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1. Introduction

A full understanding of how the nucleon and other hadrons are constructed from their quark
and gluon constituents remains one of the most important and challenging questions in modern
nuclear physics. Thanks to their probability density interpretation, generalised parton distributions
(GPDs) in impact parameter space [1] are an extremely valuable tool for achieving this goal. By
determining the lowest few moments of GPDs, lattice QCD simulations have already provided
valuable insights into the transverse spin structure of the nucleon [2]. This is achieved through the
definition of the xn−1 moment of the density of transversely polarised quarks (with spin vector s⊥)
in a transversely polarised nucleon (with spin vector S⊥) at impact parameter b⊥ [3],

ρ
n(b⊥,s⊥,S⊥) =

∫ 1

−1
dx xn−1

ρ(x,b⊥,s⊥,S⊥) (1.1)

=
1
2
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(
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2
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The impact parameter dependent generalised form factors (GFFs) An0(
2
⊥), AT n0(b2

⊥), . . . in Eq. (1.1)
are related to the momentum space GFFs An0(t), AT n0(t), . . . by a Fourier transform

f (b2
⊥)≡

∫ d2∆⊥
(2π)2 e−ib⊥· ∆⊥ f (t =−∆

2
⊥), (1.2)

where we denote the momentum transfered to the hadron by ∆ with t = ∆2. The derivatives of the
impact parameter GFFs in Eq. (1.1) are defined as f ′ ≡ ∂b2

⊥
f and4b⊥ f ≡ 4∂b2

⊥
(b2
⊥∂b2

⊥
) f .

The QCDSF/UKQCD collaboration has embarked on a program to systematically investigate
the role of SU(3)-flavour symmetry breaking in hadron properties [4, 5, 6, 7, 8, 9, 10, 11]. In this
talk we extend this program and present preliminary N f = 2+ 1 lattice QCD results for the octet
baryon electromagnetic and tensor form factors, and how they can lead to a determination of the
first (n = 1) moment of their transverse spin densities.

2. Simulation Details

Our gauge field configurations have been generated with N f = 2 + 1 flavours of dynami-
cal fermions, using the tree-level Symanzik improved gluon action and nonperturbatively O(a)
improved Wilson fermions [12]. We choose our quark masses by first finding the SU(3)flavour-
symmetric point where flavour singlet quantities take on their physical values, then varying the in-
dividual quark masses while keeping the singlet quark mass mq =(mu+md+ms)/3=(2ml+ms)/3
constant [4]. We have generated a large set of ensembles of varying quark masses and volumes at
β = 5.50 and β = 5.80, corresponding to lattice spacings, a = 0.074 fm and a = 0.059 fm respec-
tively, where we have used a variety of singlet quantities to set the scale [4, 5, 13]. The results
presented in this proceedings are obtained on a subset of the complete set of ensembles [13], with
the range displayed in Fig. 1 of [6]. More details regarding the tuning of our simulation parameters
are given in Refs. [4, 5, 13].

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
1
6
3

Transverse spin densities J. M. Zanotti

3. Electromagnetic and Tensor Form Factors

In order to determine the lowest (n = 1) moment of the transverse spin densities of the octet
baryons, we require lattice QCD determinations of the electromagnetic and tensor form factors.

On the lattice, we determine the Dirac F1(t) = A10(t) and Paul F2(t) = A20(t) form factors by
calculating the following matrix element of the electromagnetic current

〈B(p′, s′)| jµ(∆)|B(p, s)〉 = ū(p′, s′)
[

γµF1(t)+σµν

∆ν

2MB
F2(t)

]
u(p, s) , (3.1)

where u(p, s) is a Dirac spinor with momentum p, and spin polarisation s, ∆ = p′− p is the mo-
mentum transfer, MB is the mass of the baryon B, and jµ is the electromagnetic current. The form
factors of the proton are obtained by using j(p)

µ = 2
3 ūγµu− 1

3 d̄γµd, while the form factors for the Σ

and Ξ baryons are obtained through the appropriate substitution, u→ s or d→ s. Here we will be
focussing on quark flavour distributions so we will consider only the individual quark contributions
to the total baryon form factors.

The transverse density also requires the tensor form factors of the octet baryons,

〈B(p′, s′)|Oµν

T (∆)|B(p, s)〉 = ū(p′, s′){iσ µνAT 10(t)+
P[µ

∆ν ]

M2
B

ÃT 10(t)+
γ [µPν ]

2MB
BT 10(t)}u(p, s) ,

(3.2)
where Oµν

T = q̄iσ µνq is the tensor current for quark of flavour q, γ [µPν ] ≡ γµPν−γνPµ , P = p′+p
2 .

We note that the value of the form factor AT 10 at zero momentum transfer is the familiar tensor
charge AT 10(t = 0) = gT .

The electromagnetic form factors from these ensembles have appeared previously in [6, 7]. As
an example of the quality of our form factors, in Fig. 1 we show the individual quark contributions
to the electromagnetic form factors of the proton, Σ and Ξ baryons at a pion mass on mπ ≈ 310 MeV.
In this preliminary work we perform dipole fits F(t) = F(0)/(1− t/M2)2 to F1 and F2 as seen in
Fig. 1, although it is common knowledge that such an ansatz gives a poor description of the form
factors. This will be addressed in future work. Similarly, Fig. 2 shows an example of the individual
quark contributions to the octet baryon tensor form factors AT 10(t), where again, in this preliminary
work these form factors are fitted using a dipole form.

