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Abstract

Classical compound Poisson risk models always consider the premium rate to be con-
stant. By adjusting the premium rate to the history of claims, one can emulate a Bonus-
Malus system within the ruin theory context. One way to implement such adjustment
is by considering the Poisson parameter to be a continuous random variable and use
credibility theory arguments to adjust the premium rate aposteriori. Depending on the
possibility of this random variable to have a mass at zero or not, respectively referred to as
latent versus historical claims, one obtains different relations between the ruin probability
with constant versus adjusted premium rates. A combination of these two kinds of claims
leads to a relation between the two ruin probabilities, when the aposteriori estimator of
the number of claims is carefully chosen. Examples for specific claim sizes are presented
throughout the paper.

Keywords. Ruin Probability, Mixed Poisson Process, Bonus-Malus, Bayesian Estimation,
Lukacs’ Theorem.

1 Introduction

One of the main assumptions of the classical collective risk models is that premiums are arriving
at a constant rate c and thus the surplus of the company evolves over time as

U(t) = u+ ct−
N(t)∑
j=0

Yj, t ≥ 0, (1)

where u is the initial capital, Yj are the claim sizes (iidrv) arriving according to a Poisson
process N(t) with intensity λ. Inspired by the merit rating feature of a Bonus-Malus system,
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premium rates adjusted according to claim histories have been first introduced in a risk theory
context by Buhlmann [4] and further by Dubey [8] as

U(t) = u+ c

∫ t

0

λ̂(s)ds−
N(t)∑
j=0

Yj, t ≥ 0. (2)

Hence, instead of a constant premium rate as shown in the classical collective risk process,
Dubey [8] adopted an adjustment of premium levels by randomising the expected number of
claims overtime. More precisely, the intensity of the classical Poisson process is a random vari-
able Λ, that is estimated based on the history of claims. Note that when P(Λ > 0) = 1, the
compound Poisson process is referred to as mixed Poisson process. Moreover, when Λ follows
a Gamma distribution, the credibility estimator constitutes the basis for pricing Bonus-Malus
systems in the Swiss liability car insurance.

Furthermore, Dubey [8] was able to show that for P(Λ = 0) = 0, in other words P(Λ > 0) = 1,
and for a Bayesian estimator λ̂(t),

ψ(u) = ψ0(u), (3)

where ψ describes the probability of ruin (ruin being the first time the surplus process crosses
zero) in a mixed Poisson model (2), whereas ψ0 is the ruin probability in the classical Poisson
model (1), with intensity one.

In the same setup of premium rates varying according to already known information about
frequency of claims, we conduct a risk analysis in situations where the possibility of no-claims
is allowed. We refer to these claims with a non-zero possibility of never happening as ’latent
risks,’ as opposed to ’historical risks’, with zero probability of no claims. ’Latent claims’ refer
to claims that are not known to the insurer when signing a policy but bear the potential of
causing claims many years later. One existing example is asbestos, which have led to a burst of
related diseases and thus an increase in claims to be paid. In recent years, these emerging risks
are always included in the models. We are presenting here one way to account for that, since
the ever increasing awareness of legal rights and standards of healthcare raises the possibilities
of the unaccounted for claims occurring in the future.

We show that, even if P(Λ = 0) = p > 0, one can establish a relationship between the ruin
probability in a model with adjusted premiums, versus the one with constant rates (see Theorem
6)

ψ(u) = ψ0(u)− pψ0

(
u+ c ln

1

p

)
. (4)

Thus, Dubey [8] found that the ruin probability for the adjusted model does not differ from a
classical case when only historical risks are considered, whereas if all the claims are latent, the
relationship changes as in (4). However, the most realistic scenario is a combination of both
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classical and latent claims. In order to combine the above two cases we need a well chosen
estimator for the intensity of this number of claims process. The estimator we need is defined
as

λ̂(t) = E[Λ(1) + Λ(2)|N(t)],

where P(Λ(1) = 0) = 0 and P(Λ(2) = 0) = p > 0. In this case, the relation between the ruin
probability of the adjusted premium model ψ versus the classical one ψ0 is more elaborated,
and can be derived only when Λ(1) ∼ Γ(α, λ0) and Λ(2)|Λ(2)>0 ∼ Γ(β, λ0) for some α, β, λ0 > 0,

ψ(u) =
1− p
B(α, β)

∫
(0,1)

ψθ(u)θα−1(1− θ)β−1 dθ + p · ψ1(u).

where B(α, β) is a Beta function and ψθ(u) is the conditional probability of ruin defined by

ψθ(u) = P

(
τ <∞

∣∣∣∣U(0) = u,
Λ(1)

Λ(1) + Λ(2)
= θ

)
.

