
Ruin Probabilities Under Solvency II Constraints1

Lewis Ramsdena,∗ and Apostolos D. Papaioannoua†

aInstitute for Financial and Actuarial Mathematics
Department of Mathematical Sciences

University of Liverpool
Liverpool, L69 7ZL, United Kingdom

2

Abstract3

Under Pillar 1 of the Solvency II (SII) directive, the Solvency Capital Require-4

ment (SCR) and MCR (Minimum Capital Requirement) reflect a level of funds that5

enables insurance (and reinsurance) undertakings to absorb significant losses and give6

reasonable assurance to policyholders and beneficiaries. In more details, insurance7

firms are required to guarantee that the SCR coverage ratio stays above a certain level8

with a large enough probability. Failure to remain above this level MCR HERE AND9

CURRY ON may trigger regulatory actions to ensure this obligation is fulfilled and10

the policy holders are protected against insolvency. In this paper, we generalise the11

classic Poisson risk model to comply with SII regulations (in the above sense). We12

derive an explicit expression for the ‘probability of insolvency’ (which is different from13

the classical ruin probability), in terms of the classic ruin quantities, and establish a14

relationship between the probability of insolvency and the classic ruin measure. In15

addition, under the assumption of exponentially distributed claim sizes, we show the16

probability of insolvency is simply a constant factor of the classic ruin function. Finally,17

in order to better capture the reality, dividend payments to the companies shareholders18

are considered and an explicit expression for the probability of insolvency is derived19

under this modification. Additionally, motivated by the practise. we assume that the20

shareholders are willing to contrivance the capital injection tool if the claim amounts21

force22
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1 Introduction25

Solvency II is the new harmonised EU regulatory directive for insurance firms, imple-26

mented from January 2016 (Directive 2009/138/EC, see [1]). The new regulatory regime27

introduces capital requirements (based on a prospective risk approach), under which the28

policyholders protection (security) is improved, the firms can adopt better risk manage-29

ment strategies (by direct the capital accurately where the risks are), while the prudential30

authorities and EIOPA (European Insurance and Occupational Pensions Authority) can31

monitor effectively the insurance institutions (under a modernised supervision scheme).32

The Solvency II framework consists of three pillars. Pillar 1 comprises the quantitative33

capital requirements, Pillar 2 comprises the risk management quality requirements, while34

Pillar 3 comprises the regulator supervisory and public disclosure requirements.35

In practise, within Pillar 1, actuaries apply the so called standard formula or internal36

models in order match the assets with the future and current liabilities and eventually to37

evaluate and assess the capital requirements of insurance firms. In more details, Pillar 1 sets38

an upper and a lower level of capital requirement, in which in the first case the insurance39

firm is considered to be sufficiently capitalised, while the latter triggers the supervisory40

intervention due to insufficient capital holding. The aforementioned upper level is called41

Solvency Capital Requirement (SCR) and has to be fulfilled by insurance institutions to42

assure a theoretical ruin probability of 0.005 (this ensures that ruin occurs no more often43

than once in every 200 years). The Minimum Capital Requirement (MCR) is the level44

below which the regulator’s strongest actions are taken (e.g. recovery plan requirement45

or removal of the insurer’s authorisation). The MCR is calculated (usually) using a linear46

formula and must fall between 25% and 45% of the SCR.47

The basic underlying assumption within SII regulation is that SCR is calibrated using48

the Value at Risk (VaR) of the basic own funds of an insurance or reinsurance undertaking49

subject to a confidence level of 99.5 % over a one-year period. This calibration is applied to50

each individual risk module and sub-module of all risks that an insurance firm faces. The51

same kind of assumption lies in the heart of regulatory regimes for capital requirements52

that are applied in the US (Risk Base Capital, RBC, see [2]), in China (China Risk Oriented53