4. SU(3) Flavour Symmetry Breaking Extrapolation to Physical Mass

To extrapolate to the physical quark masses, we consider an SU(3) flavour symmetry breaking
expansion [14] at fixed values of Q2 =−t [6]. We proceed by constructing combinations of baryon
form factors to form f -fan and d-fan plots [14], where the x-axis represents the pion mass of each
configuration divided by a normalisation X2

π = (2M2
K +M2

π)/3 such that the symmetric points all
lie at x = 1. Similarly we to construct the y-axis such that the form factor value of the symmertic
points all lie at y = 1. This is achieved by normalising the form factors at fixed momentum transfer
by a flavour singlet quantity XT [14]. An example of an f -fan plot is shown in Fig. 3, for the
first tensor form factor AT 10 or gT at zero momentum transfer (t = Q2 = 0), i.e. this is the f -fan
of the tensor charge. In the remainder of this proceedings we will focus on f -fan results (which
correspond to doubly-represented quarks) and leave the d-fan results for a future publication. A
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Figure 1: Individual quark contributions to the electromagnetic form factors of the proton, Σ and Ξ

baryons at a pion mass on mπ ≈ 310 MeV, plotted as a function of Q2 =−t.

dotted black line represents the physical value of m2
π/X2

π , and thus each of the coloured stars
represents our extrapolated value of the form factor value at that specific Q2 for each baryon. The
point that we see for the physical value is normalised by flavour singlet combination XT . Since the
tensor form factors of the octet baryons are not yet known experimentally, we determine XT at the
physical mass by extrapolating our lattice values with a linear form as shown in Fig. 4. Since this
is an SU(3) flavour singlet, it should have very little dependence on the amount of SU(3) flavour
breaking (occurs at O((δm)2)) [5] and this is observed by the mild slope in our fitted results.

We repeat this method by first binning our results across all our ensembles into 6 t = Q2 bins
(see Fig. 6 of [6]) and performing the SU(3) flavour breaking expansion of the form factors for
each of these bins. In Fig. 5 we present our results for the doubly-represented quark contribtions to
the baryon tensor form factors AT 10(t) extrapolated to the physical masses as a function of t = Q2

together with a dipole fit.

5. Transverse Spin Densities

Having now determined the individual quark contributions to the octet baryon EM and tensor
form factors at the physical point, we are now in a position to determine the transverse spin densities
of quarks inside the octet baryon as given in Eq. (1.1). As described in the previous section, in this
preliminary study all form factors have been fitted using a dipole ansatz. We Fourier transform each
dipole fit (Eq. (1.2)) to obtain impact parameter form factors. Finally, we construct a combination
of two of the tensor form factors calculated in the previous section to form the third form factor
that we require to calculate the transverse spin density, where BT 10(Q2) = 2ÃT 10 +BT 10, [3].
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Figure 2: Individual quark contributions to the octet baryon tensor form factors together with dipole
fits, plotted as a function of Q2 =−t.

Figure 3: f -fan of AT 10 = gT at fixed t =Q2 = 0
showing the extrapolation to the physical point.

Figure 4: Linear extrapolation of flavour singlet
XT for the f -fan for AT 10 = gT at t = Q2 = 0.

If we analyse equation (1.1) in further detail we recognise the orbitally-symmetric monopole
terms and further two dipole structures b j

⊥ε jiSi
⊥ and b j

⊥ε jisi
⊥ , and the last term corresponds to a

quadrupole structure [2]. Thus the derivatives of the EM and tensor form factors B10(b⊥), BT 10(b⊥)
and ÃT 10(b⊥) all correspond to the strength of the distortion in the orbital symmetry in the trans-
verse plane.

Choosing both Si
⊥ , si

⊥ = 0, isolates the situation where both the nucleon and quark spin are
unpolarised. In this scenario, the only remaining term in the spin density equation (1.1) is the
1
2 A10(b⊥) term and hence there is no distortion in the orbital symmetry, producing spherically
symmetric quark distributions in the transverse (impact-parameter) plane.

In these proceedings, we choose to present as an example the distributions of unpolarised
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Figure 5: Tensor form factor AT 10 extrapolated to the physical masses together with a dipole fit.

quarks in a baryon polarised in the +x-direction. The results for the u-quark in the proton and the
Σ baryon are compared in Fig. 6 where we observe a clear distortion from a spherically-symmetric
behaviour due to the presence of a non-vanishing anomalous magnetic moment. While we see
similarities in these doubly represented up quarks distributions, we note that distribtion of the u-
quark in the Σ is broader than that for the same flavour quark in the proton. This can only be due
to the influence of the heavier spectator s-quark in the Σ baryon as compared to the light spectator
d-quark in the proton. Further effects of the quark spin distributions in the various baryons will be
presented in a forthcoming publication.
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