Apart from [8], the adjustment on premium rates in a risk model has actually been extensively
studied in literature. Several criteria were employed for premiums to be adjusted accordingly.
The majority of papers studied a premium function which varies with the current risk reserve,
i.e., premium denoted as a function of U(t). An introduction of earlier studies on this topic
is addressed in Chapter VIII [3], where the premium rate is a discrete function responding to
the level of the risk process. With respect to the randomisation of the Poisson paratemeter, or
we would now call it ’parameter risk’[5], the exploration of which in literature dates back to as
early as 1948 ([11], [2]), where either the randomness at the beginning of the process or that
varying over time were considered.

While their work considered parameter risks only, as already mentioned before, [4] assumed
Gamma distribution for the Poisson parameter and additionally introduced a model where
premiums are adjusted stochastically based on the claim experience to date. Furthermore, [8]
followed [4] employing the Bayesian estimation to describe premium adjustment but for a gen-
eral distribution of the Poisson parameter. Apart from this, [8] way of estimating the claim
intensity can be understood as a moving average of claim frequencies overtime. This approach
was recently extended from a Poisson process to any operational time by [6]. Another relevant
recent development on this topic comes from [9] who obtained the ruin probability of a surplus
process where the premium rate is a function of the occurence of claims and the arrival of
claims is represented by a Cox process.

This paper uses Dubey’s[8] setup, incorporating the novelty of latent claims. It presents the
probability of ruin in novel premium adjusted models in terms of the classical one. The paper
is organised as follows. Section 2 provides a detailed proof of obtaining the underlying ruin
probability for a model with only latent risks considered. The case of latent combined with his-
torical claims is found in Section 3, where main lemmas and results are presented. Alternative

3



representations using Pollaczek-Khinchin formula and an example for exponential claims are
derived. Finally conclusions is Section 4. Examples and illustrations for various claim scenarios
are presented throughout the paper.

To avoid confusion, a ruin probability is defined as follows throughout the paper,

ψ(u) = P
(

inf
t≥0

U(t) < 0|U(0) = u

)
= P(τ <∞|U(0) = u), (5)

where τ = inf{t > 0 : U(t) < 0} denotes the time of ruin and u ≥ 0.

2 Ruin Probability with only Latent Risks

Consider the model (2) with latent claims only.

Theorem 2.1. The probability of ruin of the adjusted surplus process (2) with Poisson intensity
Λ, P(Λ = 0) = p > 0, is given by

ψ(u) = ψ0(u)− pψ0

(
u+ c ln

1

p

)
, (6)

where ψ0 denotes the ruin probability in a classical risk model with jump intensity 1.

Proof. The main difference from Dubey here is that Λ has a mass at {0} which led us to
consider {Λ = 0} and {Λ > 0} separately. Due to the fact that no claims are expected to be
attributed to the risk process on the set {Λ = 0}, then recall (5) we can write,

P(τ <∞|U(0) = u) = P(τ <∞,Λ > 0|U(0) = u) = P(τ <∞|U(0) = u,Λ > 0)P(Λ > 0). (7)

Therefore, only the study under the measure P(·|Λ > 0) is essential to be taken into consider-
ation here.

Let Ti, i = 1, . . . , n represent the arrival time of the ith claim with the convention that T0 = 0,
and Pi, i = 1, . . . , n denote the premium collected inbetween the (i− 1)th and the ith claim.
Similar to Dubey [8], we first analyse the conditional distribution of the sequence of premiums
{Pn, n ≥ 1}. From his definition, we have P1 = ln{V (0)/V (T1)} and

Pn+1 = ln{V (n)(Tn)/V (n)(Tn+1)}, n ≥ 1,

where V (x) = E(e−Λx). On the one hand, adopting very similar steps in [8] yields for n ≥ 1,

P(Pn+1 ≥ x|Tn = y,Λ > 0) = e−x, n ≥ 1.
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On the other hand, regarding the distribution of P1, it could be first noticed that V (x) is a
continuous and decreasing function and V (x) ∈ (p, 1] since,

V (x) =

∫
e−λxdS(λ) =

∫
(0,+∞)

e−λxdS(λ) + P(Λ = 0),

and
lim
x→0

V (x) = 1; lim
x→∞

V (x) = P(Λ = 0) = p. (8)

Hence, for x ≤ − ln p,

P(P1 ≥ x|Λ > 0) = P(V (T1) ≤ e−x|Λ > 0)

= P(T1 ≥ V −1(e−x)|Λ > 0) =

∫
(0,+∞)

e−λV
−1(e−x) · P(Λ ∈ dλ|Λ > 0)

=
1

1− p
(V (V −1(e−x))− p) =

e−x − p
1− p

.

