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We consider a linearized dynamical system modelling the flow rate of water along the
rivers and hillslopes of an arbitrary watershed. The system is perturbed by a random
rainfall in the form of a compound Poisson process. The model describes the evolution, at
daily time scales, of an interconnected network of linear reservoirs and takes into account
the differences in flow celerity between hillslopes and streams as well as their spatial
variation. The resulting stochastic process is a piece-wise deterministic Markov process
of the Orstein-Uhlembeck type. We provide an explicit formula for the Laplace transform
of the invariant density of streamflow in terms of the geophysical parameters of the river
network and the statistical properties of the precipitation field. As an application, we
include novel formulas for the invariant moments of the streamflow at the watershed’s
outlet, as well as the asymptotic behavior of extreme discharge events.
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1. Introduction

River networks are a chief example of interconnected dynamical systems operating
under stochastic forcing. The emerging properties of these systems define the process
by which rainfall is converted into river discharge through the accumulation of
hillsolpe runoff. Therein lies the fundamental problem of hydrology. Uncertainty
plays a key role too, and the pronounced temporal variability of runoff and discharge
reflects the random character of key hydrologic fluxes (Botter et al., 2007a).

We propose and solve a stochastic differential model for the streamflow and
subsurface runoff throughout an arbitrary watershed under a random precipitation
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field. The proposed conceptual model uses the linearized equations for conserva-
tion of mass and momentum on each river and hillslope proposed by Gupta and
Waymire (1998); Rodriguez-Iturbe et al. (1999), and aggregates them according to
the geometry of the river network. The focus of this paper is to derive the necessary
mathematical details leading to the solution of the equations and some interest-
ing initial consequences. Our results include estimates on invariant moments of
discharge and asymptotics of extreme events.

The time scales of interest are of days or longer, hence precipitation events are
assumed instantaneous. The spatial scale is arbitrary, with individual stream links
and hillslopes considered as interconnected linear reservoirs, whereas the detailed
dynamics of soil moisture, infiltration or evapotranspiration are neglected. The pro-
posed model does take into account the kinematic delay among the contributions
originating from different sub-basins. Moreover, hydraulic parameters are specified
in the model at individual stream links and hillslopes, effectively incorporating vari-
ations in celerity due to location or scale.

Among the calculations presented here are explicit expressions for the Laplace
transform of the densities of both, the transition probabilities and the unique in-
variant distribution of the process X. See Proposition 4.1 below. These expressions
completely characterize the distribution of the runoff and discharge within the basin
for all times, as well as its behavior as t → ∞. They also explicitly show how the
uncertainty associated with the precipitation interacts with the geometry of the
river network, and is converted into the uncertainty of discharge and runoff.

As an application, we obtain formulas for the n-th moment of the streamflow
at the basin outlet, and the asymptotic behavior of the probabilities of extreme
discharge events. The analysis also yields a novel family of geomorphological coef-
ficients that completely characterizes the invariant distribution of X.

2. Description of the model

Natural river networks can be modeled as finite directed rooted binary trees
Kovchegov and Zaliapin (2018). Let Γ denote such a tree modeling a river net-
work as in Figure 1. The edges of Γ are called ‘links’, there are nΓ of them, and
each is denoted in general by the letter e. The most downstream edge, or root, is
always denoted by r. The hillslope area that drains through the downstream end of
link e is denoted by ae. We denote the vector of areas by a and the total watershed
area by a:

a := [ae : e ∈ Γ]ᵀ, a :=
∑
e∈Γ

ae. (2.1)

For any time t > 0, the quantities of interest are: the total subsurface runoff Re(t)
from the hillslopes into the link e, and the streamflow Qe(t) at its downstream end,
both in units of volume per unit time.

