(7.35)
—-dY « dY.
At this order T and T are also no longer necessarily equal since
dY o T®W ody = dY « 7™ . Y| (7.36)

asz<ras )

It is easy to see that, by virtue of (7.20), we may take Q®, W®) — 0. At the next
order there may be non trivial QQ,W. If we allow only contributions corresponding to
connected diagrams then it is sufficient to assume

Y - W® =otr((YY) (YYYAY)), dY Q¥ =—-40(YYYdY), (7.37)
where the coefficients are related by imposing (7.14). In this case (7.13) agrees with (7.34)
and (7.35) if as = a5, e = —40, f = 0.

At five loops A®) is determined in terms of the five connected vacuum diagrams for
this theory at this order. The relevant contributions can be written in the general form

240) = X; tr((YY)2 (YYYY)) + X, tr((YYYY)?) + X3 tr((YY) B)

+ X, tr((YY)Y) + X5 tr((VY) 1) (7.38)
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where v, 7p are explicitly defined by (5.27). Using (7.9) for dy A®) we may then obtain,
for arbitrary values for A, B,C, D in (7.32),

Xi1=1(az+e)+as+b=3as+ba+f—3a
=1(a1—e)+bs—f—3b=1(as+as—e)+ A4,

X, = %(a1+a2+e—a):%(a3—b+0), (7.39)

X3:%a4=%(a5—e+2B),

X4 = 5(b1+ b2+ b3), Xs=%c=D.

For each term in (7.38) integrability conditions arise whenever the number of inequivalent
Y vertices in the associated graph is greater than one. The equations (7.39) are invariant
under

a1 —ay+p, ag—ay—pu—v, as—as+v, e—e+v, = f+w, (7.40)
b1—)b1+%,u, b2—>b2—%1/—w, b3—>bg—%u+%l/+w, ‘

which correspond to variations satisfying (7.11) for one loop By, Sy. The freedom in (7.40)
in part can be realised by changes in Q, Q satisfying (7.16). As a consequence, even setting
K® =0, A®) does not determine T'®.

If we take
dY o g® o dY =z tr((dYdY) (YY)) +y tr((dYY) (YdY)), (7.41)
then (7.18), with one loop results for v, generates

Aay =2z, Aay=xz+3y, Aaz =4y, Aas =2z, Aas=3z+y,

7.42
Aby =2z, Aby=2z+y, Aby=3y, Ae=-3z+y, Af=—1(z—y), (7.42)

so that AX; = 3z+2y, AX, =2y, AX3 =1z, AXy= 1(z+y). Corresponding to (7.28),
along with (7.29), we have in addition

Aay = Aay = Aas = Ae = -3z, Aaz = —6z, (7.43)
which entails AX; = —3z, AXy = —6z. There is one invariant under (7.42) and (7.43)

2X; —Xo—4X;—4Xy=3A-B-10=-1, (7.44)

1
2

imposing the numerical results in (5.29). The freedom in (7.42) may be used to set
dY o K®.dy =0.
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The results for 7" in (7.25), (7.26) and (7.34) determine the metric G at each order.
It is of interest to consider whether this is Kahler so that

dYoGodY =dydyF. (7.45)

It is possible to construct F' so long as the freedom due to variations as in (7.18) and
(7.24), or equivalently (7.23), are allowed for. From (7.25), (7.26)

F® =1lu(vy)), F®=-1lu(¥Y)?, (7.46)

if we use (7.29) to set
a=b=—1. (7.47)

At the next order the general expression has the form
F® =atr(YY)(YYYY)) + 3btr((YY)3) + 2D tr(7p) (7.48)
and then (7.34) and (7.45) require
a1 =a3=28, as =@, as =24+ X, as =2a— X\, by =by =bs =b. (7.49)

for arbitrary \ since G(®) depends only on ag + as. Imposing the conditions in (7.39) is
possible only by choosing a scheme with A = B = 0,C' = 1 and then d,lA) as well as e, f
are determined so that

a=b=1, e=-1-X, f=21+1x, (7.50)

=

giving X1 =5, X, =1 X;=1 X,=

®|w

For N' = 1 supersymmetric theories there is, at critical points with vanishing -
functions, an exact expression for a [31] in terms of the anomalous dimension matrix 7 or
alternatively the R-charge R = %(1 + 7). Introducing terms linear in S-functions there is
a corresponding expression which is valid away from critical points and this can then be
shown to satisfy many of the properties associated with the a-theorem [32,33]. For the
theory considered here, with n¢ chiral scalar multiplets, these results take the form

A=Lne—1t(y®) + $tr(v3) + Ao By + By « Ho By, (7.51)
where we require®

AofBy =Py oA, H=H. (7.52)

8 In [32] and [33] A plays the role of a Lagrange multiplier enforcing constraints on the R-
charges. At lowest order the result for A and also the metric G obtained in [32] are equivalent,

up to matters of definition and normalisation, with those obtained later here and in (7.25).
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A is determined in (7.51) up to terms which may be absorbed in H so that A-dY ~
A+dY + By o godY. Assuming the result (7.51) for A satisfies (7.9) then H is arbitrary as
a consequence of (7.17).

However A is constrained by imposing (7.9). Defining (Y'A);? in a similar fashion to
(7.15), then

dy (= §tr(7) + § (%) + A By) = tr(dvy (3(YA) =7 +77))

+ (dyA) By (7.53)
Hence if A is required to obey?
3YA)=7—+*+0:8y, ©.dY € gl(nc,C), (7.54)
then (7.51), excluding the H term, satisfies (7.9) if we take
3dYeTodY =tr(dyy ©cdY) +dyAedY + 1 dY-T".dY, (7.55)

dY-K.dY =0, dYo.T' - By =0.

A related result, with effectively © = 0, is contained in [32]. For supersymmetric theories,
satisfying (7.54) is consequently essentially equivalent to requiring (7.9), although terms
involving © are necessary at higher orders. The relations (7.54) and (7.55) are not invariant
under variations of g as in (7.52) and so this freedom is no longer present.

Since + is hermitian a corollary of (7.54) is that A, © must satisfy
3(YA)—3(AY) =08y — By - 0. (7.56)

This is essentially identical to (7.14) and suggests a relation between A, © and W, Q but a

precise connection is as yet unclear.

For variations as in (7.21) and (7.23) then compatibility with (7.51) requires
SAodY = —(Y xh)oOyAodY +§A-dY, (7.57)
where §’A satisfies, assuming (7.54),
8 ANoBy = =Py <SPy, dY o SedY =tr(dyh ©-dY). (7.58)
Furthermore (7.54) is also invariant if

0 .dY = —(Y*h)oay@OdY—dyh—i—dyh Y+ -y dyh—(")O(dyh*Y)—{—(sl@OdY, (7.59)

9 More generally if 3(YA) =7 — 4% + 0o By + [E, fyeOyq], Yo KodY = tr(E [dy,dy7]).

Such a term can be removed by considering changes as in (7.11).
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so long as
3(Y&'A)=60-By. (7.60)

This can be solved subject to (7.58) by taking
§A-dV = —ByoS.dY, §'0.d¥ =-3(YdY-S). (7.61)

Using (7.57),(7.59),(7.61) in (7.55) generates variations in agreement with (7.24) up to
contributions which may be absorbed in 7”. Such variations generate terms in © which
are 1PR. Also we may show 6(A - By — By = A) = 0 subject to (By - Oy — By Oy )h = [, h].

The perturbative results obtained here for A may be expressed in the form (7.51),
although this can require additional constraints on v beyond those required for integrability
of (7.9). As was already shown in [19] the low order results in (7.30), with the one and
two loop expressions for 7 in (5.21), can be expressed in the form (7.51). At lowest order
it is necessary that

APody =1ly.dy = 3(¥YA®)=,0. (7.62)
In general at the next order we may take
A®odY = Atr((dYY) (YY), 6@ .dY =6(dYY). (7.63)

In this case
3(YA®) — 0@ = (A - 10) 2(YYYY) + (YY)?). (7.64)

Equating this to 72 —4™M?2 in accord with (7.54), requires

A-1o=-1, (7.65)

a=2\=-1+9, b=2XA+60=—-1+20. (7.66)

For A given by (7.30), (7.51) is then satisfied with H(® = 0.

At the next order there are several terms which may contribute to A and ©®) in
(7.54). Assuming A, © can both be represented in terms of 1PI graphs we then take

AW odY = atr((YY) (dYYYY)) + Btr((dYY) (YYYY)) + D Ldgtr(vp),

5 o o _ (7.67)
0®)edY = ¢ (dYYYY) + 7 (YYdYY),
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where a potential contribution tr((dYY) (YY)?) to A® .dY is discarded as it would be
necessary later to set the coefficient to zero for consistency. Imposing now

3 (YA(4)) — 0B (1) = 40) _ (142 _ 4(2), 1) (7.68)
requires then
c=%—-2B-10, 7=—-7-24A+2B+10, a=
and the solution requires the constraint on ()
A-2B—-31C=-3. (7.70)

This is satisfied by the calculated results (5.29) and the derivation remains valid if addi-
tional 1PR contributions are allowed in ©() in (7.67).