That is to say, under the measure P(·|Λ > 0), the sequence {Pn, n ≥ 2} again follows an expo-
nential distribution with parameter 1 and P1 conforms to a truncated exponential distribution.

Furthermore, we study the conditional indpendence structure for the sequence of premiums
under the measure P(·|Λ > 0). As presented in [8], recall that {Λ > 0} = {T1 < ∞} = {Tk <
∞} for every k ≥ 1, and Pn+1 = ln{V (n)(Tn)/V (n)(Tn+1)} on {Tn <∞}. Therefore, when their
joint Laplace Transform is considered, we have for n ≥ 1,

E
[
e−

∑n+1
i=1 siPi

∣∣∣Λ > 0
]

= E
[
E
(
e−

∑n+1
i=1 siPi

∣∣∣T1, T2, · · · , Tn,Λ > 0
)]

= E
{
E
[
e−

∑n
i=1 siPi · E

(
e−sn+1Pn+1

∣∣T1, T2, · · · , Tn,Λ > 0
)∣∣∣T1, T2, · · · , Tn,Λ > 0

]}
= E

{
E
[
e−

∑n
i=1 siPi · E

(
e−sn+1Pn+1

∣∣Tn,Λ > 0
)∣∣∣T1, T2, · · · , Tn,Λ > 0

]}
=

1

1 + sn+1

E
[
E
(
e−

∑n
i=1 siPi

∣∣∣T1, T2, · · · , Tn,Λ > 0
)]

=
1

1 + sn+1

E
[
e−

∑n
i=1 siPi

∣∣∣Λ > 0
]
,

thus proving the indpendence structure of {Pn, n ≥ 1} through induction.

As a result, following the argument of renewal theory, the conditional probability of ruin is
given by,

P(τ <∞|U(0) = u,Λ > 0) =

∫ ln(1/p)

0

1

1− p
e−t
(∫ u+ct

0

ψ0(u+ ct− y)dF (y) + F (u+ ct)

)
dt,
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where ψ0(u) is

ψ0(u) =

∫ ∞
0

e−t
(
ψ0 ∗ F (u+ ct) + F (u+ ct)

)
dt.

Eventually, following the identity above we are able to write

ψ(u) =

∫ ∞
0

e−t
(
ψ0 ∗ F (u+ ct) + F (u+ ct)

)
dt−

∫ ∞
ln(1/p)

e−t
(
ψ0 ∗ F (u+ ct) + F (u+ ct)

)
dt

= ψ0(u)−
∫ ∞

0

e−(x+ln 1
p

)

(
ψ0 ∗ F (u+ c(x+ ln

1

p
)) + F (u+ c(x+ ln

1

p
)

)
dx

= ψ0(u)− pψ0(u+ c ln(1/p)).

This completes the proof.

Now we apply this formulae to calculate ruin probabilities for specific claim distributions in-
cluding Dubey’s [8] examples.

Example 2.1. Yi follows an exponential distribution with E(Yj) = 1. A classical risk model
(with jump intensity 1) gives an explicit ruin function, ψ0(u) = 1

c
exp

(
− c−1

c
u
)
. Substituting

this into (6) yieds,

ψ(u) =
1

c
e−

c−1
c
u − p

c
e−

c−1
c (u+c ln 1

p) = (1− pc)ψ0(u).

Example 2.2. Yj = 1. An approximation has been shown in classical models, ψ0(u) ∼
c−1

1+cr−ce
−ru, where r is the positive solution to ex = 1 + cx. Applying (6) with the above identity

also verifies our result.

ψ(u) ∼ c− 1

1 + cr − c
e−ru − p c− 1

1 + cr − c
e−r(u+c ln 1

p) ∼ (1− pcr+1)ψ0(u),

when u→∞ with r the same as above.

Example 2.3. Yj ∼ Gamma(m
n
, α) with density function fY (x) = α

m
n

Γ(mn )
x−

m
n e−αx, x ≥ 0. It

is worth emphasising that m
n

taking integer values also covers the case of Erlang distributed
claims. Employing recent results from [12], the required ruin probability is demonstrated in the
following equations.

