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Propagation of electro-magneto-acoustic waves in a three phase magneto-electro-elastic periodic

structure has been investigated with full coupling between mechanical, electric, and magnetic

fields. Due to simultaneous piezoelectric and piezomagnetic effects, an orthogonally polarised

electromagnetic wave couples with the similarly polarised lattice vibration, resulting in a both

dielectric and magnetic phonon-polaritons. The closed form of dispersion relation has been used to

demonstrate the phonon-polariton coupling not only in the long wave region at high acoustic

microwave frequencies but also for shorter waves at optical infrared frequencies. The results also

show that neither at acoustic nor at optical frequencies the magneto-electro-elastic effect affects

the band structure due to the Bragg scattering. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891836]

I. INTRODUCTION

Propagation of electro-magneto-elastic waves in piezo-

electric and magneto-electro-elastic (MEE) periodic structures

recently attracted much attention due to the wide range of

application of these structures in smart materials. It is well

known that band gap effects for the propagation of both elec-

tromagnetic and acoustic waves can be obtained in such struc-

tures. These effects are due to the periodic modulation of the

physical parameters resulting in Brag reflection and the for-

mation of frequency band structures. A modulation of dielec-

tric parameters (or refractive indexes) results in photonic

crystal with a complete photonic band gap, a frequency range

for which the propagation of electromagnetic waves is forbid-

den.1 Phononic crystals, on the other, are periodic composites

made of two or more materials with different elastic constants

and densities and can control the propagation of elastic and

acoustic waves.2–4 The existence of architectures, called

phoxonic crystals, simultaneously exhibiting both complete

photonic and phononic band gaps has also been discussed,5

opening the possibility of dual acousto-optic devices.

Bragg reflection, however, may not be the only mecha-

nism for band structure formation. Some other effects such

as acousto-optic coupling can also generate band gaps.

Analogous to an ionic crystal, where coupling between trans-

verse lattice vibrations and electro-magnetic waves leads to

the phonon polariton with possible stop bands in the infrared

region,6,7 piezoelectric and piezomagnetic periodic struc-

tures with the periodicity of the lattice expanded from an

atomic scale to microns can exhibit similar coupling and res-

onant band gap structure in the microwave region.8–10

In an ionic crystal photon dispersion of EM waves is lin-

ear, while phonon dispersion of lattice vibrations is folded,

because of the reduced Brillouin zone. The crossing of the

photon and optical phonon dispersions takes place in the

long-wavelength limit (compared to the periodicity of the

lattice) where a strong coupling of the EM wave and the lat-

tice vibration leads to the existence if phonon-polariton

gaps.11 A piezoelectric (PSL) or piezomagnetic (PMSL)

superlattice consisting of a periodically domain-inverted

dielectric crystal, which has a homogeneous refractive index

but periodically modulated piezoelectric or piezomagnetic

coefficients, can be considered as a one dimensional diatom

chain where the positive and negative ions are arranged peri-

odically. Taking this approach, the phonon-polariton cou-

pling has been investigated in PSL and PMSL in the long-

wavelength approximation near the center of the Brillouin

zone.10–13 Theoretical and experimental work has suggested

that in a PSL, electro-magnetic waves can also couple with

longitudinal superlattice vibrations, introducing a new type

of polariton that does not exist in ionic crystals.14 Therefore,

there are not only similarities but also differences between

artificial superlattices and real lattices, implying rich physics

of artificial microstructures.

While the long-wave approximation only reveals the

phonon-photon polariton at high acoustic frequencies in the

middle of the Brillouin zone the analytical solution shows

that coupling of photons and phonons is possible also at opti-

cal frequencies in the whole Brillouin zone.15–17

Recently, another kind of superlattice with alternated PE

and PM stacks was demonstrated by Zhao et al.,18 where the

lattice vibration couples with the EM wave through the piezo-

electric effect and piezomagnetic effect, and PE polariton and

PM polariton are induced at the same time. However, in these

periodic structures, piezoelectric and piezomagnetic phases

coupling occurs only through elastic vibrations of the lattice.