Our main dynamical assumption rests on the linearized stream-based conserva-
tion equations proposed in Gupta and Waymire (1998) and the linearized subsurface
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Fig. 1. Schematic representation of a river network Γ and its components with nΓ = 9
streams.

water storage equation of Rodriguez-Iturbe et al. (1999). Namely, if the link e has
tributaries e and e, then

dQe
dt

= Ke(−Qe +Qe +Qe +Re), (2.2)

dRe
dt

= −He

(
Re + ae

dPe
dt

)
(2.3)

The inverse residence times Ke and He play a pivotal role in what follows, and
are obtained by supposing that the total storage in stream e and its hillslope are
1
Ke
Qe(t) and 1

He
Re(t) respectively. Typical values of He and Ke may be deduced

from related parameterizations in the literature. Rodriguez-Iturbe et al. (1999) for
instance, used He = ks

nz where ks is the hydraulic conductivity of the saturated
soil, n is the porosity and z the soil depth. In a more recent work, Rupp and
Selker (2006) propose a power-law model for R which, in the limit of homogeneous
hydraulic conductivity, can be linearized to equation 2.3 with He ≈ ksLe sin(i)

nae
. Here

Le is the length of the stream and tan(i) is the slope of the hillslope. A common
approximation to Ke is given for the classical Mukingum method of flood routing
as Ke ≈ 1.5v/Le, where v is the average velocity in the channel Dooge (1973). See
also Mantilla et al. (2011). Using typical values, one arrives at the following ranges
for the non-dimensional quantities of interest (see also Botter et al., 2007b, Figure
4):

He

Ke
∼ 10−3 − 100,

λ

He
∼ 10−3 − 100. (2.4)

The stochastic process of interest will be denoted by X and is obtained by
concatenating two nΓ-dimensional time dependent column vectors: Q(t) = [Qe(t) :

e ∈ Γ]ᵀ containing the total streamflow at the most downstream point of each link,
and R(t) = [Re(t) : e ∈ Γ]ᵀ with the total subsurface runoff from the hillslopes into
each corresponding stream link. The state space ofX is therefore R2nΓ

+ := (0,∞)2nΓ .
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We thus write

X(t) :=

[
Q(t)

R(t)

]
∈ R2nΓ

+ , t > 0, (2.5)

which exemplifies our notation for vectors in R2nΓ
+ in terms of their nΓ-dimensional

sub-vectors,

x =

[
x1

x2

]
∈ R2nΓ

+ , xi = [xi,e : e ∈ Γ]ᵀ ∈ RnΓ
+ , i = 1, 2. (2.6)

In addition, we follow the convention of having the first entries of both x1 and x2

correspond to the root edge r. In particular, X1(t) = Qr(t) and XnΓ+1(t) = Rr(t)

in (2.5).
The uncertainty in the model comes solely from the precipitation field Pe in

(2.3) which, at the daily or larger time scales of interest here, can be approximated
by a nΓ-dimensional compound Poisson process Pe of increments {Pn,e : n > 1}
(Rodriguez-Iturbe et al., 1999). The term dPe/ dt in (2.3) is thus to be understood
as a generalized derivative. The basin-wide precipitation process may be written as
the following point process

P (t) :=

N(t)∑
n=1

Pn δTn(t) (2.7)

where the storm times {Tn : n > 1} define a Poisson process N with fixed intensity
λ > 0,

N(t) := sup{n > 1 : Tn 6 t}. (2.8)

In (2.7), the symbol δTn denotes the Dirac-delta function concentrated at instant
Tn, and {P n : n > 1} is a sequence of random i.i.d vectors

P n := [Pn,e : e ∈ Γ]ᵀ ∈ RnΓ
+ , (2.9)

each with joint probability density function

fP (y) dy = P(Pn,e ∈ dye : e ∈ Γ), y ∈ RnΓ
+ . (2.10)

The above formulation concerns the case in which a watershed is subject to a
random, yet statistically stationary precipitation regime. The constant λ > 0 gives
the average number of precipitation events per unit time. At time Tn, and inde-
pendently of everything else, the n-th precipitation event occurs instantaneously
dropping a random column of water Pn,e onto the hillslopes surrounding link e. For
fixed n, the joint distribution of the vector [Pn,e, e ∈ Γ]ᵀ is given by fP . Within the
specification of fP one can, therefore, include any kind of statistical dependence be-
tween the precipitation intensities at different locations throughout the watershed.
In particular, one may take the uniform case Pn,e = Pn for all e ∈ Γ as detailed in
Remark 4.1.
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We continue the mathematical formulation by introducing the following matrices