ψ(u) = 1− p− e−αuu
1
n
−1

m+n−1∑
k=0

mkE 1
n
, 1
n

(
sku

1
n

)
+pe−α(u+c ln 1

p)
(
u+ c ln

1

p

) 1
n
−1 m+n−1∑

k=0

mkE 1
n
, 1
n

(
sk

(
u+ c ln

1

p

) 1
n

)
,

where E 1
n
, 1
n

(
sku

1
n

)
=
∑∞

i=0

(
sku

1
n

)i
Γ( k+1

n )
.
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All these examples calculate ruin probabilities for a risk model when only the latent risks are
present through connection with classical results. We will derive a similar approach to obtain
ruin probabilities while both historical and latent risks are taken into account in the next
section.

3 Ruin Probability with Both Historical and Latent Risks

Inspired by Dubey’s results, we are proposing a third estimator for Λ by combining the two
scenarios indicating a consideration for both historical and latent risks.

λ̂(t) = E[Λ(1) + Λ(2)|N(t)],

where P(Λ(1) = 0) = 0 and P(Λ(2) = 0) = p > 0.

Before continuing further analysis, the practical significance of our model will be addressed
first. As we have seen in previous sections, historical and latent risks are taken into account by
Dubey [8] separately. Latent risks normally do not have clear information at present. However,
once they broke out in a negative way, it would possibly be too late for insurance companies
to control the losses. They are often refleted by a sudden burst of the number of claims rather
than a single large-size claim. Therefore, it makes sense to consider these risks at the modelling
stage and adjust the premiums accordingly which is exactly what we are emphasising here.
Now the remaining problem is to figure out the ruin probability in such a model.

3.1 Preliminary Technical Results

Correspondingly, denoting the respective claim sizes by Y (1) and Y (2) and claim counts by
N (1)(t) and N (2)(t), we write our adjusted risk surplus process in the following way,

dU(t) = cλ̂(t)dt− dS(1)(t)− dS(2)(t)

= cλ̂(t)dt− dS(t). (9)

where S(i)(t) =
∑N(i)(t)

j=1 Y
(i)
j , i = 1, 2; S(t) = S(1)(t) + S(2)(t) =

∑N(t)
k=1 Yk; N(t) = N (1)(t) +

N (2)(t). We propose the following results for the underlying risk surplus process.

Lemma 3.1. Conditioning on {Λ(1) + Λ(2) = λ}, N(·) is a Poisson process with intensity λ.

Conditoning on
{

Λ(1)

Λ(1)+Λ(2) = θ
}

, the claim sizes are i.i.d with a common distribution function

Hθ(y)
def
= θF (y) + (1− θ)G(y). But the counting process {N(t), t ≥ 0} depends on the sequence

of claim sizes {Yk, k ≥ 1}.
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Lemma 3.2. If (Λ(1) + Λ(2)) is independent from
(

Λ(1)

Λ(1)+Λ(2)

)
under P(·|Λ(2) > 0), then for a

given θ ∈ (0, 1], under P
(
·
∣∣∣ Λ(1)

Λ(1)+Λ(2) = θ
)

, Model (9) could be reduced to Dubey’s[8] model for

Case 1.

Both proofs could be seen from Appendix. To rephrase these lemmas, we claim that if (Λ(1) +

Λ(2)) and
(

Λ(1)

Λ(1)+Λ(2)

)
are indpendent under {Λ(2) > 0}, then for any fixed θ ∈ (0, 1], under

P
(
·
∣∣∣ Λ(1)

Λ(1)+Λ(2) = θ
)

, the risk surplus process of this extended model is shown as follows.

dUθ(t) = cλ̂(t)dt− d
N(t)∑
k=1

Y θ
k ,

with a mixed Poisson process N(·) described by a randomized intensity and i.i.d claim sizes
having identical distribution function Hθ(y). This risk surplus process is then exactly the same
as Dubey’s [8] model. More specifically, it is applicable for Case 1, because it is true that the
underlying mixed Poisson process has a positive intensity.

Therefore, it is intriguing now to look into more details about the condition. It has been found
that the independent property is satisfied if and only if the two variables have Gamma distri-
butions with the same scale parameter. (See Lukacs’s proportion-sum independence theorem
in [10].) More precisely, we propose the following lemma whose proof is found in Appendix.