In this paper, we investigate the phonon-photon polari-

ton coupling in a new kind of three phase magneto-electro-

elastic (MEE) periodic structure with full coupling between

mechanical, electric, and magnetic fields. MEE materials are
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a class of new composites that consist of simultaneous piezo-

electric, piezomagnetic phases and an electro-magnetic cou-

pling coefficient.19,20 Different problems concerning the

frequency band structure of MEE materials due to Bragg

scattering have been investigated.21,22

In all these studies, the quasi-static approximation is

adopted for the electromagnetic field under which both the

optical effect and the effect from the rotational part of the

electric field are neglected and the acousto-optic resonances

have not been investigated. To the best of our knowledge,

the full equations of MEE materials in dynamic settings,

which can provide accurate formulae for acousto-optic inter-

action, have not been investigated so far. The solutions for

MEE periodic structures will include as particular cases solu-

tions for piezoelectric, piezomagnetic, piezoelectric-

piezomagnetic, and piezoelectric-elastic structures.

The analytical dispersion equation will not only allow

consideration of phonon polariton coupling in a MEE superlat-

tice with unit cells made of oppositely polarized identical

materials, as can be done in the long wave approximation,10–14

but also allow consideration of such phenomena in phononic/

photonic crystals with unit cells made of different constituent

materials. We will also be able to investigate phonon-polariton

coupling not only in the long-wavelength limit near the center

of the Brillouin zone at high acoustic frequencies but also in

the whole Brillouin zone closer to optical frequencies.

II. STATEMENT OF THE PROBLEM

We will consider a one dimensional periodic structure

composed of two magneto-electro-mechanical (MEE) seg-

ments of the same group of symmetry 6 mm with crystallo-

graphic axes directed along the Oz direction. The unit cell of

a period b consisting of a MEE inclusions of thickness b em-

bedded and perfectly bonded with the matrix made of

another MEE material of a thickness a as shown in Figure 1.

A coupled transverse electro-magneto-elastic wave trav-

els along the MEE polling direction. The interaction between

the transverse EM wave and transverse elastic waves in each

material can be described by the following one-dimensional

equations and constitutive relations (@=@x; @=@y ¼ 0)

@r
@z
¼ q

@2u

@t2
; r ¼ G

@u

@z
� eE� dH; (1)

D ¼ e
@u

@z
þ eEþ gH; B ¼ d

@u

@z
þ gEþ lH; (2)

rot H ¼ @D

@t
; rot E ¼ � @B

@t
; (3)

where u ¼ ðux; uyÞ, are the displacement vectors, r ¼
ðrxz; ryzÞ the stress tensor, B ¼ ðBx;ByÞ, D ¼ ðDx;DyÞ,
E ¼ ðEx;EyÞ and H ¼ ðHx;HyÞ the electric displacement,

the electric field intensity and the magnetic induction,

magnetic field intensity, q, G ¼ c44, e ¼ e11 and l ¼ l11 the

mass density, the elastic, dielectric and magnetic coefficients,

e ¼ e15, d ¼ d15 and g ¼ g11 the piezoelectric, piezomagnetic

and electro-magnetic coupling coefficients. After introducing

the following notations u ¼ ux þ iuy, rðzÞ ¼ rxzðzÞ þ iryzðzÞ,
H ¼ Hx þ iHy, E ¼ Ex þ iEy, D ¼ Dx þ iDy, B ¼ Bx þ iBy,

(i ¼
ffiffiffiffiffiffiffi
�1
p

), Eqs. (1)–(3) can be replaced by the system

of three equations with respect to unknown functions u, H
and E

e
@E

@t
þ g

@H

@t
� i

@H

@z
þ e

@2u

@z@t
¼ 0; (4)

g
@E

@t
þ l

@H

@t
þ i

@E

@z
þ d

@2u

@z@t
¼ 0; (5)