K := diag(Ke : e ∈ Γ), H := diag(He : e ∈ Γ), (2.11)

and the incidence matrix ΛΓ of the network Γ, which is constructed as follows:
(ΛΓ)e,e = 1 for all links e ∈ Γ and, if link e has tributaries e, e, then

(ΛΓ)e,e = (ΛΓ)e,e = −1, (2.12)

with all other entries equal to zero. The matrix ΛΓ encodes all the topological
information of the river network.

The system of equations (2.2)-(2.3) can be written as the following linear stochas-
tic differential equation for X:

dX(t) = MX(t) dt+ dY (t), (2.13)

where M is the block matrix

M :=

[
−KΛΓ K

O −H

]
∈ RnΓ×nΓ , (2.14)

and the driving process Y is the 2nΓ-dimensional compound Poisson process given
by

Y (t) :=

N(t)∑
n=1

[
0

H(a ◦ P n)

]
. (2.15)

In (2.14) and (2.15), O denotes the nΓ × nΓ matrix whose entries are all zero, 0

denotes the nΓ-dimensional zero vector, and for vectors x,y ∈ RnΓ
+ ,

x ◦ y := [xeye : e ∈ Γ]ᵀ (2.16)

denotes the component-wise or Hadamard product operator.
The defintion of Y in (2.15) makes explicit the assumption that rainfall falls

exclusively over the hillslopes and affectsQ only throughR. The probability density
of each vector in the summation (2.15) is denoted by:

fY (y) = fY (y1,y2) :=

{
fY2

(y2), y1 = 0

0, otherwise.
, y ∈ R2nΓ

+ , with (2.17)

fY2
(x) :=

1∏
e∈ΓHeae

fP

( x

Ha

)
, x ∈ RnΓ

+ , (2.18)

with fP as in (2.10). In (2.18) and below, division of a vector by Ha simply denotes
component-wise multiplication by [1/(Heae) : e ∈ Γ]ᵀ.
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3. Analysis of X

An explicit solution to (2.13) is

X(t) = eMtX(0) +

N(t)∑
n=1

eM(t−Tn)

[
0

H(a ◦ P n)

]
. (3.1)

Namely, X is a Piecewise Deterministic Markov Process (PDMP) (Davis, 1984).
The sample paths of X evolve between storm events according to the deterministic
map

ϕ(t) := eMt, t > 0, (3.2)

and at times {Tn : n > 1} each component of R(t) jumps by a random amount
at each Tn, while those of Q(t) suffer a discontinuity in the derivative. See Figures
2a and 3b. Equivalently, the sample paths of X can be written as the following
stochastic convolution integral:

X(t) =

∫ t

0

ϕ(t− s) dY 0(s). (3.3)

where we have conveniently defined, T0 := 0, dY 0(0) := X(0), dY 0(s) := dY (s)

for s > 0.

Qr(t)

Rr(t)

P (t)

Fig. 2. (a) Simulated P (t) (mm), Qr(t) and Rr(t) (L s−1) for the river network in Figure
1, t ∈ [0, 240 h]. All hillslope areas were assumed equal ae = 0.6 km2. Values of Ke/Kr
and He/Kr were randomly generated within the intervals (0, 1) and (0, 10−3) respectively,
with Kr = 2 h−1. Storms were assumed uniform in space with λ = 1/24h−1, and Pn =

Pn,e ∼ exp(σ) with mean 1
σ = 5 mm. The initial condition was taken to be the invariant

mean X(0) = Eg(X) of equation (4.2), EgQr = 750 L s−1. (a) Using the same data:
invariant probability density function of Qr obtained by numerically inverting the Laplace
transform g̃r in (4.8); and histogram obtained from samples of the simulation of Qr(t) in
(a) extended to t ∈ [0, 200× 24h]