Lemma 3.3. If Λ(1) ∼ Γ(α, λ0) and Λ(2)|Λ(2)>0 ∼ Γ(β, λ0) for some α, β, λ0 > 0, then we have,(
Λ(1) + Λ(2)

)
|Λ(2)>0 ∼ Γ(α+ β, λ0),

(
Λ(1)

Λ(1)+Λ(2)

)∣∣∣
Λ(2)>0

∼ Beta(α, β), and they are independent.

In other words, we found particular distribution functions for Λ(1) and Λ(2)|Λ(2)>0 in order to

ensure the desired condition satisfied. Additionally, a specific distribution for
(

Λ(1)

Λ(1)+Λ(2)

)∣∣∣
Λ(2)>0

could also be determined which is a Beta in this case.

3.2 Calculate the Ruin Probability

In the following part, we explain two possible methods to calculate the ruin probability. To
simplify notations, we denote ξ = Λ(1)

Λ(1)+Λ(2) in the sequel.

First of all, according to previous discussions, we know that when both Λ(1) and Λ(2)|λ(2)>0 are
Gamma distributed with the same scale parameter λ0, and have the shape parameter α and
β respectively, ξ|ξ 6=1 is Beta(α, β) distributed with {ξ 6= 1} = {λ(2) > 0} (Lemma 3.3). In
addition, for a fixed θ ∈ (0, 1], conditioning on {ξ = θ}, the surplus process can be reduced
to the one in [8] where the conditional ruin probability (7) coincides with that of the classical
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risk process with parameter (c, 1, Hθ(·)) (Lemma 3.1, 3.2). Hence, the ruin probability for the
underlying risk surplus process depends mostly on ξ which could be calculated using,

ψ(u) = E(ψξ(u))

=
1− p
B(α, β)

∫
(0,1)

ψθ(u)θα−1(1− θ)β−1 dθ + p · ψ1(u).

where ψθ(u) is the conditional probability of ruin defined by

ψθ(u) = P

(
τ <∞

∣∣∣∣U(0) = u,
Λ(1)

Λ(1) + Λ(2)
= θ

)
. (10)

Firstly, notice here that ψ1(u) denotes the ruin probability when ξ = 1, i.e., Λ(2) = 0. This
clearly reduces the model to Dubey’s [8] Case 1 which means ψ1(u) = ψ0(u) (Recall ψ0(u) from
Theorem 2.1). Secondly, since ψθ(u) is still dependent on the claim size distribution Hθ(·), only
when specific distribution functions are taken into account could we obtain an explicit formula
for the ruin probability.
However, even for a mixture of two exponential distributions where we could have applied the
result in [7], due to computational complexity, it does not appear to be trivial to obtain an
explicit formula for the probability of ruin.

A direct calculation does not seem plausible thus encouraging us to seek for other approaches.
We found that when the Pollaczek-Khinchin formula is employed, for θ ∈ (0, 1],

1− ψθ(u) =

{
(1− µθ

c
)
∑

n≥0

(
µθ
c

)n
H∗ne,θ(u) if µθ < c,

0 if µθ ≥ c.
(11)

where µθ = θµF + (1− θ)µG, He,θ(dy) = 1
µθ

(1−Hθ(y)) dy = µ−1
θ Hθ(y) dy is the integrated tail

distribution of Hθ, and H∗ne,θ(u) is the n-th convolution of He,θ.

Theorem 3.1. If max{µF , µG} < c, then we obtain, for u > 0,

P (τ <∞|U(0) = u, ξ 6= 1)

= 1− (1− η)
∑

l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)
F ∗le ∗G∗me (u)

−(1− ρ)
∑

l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + α,m+ 1 + β)

B(α, β)
F ∗le ∗G∗me (u) (12)

where η = µF/c , ρ = µG/c, and Fe(y) = 1
µF

∫ y
0

(1− F (x)) dx, Ge(y) = 1
µG

∫ y
0

(1−G(x)) dx.
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This proof is to be seen in Appendix. If we further introduce F γ(t, u) and Gγ(t, u) as follows,
for t ∈ (0, 1) and γ > 0,

F γ(t, u) =
∑
l≥0

(
−γ
l

)
(−tη)l (Fe)

∗l (u) and Gγ(t, u) =
∑
l≥0

(
−γ
l

)
(−tρ)l (Ge)

∗l (u), (13)

Together with the notations introduced above, the ruin probability could be rewritten in the
following way which is proved in Appendix,

Corollary 3.1. If max{µF , µG} < c, then for u > 0,

ψ(u)|ξ 6=1 = 1− α(1− η)

∫ 1

0

(1− t)α+β−1

∫ u

0

Fα+1(t, u− y)Gβ(t, dy) dt

−β(1− ρ)

∫ 1

0

(1− t)α+β−1

∫ u

0

Fα(t, u− y)Gβ+1(t, dy) dt. (14)

Our results could be further interpreted by the following example which simply considers two
different exponential distributions for F and G respectively.