G
@2u

@z2
� q

@2u

@t2
� e

@E

@z
� d

@H

@z
¼ 0: (6)

The solutions of Eqs. (4)–(6) can be written as

uðzÞ¼m11a1ðzÞþm13a2ðzÞ; rðzÞ¼m22b1ðzÞþm24b2ðzÞ; (7)

HðzÞ ¼ m31a1ðzÞ þ m32b1ðzÞ þ m33a2ðzÞ þ m34b2ðzÞ ; (8)

EðzÞ ¼ m41a1ðzÞ þ m42b1ðzÞ þ m43a2ðzÞ þ m44b2ðzÞ; (9)

where

m11 ¼ p2 � x2=c2; m13 ¼ q2 � x2=c2 (10)

m22 ¼ c44p3� p~c44x
2=c2; m24 ¼ c44q3� q~c44x

2=c2; (11)

m31 ¼ p2ex; m32 ¼ pðde� egÞx2; m33 ¼ q2ex;

m34 ¼ qðde� egÞx2;
(12)

m41 ¼ p2dx; m42 ¼ pðel� dgÞx2; m43 ¼ q2dx;

m44 ¼ qðel� dgÞx2;
(13)

and

a1ðzÞ ¼ C1 exp ðipzÞ þ C2 exp ð�ipzÞ;
b1ðzÞ ¼ iðC1 exp ðipzÞ � C2 exp ð�ipzÞÞ;

a2ðzÞ ¼ C3 exp ðiqzÞ þ C4 exp ð�iqzÞ;
b2ðzÞ ¼ iðC3 exp ðiqzÞ � C4 exp ð�iqzÞÞ;

p ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

p
2c0c

s
; q ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

p
2c0c

s
;

n ¼ c

~c0

þ ~c0

c
> 2; ~c0 ¼

ffiffiffiffi
~G

q

s
; c0 ¼

ffiffiffiffi
G

q

s
;

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el� g2

p ; ~G ¼ G 1þ rð Þ; r ¼ d2eþ e2l� 2deg

G el� g2ð Þ ;
FIG. 1. Schematic diagrams of the 1D periodic MEE structure.
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where r is the electromagnetic coupling coefficient of the

MEE material, C1; C2; C3; C4 are complex constants.

Equations (4)–(6) couple transverse elastic displace-

ments with transverse components of the electromagnetic

field. The phase velocity of the coupled waves can be deter-

mined from Eq. (22).

For a piezoelectric material (d ¼ 0, g ¼ 0), complex

equations (4)–(6) uncouple into two sets of identical equa-

tions describing coupled transverse electromagnetic and elas-

tic waves of different modes (ux;Ex; Hy) and (uy;Ey; Hx).

For a piezomagnetic material (e ¼ 0, g ¼ 0), Eqs. (4)–(6)

uncouple into two identical set of equations describing

coupled transverse electromagnetic and elastic waves of dif-

ferent modes (ux;Ey; Hx) and (uy;Ex; Hy). These independ-

ent modes can be set in motion by perturbing the external

electromagnetic or elastic fields.

For writing interface and Bloch boundary conditions, it

is convenient to introduce the following two vectors
~UðzÞ ¼ ðu; r;H;EÞT , AðzÞ ¼ ða1; b1; a2; b2ÞT and the matrix

M ¼ fmijg with nonzero elements (10)–(13) (m12 ¼ m14

¼ m21 ¼ m23 ¼ 0) and write Eqs. (7)–(9) as

~U
ðsÞðzÞ ¼ MðsÞAðsÞðzÞ; (14)

where superscripts s ¼ 1; 2 and here and elsewhere show

that the functions belong to the mediums 1 and 2. The inter-

face and Bloch conditions can then be written as

~U
ð1Þð0Þ ¼ ~U

ð2Þð0Þ; ~U
ð1Þð�bÞ ¼ k~U

ð2ÞðaÞ; (15)

where k ¼ eikb and k is the Bloch wave number.