Using (7.67) with (7.69) in (7.55) gives contributions to T4, K4 of the form (7.34),
(7.35) with

al:a2:2ﬂ:%_2B_%0’ a3:218+7-:%_2"4a a4:2a:%_%9a

(7.71)
a5:2/3—9:%—23—%9, b]_: b2: b3:0, 6=f=0,
which is compatible with (7.39) for X1 = 2 —B—36, X =1-2B— 16, X5 = { — 10
and X4 = 0 so long as a, b satisfy (7.66). With these results we may check
AG) = _tr (A WAB)) — Lr(42)2) 4 gp (4 (D24(2)
(rPr®) = 2 (7)) + e (v2) 772)

+ A(2)05?(3) + A(3)051_,(2) + A(4)oﬁ?(1) ’

as required by (7.51) to this order with H = 0. The results for A may be expressed also
in the form

AP odY =dy Lr((YY)), A®edY =dyp Iatr((YY)?),
AW odY = (- 1) tr((YY) (dYYYY)) (7.73)
+ dy(%ﬂ tr((]_/Y) (YYY'Y)) + %Dtr(’yp)) )

At higher orders the number of potential constraints increases when the number of
inequivalent lines of a (¢ + 1)-loop vacuum graph, related to the number of terms in &)
becomes larger than the number of inequivalent vertices, which are related to possible
contributions to A1), The calculations of [34] for y(*) in terms of Y,Y correspond
to 11 distinct graphs which are related to 6 5-loop vacuum graphs giving 13 possible
A®). However the number of independent terms in v(*) may be reduced by considering
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redefinitions as in (7.23) with h & va,7v8,7c,yp and letting By — BV, v — 1.
By taking h = %C (4)yp all terms, corresponding to non planar graphs which contain
the vp subgraph, involving ((4) in the expression given in [34] are generated by (7.23).
There are 7 planar graphs relevant for 4(*) and applying (7.54) in conjunction with lower
order contributions gives one relation, which is invariant under changes of scheme and is
analogous to (7.70), amongst the coefficients. This is satisfied by results of [34].

Some calculations checking the validity of the essential equations (7.9) or (7.54) at

each loop order when new transcendental numbers appear are also undertaken in appendix
A.

8. Renormalisation with Local Couplings

The results derived in section 2 can be specialised to renormalisable quantum field
theories when the metric G;; and other quantities may be calculated in a perturbative
loop expansion on a curved space background. Within the framework of dimensional
regularisation with minimal subtraction on flat space there is also a precise prescription
for determining quantities, such as S;; and Wi, which are initially defined in terms of
contributions involving 0,0, in terms of the o-independent counterterms, necessary for a

finite theory, which are simple poles in € =4 — d.

To demonstrate this we consider initially a generic renormalisable quantum field the-
ory described by a Lagrangian density £ formed from fields ® and their conjugates ®
depending on local couplings {g’(z)} for a complete set of marginal operators {Or(z)}.
For renormalisability £ must contain background gauge fields {a,(z)} and local couplings
{M(z)} for all relevant dimension two operators, corresponding to contributions to £ of
the form £3; = —® M ®. In L the kinetic terms, which are bilinear in the scalar/fermion
fields ® and their conjugates ® and have the form Lx = —® K(9) ®, are invariant un-
der a maximal symmetry group G where, for any g € Gx, ® — g® and ® — P g we
require gg = 1, gK(9)g = K(9). For infinitesimal transformations corresponding to the
associated Lie algebra gx then for w € gg, w + @ = 0. In general G is not simple but
is a product of U(n)’s or O(n)’s. The symmetry Gx extends to the complete action £
if the couplings are also transformed appropriately, so that for any w € gx then g’ is
given by (2.34). A local symmetry G is obtained as usual by replacing all derivatives in
KC(0) by appropriate covariant derivatives D, = 0, + a, for a,(x) € gx. In general then
L(®,®,g,a, M).

As usual a finite quantum field theory in a perturbative expansion obtained from
L is achieved at each order by adding appropriate local counterterms L.; . As well as
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counterterms involving ®,® with z-dependent couplings, additional local contributions
independent of the fields involving contributions containing [];, 8™ig’ with >, m; < 4
and also f,, as defined in (2.36), are also necessary. Assuming an invariant regularisation
then all derivatives of the couplings are extended to covariant derivatives, 8Ngl — Dugl , as
in (2.35). RG equations are obtained by assuming that £ is such that the bare Lagrangian
generating a finite perturbation expansion order by order is

Lo = E((I), é,g, a, M) + [rc.t.(q); ‘i)a 9,a, M)
| (8.1)

5 X(g,a, M) .

= L(q)Oa i)Oag()aa“(]a]\[()) - ﬁ

X includes all the extra field independent counterterms and is arbitrary up to total deriva-
tives. Assuming dimensional regularisation with minimal subtraction, then in a loop ex-
pansion
¢
_ - 1
'Cc.t. ((1), (I)a g,a, M)(Z) = Z 'Cc.t. ((I)a (I)a g9, a, M)g) E_r ) (82)

r=1

so that X’ contains just poles in €.

The RG flow equations which are considered here are obtained from

(50 - Da’ - DO',<I>,<T> - (2 - 5) 8;40 DHgI 8D82 I)ﬁ((I)Oa é0790)(]’0; MO)
g 5 ) (8.3)
= o* <6MUT "OM L(®g, @, go, ao, Mo)) ,

where o is linear in z, of the same form as o, in (4.8), and the right hand side for T' € Vj,
is a potential total derivative contribution when o is not constant which can be neglected
in the subsequent discussion. In (8.3) D,, D, ¢ 5 are derivatives defined by

~ 0 9
1 I
Da-:O',B 8—gI+(O'p[Dug —6“0'1)).%
+(U('YMM—(SIngI_eIJD.“gIDugJ)_Qauo_gIDugI)_8%’ (84)
0 = W 0
Dens = (7 (3 =1)8) g+ (08 (=) g

Here D,,D, 4 5 act on local functions of g',a,, M,® ® and their derivatives so that for
instance acting on f(g(z),du9(x)), & - a% = h(z)%(w) + B#h(w)m. The action of D, is
then equivalent to the corresponding contributions to the functional derivative operator
Ay + Agq + Ay defined by (2.2), (2.41) and (2.47) although 7 — 3. A derivation of
(8.3) is sketched in appendix B.
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For the marginal couplings g (2.3) becomes

B1(g) = —ekrg" + B (), (8.5)

and minimal subtraction ensures that 3%(g) is independent of . In a loop expansion

(L+ X krg' 01 =188 —18.85) L. =LY (8.6)

Amongst the counterterms in £+£L. ;. for constant g’ the quadratic kinetic terms are in
general modified just by the introduction of an appropriate matrix Z(g) = Z(g) = 1+0(g),
Lx — —® Z K(0) ®. This determines the anomalous dimension matrices y(g), ¥(g) for the
fields ®, ® in (8.3) through

™
~
)
~
N
—~
Q
~
Il

Y(9) Z(g) + Z(g)¥(g) - (8.7)

At £ loops, with Z(©) expanded as in (8.2), (8.7) requires (&) +~4() = —¢ Zfe). The standard
prescription determines (¥ (g) by assuming v(g) = v(g) so that the eigenvalues are real.
In obtaining RG equations describing the RG flow it is necessary to factorise Z,

Z=22, (8.8)

so that in (8.1)
By= 28, By=3Z. (8.9)

The factorisation in (8.8) has an essential arbitrariness generated by infinitesimal variations
0Z=wZ, 6Z2=Zw=—2Zw for w € gg. The RG equations for Z then take the form,

from (8.7),
0

g’
Assuming 4 = v and taking Z) = 121 22 = 172 — 1712 then combining (8.7)
and (8.10) gives w® = 1[y(V, ZM] = 0 but w® = 1[y®, ZW]+ 1y Z)] may be non
zero. It is possible to choose Z so that in (8.10) w = 0 but then ¥4 # 7 in general.

B9) 77 2(9) =w(9) Z(9) + Z(9)7(9),  wlg) € ok - (8.10)

In (8.1)
aON = ap, + tID/J,gI) 7 € 9K, (811)

is determined so that all terms involving derivatives of ® or ® in L. are absorbed by
letting ®,® — ®0,Py and D,P,D,® — Dy, Py, Do, Po with Dy, = 9, + ag,. Hence
Lio=—PgK(Dg) Py up to total derivatives. The RG equation from (8.3) then requires
from (8.10)

Doagy = —Dopu(ow) = =0, (0 w) — o [agy, w] - (8.12)

95



The resulting equations from the terms in (8.12) proportional to ¢ and J,0 become

ZB,ﬁtI-i-ﬁI =0r(v —w) + 1, v —w], (8.13)
for
B! = BI - (Ug)Ia (814)
and
Bl =v—w. (8.15)

Assuming t7,w contain only poles in €, so that t; = ) _,t7,e ", the O(1) terms in
(8.13) and (8.15) determine pr, v

ﬁ] = ZJ ngJ(aJ t1,1 — 8[ tJ,l) s v = _ZI tj’lk]gI . (816)

Since >, prkrg’ = 0 then contracting (8.13) with BT and using (8.15) shows that these
equations require

prB' =prB =0, (8.17)

in agreement with (2.52).
The counterterms contained in My, where Ly, = —®¢ My ®¢, have the general form
Mo = Zy (M —02;D*g" — er;D*g'D,g7) (8.18)

with 07,e75 € Vi, Zy : Ve — Vg (8.3) then implies

0
I
<DU +(2—¢) 0,0 DHg 8D2gI>MO =0 w, Mp] . (8.19)
This decomposes into
A7 O
ﬂla—gIZM —|w, Zm] = ~Znmyumr (8.20)

which determines /9 = ¢ Z](\f})l, and

_(EE,ﬁ — M) 01 =05,
_(Zé,ﬁ — VM) erg — Q%o =1y, (8.21)

—U,70; —ers BY = 6r,

for U7’/ = (1— 1) 617 +8:B7 + 1(prg)’ and Q7% as in (2.50) with B — B. (8.21) then
determines the € independent 47, €7y and

0r = (k[ + %)01,1 + ZJ eU,lngJ . (8.22)
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By virtue of (8.17), (2.55) also extends to [Zg,ﬁ, \iJIJ} = Q7 BX so that we may obtain
directly from (8.21) the finite relation

(Zg,ﬁ —ym)br = U765 +ersBY, (8.23)

for which the O(g°) contribution is identical to (2.54) while the O(e) terms equivalently
determine 67 in terms of dy, €y ;.