Remark 3.1 (Connections to the unit and geomorphic hydrographs). The
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function ϕ(t) = eMt in (3.2) can be appropriate called a ‘global hydrograph’ both
in the context of the classical Unit Hydrograph Theory of Dooge (1959), as well as
within the more recent Geomorphologic Instantaneous Unit Hydrograph (GIUH)
theory introduced by Gupta et al. (1980). We have added the adjective ‘global’ to
emphasize that ϕ is a matrix function that simultaneously contains the hydrographs
from all streams and hillslopes in the catchment. Let Θ(t) ∈ R2nΓ

+ be the vector
containing unit hydrographs at the downstream end of each link and hillslope cor-
responding to a unitary homogeneous precipitation event over all of Γ. Then from
(3.1),

Θ(t) = eMt

[
0

1
aHa

]
. (3.4)

Now, consider a GIUH model where the travel times over the hillslopes and streams
corresponding to link e are taken as independent exponential random variables with
respective densities

he(t) := Hee
−Het, ke(t) := Kee

−Ket. (3.5)

Following Gupta et al. (1980), one obtains the representation

Θ(t) =

[ [∑
e′∈Γe

ae′
a (he′ ∗ ke′ ∗ · · · ∗ ke)(t) : e ∈ Γ

]ᵀ[
ae
a he(t) : e ∈ Γ

]ᵀ ]
(3.6)

where Γe denotes the subnetwork with e as its outlet (Γr := Γ), and each summand
contains convolutions following the flow path that starts at the hillslope surrounding
e′ and ends in stream e. The fact that (3.4) and (3.6) coincide can be shown by
differentiating the right hand side of (3.6).

Remark 3.2 (Boundary behavior). Much of the classical treatment of PDMPs,
e.g. Davis (1984); Rolski et al. (1999), deals with the behavior of the process at,
and out of the boundary of the state space. In our case, ∂R2nΓ

+ = {x ∈ R2nΓ
+ : xi,e =

0 for some i = 1, 2, e ∈ Γ}, which is inaccessible from R2nΓ
+ . Since we also refrain

from considering the evolution of the process for initial conditions X(0) ∈ ∂R2nΓ
+ ,

the boundary behavior of X needs not to be specified.

Denote the family of Markov transition probabilities of X by

p(t,x, A) := Px(X(t) ∈ A), A ⊆ R2nΓ
+ , (3.7)

where the subscript x on Px or Ex denotes probability or expectation conditioned
onX(0) = x. Let Tt[h](x) := Ex [h(X(t))] denote the Markov semigroup associated
to X. Then Tt has extended infinitesimal generator given by the non-local operator

A[h](x) := ∇h(x) ·Mx− λh(x) + λ

∫
RnΓ

+

h(x1,x2 + H(a ◦ y))fP (y) dy, (3.8)

for functions h in the domain Dom(A) of A, which includes all continuously differ-
entiable and bounded functions from R2nΓ

+ to R (Davis, 1984, page 366). The form
of the infinitesimal generator A in (3.8) yields a second important characterization
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for our process: X is a conservative Feller process of the Ornstein-Uhlenbeck Type
(OUT) as described in Sato and Yamazato (1984). In this case, the associated Lévy
process of X has no Brownian component, its jump measure is λe−λtfY (y) dy dt,
and the driving matrix is −M which has strictly positive eigenvalues.

The transition probabilities of OUT processes have been explicitly characterized,
and those of X exhibit one important caveat: they are not absolutely continuous
with respect to Lebesgue measure. In fact, this can be directly seen from the strong
Markov property, as

p(t,x, dy) = δϕ(t)x( dy)e−λt+

∫ t

0

∫
R2nΓ

+

λe−λτfY2
(z2 − (ϕ(τ)x)2) p(τ,z, dy) dz dτ

where δ denotes the Dirac delta measure, and ϕ is as in (3.2). Namely, starting at
x, the atomic event [X(t) = ϕ(t)x] has positive probability.