The interface conditions represent continuity conditions

for the displacements, shear stresses and tangential compo-

nents of the magnetic and electric field vectors (tangent to

interface surfaces). We also need the transfer matrix within a

homogeneous material which for each MEE material has the

form14

TðzÞ ¼

Cp Sp 0 0

�Sp Cp 0 0

0 0 Cq Sq

0 0 �Sq Cq

0
BB@

1
CCA ;

where Cp ¼ cosðpzÞ, Sp ¼ sinðpzÞ, Cq ¼ cosðqzÞ,
Sq ¼ sinðqzÞ. Using the property of the transverse matrix

AðsÞðz0Þ ¼ TðsÞðz0 � zÞAðsÞðzÞ and the Bloch-Floquet condi-

tions we arrive at the following matrix eigenvalue problem:

ðS� kIÞAð2Þð�bÞ ¼ 0; (16)

where S ¼ ðM2Tð2ÞðaÞM�1
2 ÞðM1Tð1Þð�bÞM�1

1 Þ, and the fol-

lowing dispersion equation holds:

Fðk;xÞ ¼ k4 þ f ðxÞk3 þ gðxÞk2 þ f ðxÞ þ 1 ¼ 0; (17)

where the expressions for f and g for an MEE superlattice

are given in the Appendix. Presenting Eq. (17) in the form

kþ 1

k

� �2

þ kþ 1

k

� �
f þ g� 2 ¼ 0; (18)

and taking into account that k ¼ eikb and kþ k�1 ¼ 2 cos bk
the trigonometric solution of the dispersion equation is

cos bk ¼ 1

4
�f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 4gþ 8

p� �
;

cos bk ¼ 1

4
�f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 4gþ 8

p� �
: (19)

Dispersion equations (19) describe not only the band struc-

ture at both acoustic and optic frequencies due to the Bragg

scattering but also band gaps due to acousto-optic resonances.

As a particular case this setting will also allow us to study peri-

odic structures with alternating layers of piezoelectric, piezo-

magnetic or piezoelectric and piezomagnetic materials with

different polarizations and different mechanical properties.

Without piezoelectric-piezomagnetic coupling equations

(19) uncouple to give a dispersion equation for the propaga-

tion of a pure electromagnetic wave

cos bkð Þ ¼ cos
ax

c 1ð Þ

� �
cos

ax

c 2ð Þ

� �

� 1

2

Z 1ð Þ
op

Z 2ð Þ
op

þ
Z 2ð Þ

op

Z 1ð Þ
op

 !
sin

ax

c 1ð Þ

� �
sin

ax

c 2ð Þ

� �
(20)

and pure acoustic wave

cos bkð Þ ¼ cos
ax

c 1ð Þ
0

� �
cos

ax

c 2ð Þ
0

� �

� 1

2

Z 1ð Þ
ac

Z 2ð Þ
ac

þ Z 2ð Þ
ac

Z 1ð Þ
ac

 !
sin

ax

c 1ð Þ
0

� �
sin

ax

c 2ð Þ
0

� �
; (21)

in the periodic structures where

ZðjÞop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðjÞ=eðjÞ

q
; ZðjÞac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðjÞqðjÞ

q
; j ¼ 1; 2;

are optic and acoustic impedances in two materials.