The additional field independent local counterterms in (8.1) may be reduced, by dis-
carding total derivatives, to the form

X(g,a,M) = L A;; D*¢’D*¢” + B1jx D*g" D*g’ D, g"
+ 1 CrikL D*¢'D,g” D*¢* D, g"
+ 3 Ly fuw+3M-Ly- M+ f* -PrsDug' D, g’
+Jr-MD?¢' + Kr;- MD*g'D,g” .

(8.24)

Assuming this expression the flat space contributions X, Y in (2.60) are determined through
the RG equation

eo —Dy—(2—¢€)d,0 D*g! X(g,a,M) -0 X(g,a,M)+20,0Y"(g,a, M
7 H

0D2g1
= —209,0 (a,,(g” D“gID”gJ) - %8“(QU D”gID,,gJ))
= — 28,0 (GryD*¢'D*¢” — G15(f*9)' D,g" + T 9 kD g' D" g’ D, g%),  (8.25)
allowing on the right hand side a total derivative which generates terms of the same form
as in X and X,Y* as given by (2.61). To obtain (8.25) we assume that G;; = G satisfies
(wg) KOk Gri+G Kk jwir+GrrkwX; = 0. The contributions in (8.25) arising from G;; are the
same form as the terms in Y* which involve S( 17): Tk, Q1 so e-independent contributions

to Gy give rise to a corresponding ambiguity in Y#. This freedom is removed by requiring
that Gr; contains only poles in ¢.

Decomposing (8.25) we find for the M-dependent terms

(5_Eé,ﬁ)j1_\71'7M+5I'»cM =Jr,
(e —Las) Kis—Krg -y — QusXTx +ery- L = Kry, (8.26)
U7 Ty + Ky B' —0r- Ly =L,

which determine J;, Ky, Ly so that

Li=—(kr+ 3 T11— X, Krs1ksg” . (8.27)
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Using (8.23), and in a similar fashion, assuming
(5_EB,ﬁ)£M_’YM'£M_£M"7M :BM; (8'28)

(8.26) requires for consistency (& — Eg,ﬁ)Ll — Ly -y = V7 J;+ KrsB?) —6; - Bar which
is equivalent to (2.72). For the contributions involving f#¥ (8.25) reduces to

w- (e = Lp) Pry— (wg)¥pr - Pry— Lw- Ly (81ps — dspr) =w- Pry,
we(e—Lps) Ly w —w L (W9 px — (wg)px L5 o =w-Bs-w', (829
—W'PIJBJ+%(JJ‘Ef'ﬁI"’gIJ(wg)J =w-Qr.

To obtain (8.29) we presume G covariance as in (2.42) to ensure 3, p — B, j so that for
instance w- L ;Prys =w- L3, Prj — [w,v] - Pry. From (8.29)

Qr=>;Prsaksg’, (8.30)

and also from (8.29) we may obtain, using —(8;5; — 8,p;) B = ZE;,;; pr — (prg)’ ps, the
finite relation

w-(e=Ls,s) Qr = (wg)’ps - Qr = —w-PryB’ + jw- By - pr + Grs(wg)’,  (8:31)

assuming
(e~ Ls,5) Grs = Grs, (8.32)
with G e-independent. For ¢ — 0 (8.31) is just (2.66b). Directly from (8.29)

W - QIBI = (wg)IgIJBJ . (833)
Since (8.30) ensures that 3", Qrkrg’ = 0 so that QB! = Q;B’, (2.66b) is satisfied if

Wr=-GrB) = W;= > ;Griiksg” . (8.34)

The remaining equations arising from the decomposition of (8.25) are then

(e = Las) At +2T1 60y = A1y,
(e - EB,ﬁ)BIJK — QP AL+ T ek + Kk - 61 = Brik

~ R R (8.35)
(e = L8,5)Croox — UL Buix — Qux™Buir + Kin - €7k + Kok - €11
+ (01ps — 0p1) - Pryr + (Onps — 0spL) - Pryr = Crrik
and also for terms involving 0,0,
UK Ay +Brx BX — J;-0r = S15+ 61,
(8.36)

UrlBrix + CroaxBY — Kyx - 01 — s - Pryr = Trox + T 91k
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This determines
Sryg= —(kr+ %) Argi — ZK BJIK,legKa

: ; (8.37)
Trox = — (kr+35)Broxa — Y1 Crook,1krg” -

Since (6: EB,ﬁ)F(g)IJK — Qs G + ((01p(s — 8up1)9)* GryL = ')k then apply-
ing ¢ — Lp,; to (8.36) and using (8.35) gives finite relations which, after dropping O(e)
contributions, are identical to (2.74) and (2.75).

Furthermore eliminating A; s, Brsk,Crykr from (8.36) gives

A

Ly 00+ 2p1-Qp—Sis= F(g)[IJ]KBK — (U™ = L (pu9)®)Gnk = 0uWy, (8.38)

where S'[IJ] = _\iI[IKSJ]K + T[IJ]KBK = —\I/[IKSJ]K + T[IJ]KBK and Wy is determined
by (8.34). Hence (2.65) is recovered.

9. Calculations for a Scalar Fermion Theory

For the theory defined by (5.1), where ® = (¢,%,x), 9 = {¥¢,7i, Ai;*'}, then the
kinetic symmetry group Gx = U(ng) X U(ny) X U(n,) and for w € gx then

w=—w = {wgi,wy,wy}, w-w =wgidwy;t+tr(wywy) + tr(wy, wh)- (9.1)

To allow application of the formalism of section 2 it is necessary to extend the theory to
include background gauge fields a, = {agu:’,apu, ayu} = —a, € gk and a scalar field
mass term

L= —D¢" - D¢; —pic-Dyp—xic-Dx—xy'div — b ¥i x

. I (9.2)
~ MG g — g N O dwn,
where the covariant derivatives depending on the background gauge fields are
Du¢i = au¢z + agp ij¢j ; Du¢ = 8/J¢ + a¢u¢ ) DMX = 8NX + axpX - (9'3)

Acting on the local couplings, in accord with (2.35), the covariant derivative is deter-
mined by using (6.19) for (a,g)’. For this theory the minimal subtraction 3-functions are
expressible as in (8.5) in the form

Brig® = —eXij® + Brii™, B =—%ev' +B), Byi=—%evi+Byi. (9.4)

To obtain counterterms involving derivatives of the couplings when they are z-
dependent the methods described in [35,26], which avoid momentum space, may be

99



adapted. For the theory defined by (5.1), neglecting mass terms and background gauge
fields, the propagators are given by

($(x)h(y)) = S(s) = —i5-0Go(s), (x(z)X(y))=S(s) =—ic-0Go(s),  (9.5)

and
(di(z) ¢’ (y)) = 6/ Go(s), (9.6)
with
1 2v1-1 o2 o
Go(S):m(S) 4, Sd—r(%d), s=z—y, (9.7)

so that —92Gg(s) = §¢(s). For graphs involving two vertices the £ poles may be determined

by using

2 1 1

Gols)" ~ . Homayn T n—1)2

(0*)"=25%(s) for n=2,3,..., (9.8)

and various extensions involving derivatives [35]. At one loop it is sufficient to use (9.8)

for n = 2 since
tr, (S(s) S(—s)) = —0Go(s)?, S(5)Go(s) = —2i5 -9 Go(s)?. (9.9)

This formalism may also be extended to allow for mass terms and gauge fields in a mani-
festly gauge covariant fashion.