Solvency System, C-ROSS, see [3]), or Switzerland (Swiss Solvency Test, see [10]). The54

strong connection between the VaR and the ruin probability has been studied by Trufin55

et al [4], Ren [5], Gerber and Loisel [6], Gatto and Baumgartner [7] and there references56

therein. As pointed out in Gerber and Loisel [6], ruin theory provides a more sustainable57

valuation principle (than the single use of the VaR approach) since it takes into account58

liquidity constraints and penalises large position sizes.59

The risk process we employee to model the SII framework consists of the following60

characteristics:61

a. We consider a compound Poisson risk process for which two barriers are employed to62

model the MCR and the SCR level. We assume that the insurance firm starts from a63

solvent level which exceeds the SCR level and has downward jumps due to the claim64
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arrivals of the Poisson process. Once, the SCR level has been crossed, due to a claim,65

then the insurance firm has to recover the capital so as to meet the SCR level again,66

and hence to fulfil the SII capital requirements which indicate specific values for the67

SCR level of an insurance firm.68

b. Following Solvency II and market studies, we consider in our model that the afore-69

mentioned recover in terms of capital could be provided by capital injections, given70

the MCR level has not been crossed by the claim amounts (see also Section 2 and71

Figure 1). The capital injection is a re-capitalisation mechanism often implemented72

under the SII environment, see for example, among others, the case of the ING group73

insurance in Netherlands (see [8]), the case of Liberty Insurance in Ireland (see [9]),74

or MOODY’S report of April 2016.75

c. Additionally, motivated by again by the practise, we assume that there exists an76

intermediate capital level barrier, in between SCR and MCR, which indicates the77

confidence level of which the share holders are prepared to inject capital in order78

the surplus to be restored back to the SCR level. If the claim appears to be large79

enough such this intermediate confidence level is crossed, then the recovery actions of80

the insurance firm is to borrow capital at a debit interest rate until the intermediate81

confidence level of the share holders will be reached again and hence the SCR level82

can be restored again by a capital injection.83

d. Further, during the borrowing period if another claims occurs, causing the risk process84

to drop to the MCR level or further, then the firm cannot longer considered as solvent85

and thus the regulatory worst actions have to take place.86

e. We underline that if a claims occurs, which lead to the drop of the risk process to87

the MCR level directly, then the regulatory actions are immediately in effect.88

Capital injections have been first introduced in the risk theory context by Parfumi (1998).89

The ruin probability and other ruin related quantities, such as the distribution of the deficit90

at ruin or the distribution of the surplus prior to ruin, have been extensively studied for91

the compound Poisson risk model by many authors, see among others, Nie et al. (2011),92

Eisenberg and Schmidli (2011), Dickson and Qazvini (2016) and the references therein. The93

debit interest risk model was first introduced by Dickson and Dos Reis (1997). Explicit94

expressions for the absolute ruin probabilities and other ruin related quantities have been95

derived, for the classical risk model, by Cai (2007), Yang and Zhu (2008), Li and Lu96

(2013) and the references therein. Although that SII regulation is the framework under97

which insurance firms are nowadays operating, it appears that only a few papers have98

been written in the risk theory context. Ferriero (2016) derives practical estimators for the99

capital requirements in a fractional brownian motion risk model. Floryszczak et al. (2016)100

confirm that the least-squares Monte Carlo method is relevant to SII framework for the101
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capital requirements of an insurance firm. Asimit et al. (2015) propose optimal allocations102

for the premium and the liabilities in order the MCR level to be reduced.103

In this paper we employ the aforementioned SII risk model to study the probability104

of insolvency. In more details, we show that insolvent probability under the above SII105

environment can be evaluated in terms of the ruin probability of the classical risk model,106

for which powerful methodologies, numerical techniques and many applicable results have107

been derived over the last half century. Additionally, we derive the distribution of the108

capital injection up to the time that the firm runs off.109

The paper is organised as follows:110

2 The SII Risk Model111

In this section we will adapt the classical risk model to conform with the SII regulatory112

framework, in order to establish a construction for the SII risk model.113

In the classical Cramér-Lundberg risk model, the surplus process of an insurance com-114

pany is defined by eqC115

U(t) = u+ ct−
N(t)∑
i=1

Xi, t > 0, (2.1)116

where u > 0 is the insurer’s initial capital, c > 0 is a constant representing the continuously117

received premium rate, {N(t)}t>0 is a Poisson process denoting the number of claims that118

have arrived up to time t > 0, with intensity λ > 0, and {Xk : k ∈ Z+} is a sequence of119

independent and identically distributed (i.i.d) claim size random variables with a common120

distribution function FX(·), density fX(·), and mean E(X) = µ < ∞. We further assume121

that {N(t)}t>0 and {Xk : k ∈ Z+} are mutually independent.122

In practise an insurance company needs, and are obligated under the SII directive, to123

hold a certain MCR level of capital (which depends on their risk) in order to continue124

operating. If the surplus of the insurance firm falls below this certain MCR level, then125