Sato and Yamazato (1984, Theorem 3.1) provide an explicit formula for the
characteristic function of X(t), which we include for completeness. Their formula
and most of the subsequent analysis is given here in terms of the multidimensional
spatial Laplace transforms of p(t,x, ·) and fY2

:

p̃(t,x, s) :=

∫
R2nΓ

+

e−y·sp(t,x, dy), s ∈ R2nΓ
+ , (3.9)

f̃Y2
(s) :=

∫
RnΓ

+

e−y·sfY2
(y) dy = f̃P (Ha ◦ s), s ∈ RnΓ

+ . (3.10)

The Laplace transform of the transition probability density is:

p̃(t,x, s) = exp

{
−ϕ(t)x · s− λ

Hr

∫ 1

e−Hrt

1− f̃Y2((u−Mᵀ/Hrs)2)

u
du

}
, (3.11)

where, for s ∈ R2nΓ
+ and u > 1, the vector (u−Mᵀ/Hrs)2 is obtained by computing

the matrix exponential exp
(

log u
Hr

Mᵀ
)
, right-multiplying by s, and extracting the

second half of the resulting vector. A more convenient formula is given in Corollary
4.1 below.

4. Invariant density of X

A probability density function g : R2nΓ
+ → R+ is ‘invariant’ or ‘stationary’ for the

process X if

Pg(X(t) ∈ A) :=

∫
R2nΓ

+

g(x)p(t,x, A) dx =

∫
A

g(x) dx = Pg(X(0) ∈ A) (4.1)

for all measurable A ⊆ R2nΓ
+ and t > 0. Note that for notational convenience and

without risk of confusion, in (4.1) and below we are using the symbol g to denote
both, a probability density and the measure determined by it. Also, the subscript
g on Pg or Eg denotes probabilities or expectations with respect to the measure
g, namely conditioned on X(0) distributed as g. For example, taking expectations
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throughout the stochastic differential equation (2.13) and using invariance in the
form d

dtEgX(t) = 0, we get the invariant mean streamflow and runoff

EgX = −λM−1

[
0

H(a ◦ EP 1)

]
= λ

[
Λ−1

Γ (a ◦ EP 1)

a ◦ EP 1

]
. (4.2)

Conditions for the existence, and the characterization of invariant distributions
for OUT processes are given in (Sato and Yamazato, 1984, Theorems 4.1-4.2). We
now apply their result to X.

Proposition 4.1 (Sato and Yamazato (1984)). A necessary and sufficient con-
dition for the existence of a unique invariant measure for X is∫

y∈RnΓ
+ :|y|>1

log(|y|)fY2(y) dy <∞. (4.3)

If (4.3) holds, then the invariant distribution has Laplace transform given by

g̃(s) = exp

{
− λ

Hr

∫ 1

0

1− f̃Y2((u−Mᵀ/Hrs)2)

u
du

}
. (4.4)

Moreover, p(t,x, ·) converges to g as t→∞ for all x ∈ R2nΓ
+ .

The random variable of most interest inX(t) is its first entryQr(t): the discharge
at the watershed’s outlet. Let gr denote its invariant density

gr(x) := Pg(Qr(t) ∈ dx), x > 0. (4.5)

Crucially, the Laplace transform of gr is easily obtained from that of g as

g̃r(s) = g̃([s, 0, . . . , 0]ᵀ). (4.6)

We then have the following Corollary.

Corollary 4.1. The discharge Qe has limiting invariant density ge given by

g̃e(s) = exp

{
− λ

Hr

∫ 1

0

1− f̃P (Ha ◦me(u) s)

u
du

}
, e ∈ Γ, s > 0, (4.7)

where me(u) is the second half of the column of u−Mᵀ/Hr corresponding to Qe.

Once g̃ has been computed, the Laplace transform of the invariant distribution
of any of the components ofX can be numerically inverted to get the corresponding
approximate density function. See Figures 2b and 3b for example. For all computa-
tions reported here, we use the classical algorithm by Zakian (1969).