With these results it is straightforward to obtain

LY == QF (T 0y7) ¢+ Puiio- Oy v+ xy iz 97 x), (9.10)

o | =

for § = 30— <5) and also rescaling the couplings as in (5.7). At two loops the corre-

sponding contribution to ££2t) involving  is given by

2 1 i . _ il A= i
‘Cg.t).x =—(1—-3¢) (X¥'7; Y0 -0 Gix — Xy'i5- 0Y; v'¥i X)

4e2

1 i, L
—oz(1—fe)xy'io (5, 99) 5 X

T - (9.11)
+oz(1- 3e) (xy'tr(giy?)io -0 95 x — xy'i5- 0 tr( y) U5 X)

1

- S+ i) xy'io (5 YY) 3 x,
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and similarly for E((:_Qt)_w obtained from (9.11) with x — %, y <> §. Furthermore the two
loop scalar field counterterm is given by

1 -.

c.t.¢ ) 8)‘m"kj ¢j

2 _. ) 1 -. :
+ 5_2(1 — 2e) ¢* Xk tr (07 - OyF) 5 — % " A (tr(°T y®) + tr(7 0°YF)) 85

(1-2¢)¢* tl‘(z?z'(g yFuK 0y7) ¢,

+
~
|

+ 50— 30 (# el T - 007) 5 — 60 T - (04 T )05
a 21?(1 —3e) ¢ tr(m: O° (v g) 7)) 5 — %J)’ tr (g Oy* - Ok v/ ) 5
+¢H¢’yﬁy>' (9.12)

The result (9.10) then determines

1 _ _ i
20 = — @y, 359 590}
i (9.13)
adV, =tMd,g" = - g{2tr(§i<3u ), 9 0uy’, ¥ O i}
as well as the required contributions to M)
1 : : : :
MY = . (2 Aie? MF + tr (g y*) Mi? + M tr(gn y?) — 2t (0%, ﬁuyj)) . (9.14)
In consequence at one loop from (9.13) using (8.16)
piVdg" = —{tr(g; dy’ — dgiy?), 5@ dy’ — dgs ), 5(v* g — dy' %)} - (9.15)
From (9.14) using (8.18) and (8.21)
s Wdg" =0, (eu(l)dgldg")ij = 2tr(dy; dyj) , (9.16)
and also
(0/dg") 7 = 3 (tr(7i dy?) + tr(dgis ) - (9.17)
From the two loop result (9.11) we may obtain, as well as Z(2), ,
1 i 3 A - T 1 i (= i\ -
a = — 5 (1= 56) (V"0 ¥ Outis — 0 0 9'm:) + 55 (1= )y (7 B v”) Ui
1 N 1 . j
- 5_2(1 — 3e) tr(%iy’) (y %Lyj) + 5_2(1 + 1€) ¥'Y;j tr(yi?u y’)
_ 20, ﬁu 20, 2z o) g,z (9.18)
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Also from (9.12)

a0(2)¢p,i'7 = - E )\ikmn?“ )\mnk']
1 o o
— 5 (1- 3e) (tr (T v* T 0uy”) — tr(0,7: y*Tr v7)
+ tr (e v* s 0uy’) — tr(y*ur 0,9 v7)) (9.19)

1 o
+ (1= 1) (tr(z ( W T 3k) v7) — tr((v* T 5e) 7 7))
— 2z, k? 200 g kg (W), 3 gy k2() 0

Furthermore
M@ = — iaxikmn N —
— 632(1 — 4115) )\ikljtr(ayl . 8yk) + % AirH (tr(82gjl yk) + tr(g 82yk))
- 6%(1 — 3) (40 (03 - v*5r 0y7) + tr (3 v* 03 - 0) )

— 5 (1= Le) (tr (@ v* 03 - 097) + tr(05i - 0" B’
+ tr(0gk -y 51 0y7) + tr (5 09" - 07y )

1 . .

+or(k 0y - i Oy?) + tr(0m - v 03 7))
1 , .
I (tr(ﬂi 2 (y* gr) y]) + tr(@z(ﬂk y*) Ui yj)>
1 . .
+ = (tr(@ 09" - 0 ) + (05 - 0 57 )
_ (33(1) kgD 5 ) (33(1 & +a0(1)¢kj)
Z(l) KM — Mo(l)ikz(lz;skj +O(M).

Letting in (9.13), using (6.19),

y wYi =Y <Bpyz =Yy ? yz+y a@buyz+y Yj a¢,uz —3 axuy yz - %yigiax,ua
tr(5: 0 ”) — tr (35 Dy y’) = tr(yﬁy ) + (i axuy’) — tr(ay,giy’)
— 3 tr (i y") agur’ — 5 agui® tr(Gny’) (9.21)
we may verify that the RG equations (8.12) are consistent with the double pole terms in

(9.18) and (9.19) with w = 0 to this order. The double e-poles in (9.20) are also determined
by (8.26).
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The two loop results (9.18) and (9.19) then entail

(p(Pdg")x = & (v'5; v dgs — dy* 4, ¥ %) — v (5 Ay’ — dgi v*) s

+ 2 tr(miy?) (o dy; - dy*g;) + 3 ¥'9; tr(g: dy’ — dgiy),
(p1(2)ng)¢ij = — 1 Q™ dAmn™ — dAix™ An™) (9.22)
+ 5 (tr(@i v g dy’) — tr(dgi y*gn v)

+ tr(yk v gs dy’) — tr(y* g dgi v7))
— 2(tr(m: (v* dyge — dy® 7)) ¥7) — tr((" dge — dy* Tr) i 7)) -

A related calculation, which was extended to three loops, was described in [15]. Also from
(8.12) we obtain

v =@ =9, (9.23)

A useful check is to restrict (9.15) and (9.22) to the supersymmetric case (5.17), where,
with a similar notation to that in section 7,

(pI(l)ng)Susyij = %( - (YdY)ZJ + (dl—/y)z]) ) (9 24)
(piPdg")susys? = (YYYAY)? — (dYYYY)! + (YYdYY)? — (YAdYYY) 7).
These results are in accord with (7.4), using (5.21).

The condition (2.52), which links different loop orders, provides a further verification
of the results (9.15) and (9.22). It is easy to check that p; (Y 3M! =0 and also

(pz(z)ﬁf(l))w = — (PI(l)ﬁI(Z))«/) - % Ui ngj Yok v* + %171' Y. tr(yigj) _ conjugate,
(pI(Z),BI(l))dnlj = — (pI(l)ﬁI(Z))qSij =2 ™" tr(gjm yk T yj) . % )\ikmn/\mnkl tr(yl yj)
+ 3 (tr (5 ¥* Tk v) + tr (U v*F: v")) tr(71 y7)) — conjugate.

(9.25)

From (9.20) we may also read off

(51(2)dg1)ij = —A\;p¥ (tr(dgl yk) + tr(g; dyk))
+ 5 (5 (dy* gr + v* dg) v7) + 5 tr((dgn v + 9k dy®) 3 07)
(er/Pdg’dg”)i? = L dAix™ dMnn® — XigY tr(dg; dy*)
— 2 (tr(dgs v*gr dy?) + tr(ge y* dgi dy?))
— tr(7: y* dgr dy?) — tr(dgs dy® g v7) — tr(dge ¥* s dy?) — tr(gx dy* dg; v7)
— 5 (tr (3 dy® yr dy?) + tr(dys y* dyr v”) + tr(gx dy® gs dy?) + tr(dye v* dgiy?))
tr( ; dy® dgi, yj) — tr(dﬂk dy® g; yj) } (9.26)

63



Reducing (9.16) and (9.26) to the supersymmetric case

(GIJ(l)ngng)Susyij = (deY)zJa
(ers@dg’dg” ) susyi? = — (AYYYAY),! — (dVdY YY), (9.27)
— (YdydYY) — (YYdYdY),

which agrees with (7.5).

The results are compatible with the consistency relation (2.54) or (8.23). Assuming
(9.17), and for simplicity dg’ = (dy*, 0,0), then

([,5(1) 91(1) ng)ij = % tr(gi ykgk dyj) + % tr(gjk ykgjl dyj)
+ 1 tr(9: Ay g v7) + § tr(gk dy*gi v?)
+ tr(5: y*) tr(g dy?) + 3 tr(7: dy”) tr(Ge v7)
(vaaM0,/M dg") ¥ = Xig tr (g dy) + 5 or(7s v°) tr(gn dy?) + 5 tr(@i dy®) tr(ge ) ,
(0 M g)70, M dg") i = § tr(wi dy*ue v7) + § tr(ge dy* i v?) + § tr(@i v*) tr(gi dyf?) -
(9.28)
The sum is then equal to (62 + e;, 1 37(1)),7dg’, as required by (2.54) to this order.

Similar calculations determine X'. At one loop there is no dependence on the couplings
and

20, M) = = (e(F4 Fo) + 200 (£ Fun) + 200 (5 ) ) + - MM, (9.29)

giving £ f(l) and £,V in (8.24). Two loop contributions to X', which determine the leading
contributions to Az, Py, Jr, K1y in (8.24), may also be undertaken within the framework
of [35]. For the scalar/fermion theory determined by (9.2) there is just one two loop graph
involving only the Yukawa couplings. For zero a,, M this gives

w® = — / A%z d%y tr(y*(z) i(y)) tro (S(s) S(—s)) Go(s). (9.30)

Since tro (S(s) S(—s))Go(s) = —% 8?°Go(s)® the divergent part of (9.30) is determined by
using (9.8) and gives, after rescaling according to (5.7), X(g)® = é tr(0%y* 6y;) as was
obtained in [9].