‘ultimate supervisory action’ will be triggered. That is, the company could be liquidated,126

its liabilities could be transferred to another company and its license could be withdrawn.127

Therefore, in reality, the level of ruin for an insurance firm is much higher than that of128

zero (as is seen in the classic ruin set up). Under this consideration we will define the129

‘insolvency probabilities’ corresponding to the probabilities that the surplus process down-130

crosses a certain lower level of capital, namely the MCR.131

Note that, although in the SII directive the one year VaR at a 99.5% is used to determine132

the SCR level, in this paper we focus on the (ruin) insolvency probabilities. The strong133

connection between VaR and ruin probabilities has been studied in Ren (2012), Denis et134

al.(̇2009) and references therein. An additional reason for focusing on the study of infinite135

time insolvency probabilities is that, in the sequel, we will establish a closed form relation136

between the insolvency probabilities and the ruin probability of the classical risk model,137

for which numerous results exist in the Actuarial literature.138
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Motivated by the Solvency II (SII) directive (Directive 2009/138/EC of the European139

Parliament and of the Council), we will consider capital injections - which often appear in140

practise - and borrowing actions that the insurer may consider as a means of maintaining141

an appropriate level of capital/ SCR level. There are several aspects to the directive that142

all play important roles in its implication, however, for the purpose of this paper we are143

going to concentrate on the calculation of the reserves and consequently the insolvency144

probability.145

We assume that if the surplus of the insurer, as defined in equation (2.1), falls below the146

SCR (≡ k) barrier then the stake holders in the company will inject capital instantaneously147

to cover this fall. That is, if the surplus falls below the barrier k > 0, by some amount148

x > 0, then there is an instantaneous jump, of size x, back to the SCR level. The sum of149

total capital injections, up to time t > 0, is defined by the pure jump process {Z(t)}t>0.150

In addition, there is an extra precaution if the surplus of the insurer falls below a lower151

barrier, k > b > 0. When the surplus drops below this level, the stake holders can no152

longer afford to inject capital into the company and instead the company must borrow153

an amount of money equal to the size of the deficit below b continuously, at a debit force154

δ > 0.155

Meanwhile, the insurer will repay the debts continuously from its premium income. The156

surplus process may return to the level b, at which point the stakeholders have renewed157

confidence and will inject the amount k − b in order for the process to jump back to level158

k. However, if the surplus ever falls below the MCR (≡ b̃) level, the surplus is no longer159

able to return to the level b, therefore the company becomes ‘insolvent’ and has to be160

liquidated. By similar arguments as in Cai (2007) it is easy to see that b = b̃ + c
δ since,161

at the point b− c/δ = b̃, the debts of the insurer are greater than the present value for all162

premium income available after that point. Insolvency occurs at this point.163

Note that all the aforementioned features are strongly connected to the capital level164

that an insurer must hold during its operating time and thus is strongly correlated with165

SII.166

Introducing these features, the amended surplus process, denoted by {UZδ (t)}t>0, has167

dynamics eqDynam168

dUZδ (t) =


cdt− dS(t), UZδ (t) > k,

∆Z(t), b 6 UZδ (t) < k,[
c+ δ(UZδ (t)− b)

]
dt− dS(t), b̃ < UZδ (t) < b,

(2.2)169

where ∆Z(t) = Z(t)− Z(t−) and S(t) =
∑N(t)

i=1 Xi.170

171

Within this new legislation there are rules that stipulate the minimum reserves an172

insurance company must hold in order to cover their exposed risks, and so it follows that173

for the surplus process {UZδ (t)}t>0, we should define the time to insolvency, denoted by Tδ,174
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as175