Example 3.1. If F ∼ exp(ζ1), G ∼ exp(ζ2) and α, β are integers, the probability of ruin could
be shown by the following formulae.

ψ(u)|ξ 6=1 = 1− α(1− η)

[
1

α + β
+ e−ζ1u

β∑
j=1

(
β

j

)
(ρζ2)j

α+1∑
i=1

(
α + 1

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
−β(1− ρ)

[
1

α + β
+ e−ζ1u

β+1∑
j=1

(
β + 1

j

)
(ρζ2)j

α∑
i=1

(
α

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
, (15)

where 1F1(·) is a hypergeometric function with order 1,1 whose definition is given as follows.

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
,

where (c)k = c(c+ 1) . . . (c+ k − 1) with (c)0 = 1.

Detailed proof is available in Appendix.
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Remark 3.1. From the other perspective, we could take the Laplace Transform of (14) and the
following result is obtained.

ψ̂ξ(s)|ξ 6=1 =
1

s
− α(1− η)

∫ 1

0

(1− t)α+β−1

(
1− tηζ1

ζ1 + s

)−(α+1)(
1− tρζ2

ζ2 + s

)−β
dt

−β(1− ρ)

∫ 1

0

(1− t)α+β−1

(
1− tηζ1

ζ1 + s

)−α(
1− tρζ2

ζ2 + s

)−(β+1)

dt.

4 Conclusions

In modern era, the use of mobile phones may or may not cause significant losses to insurance
companies, however it is worthwhile accounting for its risk. These kind of emerging risks are
referred to as latent claims. In this paper we incorporate these latent risks together with
historical ones in a risk model, by means of adjusting the premium rates. Considering first a
model where only latent risks are considered and then a combination of both latent and classical
claims we derive relationships between the probability of thin in the classical case, versus the
case where the premiums are adjusted to the history of claims. The differences are amenable
and thus this theory should encourage insurance companies to use adjusted premium rates in
an attempt to reward their good customers, as in a classical Bonus-Malus system.
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APPENDIX

Proof of Lemma 3.1

Proof. It is true that under the condition {Λ(1) + Λ(2) = λ, Λ(1)

Λ(1)+Λ(2) = θ}, S(·) is a compound
Poisson process with parameter (λ,Hθ(y)), and for any n ∈ N and tk, xk ≥ 0, we have,

P
(
τk > tk, Yk ≤ yk, k = 1, . . . , n

∣∣∣∣Λ(1) + Λ(2) = λ,
Λ(1)

Λ(1) + Λ(2)
= θ

)
=

n∏
k=1

e−λtkHθ(yk), (16)

where τk denotes the interarrival time between the (k − 1)th and the kth claim. Then,

P
(
Yk ≤ yk, k = 1, . . . , n

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
=

n∏
k=1

Hθ(yk);

P
(
τk > tk, k = 1, . . . , n

∣∣Λ(1) + Λ(2) = λ
)

=
n∏
k=1

e−λtk .

The conclusion of the first assertion is straight forward.

Proof of Lemma 3.2

Proof. If (Λ(1) + Λ(2)) and
(

Λ(1)

Λ(1)+Λ(2)

)
are conditionally independent under {Λ(2) > 0}. Given

any θ ∈ (0, 1), the conditional independence implies

P
(

(Λ(1) + Λ(2)) ∈ dλ

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
= P

(
(Λ(1) + Λ(2)) ∈ dλ

∣∣Λ(2) > 0
)
,

since
{

Λ(1)

Λ(1)+Λ(2) = 1
}

= {Λ(2) = 0} and
{

Λ(1)

Λ(1)+Λ(2) ∈ B
}

=
{

Λ(1)

Λ(1)+Λ(2) ∈ B
}
∩ {Λ(2) > 0}, ∀B ∈

B(0, 1). Therefore, it follows from identity (16) that ∀A ∈ B(R+),

P
(
τk > tk, Yk ≤ yk, k = 1, . . . , n,Λ(1) + Λ(2) ∈ A

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
=

∫
λ∈A

n∏
k=1

e−λtkHθ(yk)P
(

Λ(1) + Λ(2) ∈ dλ
∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)