Extending this two loop calculation to include the additional contributions involving
the background gauge fields a, and also M gives

X(g,a,M)®
11 2,1 M2, 2 5 ) = ny g
= - étr(D y* D Z) + @(1 + 15€) tr(Duy D,y;) f&%i
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2 ) )
+ @(1 - %6) (tr(Duyzfibleuyi) - tr(DuyZ Dvgi fxﬂy))

2 j _ i 1 ' _ i _ g
— &:—2(1 — %5) M;? tr(D“yj D,y ) + % M;? (tr(yj D2y )+ tr(D2yj Y ))

1 7 v — 7 v 1 v_o\1 —
T 4e (tr(y I fo v yi) +tr(y Ui Iy fx;W)) - @(1 - %5) tr((f“ Y) (fuvy)i)
+ @ tr((fu,,y)’gj)f¢“”ﬂ + 8_2 )\ijkleleJ —+ 6—2(1 - %8) Mij tI‘(’gj yk) Mkz, (931)

which is consistent with the general form (8.24). The RG equation (8.25) provides a non
trivial check of the double poles in & present in X(?) which are determined in terms of
(9.29) and the one loop results (9.15) and (9.16). In the O(f?) terms it is useful to note
tr((f“”y)if¢#ygi) = —tr(yifqppu(fwﬂ)i), with similar relations for f;, — fy, fs. For
(wy)?, (wy); = 0 the O(f?) contributions are just the two loop Yukawa contribution to the
gauge beta function [26,36].

The two loop contributions to X and Y* are determined as in (2.61). This gives using
from (8.35) and (8.37)

GrfPdgldg’ = A1,/Pdg'dg’ = 2 tr(dy; dy'),

. , 9.32
S;Pdg'dg? = — ¢ (tr(dy; d'y*) + tr(d'g; dy')) . (%32

For terms involving M using (8.27),
(J(Pdg") i = tr(@i dy?) + tr(dFiy?),  (Kp/ Pdg'dg”)s = tr(dg: dy), (9.33)

(LPdg")? = = (tr(gi dy?) + tr(dgi ) ,
while for the f,, terms, if Pry, Q; are decomposed as in (9.1),
P Pdg'd'g’ = { - Ztr(dgid'y’ — d'gidy’),
= (dg; d'y* — d'ys dy?), 15 (dy*d'y; — d'y*dyi)}, (9.34)
QP dg" = { - Ztr(gidy’! —dyiv’), 75 (4 dy’ — dwiv’), — 75 (dy' 9 —y' dys) } -
It is easy to see that J® =261 =M -BM(l) in accord with (2.72) at this order. Also
G/ P (wg)? = —Lw- BV - p/V as required by (2.66b).

At three loops we determine for simplicity just contributions independent of a,, M.
For the quartic scalar coupling there is a single vacuum graph

1 .
Wi = 5 [ dheay 3 @At () Golo)! (9.35)
which gives, using (9.8) for n = 4,
1 1 .
Xa @)= _— n2 i'kl 2 ij )
(A) 8144(9)\] 0* Akt (9.36)
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At four-loop order the vacuum graphs involving just the scalar couplings also give

1 - -
W =~ L [tz dtydt (0, @ @ ) + 2™ @A N
+ 8 Ami ™ (2) A ™ () At ¥ (2))

X RGo(z — 2)> RGo(z — y)? RGo(z — y)?, (9.37)
where )
RGo(s)? = Go(s)? — T §4(s). (9.38)

The additional pole term in € is necessary to ensure subtraction of one loop sub-divergences
and would be generated by appropriate counterterms consistent with minimal subtraction.
Using results from appendix D the divergent part of (9.37) determines

1 1 .
X()‘)(4) = &,—2(1 + %6) @ o ()‘ijmn )‘mnkl +4 )\imkn )‘jnlm)az)‘klzJ
11

_ g % (}\Umn a2)\mnkl + 4)\1mk:n a2)\jnlm)82)\kli]’ )

(9.39)

It is easy to check that (8.25) determines the double poles in (9.39) using (6.4) and (9.4).
(9.39) gives (6.10) with G = —7/216.

At three-loop order there are also further vacuum graphs involving solely the Yukawa
couplings. There are just two relevant graphs which contain two and one fermion loops
giving at this order in addition to (9.35)

1
Wb(3) =3 /ddaz ddy tr(yi(w) Bmzij(x,y)) tr(gjj(y) 8y2Yyi (y, x)) ,

1
W = — 3 / d%z d%y (trtra (7:(2) 0 0. Yy (2, ) 70 5 (y) 0 8y Yy (4, ) -0,
i _ Ay ; _ Ay
+ trtry (y'(z) 6+ 8, Yy, (¢,y) 00y ¥ (y) 5 0, Yy, (y, z) 0-81)> ,
(9.40)
using (9.9) with
Yi(z,y) = /ddz RGo(z — 2)? f(2) Go(z — ) . (9.41)
From (9.41) it is easy to obtain
92 2
Yi(z,y) (= 9y’) = RGo(s)"f(y) - (9-42)

The analysis of (9.40) is more involved than obtaining (9.31) or (9.36) and is described
in appendix C by obtaining formulae for the local e-poles which arise from products of Yy
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with derivatives. Thus
_ 2 _ 1 _
xo(y, ) = o (1+ $5¢) tr(5: 0y) tr(0°5; 4') + 55 (1 - F3e) t2(075: %) (3 ')

1 | . .
+ 362 (1(0°5:97) t1(0°g; y") + tr(3: 0°) 02(7; 0°y'))
2 . . .
+ 5oz (1= 128) (1(9"5: 0°y/) tr(0,u5; ¥') + t1(9°5: Oy ) tr(y; Ouy))
2 . . .
~ 92 (1 + 15—26) tr(0"g; Ouy’) (tr(8217j y') + tr(g; 62y’))

— 52 (tr(0"5: 0%y7) tr(7; Duy’) + t2(0°5: Oy ) (0,7 y'))
4 . ) )
+ — 93 (1 + 128 1345452) tr(0y; ayy’)(tr(augjj 0yy') — tr(0, 9, auy’))
4
+ 33 (1— e — 22&?) tr(0My; 0,y7) tr(0”y; 8,y")

1 ) )
+ 18e tr(0Fy; 0¥y’ (tr(8,9; 0uy*) + t1(8,9; 0uy")) , (9.43)

and

1
Xe(y, 9)® = 5 (1= ) tr(0%: 0%y" y; 7 + %y'0° ")

1 7 — j i — 1 _
+ 9—2(1 — 15€) tr(7: 0%y* 0%y, v’ + Oy’ Uiy’ 0%Y;)
1 i i o
— oo (0" Y 07517 + 0: 0%y g Oy + 07 i 0%y §; + ¥ 070y 0°)
1 o
+ @( - %5) tr((‘)“yi %y 0u7; Y’ + 0?y; Oty 7j 0.y’

+ OMy* 0%y; 0,y §; + 0%y "y’ 9,Y;)

+

1 P o
ooz (1 128) (05 0y (0°3; 47 + 95 0°y7) + 0V 0,5 (995 + 4/ 0°F;))

+ (1 - 12E - 1445 ) tr(a“y, 0y’ (0uY; Ay’ — vy; 8uyj)
+ 0"y 0" y; (0. 0,y — 0y Ouy;)))

1 . . . .
— 1gc T(0"9: 0uy’ 979, Ouy’ + Oy 0,9: 0y 0,7;)

9¢

1 . .
t 1% tr (0" ; 8y (8u¥; Ovy’ + 0,75 Opy’)
+ Oy 07 (0uy BT + By 0uT)) - (9.44)

The double and triple e-poles are determined by (8.25) starting from (9.31) using the one
loop results (9.15) and (9.16).

From (9.36), (9.43) and (9.44) we may determine X (g)® and Y#(g)®. In particular
the 82g70%g” terms give the three loop contribution to A;; which involves both the scalar
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and Yukawa couplings
ArfPdgldg” = g dai™ dAu®
— s tr(dgidy’ ;9 + dy'dgs o' g;) — 15 tr (7 dy' dg; o7 + dy' iy’ dg;)
— 13 tr(d7:y" 7597 + dy'Z dy’g; + Gi dy' g3 dy’ + dy* i dy’ ;)
— B tr(dgs dy?) tr(g; y°) + § tr(gi dy?) tr(dg; y°)
+ 5 (tr(dgiy?) tr(dg; y*) + tr(gs dy’) tr(g; dy')) - (9-45)
At this order there are extra terms necessary to calculate Gr;. Using results in (9.15),
(9.17) and (9.32), (9.33) then, since S7./? + 2A7,/?) =0, (2.74) gives
Gr/¥dg'dg” = (A1 = & (oM g)* AP — 7@ - 0,V) dg'dg”
= 2 d\i;* dA
— g0 tr(dws dy' g5 v + dy'dyiy’y;) — § tr (v dy’ dyy o’ + dy*wiy’ dy;)
— 35 tr(dgi dy?) tr(g; y') — § tr(s dy?) tr(dg; ')
— § (tr(dgs v7) tr(dy; v*) + tr(g: dy?) tr(y; dy')) - (9.46)

This gives the results in (6.7). The additional contributions are crucial in ensuring that
the metric satisfies the necessary consistency conditions.