Remark 4.1 (Spatially uniform rainfall). The case where Pn,e = Pn for all
n > 1 and e ∈ Γ, represents a scenario where on every storm, all hillslopes receive
the same random amount Pn of rainfall. In this case it suffices to consider an
i.i.d. sequence {Pn : n > 1} of rainfall depths with common probability density
fP instead of the joint density fP . The description of the process is obtained by
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Fig. 3. Simulation and invariant densities for a watershed of fourth order. The precipitation
field satisfies λ = 1

24h−1, Pn = Pn,e ∼ exp(σ) with 1
σ = 5 mm. All hillslope areas were

assumed equal to ae = 0.6 km2. Values of Ke, He were randomly generated as Ke = εKK,
He = εHH with H/K = 0.008, εK , εH ∼ Unif[0.5, 1.5] (a) Structure of the river network
with four selected stream links of increasing Horton order. (b) Simulated discharge Qe(t)
in L s−1 at selected streams for t ∈ [0, 20×24h]. Vertical lines mark storm events. (c) Plots
of Me(u) := Ha ·me(u) compared with the linear approximation Ha ·m0

e(u) in (4.11).
(d) Logplots of the invariant densities ge(x) for selected streams and x ∈ [0.25, 6]× EgQe
L s−1. The straight dashed lines have the slope predicted in Proposition 5.3.

replacing H(a ◦ P n) by HaPn in (2.15). Similarly, the integrands in (3.11), (4.4)
and (4.7) must be modified by replacing Hadamard products with dot products:
using expression (3.10) for f̃Y2

, gives

g̃e(s) = exp

{
− λ

Hr

∫ 1

0

1− f̃P (Ha ·me(u) s)

u
du

}
. (4.8)

Remark 4.2 (The functionsme: calculation and approximation). The func-
tions me, e ∈ Γ in (4.7) and (4.8) encapsulate the role played by the network geo-
morphology on the asymptotic distribution of discharge. Some remarks are in order.
Note first that the value of Hr in (4.4) and (4.7) can be changed to any He (or any
other positive rate) by making the change of variables u 7→ uHe/Hr in the integral.
Secondly, if we denote the lower left block matrix of u−Mᵀ/Hr by m(u) ∈ RnΓ×nΓ ,
then me(u) is the column of m(u) corresponding to link e. By (2.14) the matrix
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m(u) is given by

m(u) =

∞∑
n=0

− log(u)n

Hn
r n!

{
K [I−ΛΓKH]

−1 [
I− (ΛΓKH−1)n

]
Hn−1

}ᵀ
. (4.9)

In particular, in the spatially uniform case where Ke = Kr and He = Hr for all
e ∈ Γ, one can write

m(u) =
{

[ΛΓ − βI]
−1
[
uI− u

1
βΛΓ

]}ᵀ
, β :=

Hr

Kr
. (4.10)

If He = Hr � Kr = Ke for all e ∈ Γ, the following linear approximation holds (see
Figure 3c)

m(u) ≈ lim
β→0

m(u) = (Λ−1
Γ )ᵀu =: m0(u) (4.11)

As illustrated in Figure 4, expression (4.10) for homogeneous self-similar networks
seems to yield self-similar invariant distributions for the discharge. Deviations from
homogeneity in the parameters He,Ke show much richer behavior.

Fig. 4. (The effect of heterogeneity) Scaled densities γe of the normalized discharge
Qe/EgQe for selected links of the river network and precipitation regime shown in Figure
3. The values of He and Ke were assigned as in Figure 3 but with random multipli-
ers ε of decreasing variance: a) εK , εH ∼ Unif[0.25, 1.75], b) εK , εH ∼ Unif[0.5, 1.5], c)
εK , εH ∼ Unif[0.9, 1.1].

5. Moments and extreme events of Qr

In this section we exploit the properties of the Laplace transform of the density gr
to derive important characteristics of the invariant distribution ofX and of Qr. For
simplicity, we restrict our attention to the case of uniform rainfall as described in
Remark 4.1.