For a non-periodic MEE material, the dispersion equa-

tion (17) describes two magneto-electro-acoustic waves

given by the dispersion equation

1� el� g2
� �x2

k2

� �
1� q

G

x2

k2

� �
¼ rx2 el� g2

� �
k2

: (22)

To a first degree approximation for r � 1 Eq. (22) gives

two solutions, one describing a quasi-acoustic wave x2=k2

� c2
0ð1� rc2

0=c2Þ and the other a quasi-electromagnetic wave

x2=k2 � c2ð1þ rc2
0=c2Þ. Due to the magneto-electro-elastic

coupling, the phase velocity of the first wave is lower than the

acoustic wave velocity and the velocity of the second wave is

greater than that of the electromagnetic wave. The two disper-

sion curves are straight lines passing through the origin and

not exciting frequency band gaps or acousto-optic coupling.

III. NUMERICAL RESULTS AND DISCUSSION

A. Phonon-polariton at acoustic frequencies

Two dispersion curves in Eq. (19) describe the band

structure due not only to Bragg scattering but also internal

resonances occurring from interactions between electromag-

netic and acoustic waves. These interactions in MEE
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periodic crystals at acoustic frequencies give rise to polariton

behavior at wavelengths much larger than the cell length that

is not associated with Bragg scattering but rather the

acousto-optic coupling near resonance frequencies. For pie-

zoelectric superlattices, these interactions at high acoustic

frequencies have been investigated in a long wave approxi-

mation for different polarizations.8–14 The analytical expres-

sion of the dispersion equations (19) describes acousto-optic

coupling not only in the long wave region but also in the

whole Brillouin zone at optic frequencies which cannot be

shown in the long wave approximation approach.

The analysis of Eq. (19) shows that at acoustic frequen-

cies (x � c0b
�1) as k0b! 0 there is an interaction between

the quasi-electromagnetic wave described by Eq. (20) and the

quasi-acoustic wave described by Eq. (21). When the fre-

quencies of these waves and wave numbers nearly coincide

this interaction results in coupling and creation of two disper-

sion curves, low and high polaritons, separated by polariton

band gaps. The size of the band gaps depends on material

constants and the configuration of the MEE superlattice.

Numerical calculation have been carried out both at

acoustic and optic frequency regions for a MEE superlattice

and MEE phononic crystal made of two different constituent

materials. Material parameters of the MEE periodic crystal

BaTiO3–CoFe2O4 for different volume fractions are taken

from Yu et al.23

Since the dispersion curve of photons at acoustic fre-

quencies is too close to the vertical axis (Fig. 2(a)) the cou-

pling between the EM wave and superlattice vibration can be

seen in the long wavelength region. Figure 2(b) shows the

acousto-optic resonance in the MEE superlattice which is

made of the same MEE material with opposite polarizations

in two adjacent domains. Although in this case the MEE

structure can have frequency band gaps due to the Bragg

scattering, which in the case of a piezoelectric superlattice

with the wave vector orthogonal to the polling direction has

been shown in Piliposian et al.,15 in the present setting when

the wave vector of a coupled wave is parallel to the polling

direction the magneto-electro-coupling effect is quite week

so that it even is not present in the equations in a quasistatic

setting. That is why band gaps at the end of the Brillouin

zone are nonexistent for a MEE superlattice (Fig. 2(a)) and

negligible for a periodic crystal having two different constit-

uent materials in the unit cells with small differences in their

impedances. (Fig 3(a)). However, the detailed profile of the

band structure in the long wavelength region in Figure 2(b)

demonstrates the phonon-photon coupling. The horizontal

lines correspond to the phase velocity of the acoustic wave

enhanced by the piezoelectric-piezomagnetic coupling. The

linear oblique dotted line computed by Eq. (20) corresponds

to the phase velocity of a pure EM wave uncoupled to the

lattice vibrations. The region of crossover of these two lines

FIG. 2. (a) Band structure of an MEE

superlattice at acoustic frequencies for

a¼ b, (b) the zoomed profile of the

band structure and phonon-polariton

near the centre of the Brillouin zone.

The horizontal dashed lines correspond

to the phase velocity of the acoustic

wave enhanced by the piezoelectric-

piezomagnetic coupling. The linear

oblique dotted line corresponds to the

phase velocity of a pure EM wave.