For
grrdg'dg” = tr(Giy"), (9.47)
then
(Z,@<1>,p<1) gr7) dg'dg” = tr(dg; dy* g; v + dy'dy; v’ y;)
+ 2tr(g; dy* dy; v + dy* §: 97 dy;) (9.48)
+ 2tr(dy; dy?) tr(y; v*) + 4 tr(y; dy? ) tr(dg; y*),
which determines the possible freedom in G %) shown in (6.8).

Using (8.34) we may determine from (9.32) and (9.46) the two and three loop contri-
butions to Wj. This gives

WI(2)ng =d 1—12 tr(g; yi) ,
Wi dg" = d(5 M " A — & (@ y7) tr(@; o) (9.49)
— s WY U Y + VYY) .
Restricting to the supersymmetric case according to the prescription described in

section 5 then (9.31), neglecting gauge fields and M terms, gives

XY, V)3 = 1(°Y 8%Y);¢, (9.50)

Susy
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while from (9.36), (9.43) and (9.44)

X(Y, V)5 = — 55 (¥ ) (Y 8Y); = § (Y 9°Y) (9°Y V),
— 3 (Y 3"Y)? (9°Y 9,Y);" + (9"Y Y)? (9,Y 0°Y);")
— L (0"Y0"Y)? (8,Y8,Y);" + % (0"Y0Y)? (0,Y9,Y);"
— 2 (0"Y9,Y) (8"Y8,Y),". (9.51)

This three loop result has been verified by an independent superspace calculation.

In the supersymmetric case the gauge field contributions at two loops may be obtained
from the calculations in the scalar/fermion model by letting a, = —a,’ = ay so that the
results in (9.34) may be added to give

(Pr/Pdg’d g7 )susys’ = 2@V A'Y —d'VdY)7 0:52)

(QI(z)ng)Susyij = %(dYY - YdY)z] . .

Assuming (7.28) then (7.20) gives (AQ[?dg’)susy = 2 (dYY YdY) so that Q® — 0 if

z = —5;. If this is done, from (7.29) and (7.31), a - —%, b — —1. Furthermore from the
O(f?) terms in (9.31)

(w : ﬂf(l)' w) Susy = 2tr(w?),
(@ B w)susy = — 2tr (W (YY) — L (¥ 4 w)o (w*¥). (9.53)

These results (9.53) together with (9.52) are sufficient to check (2.66b) with the three loop
G1s given by (7.26) and (7.31). The one and two loop expressions for §; are compatible
with an extension of the NSVZ formula for the matter contributions to N' = 1 gauge
B-function of the form (w - By - w)susy = 2tr(w?(1 —27)) — (¥ *w)o Go(wxY).

10. Conclusion

In this paper we have endeavoured to show that the existence of a metric on the space
of couplings, for renormalisable theories at least, and the associated equations, which
are related to gradient flow, provide significant constraints on -functions and anomalous
dimensions. These results are applicable in the context of the standard model in that
their application here provides a partial check of the three-loop Yukawa [-function in
[17]. For supersymmetric theories there are additional constraints such as the metric being
hermitian and Kahler which might follow from an extension of the present discussion to
superspace.
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A critical issue which has not been analysed in any detail here is the role of anomalies
which render the assumption of invariance under arbitrary gauge transformations Gg
invalid. This is crucial for a more complete analysis of supersymmetric theories where
careful analysis of anomaly matching links IR and UV limits under RG flow [31].

In this paper we have avoided perturbative calculations on curved space backgrounds.
Nevertheless the techniques described here for three loop calculations of vacuum graphs
with local couplings should allow an extension to arbitrary metrics following [37] although
as always the calculational details are non trivial.
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Appendix A. Higher Loops in the Wess-Zumino Supersymmetric Theory

In higher loop calculations of the anomalous dimension v transcendental numbers,
such as {(3) in three or more loops, arise. These numbers are associated to diagrams with
particular topologies which are possible initially only at some minimal loop order £. The
connection between particular transcendental numbers and a particular graph topology is
valid only up to scheme dependent contributions to 7 and these need to be considered
separately. For each such non scheme dependent term 7, contributing to 7O = O(Y*Y"),
which is proportional to a transcendental number ¢ and corresponds to diagrams involving
a topology which are not present at lower loop orders, the equations simplify. It is only
necessary then to consider the lowest order 7(2) and also T¢*+1) to determine the associated
contribution to A¢+2),

The simplest case is when tr(v,) corresponds to a connected symmetric graph with
£+1 loops and £ Y-vertices linked to £ Y-vertices. Such graphs are edge transitive so that
all 3¢ lines are related by an automorphism and are therefore equivalent. In this case ~y,
may be recovered from tr(v;) by cutting any line. This implies the identity, for any w;’
and with notation as in section 7,

1 - 1
tr(wye) = 37 (wxY) o0y tr(ye) = 37 (Y % w) o Oy tr(ye) . (A.1)
With B,y = (y¢ *Y) and T given by (7.25)
dY o T® o B,y = tr((YdY) 7). (A.2)

To ensure integrability in (7.9) it is necessary to assume T¢+1) contains a term proportional
to ¢ of the form

— 2
dY o T¢ o dY = 37 dy dy tr(ve), (A.3)
since then
dY o T® o By +dY < Ty o ') = dy tr (YY) 7¢) - (A.4)

In consequence there is an associated contribution A; to A¢*2) given by

~ _ 1 1
Ae=5tr((YY) ) = @By(l) ° 0y tr(ve) = 55 By o By tr(ve). (A.5)
For this case
—tr(yMe) + AP < By =0, (A.6)
so that we must take in (7.51)
Ap=A¢o Y, (A.7)
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where A, is part of A+, Hence from (A.5)
_ 1 _
AcedY = 5 dytr(y) = 3(VA¢) =1, (A.8)

in accord with (7.54). In this case the metric G¢ = T, so that (A.3) ensures (7.45) is
satisfied in this case with

Fe = o trlre). (A.9)

These results apply when £ = 3 for the term proportional to ¢(3), v¢3) = D vp where
tr(ve(3)) = 3¢(3) (Y3Y®)k, ,, and also when £ = 4, according to [34], for the term propor-
tional to ¢(5), which satisfies tr(y¢(s)) = —10¢(5) (Y*Y*) s, with the vertices contracted
as in the symmetric non planar graphs K3 3, with 6 vertices 9 edges, and Mg forming a
cube respectively.

At the next order there are additional non planar contributions to (4 which are
proportional to {(3). These are determined by the corresponding term at three loops. To
show this we consider a contribution to v, in addition to the ¢-loop v, satisfying (A.1), at
£+ 1 loops which is expressed in terms of . It is sufficient to assume that the relevant
term in v+ has the form

Yeid = AVigmn Y™y ¥ (A.10)

with an undetermined coefficient A. As usual 7 determines 8’y = (7% *Y) and hence we
may obtain dY o T(® o Bey +dY o TG) o B¢y which is part of dyA’C. There are also contri-
butions dY o T; - (%), determined by (A.3), but it is necessary also to allow corresponding
terms in T¢+Y) and K¢+Y. Assuming these must contain the subgraph associated with
¢ they can have the general form proportional to 7,

dY o T «dY = aq tr((dYdY) v¢) + a2 tr((dYY) dyve) + as tr((YdAY) dye)
+ oy tI‘((YY) dffdy’)/c) ; (A.ll)
dY oK' odY = Btr((Yd'Y)dyy:) —d'Y <> dY.

To calculate dY o T" - By + By o K 'c -dY we use the identities
(BsW o0y — By Oy ) e = 5 [(YY), %], (A.12)
a special case of (7.8) valid for any 7¢, and
(YY) By 05 7¢) = tr((VY) (dy B5D) « B ) +  r([(VAY), (FV)] %), (A.13)

which may be derived from (A.1) and reflects that all lines in the graph for tr(y¢) are
equivalent. Combining all contributions to dyfl’c gives finally

2 AIC =Y tr((YYYY) ’Yc) +Y tI‘((YY)Z ’)/C) +Y3 tr((YY) ,317—(1) ° 817’74) , (A.14)
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where
Y1:2a—|—a1:2b+A=—1+042+5a

Vo=a+j(as+ ) =b— j(as+ ) + 301 = 5(a2 + ), (A.15)
Y3:Oé4= %(ag—ﬂ).