Tδ = inf
{
t > 0 : UZδ (t) 6 b̃|UZδ (0) = u

}
,176

with Tδ = ∞ if UZδ (t) > b̃ for all t > 0. Then, the probability of insolvency (ruin) will be177

denoted by ψSII(u), and is given by178

ψSII(u) = P
(
Tδ <∞

∣∣UZδ (0) = u
)
,179

with ψSII(u) = 1 for u 6 b̃ and φSII(u) = 1 − ψSII(u) being the probability of solvency180

(survival).181

Justify the finite time versus infinite that we study in SECTION 2182

Figure 1: Example sample path of the surplus process under SII constraints

We point out, similar to Cai (2007), that ψSII(u) has different sample paths for u > k183

and b̃ < u < b. Therefore, we distinguish the two situations by writing ψSII(u) = ψ+
SII(u) for184

u > k and ψSII(u) = ψ−SII(u) for b̃ < u < b. Now, due to the instantaneous capital injection185

when the surplus lies within the interval [b, k) we say that for b 6 u < k, ψSII(u) = ψ+
SII(k).186

It follows that the corresponding solvency probabilities are given by φSII(u) = 1−ψSII(u) =187

φ+SII(u), for u > k, and φSII(u) = φ−SII(u) for b̃ < u < b. Finally, we assume the net profit188

condition holds, that is eqnetprof189

η = (c/λµ)− 1 > 0. (2.3)190

3 Ruin probabilities under SII model191

In this section, we derive a closed form expression for the probability of insolvency ψ+
SII(u),192

u > k, in terms of the ruin probability of the classical risk model and an exiting (hitting)193
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probability between two barriers. Ultimately, we will show that the probability of insol-194

vency is given as a proportion of the ‘shifted’ classical ruin function. We will also derive,195

out of mathematical curiosity (since Solvency II regulation stipulates initial capital must196

exceed the SCR level), corresponding formulae for the ψ−SII(u), b̃ < u < b.197

Before we proceed, let us first remind the reader of some ruin related quantities that198

will be extensively used in the following. First, let the time to cross the barrier k, for199

u > k, be denoted by T , such that eqcrossT200

T = inf{t > 0 : UZδ (t) < k|UZδ (0) = u > k}. (3.1)201

Then, we are able to define the probability of such an event occurring, i.e. the probability202

of down crossing the barrier k, by203

ξ(u) = P
(
T <∞

∣∣UZδ (0) = u > k
)
.204

Recalling the behaviour of the surplus process UZδ (t) given in equation (2.2), it is clear205

to see that the dynamics above the barrier k are identical to that of the classical surplus206

process under a free barrier environment, i.e. for u > k, we have dUZδ (t) ≡ dŨ(t) where207

Ũ(t) = ũ+ ct− S(t), t > 0,208

with Ũ(0) = ũ = u− k. It should then be clear to see that T , defined by equation (3.1), is209

equivalent to the time to ruin in the classical risk model with no barrier modification and210

initial capital ũ > 0, given by eqCRT211

T = inf{t > 0 : Ũ(t) < 0| Ũ(0) = ũ}, (3.2)212

and that the function ξ(u) is identical to the classic ruin probability ψ(ũ) = P(T <213

∞|Ũ(0) = ũ). Moreover, the probability of never crossing the barrier k can be expressed214

by the classic survival probability φ(ũ) = 1− ψ(ũ).215

Now that we have made apparent the equivalence between the distribution of crossing216

the k barrier with classical ruin, let us define217

G(ũ, y) = P
(
T <∞, |Ũ(T )| 6 y

∣∣ Ũ(0) = ũ
)
,218

as the joint distribution of crossing below the barrier k and experiencing a drop of at most219

y, with g(ũ, y) = ∂
∂yG(ũ, y) the corresponding density function. This quantity is equivalent220

to the joint distribution introduced by Gerber et al. (1987) for the ‘deficit at ruin’.221

For the ease of calculations, the results in the following will be derived initially in terms222

of the solvency probabilities φ+SII(u) and φ−SII(u), for u > k and b̃ < u < b respectively.223