FIG. 3. (a) Band structure of the MEE

periodic structure at acoustic frequen-

cies for a¼ b, (b) the zoomed profile

of the band structure and phonon-

polariton near the centre of the

Brillouin zone. The horizontal dashed

lines correspond to the phase velocity

of the acoustic wave enhanced by the

piezoelectric-piezomagnetic coupling.

The linear oblique dotted line corre-

sponds to the phase velocity of a pure

EMwave.
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is the resonance region, where for a very narrow range of k
neither an EM nor an acoustic wave can propagate.

As it shows in Figure 2(b), the acousto-optic coupling

for a ¼ b takes place at not all integer multiples of funda-

mental resonance frequency but only for odd values

ðxbÞ=ð2pc
ð1Þ
0 Þ ¼ m, m ¼ 1; 3;…, for even m polariton is not

excited. For a ¼ 2b, polaritons are not excited with threefold

order of the values m (Fig. 4(a)). The same phonon-polariton

features can be seen also for a periodic MEE structure with

different constituent materials (Fig. 3(b)). In both cases, low

order polaritons have larger gaps which get narrower for

high order polaritons. For an MEE superlattice, the width of

the first gap is about 7.5%, higher than for piezoelectric

superlattices.9,12 However as Figure 3(b) shows the widths

of polariton gaps can be changed by changing the magneto-

electro-mechanical coupling coefficient r, with piezoelectric

coefficient having a stronger impact on the phonon-polariton

gap than the piezomagnetic coefficient (Fig. 4(b)). If the pe-

riod in the periodic MEE structure is 4.5 lm, then the first

polariton gap will be excited close to a resonance frequency

2 GHz and the second around a resonance frequency 6 GHz

which lie at microwave region.

B. Phonon-polariton at optic frequencies

The explicit expression of dispersion equations (19) nor-

malised with the “speed” of the EM wave c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
el� g2

p
demonstrates magneto-acoustic coupling also at optic

frequencies. In this resolution, Eq. (19) fills the whole space

with the interface line coinciding with the line described by

Eq. (20) (Fig. 5(a)). The enlarged Figures 5(b), 6(a), and 6(b)

in resolution of the acoustic frequency each around one par-

ticular point on the interface line for a MEE superlattice

clearly show polariton gaps at optic frequencies. The

acousto-optic resonances here occur for short waves, unlike

phonon polaritons at acoustic frequencies.

The phonon-polariton coupling occurs also for an MEE

periodic structure made of different constituent materials

(Fig. 7(a)). The enlarged picture near the marked points in

Fig. 7(a) shows a phonon-polariton gap at different optic fre-

quencies (Figs. 7(b) and 8). If the period in the periodic MEE

structure is 4.5 lm, then the first polariton gap will be excited

close to a resonance frequency 2.01 THz and the second around

a resonance frequency 4.02 THz which lie at the infrared region.

In this case, the structure also acts as a photonic crystal

showing band gaps at the end of the Brillouin zone due to a

periodic modulation of the refractive indexes.

IV. CONCLUSION

We have calculated a closed form of the dispersion rela-

tion for the propagation of coupled electro-magneto-elastic

waves in a three phase magneto-electro-elastic (MEE) peri-

odic structure. This is a new class of composites consisting

of piezoelectric and piezomagnetic phases with both elastic

and magneto-electric coupling between the phases. Due to

FIG. 4. (a) The phonon-polariton band

structure of the MEE superlattice at

acoustic frequencies near the centre of

the Brillouin zone for a¼ 2b, (b) the

inner dot-dash line shows the phonon-

polariton band gap, the bold line is the

gap for a doubled value of the piezo-

magnetic coefficient, the outer dot

lines show the gap for doubled value

of a piezoelectric coefficient. The hori-

zontal dashed lines correspond to the

phase velocity of the acoustic wave

enhanced by the piezoelectric-

piezomagnetic coupling. The linear

oblique dotted line corresponds to the

phase velocity of a pure EM wave.