The equations for Y7,Y> give rise to integrability conditions once more so that we may
eliminate o, as + 3, a3 + 8 and then determine
A=-2, (A.16)

independent of a,b. Remarkably this agrees with the non planar ¢(3) term in v(4), after
subtracting scheme dependent terms, obtained in [34]. Subject to (A.16)

Yl :4.0,—1, Y2 = 2a. (A17)

At this order there is the freedom due to (7.18) arising from taking g = w g for

- 1
dY e geodY = 37 dydytr(ye), (A.18)

which leads to an arbitrariness under variations
Aay = Aag = Aoy = —Af=w, (A.19)
giving AY; = AYs = 0, AY; = w. The corresponding variation in A’C follows from
By o ge o By = Lt ((YY) By » 0y - (A.20)

For (7.28), dY ogodY = 2dY odY = ztr((dYdY)), leading to (7.29) Aa = 3z, Ab = 62
then also it is necessary that

Aoq = Aag = Aozg = Aﬂ = 62:, (A.21)
so that AY; = 12z, AY; =6z, AY3 = 0. In this case

LBy o Bey + Bey o BY) =2t (YYYY) ye) + tr(YY)2 ) - (A.22)

If a=b=—1, as in (7.47), (A.15) has the solution

a1:a2+,8:a3+ﬂz—2, (A23)
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but the metric G obtained then from (A.11) cannot be written in the Kéhler form (7.45)
for any choice of ay = 3 (a3 — ) making use of the the freedom under (A.19). However if
we also allow a change of scheme as in (7.24) with 7' — T(™) and h — —~ so that

dY < 6T o dY = tr((dYdY) y¢) + tr((dYY) dyve) + tr((YAY) dge) (A.24)
then, taking 8 = 0,4 = —1, dY o (T + 617 ) -dY =dY o G -dY = dydy F'; with

c=—tr((YY) 7). (A.25)

The result (A.14) with (A.17) may also be expressed in the form (7.51). To solve
(7.54) it is sufficient to take

AeodY =utr((dYY) ) +vtr((YY)dpe) - (A.26)
Using [(w' *Y) ey, (w*Y)e8y] = ([w,w'] *Y) Oy then from (A.1) we may derive
tr(w (W *Y) o dypye) = tr(w (w*Y)o8pe) + tr(lw,w]ve), (A.27)
and hence obtain, with ©() as in (7.63),
B(YA) =0 By =7+ (u—0) (YY) v+ (v—0) 7 (YY) +v (YY) x 0 v¢, (A.28)

for /¢ as in (A.10) so long as
2u—6)=A. (A.29)

Hence 3 (Y A%) — 0® °Bey — O¢ o B = vl — YWy — 4y if we take
®C ° dY =2 dy’yC 5 (A.30)

and
(A.31)

N

u—v=v—0=—
Applying (A.31) in (A.29) gives (A.16) once more.
Using (A.26) and (A.30) in (7.55) gives a metric of the form (A.11) with

o =2u=-2+420, ar=az3=4v=-2+40, oy=2v=-1+20, [=0. (A.32)
These results satisfy (A.15) for a,b given by (7.66) so that
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Since, with A®) A given in (7.73),

(D ) 4 AD Bl — —tr(1® ) + Ag o Br® — 0,
tr(yV2y) = Ftr((YY)* xe)

A.34
AB) o Bey = 2A tr((YYYY) ’yg) + )\tr(( ) 'yg) , ( )
Aeo BY( ) = utr((YYYY) 'y(;) + utr( )) —l—vtr( YY) BY( ) By'yc)
we may verify
A= —tr(Y o) —tr (4 x¢) + e (vVc) (A.35)

+ AP e By + Ao By + Ace Byl + Ao BtV

as required by (7.51) with H = 0.

Appendix B. Derivation of Local RG Equations

Usually RG equations are derived by considering the response to a change of cut off
scale or using dimensional regularisation variations in the arbitrary mass scale p which
is necessary for dimensions d # 4. For the equations in section 8, which are related to
broken conformal symmetry, a slightly different approach is required. For renormalisable
scalar fermion theories in d dimensions £(®g, ®¢, go, ag, My) can be chosen to be conformal
primary under conformal transformations so long as gg, ag, My transform appropriately as
well as ®g, ®g. The generator of conformal transformations for this theory is then, for any
conformal Killing vector v*,

0 0
—Do,» = (ﬁ ®y — &‘O'U ‘130) T% + (E o) — {;‘O'U CIDO) Ti)o B
0 0 ) .
+ (’U“a,u gOI +eoy,krgo ) : @ + Euaoﬂ . % + L, My - oMy’
m

for
Lo®o = (040 — 5 Wi S0, + 0y Aa) o,

L,Dg = v"0, Do + Do (3 ws 8§y T Ov As),
Lyag, =170, agy, + 0,v"ag, ,
EUMO = U“’@u MO —+ 0y (4 MO - A@MO — M(]Aq;.) s

(B.2)

where w/” = 9lHy¥! and Seuvs Sey, are the appropriate spin matrices. Ag,Ag are the
canonical dimension matrices for ®, ® when d = 4 and in consequence £, has no explicit
dependence on ¢ for each case in (B.2). It is easy to verify

[Do,v, Do, | = Do,jv,v'] - (B.3)
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The crucial assumption is then that £ satisfies'®

—Do,u L(®o, Po, go, a0, Mo) = (v + d o) L(Po, Po, go, a0, Mo) - (B.4)

The derivation of finite local RG equations depends on the detailed form of the relation
between ®g, ®¢, go', aou, Mo and the corresponding finite ®, @, g7, a,, M implicitly defined
by (8.1). Defining

0 0 0 0 -0
Dy = k8, gl 2 Loay 2 — LM -2 — L0 2 LB, (B5
VT g T B, oM 0% 0% (B:5)
then Dy, may be expressed in terms of g, a,, M, ®, ® in the form
Doy =Dy + Dy, +Ds, .53, (B.6)

with D,, Dy 5,3 as in (8.4). The commutation relation (B.3) ensures that the coefficients
in D, obey the required consistency conditions.

Since —D,Z = v*0,Z, —DuDugI = EUD“gI then
—D, P9 = L, P, —D, @9 =L, P, —D, aoy = Lyaogy - (B.7)
However
~D, D*¢' = (v, +20,)D?*¢" + 8%v, D*¢",  9%v, = —(d —2) 0,0, . (B.8)

As M, may contain counterterms involving D?g’ in general —D, My # L, M, but taking
this into account

0 _
Dy, M,
8D2g1>£( 0, ?0, 90, @0, 0)

~ (’Uuap + 40—1})5(@0) i)07907 ao, MO) ’

—( Dy + (d—2) 8,0, D*g"
( (d— 2) 8,0, Dg .

where ~ denotes equality up to total derivatives. Subtracting (B.9) from (B.4) then gives

0
0D2gl

(60 — Dy — Do,0,6 — (2—¢) B0 D¢’ )‘C(q)(]a ®0, 90, a0, My) ~ 0, (B.10)
for o linear in x, which is identical to (8.3) for a suitable choice of total derivative contri-
butions. As shown in section 8 (B.10) is sufficient to determine the various contributions
to D,, in particular

g0 = —ekrgq . (B.11)

10 This is the condition for £ to be a conformal primary, it dictates the form of the scalar kinetic
term so that Lxo = —0¢o - Opo + %62 (¢o ¢po)-
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This is equivalent to the standard definition u%gI lgo = BT when gof = p*re(gf + L(g)),
with L! containing just poles in € and gives the standard form (8.5).

We assume also that (B.4) with (B.6) extend also to £y including also the field inde-
pendent counterterms so that

(D + Do, + Do, 0,6 + 0y + doy) Lo ~ 161? (0vX —208,0,Y), (B.12)

In a similar fashion to the above this leads to (8.25). (B.12) directly implies the broken
conformal Ward identities discussed in section 4.

Appendix C. Calculations

Assuming continuation to a FEuclidean metric the short distance divergent parts in
(9.40) may be obtained by using the integral formula

/ %z (@ = 2)?) 7 (W - 2)?) ™ £(2)
1

= TG o T M (B ) (€D

+ terms analytic in s,

1

1
w32

for
1
by (,y) = /0 dt ¢392 — gy zdomtnl (192 p(p ) (C.2)

To verify (C.1) it is sufficient to consider Fourier transforms with respect to z,y where

SH

=

)
SH

17— A)
()

and on the right hand side the sum over n reproduces the left hand side within an appro-

D=

/ddx erT () A =nq (%k2)>‘_%d, (C.3)

priate region of convergence. For generic A, u, b, satisfies
(5 0z +d—A—p+n—1by(z,y) —n 10,70, _1(z,y) = (3d— A —1)b,(z,y) |)\_>>\le , (C.4)

as well as the similar equation obtained by =z <> y, A <> u. The t-integration in b, is
convergent when A\, u < %d + n but it may be extended by analytic continuation. b, (x,y)
are smooth functions for y in the neighbourhood of x but there are poles for \,u =
%d +n-+p, p=0,1,..., which reflect short distance sub-divergences. The poles present
in the expansion (C.1) at A + u = 3d + n are generated by divergences for large z which
should be cancelled by the analytic terms assuming f(z) falls off sufficiently fast as z — oo.
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For calculations here the divergent e-poles are obtained by using, for p an arbitrary

scale mass,

p '4 Ss
(o2 —%d—n+%6i _ M_l 1 142\n sd
R =20 Saqrg g GO O, (0)

as € — 0 where a;, d; are assumed to depend on ¢ such that in this limit
p
6;=0(e), a;=0("), Y a6/ =0(1), r=0,....p—1, (C.6)
i=0

The conditions (C.6) are necessary and sufficient for the left hand side of (C.5) to have
a finite limit as € — 0 and also ensure that the pole terms on the right hand side, of
O(e~ "), r=1,...,p, have no u dependence. The result (9.8) is a special case of (C.5).