5.1. Calculation of moments

Denote the n-th invariant moment of Qr by

M
(n)
Qr

:= EgQnr = (−1)n
dng̃r
dsn

(0), n = 1, 2, . . . (5.1)
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If we denote the function inside the exponential in (4.4) by

h(s) := − λ

Hr

∫ 1

0

1− f̃P (Ha ·mr(u)s)

u
du, (5.2)

then Faa di Bruno’s formula for the n-th derivative of eh(s) gives

dng̃r
dsn

= g̃r

n∑
k=1

Bn,k

({
dih

dsi

}n−k+1

i=1

)
(5.3)

where Bn,k is the Bell polynomial

Bn,k({xi}n−k+1
i=1 ) = n!

∑
j∈I(n,k)

n−k+1∏
i=1

1

ji!

(xi
i

)ji
. (5.4)

Here, j ∈ I(n, k) denotes that the sum is taken over all vectors j = {j1, . . . , jn−k+1}
of indices such that:

n−k+1∑
i=1

ji = k,

n−k+1∑
i=1

iji = n. (5.5)

Letting s ↓ 0 in (5.3), and writing M (n)
P for the n-th moment of P1, one arrives at

the following useful expression (see Figure 5 for a numerical example).

Proposition 5.1. The n-th invariant moment of Qr is

M
(n)
Qr

= (aKr)
n

n∑
k=1

(
λ

Hr

)k
Bn,k

({
M

(i)
P ci

}n−k+1

i=1

)
(5.6)

where the coefficients ci are given by

cα :=

∫ 1

0

[βã ·mr(u)]α

u
du, α > 0, (5.7)

with β :=
[
He
Kr

: e ∈ Γ
]ᵀ

and ã := 1
aa.

Remark 5.1. There are two important implications of the Proposition 5.1. First,
that under the invariant distribution, the discharge will have exactly as many mo-
ments as each Pn. Secondly, the non-dimensional constants {cn : n = 1, 2, . . . }
constitute a set of parameters, depending only on the geomorphology of the water-
shed, that completely determine the invariant distribution of the discharge Qr.

Direct integration of (5.6) shows that

c1 =
Hr

Kr
, EgQr = aλE(P1) (5.8)

which coincides with the expression for EgX in (4.2), and makes explicit the fact
that under the invariant distribution, the discharge is in a state of average equilib-
rium with the precipitation.
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Fig. 5. For the example of figure 3: (a) logarithmic plots of the sequence of cn (unit-less),
and scaled moments M (n)

Qr
/(aKr)

n in units of mn, n = 1, . . . , 10. (b) First four invariant
moments of Qe for the selected links in Figure 3 which have consecutive Horton order
ω = 1, 2, 3, 4, e := r.

5.2. Asymptotics of extreme events

We now turn our attention to the asymptotic behavior of the probabilities of extreme
events of discharge, namely Pg(Qe > x) as x→ +∞. We are particularly interested
on how this decay relates to both, the geomorphological properties of the network,
and the probablity density fP of rainfall. First of all, as noted in Remark 5.1, if
the distribution of P1 has n finite moments, then it follows from Proposition 5.1
that Qr will also have exactly n finite moments. In that case, general theory (see
for example Chung, 2001, Excercise 3.2.5) gives

lim
x→∞

xnPg(Qr > x) = 0. (5.9)

We now give precise results for the asymptotics of Pg(Qe > x) in two contrasting
types of distributions of P1: a heavy-tailed distribution with no moments, and the
exponential distribution. In both cases, we proof that the invariant distribution of
Qe preserves the general asymptotic behavior as that of P1. See Figure 3d.

Proposition 5.2. Suppose P1 ∼ Pareto(α, k) for some k > 0 and 0 < α < 1. Then

Pg(Qr > x) ∼ λ(kaKr)
α

Hr
cα x

−α as x→∞ (5.10)

where cα is given by (5.7).

Proof.