Extending an argument of Nie et al. (2011), by conditioning on the occurrence and size224

of the first drop below k, for u > k, we obtain the following expression for the solvency225
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probability eqCR1226

φ+SII(u) = φ(ũ) +

∫ k−b

0
g(ũ, y)φ+SII(k) dy +

∫ k−b̃

k−b
g(ũ, y)φ−SII(k − y) dy227

= φ(ũ) +G(ũ, k − b)φ+SII(k) +

∫ k−b̃

k−b
g(ũ, y)φ−SII(k − y) dy. (3.3)228

229

In order to simplify the above into a more tractable equation, we want to express the230

solvency function φ−SII(u) in terms of φ+SII(u). This can be done by the introduction of a231

exiting (hitting) probability.232

Consider the time T b of hitting an upper barrier b, given the surplus starts with initial233

capital b > u > b̃. Then, we are able to express the exiting (hitting) probability function234

χ
δ
(u, b, b̃) ≡ χ

δ
(u), representing the probability of hitting the upper barrier b before hitting235

the lower barrier b̃ under the debit force, by eqChi1236

χ
δ
(u) = P

(
T b < Tδ

∣∣UZδ (0) = u
)
, (3.4)237

where238

T b = inf
{
t > 0 : UZδ (t) = b

∣∣UZδ (0) = u
}
, b̃ < u < b.239

If we consider a conditioning argument on the possible events, starting from initial capital240

b̃ < u < b, then, noting that φ−SII(x) = 0 for x 6 b̃, and recalling the definition of the exiting241

probability defined in equation (3.4), it follows from the law of total probability that242 eqMin

φ−SII(u) = χ
δ
(u)φ+SII(k), (3.5)243

from which, after substituting into equation (3.3), we obtain eqCR2244

φ+SII(u) = φ(ũ) + φ+SII(k)

[
G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y) dy

]
. (3.6)245

If we consider the case u = k, it allows us to solve the above equation with respect to246

φ+SII(k), from which we acquire an explicit expression of the form eqCR3247

φ+SII(k) =
φ(0)

1−
(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) . (3.7)248

Finally, by combining equations (3.6) and (3.7), we are able to formulate an expression for249

the solvency probability, for u > k, given by eqCR4250

φ+SII(u) = φ(ũ) +
φ(0)

[
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, y)χ

δ
(k − y) dy

]
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) , (3.8)251

252
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where ũ = u− k or equivalently, for the insolvency (ruin) probability, by eqCR8253

ψ+
SII(u) = ψ(ũ)−

φ(0)
[
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, y)χ

δ
(k − y) dy

]
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) . (3.9)254

255

Remark 1. Note that the numerator in equation (3.9) comprises of probability functions256

and thus is clearly positive. Further, by dominated convergence theorem we have257 ∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy 6

∫ k−b̃

k−b
g(0, y) dy258

= G(0, k − b̃)−G(0, k − b),259
260

and it follows that261

1−

(
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy

)
> 1−

(
G(0, k − b) +G(0, k − b̃)−G(0, k − b)

)
262

= 1−G(0, k − b̃) > 0,263264

by the net profit condition. Therefore, the fraction on the right hand side of equation (3.9)265

is positive and the probability of insolvency, for u > k, is less than the shifted classical ruin266

probability.267

From equation (3.9), it should be clear that the probability of insolvency, namely268

ψ+
SII(u), heavily depends on the distribution function of the deficit at ruin of the classi-269

cal risk model. Then, using from Dickson (2005) the fact that the general form for the270

density of the deficit at ruin (with zero initial capital) is simply a proportion of the tail271

distribution i.e.272

g(0, y) =
λ

c
FX(y),273

equation (3.9) reduces to eqCR5274

ψ+
SII(u) = ψ(ũ)−

φ(0)
[
G(ũ, k − b) +

∫ k−b̃
k−b g(ũ, y)χ

δ
(k − y) dy

]
1− λ

c

(
µFe(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

) , (3.10)275

276

where G(0, y) =
∫ y
0 g(0, z) dz, FX(x) = 1 − FX(x) and Fe(x) = 1

µ

∫ x
0 FX(y) dy is the277

so-called equilibrium distribution.278

Finally, by employing equation (3.10), combining equations (3.5) and (3.7) and defining279