The results given in (C.1) and (C.5) may be used to obtain the e-poles reflecting short
distance divergences in products involving Y7 (z,y), as defined in (9.41), and also

V(@) = [ 4% Golz - 2) £(2) Gl ~ v). (1)

(C.1) gives the expansion, up to terms which are regular as s — 0,

1 1 1 1 1 s
Yi(z,y) ~ 457 (d—2)2(d—3) bro(z,y) (s*)? 4 £ 45,9, d—2 f(z) (s*)! 2
- 82 == @ L (D), (©3)
where )
bin(z,y) = / dt ¢vti-zd (1—-¢t)" (%62)"]‘(:1: —ts), (C.9)
0
and also
Vse9) ~ — g5 7 - (bro(@.v) - 3_71%(1 brale,)s?) (PP 4 -1),  (©10)
for )
Bl y) = / det™(1— )" (L0 f(z — ts). (C.11)
0

In both (C.8) and (C.10) terms which are regular as s — 0 have been subtracted to cancel
an IR divergence at ¢ = 0. The terms omitted in (C.8), (C.10) are then without any
e-poles. In consequence

11 1 -
Vi(em) o~ S a2 36— aE—d) 0 12
? 1 1 1 )
f(xax)NgEmf(w)-
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There is also a UV sub-divergence present in by o since
2
bro(@,y) ~ _ f(z). (C.13)

The various results in the text can be obtained from analysing the singularities in
products involving Y, Y} using (C.5). For two loop graphs relevant for calculating (9.18),
(9.19) we used

(16%2)2}7]0 (LI), y)guy Yg (ya w)%ua: ~ —(16%2)28,,1;?]0 (wa y)guy Yg (ya 37)
1 ) 4 (C.14)
=52 (1 — z¢) f(z)9(z) 6,0%(s),

and

2 1

(167%)2Y3(2,4) Go(s) ~ — 25 (1= 32) £(2) 8%(s),
(16727 (2,) Ty Go(s) ~ 5 (1= ) (2) 0,0%(s) + 5 0, () 8%(s),  (C.15)
(165°2Go(5) Ty V7 (0,2) ~ 5 (1= 3) £(3) 0u5%(5) + 5 8 (@) 5%(5).

For the three loop integrals in (9.40) it is necessary to determine the e-poles in various
products involving Y; with Y, or G¢*. These can be reduced to

(1622 Yy (2,1) Yy (0. 2) ~ g (1 - e = 322) f(&)g(a) 8%(s). (C-16a)
(16723 Y7 (2, y) RGol(s)? ~ — % (1- 16)(f(z) 6%s) + 8 f(z) 64(s))
+ % f(y) 8%5%(s), (C.16D)

and with one derivative

(1689 Yy (2.) Ty Vil0r2) ~ — o5 (1= 3e = 16%) F(@)al0) 0,6%s)
_ 3—; (1— 16) 8, (f(2)9(x)) 54(s), (C.17a)

(167%)* Yy (z, y)%uy RGy(s)* ~ é (1 - %5) (f(w) au325d(3) - 3u32f(:13) 5d(s))
+ % (0uf(y) *8%(s) — 8u f(y) 0u0,6%(5)) , (C.17b)
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and with two derivatives
<_
(1671' )3 Yf ay) 8#?! Y, (ya ) 81/1:

@
~ (g (1 e 52 F@)90) — 155 (1 ) (F@)9@) + 1w)gw))

x (20,0, + 0,,0%)5%(s)
+ % (1-12) (f(@)9(0) - 1(F@)9(2) + F©)9(v)) ) D,6%(5)

+ 1822 (1 - %5) O (f(:l:) 829(:13) + 32f(:1:) g(x)) 5d(3) (C.18)
1

— ——(1— 5e) (f(%) 8u0,9(z) + 8,0, f(z) g(z)) 6%(s)
+ 55 (1= 38 0u8%(5) (91 f(2) 9(v) + f(2) Buyg(v))
+ o (6,0 Of (z) - Og(z) + 0, f(2) Bug(z) + 0, F(z) Bug(x))%(s).

By integrating 9,2, 8,2 by parts and using (9.42) with (C.16a,b), (C.17a,b) and (C.18)
we may obtain

(167%)3 / 4y dy h(z) B2 (2, y) k(y) 0,2Y, (y, z)
1
/ s (1= de = B) 0,00, 0,k Dug + - 0uh,f (9ukDug + Ok D)

T 9.3 (1 + 3¢ — 114 ) Ouh Ouf (9uk Bug — Ok Oyg)

— 2)(8°h 8% kg + h f 8%k 8%9)

+ — (14 5e) (hO°f B’k g+ O°h [k D?g) + é€(82hf82kg+h82fka2g)

(1— 5¢e) (0uh 0°f 8uk g+ O*h8uf kDug + hOuf 0’k Oug + Ouh f 8,k 0%g)
(1+ 3€)(0,h 0, f 0*k g+ 0,h O, f kO*g + O°h f Ok Oug + h O*f 8,k O,u9)

In a similar fashion, neglecting possible e-tensor contributions,
1

—(1672)3 1 /ddw d%y try (h(z) 0+ 8, Yy (2, y) 6-%1, k(y) o+ 0,Y,(y, z) 5.(503)
4

/dd (9 s (1— 156 — 194€%) 0uh 8, f (0uk Bug — Buk Bpug)
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1 1
~ o2 Ouh 0uf Bk 0,9 + o= 0,0, f (9uk Dyg + Dk D)

1
+ 1gs (1~ 136) (9*hO*f kg + h f 9k 6%)
1 1
t+ 53 (1= 158) (RO’ Ok g+ O°h f K 0%g) — o (8°h f 0%k g + hO°f k &%)
1
+ 52 (1— 35¢) (0uh 0°f Buk g+ O°h Ouf kDug + hOuf 0k Dug + Ouh f 8,k O%g)
1
+ 152 (1+ 55¢) (8uh 8uf 0%k g + 0,h 8, f kD°g + O°h f D,k Bug + h &> Ok 8ug)) :

(C.20)

Appendix D. Four Loop Calculations for Scalar Fields

The additional counterterms necessary for z-dependent couplings may be extended to
four loops for purely scalar field theories. For simplicity we assume here a single component
real scalar field ¢ with interaction V(¢) = o A¢*. For arbitrary A(z) the first relevant
vacuum graph is at three loops giving

1 1 1 1
W<3):—/dd d%y Az)\(y) Go(s)* ~ -
18 | LY AN@ANY) Gols)” ~ Gy 7 561

/dd:c PN N. (D.1)

At four loops there is also just one vacuum graph which generates simple poles in €
and therefore contributes to A;; and other terms in (8.24),
w® = —% / d4z d¥y d?z Az)A(y)A\(z) RGo(z — 2)2 RGo(z — y)? RGo(z — y)?, (D.2)
for RG¢ as in (9.38). Letting
Y (z,y) = / dlz RGo(z — 2)2 A(2) RGo(z — )2, (D.3)

then using (C.1), in order to determine just the contributions containing poles in € it is
sufficient to replace

Y(.’L’,y) —>Y0(a3,y) +Y1(way) +Y2(.’B,y), (D4)
where
1 T(;d)0(3d —4) 24— 32
YO(way): 2(d_2)45d9, F(d—2)2 bO(may) (S ) ¢
-2 dam ez @+ AW) (P 5 rem @) 8.

1 3 (D.5)

1 I'(3d)T'(5d - 5) 2\5—2d

Yl(wiy): 2(d_2)4Sd3 F(d—2)2 bl(x7y) (S ) 3

T(:d)T(3d—6 s
Yo(y) = 4(01—12)4&13 (2F()d —22)2 Vi ()72 =1),




where now )
by(z,y) = /0 Atttz (1 — )13 (L) (1 — ts) . (D.6)

bo has the expansion

e G(A(az) +AY) — = 5 ((5-9)*A=) + (5 - 9)*A(y))

34-5d 1
(5—d)(7 — d) 192

bO (17, y) =
(D.7)

((s-9)*A(@) + (- )*A(w)) + 0<sﬁ>) |

Applying (C.5) gives

1 7

=) (M) + A(y)) 820%6%(s)

(167°)* Yo (2, 4)Go(s)” ~ 55 (1 - 13

- 2%45 (0,0,\(2) + 0,0,\(1)) (20,8, + 6,0,0) 5°%(s)
+ ﬁ D202\ () 64(s) |
(1672)2 Y3 (z, y)Go(s)? ~ 8—18((3%(95) +0%\(y)) 0%6%(s) — L 020 \() 5d(s)) ,
1

(1672)* Ya(z, y)RGo(s)? ~ — 362 (1— %) 020*A(z) 6%(s), (D.8)

and hence

(1672)* Y (z,y)RGo(s)* ~ — = (1+ He) (()\(3:) + Ay)) 020%5%(s) + 8°9°A(z) (5d(s))

36¢2
1

o ((82)\(33) + 0%\ (y)) 826%(s) + 8,202 (\(x) 5d(s))) .

(D.9)
This gives
@ L 11 [ 1) A2 5292\ — 3¢ A (92))° D.1
W~ e = 5 d%s ((1+ Le) —3:A(6%))7) . (D.10)
Using (D.4) with (D.5) we may further find
1 1

(167°)*Y (2,y)Go(s) ~ =55 (1 = ze) (M=) + A()) 90%(s) + 5~ 0°A(2) 8%(s),  (D-11)

which is equivalent to (C.16b), and to a result obtained in [9], and also

(167%)° ¥y (@, 9)RGo(s)* ~ =5 5 (1= 3¢) (f(2) + f(3) 9%6%(s) +

1

(1= 1) 92 /() 6%(s) .

(D.12)
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