=
n∏
k=1

Hθ(yk)

[∫
λ∈A

n∏
k=1

e−λtkP
(
Λ(1) + Λ(2) ∈ dλ

∣∣Λ(2) > 0
)]

=
n∏
k=1

Hθ(yk)× P(τk > tk, k = 1, . . . , n,Λ(1) + Λ(2) ∈ A|Λ(2) > 0).
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The identity above implies that, for every θ ∈ (0, 1), under measure P
(
·
∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
,

the claim sizes {Yk, k ≥ 1} are i.i.d with a common distribution function Hθ(·), the counting
process N(·) is a mixed Poisson process with intensity (Λ(1) + Λ(2))|Λ(2)>0. More importantly,
they are mutually independent so is the case conditioning on {Λ(2) = 0} with N(·) as a mixed
Poisson process with intensity Λ(1).

Proof of Lemma 3.3

Proof. Basically, denoting γ1 = Λ(1), γ2 = Λ(2)|Λ(2)>0, we have

P
(

(γ1 + γ2) ∈ du, γ1

γ1 + γ2

∈ dv
)

= fγ1(uv)fγ2(u(1− v))u du dv

=
λα0λ

β
0

Γ(α)Γ(β)
(uv)α−1(u(1− v))β−1e−λ0uu du dv

=

(
λα+β

0

Γ(α + β)
uα+β−1e−λ0u du

)
·
(

1

B(α, β)
vα−1(1− v)β−1 dv

)
,

where fγ1(·), fγ2(·) are the density functions for γ1 and γ2 respectively, and B(α, β) = Γ(α)Γ(β)
Γ(α+β)

.
And the lemma is proved.

Proof of Theorem 3.1

Proof. If we let µF/c = η, µG/c = ρ, then for any fixed θ ∈ (0, 1) such that θµF +(1−θ)µG < c,

µθHe,θ(y) =

∫ y

0

(1− θF (x)− (1− θ)G(x)) dx = θµFFe(y) + (1− θ)µGGe(y),

where Fe(y) = 1
µF

∫ y
0

(1− F (x)) dx, Ge(y) = 1
µG

∫ y
0

(1−G(x)) dx. Hence,

1− ψθ(u) = (θ(1− η) + (1− θ)(1− ρ))
∑
n≥0

(
1

c

)n
(θµFFe(·) + (1− θ)µGGe(·))∗n (u)

= (θ(1− η) + (1− θ)(1− ρ))
∑
n≥0

∑
0≤l≤n

(
n

l

)
θl(1− θ)n−l

(
µlFµ

n−l
G

cn

)
F ∗le ∗G∗(n−l)e (u)

= (1− η)
∑

l≥0,m≥0

(
m+ l

l

)
ηlρmθl+1(1− θ)m

(
F ∗le ∗G∗me

)
(u)

+(1− ρ)
∑

l≥0,m≥0

(
m+ l

l

)
ηlρmθl(1− θ)m+1

(
F ∗le ∗G∗me

)
(u).

Then an integration over ξ on {ξ 6= 1} using the probability density function of Beta(α, β) on
both sides will lead to the desired result as shown in the theorem.
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Proof of Corollary 3.1

Proof. It can be seen that for l,m ≥ 0, we have(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)
=

Γ(l + 1 + α)

Γ(l + 1) Γ(α)

Γ(m+ β)

Γ(m+ 1) Γ(β)

(m+ l)!Γ(α + β)

Γ(α + β +m+ l + 1)

= α
(α + l)(α + l − 1) · · · (α + 1)

l(l − 1) · · · 1
· (β +m− 1)(β +m− 2) · · · (β + 1)β

m(m− 1) · · · 1
·B(α + β,m+ l + 1)

= α(−1)l+m
(
−α− 1

l

)(
−β
m

)∫ 1

0

tm+l(1− t)α+β−1 dt,

by adopting the property of a negative binomial distribution function where it allows for real-
valued α, β. We further introduced notations from (13) through which we could write,∑

l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)
F ∗le ∗G∗me (u)

= α

∫ 1

0

(1− t)α+β−1Fα+1(t, u− y)Gβ(t, dy) dt.