FIG. 5. (a) Band structure of the MEE

superlattice at optic frequencies and

(b) the zoomed profile of the band

structure near kb=p ¼ 0:4.
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the dynamic settings of the Maxwell’s equations, both the

optic effects and effects from the rotational part of the elec-

tric field are taken into account, giving an opportunity to ana-

lyse the acousto-optic resonances. These resonances give

rise to phonon-photon polaritons at acoustic (in a microwave

region) and optic frequencies (in infrared region).

In the present setting when the wave vector of a mag-

neto-electro-elastic coupled wave is parallel to the polling

direction, the piezoelectric, piezomagnetic and magneto-

electric effects on frequency band gaps due to Bragg scatter-

ing are quite weak. In a quasistatic setting of the Maxwell’s

equations, the piezoelectric and piezomagnetic coefficients

are even not present in the equations. The acousto-optic cou-

pling however due to piezoelectric, piezomagnetic and

magneto-electric effects is strong. At high acoustic frequen-

cies this coupling creates phonon-polariton gaps in the middle

of the Brillouin zone. At optic frequencies phonon-polariton

coupling occurs throughout the whole Brillouin zone.

In a following paper, our next step will be to use the

long wave approximation applied to a MEE superlattice

structure to investigate the permittivity and permeability

functions near the acousto-optic resonance regions, including

the possibility of simultaneous negative regions for these

functions to form a so called “left–handed” material.

FIG. 6. The zoomed profile of the

band structure near (a) kb=p ¼ 0:6 and

(b) kb=p ¼ 0:7 of a MEE periodic

superlattice at optic frequencies.

FIG. 7. (a) Band structure of the MEE

periodic structure at optic frequencies

and (b) the zoomed profile of the polar-

iton dispersion curves near

kb=p ¼ 0:5.

FIG. 8. (a) and (b) the zoomed profile

of the polariton dispersion curves near

kb=p ¼ 0:5 at different optic

frequencies.
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APPENDIX: EXPRESSIONS FOR FUNCTIONS G AND F
IN EQUATION (17)

g ¼V½3ð4þ n2Þ þ 48ð1þ rÞ2a8ð4þ n2Þ � 8a2nw1w2

þ 2a4ð8ð8þ 5rð2þ rÞÞ þ 2ð22þ rð26þ rÞÞn2 þ 3n4Þ
� 4r2a4ðn2 � 4Þ cos ðaqÞ þ cos ðapÞð4r2a4ð4� n2Þ
�ð3ð4þ n2Þ þ 48ð1þ rÞ2a8ð4þ n2Þ � 8a2nw1w2

þ 4a4ð8þ 4rð10þ 7rÞ þ ð34� ðr � 26ÞrÞn2ÞÞcosðaqÞÞ
þ16ðw2 � ð2þ rÞa2nÞð2ðn� 4ð1þ rÞa2Þða2n� 1Þ
þ 2ðnw2 � 4ð2þ rÞa2ÞcosðapÞ cos ðaqÞÞsinðapÞsinðaqÞ�;

f ¼ � Vðn2 � 4Þ½2ðw2 � 2a2nÞ2 þ ð1� 4ð1þ rÞa4Þ2 cos ðaqÞ
þ ð1� 4ð1þ rÞa4Þ2 � 4ð1þ 4a4ð3þw2Þ�2a2w2nÞ
� cos ðaqÞÞ cos ðapÞ þ 32a2ðw2 � ð2þ rÞa2nÞ
� sin ðapÞ sin ðaqÞ�;

V ¼ 1

2a4 n2 � 4
� �2

; a ¼ c0

c
; w1 ¼ 8þ 6r þ n2

� �
;

w2 ¼ 1þ 4 1þ rð Þa4:
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