Gũ(y) = G(ũ,y)
ψ(ũ) , with gũ(y) = g(ũ,y)

ψ(ũ) , such that Gũ(y) = P(|Ũ(T )| 6 y
∣∣T < ∞) is a proper280

distribution function, as in Willmot (2002) (and references therein), we get the following281

Theorem for the probability of insolvency.282 ThmS1
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Theorem 1. For u > k, the probability of insolvency, ψ+
SII(u), is given by eqCRL6283

ψ+
SII(u) = ψ(ũ)

1−
φ(0)

[
Gũ(k − b) +

∫ k−b̃
k−b gũ(y)χ

δ
(k − y) dy

]
1− λ

c

(
µFe(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

)
 , (3.11)284

where ψ(ũ) = ψ(u− k) is the shifted classical ruin function and for b̃ < u < b, ψ−SII(u), we285

have eqCRLm286

ψ−SII(u) = 1− φ(0)χ
δ
(u)

1− λ
c

(
µFe(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

) . (3.12)287

Rem2

Remark 2. From equations (3.11) and (3.12), it follows that the two types of insolvency288

probabilities are given in terms of the (shifted) ruin probability and deficit of the classical289

risk model, as well as the probability of exiting between two barriers. Thus, ψ+
SII(·) and290

ψ−SII(·) can be calculated by employing the well known results, with respect to Gũ(·) and ψ(·)291

(see for example Gerber et al. (1987), Dickson (2005), and the references therein), whilst292

the latter exiting probability, χ
δ
(u), is calculated as follows.293

Following similar arguments of Cai (2007), we get the following Proposition.294 PropC1

Proposition 1. For b̃ < u < b, the probability of hitting an upper barrier b before hitting a295

lower barrier b̃ (under a debit environment), denoted χ
δ
(u), satisfies the following integro-296

differential equation eqchi297

(δ(u− b) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u−b̃

0
χ
δ
(u− x) dFX(x), (3.13)298

with boundary conditions299

lim
u↑b

χ
δ
(u) = 1,300

lim
u↓b̃

χ
δ
(u) = 0.301

302

Proof. Let us first note that when the surplus process is within the interval (b̃, b), it is303

driven by the debit interest force δ > 0, until the surplus returns to level b (or experiences304

insolvency). Therefore, for initial capital b̃ < u < b, the process is immediately subject to305

debit interest on the amount b− u > 0 and the evolution of the surplus process (assuming306

no claims appear up to time t > 0), can be expressed by eqh307

h(t, u, b) = b+ (u− b)eδt + c

∫ t

0
eδs ds, t > 0.308
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Now, let us further define t0 ≡ t0(u, b) to be the solution to h(t, u, b) = b, where eqt309

t0 = ln

(
c

δ(u− b) + c

)1/δ

, (3.14)310

is the time taken for the surplus to reach the upper barrier level b i.e. h(t0, u, b) = b, in the311

absence of claims and h(t, u, b) ∈ (b̃, b) for all t < t0. Then, by conditioning on the time312

and amount of the first claim, it follows that eqCHI11313

χ
δ
(u) = e−λt0 +

∫ t0

0
λe−λt

∫ h(u,t,b)−b̃

0
χ
δ

(
h(u, t, b)− x

)
dFX(x) dt. (3.15)314

Using the change of variable y = h(t, u, b), we obtain that315 eqCHI2

χ
δ
(u) =

(
δ(u− b) + c

c

)λ
δ

+ λ (δ(u− b) + c)
λ
δ

∫ b

u
(δ(y − b) + c)−

λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dFX(x) dy.