In this case fP (x) ∼ x−1−α as x→∞. Equation (5.6) along with the expansion
of f̃P in Taylor series, yields

g̃r ∼ exp(−Csα) where C =
λ

Hr
kαΓ(1− α)

∫ 1

0

(Ha ·mr(u))α

u
du
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as s ↓ 0. Denote Ψ(x) := P(Qr > x). Then Ψ̃(s) = 1
s (1 − g̃(s)) ∼ Csα−1 as s ↓ 0.

The Karamata Tuberian theorem gives that
∫ x

0
Ψ(y) dy ∼ C

Γ(2−α)x
1−α as x → ∞.

Differentiation yields the desired asymptotics for Ψ(x). See Bingham et al. (1989),
Theorems 1.7.1, 1.7.2.

Proposition 5.3. Suppose P1 ∼ exp(σ) for σ > 0. Let M∗r = max{Ha ·mr(u) :

u ∈ [0, 1]}, then

lim
x→∞

1

x
logPg(Qr > x) = − σ

M∗r
. (5.11)

Proof. The tails of fP (y) decay exponentially which is manifested in f̃P (s) =

σ/(s + σ) as a pole at s = −σ. We now show the same a pole also exists for g̃r.
Note first that for u ∈ [0, 1], the matrix − log u

Hr
Mᵀ has non-negative off-diagonal

entries, and therefore every entry of u−Mᵀ/Hr is non-negative. This implies that
Mr(u) := Ha·mr(u), u ∈ [0, 1] is a non-negative function withMr(0) = Mr(1) = 0.
See Figure 3d. Moreover by (4.9), Mr is a bounded and differentiable function of u
with a positive maximum at u = u∗ ∈ (0, 1) where M ′r(u∗) = 0. The convergence of∫ 1

0
1
u (1 − f̃P (Mr(u)s)) du for s > 0 is guaranteed by Proposition 4.1. For − σ

M∗r
<

s 6 0 the following estimate holds∫ 1

0

1
u (1− f̃P (Mr(u)s)) du >

sM∗r
u∗

log

(
1 +

u∗

σ + sM∗r

)
and therefore g̃r(s)→∞ as s ↓ −σ/M∗r . The asymptotic formula (5.11) now follows
from Nakagawa (2005, Theorem 3)

6. Conclusion and outlook

In this work we have presented the detailed mathematical solution for the equations
(2.2)-(2.3) of mass and momentum balance in an arbitrary watershed at the hillslope
scale. The solution covers the deterministic case through the global hydrograph map
ϕ in (3.2), as well as the case of rainfall given by a Poisson point process. In its most
basic form, our main result gives an approximation for the distribution of runoff
and streamflow within a watershed given the geometry of the river network and a
set of hillslope-scale physical parameters.

An immediate consequence of Proposition 4.1 is that X is an ‘ergodic’ process
(see (Kallenberg, 2002, Section 20) for Feller ergodic processes, or Costa and Dufour
(2008) for the specific case of ergodic PDMPs). It follows in particular, that

lim
t→∞

1

t

∫ t

0

f(X(s)) ds = lim
t→∞

Tt[f ](x) =

∫
R2nΓ

+

f(x)g(x) dx (6.1)

g-almost surely for all suitable f : R2nΓ
+ → R and any initial condition X(0) =

x ∈ R2nΓ
+ . If the statistical properties of the precipitation field do not change for a

sufficiently long period of time, our model predicts that the watershed will attain a
statistical invariant regime determined by g.
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On a final comment, and as thoroughly explained in Gupta et al. (2007), it
should be noted that solutions to (2.2)-(2.3) can be used to study the phenomenon
of statistical scaling in watersheds: power law relationships between the frequency
and magnitude of streamflow, and physical parameters of the watershed. The math-
ematical framework developed here provides a concrete technical base to undertake
such scaling analysis as illustrated in Figures 4 and 5b. We thought however that
this present note should restrict its focus to the mathematical details of the solution
to the model. Results on the scaling properties of the invariant distribution of X,
its moments and tail behavior, will be included in a separate note.
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