Clearly, F γ(t, u) (Gγ(t, u)) increases on [0, 1)×R+ with respect to (t, u), Fγ(t, 0) = 1, F γ(t,∞) =
(1− tη)−γ, and Gγ(t, 0) = 1, Gγ(t,∞) = (1− tρ)−γ. Actually, taking the Laplace transform of
F γ(t0, ·) yields,∫

[0,∞)

e−suF γ(t0, du) =
∑
l≥0

(
−γ
l

)
(−t0η)l(F̂e(s))

l =
(

1− t0ηF̂e(s)
)−γ

,

which demonstrates that F γ(t, u) is proportional to a cumulative distribution function of a
γ-convolution of compound geometry distribution.
Similarly, we have(

m+ l

l

)
B(l + α,m+ 1 + β)

B(α, β)
= β(−1)l+m

(
−α
l

)(
−β − 1

m

)∫ 1

0

tm+l(1− t)α+β−1 dt.

These directly lead to the equations shown in Corollary 3.1.

5.1 Proof of Example 3.1

Proof. In fact, F̂e(s) = ζ1
ζ1+s

, η = (ζ1c)
−1, for t0 ∈ (0, 1),(

1− t0ηζ1

ζ1 + s

)−1

=

∫ ∞
0

e−sy
(
δ0(dy) + t0ηζ1e

−ζ1(1−t0η)y
)
dy,
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then, for any γ ∈ N, we have

F γ(t0, dy) = δ0( dy) +

(
γ∑
l=1

(
γ

l

)
(t0ηζ1)l

yl−1

Γ(l)
e−ζ1(1−t0η)y

)
dy, (17)

where δ0 denotes the Dirac measure centered at 0. Similarly, we have Ĝe(s) = ζ2
ζ2+s

, ρ = (ζ2c)
−1

and ∫
[0,∞)

e−syGγ(t0, dy) =
∑
l≥0

(
−γ
l

)
(−t0ρ)l(Ĝe(s))

l =
(

1− t0ρĜe(s)
)−γ

.

Hence, for any γ ∈ N,

Gγ(t0, dy) = δ0( dy) +

(
γ∑
l=1

(
γ

l

)
(t0ρζ2)l

ul−1

Γ(l)
e−ζ2(1−t0ρ)y

)
dy.

Before continuing (14), first the following convolution is calculated,∫ u

0

Fα+1(t, u− y)Gβ(t, y)dy

= 1 + e−ζ1u+ζ1tηu

β∑
j=1

(
β

j

)
(tρζ2)j

Γ(j)

α+1∑
i=1

(
α + 1

i

)
(tηζ1)i

Γ(i)

∫ u

0

e−[(ζ1η−ζ2ρ)t−ζ1+ζ2]y(u− y)i−1yj−1dy (18)

= 1 + e−ζ1u+ζ1tηu

β∑
j=1

(
β

j

)
(tρζ2)j

α+1∑
i=1

(
α + 1

i

)
(tηζ1)i

ui+j−1

Γ(i+ j)
1F1(i, i+ j,−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u),

where 1 results from an integration of the product of two Dirac measures, 1 =
∫ u

0
δ2

0(dy), and

1F1(·) is a hypergeometric function with order 1,1 whose definition is given as follows.

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
,

where (c)k = c(c + 1) . . . (c + k − 1) with (c)0 = 1. In fact, it relates to a moment generating
function of a Beta distributed random variable X with parameters i, j, i.e., X ∼ Beta(i, j).

MX(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) = 1F1(i, i+ j,−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u),
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which could be seen from the nature of the integral in (18). Thus, (14) could be written as,

ψ(u)|ξ 6=1 = 1− α(1− η)

[
1

α + β
+ e−ζ1u

β∑
j=1

(
β

j

)
(ρζ2)j

α+1∑
i=1

(
α + 1

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
−β(1− ρ)

[
1

α + β
+ e−ζ1u

β+1∑
j=1

(
β + 1

j

)
(ρζ2)j

α∑
i=1

(
α

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
. (19)
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[5] Bühlmann, H. (2007) The History of ASTIN. ASTIN Bulletin, 37, No. 2, 191-202.

[6] Constantinescu, C., Deschamps-Maume, V. and Norberg, R. (2012) Risk pro-
cesses with dependence and premium adjusted to solvency targets. European Actuarial
Journal, 2, No. 1, 1-20.

[7] Constantinescu, C. and Lo, J. (2013) Ruin Theory Starter Kit 1. Proceeding at GIRO
2013, 1-7.
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