(3.16)

316

317

Differentiating the above equation, with respect to u, and combining the resulting equation318

with equation (3.15), we obtain equation (3.13).319

The first boundary condition is found by letting u→ b in equation (3.16). Now, for the320

second boundary condition one can see that if321

lim
u↓b̃

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dF (x)

]
dy <∞,322

then323

lim
u↓b̃

λ
(
δ(u− b) + c

)λ
δ

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dF (x)

]
dy = 0,324

since b̃ = b− c
δ . Alternatively, if325

lim
u↓b̃

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dF (x)

]
dy =∞,326

then, by L’Hopital’s rule, we have327

lim
u↓b̃

λ
(
δ(u− b) + c

)λ
δ

∫ b

u

[(
δ(y − b) + c

)−λ
δ
−1
∫ y−b̃

0
χ
δ
(y − x) dF (x)

]
dy = 0.328

Using the above limiting results and taking the limit u→ b̃, in equation (3.16), we obtain329

the second boundary condition.330
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Remark 3. We point out that the integral form of equation (3.15) allows us to consider331

the differentiability of χ
δ
(u), b̃ < u < b.332

Recalling Remark 2 and Theorem 1, the two types of insolvency probabilities depend333

heavily on the solution of the integro-differential equation (3.13), which is discussed in the334

next subsection.335

3.1 Explicit expression for exponential claim size distribution336

In this subsection, we derive explicit expressions for the two types of insolvency proba-337

bilities, under the assumption of exponentially distributed claim amounts, by calculating338

first χ
δ
(u) with exponential claims. Then, by comparing the explicit expression of the339

insolvency probabilities with the classical ruin probability, we identify that the probability340

of insolvency is given as a constant proportion of the probability of ruin in the classical341

model. To illustrate the applicability of our results (and thus the relation between ψ+
SII(u)342

and ψ(u)), we finally provide numerical results.343

Let us assume the claim sizes are exponentially distributed with parameter β > 0 i.e.344

FX(x) = 1− e−βx, x > 0. Then, equation (3.13) reduces to eqExp345

(δ(u− b) + c)χ′
δ
(u) = λχ

δ
(u)− λ

∫ u

b̃
βe−β(u−x)χ

δ
(x) dx, b̃ < u < b. (3.17)346

The above integro-differential equation can be solved as a boundary value problem, since347

from Proposition 1 the boundary conditions at b̃ and b are given. Thus, differentiating the348

above equation with respect to u, it yields a second order homogeneous ODE of the form349

(δ(u− b) + c)χ′′
δ
(u) + (δ − λ+ β[δ(u− b) + c])χ′

δ
(u) = 0,350

or equivalently eqExp1351

χ′′
δ
(u) + p(u)χ′

δ
(u) = 0, (3.18)352

where353

p(u) =
δ − λ+ β[δ(u− b) + c]

δ(u− b) + c
=

δ − λ
δ(u− b) + c

+ β.354

The above equation can now be solved by employing the general theory of differential355

equations, as follows. Let us define the auxiliary function g(u) = χ′
δ
(u), for b̃ < u < b.356

Then, equation (3.18) reduces to357

g′(u) + p(u)g(u) = 0,358

which has a general solution of the form359

g(u) = Ce−
∫
p(u) du,360
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where C is an arbitrary constant that needs to be determined in order to complete the361

above solution. Recalling the form of p(u), the general solution of the above ODE is given362

by363

g(u) = Ce−βu (δ(u− b) + c)
λ
δ
−1 .364

Now, integrating the above equation from b̃+ ε to u, and since g(u) = χ′
δ
(u), we have that365

χ
δ
(u)− χ

δ
(b̃+ ε) = C

∫ u

b̃+ε
e−βw (δ(w − b) + c)

λ
δ
−1 dw.366

Letting ε → 0 and using the second boundary condition of Proposition 1, the general367

solution of equation (3.18) is given by eqCHI1368

χ
δ
(u) = C

∫ u

b̃
e−βw (δ(w − b) + c)

λ
δ
−1 dw369

= Cc
λ
δ
−1
∫ u

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw. (3.19)370

371

In order to complete the solution, we need to determine the constant C, which can be ob-372

tained by using the second boundary condition for χ
δ
(u) of Proposition 1 i.e. limu→b χδ(u) =373

1. That is, by letting u→ b in equation (3.19), we obtain374

C−1 = c
λ
δ
−1
∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw375

= c
λ
δ
−1C−11 ,376

377

where C−11 =
∫ b
b̃ e
−βw

(
δ(w−b)

c + 1
)λ
δ
−1

dw.378 PropC2

Proposition 2. For b̃ < u < b, and exponentially distributed claim amounts with param-379

eter β > 0, the probability of hitting the upper barrier b, before hitting the lower barrier b̃,380

under a debit environment, is given by eqC1381

χ
δ
(u) = C1

∫ u

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw. (3.20)382

Using Theorem 1 and Proposition 2, the two types of insolvency probabilities, namely383

ψ+
SII(u) and ψ−SII(u), under exponentially distributed claim amounts, are given in the fol-384

lowing Theorem.385

Theorem 2. Let the claim amounts be exponentially distributed with parameter β > 0.386

Then, the two types of insolvency probabilities are given by, for u > k; eqPSI387

ψ+
SII(u) =

(1 + η)e
λη
c
k

1 + λη
c C
−1
1 eβk

ψ(u), (3.21)388
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and, for b̃ < u < b; eqPSI2389

ψ−SII(u) =

(
1− C1

∫ u
b̃ e
−βw

(
δ(w−b)

c + 1
)λ
δ
−1

dw

)
η + C1

c
λe
−βk

η + C1
c
λe
−βk , (3.22)390

where eqConst391

C−11 =

∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw. (3.23)392

Proof. Let us begin by considering the numerator in equation (3.11), given by393

φ(0)

[
Gũ(k − b) +

∫ k−b̃

k−b
gũ(y)χ

δ
(k − y, b, b̃) dy

]
.394

Assuming that the claim amounts are exponentially distributed, employing the correspond-395

ing forms for Gũ(y) and gũ(y) from Dickson(2005) and using equation (3.20) of Proposition396

2, it follows that the above equation may be written as397

φ(0)

[(
1− e−β(k−b)

)
+ C1β

∫ k−b̃

k−b
e−βy

∫ k−y

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dwdy

]
.398

Changing the order of integration, evaluating the resulting inner integral and applying399

some algebraic manipulations, we obtain that400

φ(0)

[
1− e−β(k−b)

(
1− C1

∫ b

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1
dw

)
− C1

c

λ
e−βk

]
.401

Furthermore, recalling the definition of the constant C1, given in equation (3.23), the above402

equation reduces to the concise form403

φ(0)
[
1− C1

c

λ
e−βk

]
.404

Now, considering a similar methodology as above, the corresponding denominator in equa-405

tion (3.11) reduces to the form406

1− 1

1 + η

(
1− C1

c

λ
e−βk

)
.407

Finally, substituting the above forms of the numerator and denominator of equation (3.11),408

we have that the insolvency probability, for u > k, is given by409

ψ+
SII(u) = ψ(ũ)

(
1− φ(0)A

1− 1
1+ηA

)
,410

411
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where412

A =
(

1− C1
c

λ
e−βk

)
.413

Finally, re-arranging the above equation, substituting the forms of both φ(0) and ψ(ũ),414

under exponentially distributed claim sizes (see Grandell (1991)) and noticing that ψ(ũ) =415

ψ(u−k) = e
λη
c
kψ(u), we obtain our result. For ψ−SII(u), given by equation (3.22), we follow416

similar arguments and thus the proof is omitted.417

Remark 4. (i) From equation (3.21), we conclude that the function (1+η)e
λη
c k

1+λη
c
C−1

1 eβk
plays418

the role of a measurement of protection’ for the insurer. By this we mean that given a419

set of parameters, the above factor could lead to lower (higher) value of ψ+
SII(u) in the420

sense that the insurer is more (less) protected by the SII regulations compared with421

the classical ruin risk measure.422

(ii) In practise insurance firms per-determine their insolvency probability (or equivalent423

VaR measure), usually at 0.05%. Since equation (3.21) can be also be written as eqPSI5424

ψ+
SII(u) =

1

1 + λη
c C
−1
1 eβk

e−
λη
c
(u−k), (3.24)425

it follows that, for a fixed value of ψ+
SII(u) and given set of parameters (including the426

initial capital), we can obtain the required SCR level k by solving equation (3.24) with427

respect to k.428

Remark 5. If we set k = b = 0 such that b̃ = − c
δ , then equation (3.21) becomes429

ψ+
SII(u) =

e−
λη
c
u

1 + λη
c C
−1
1

u > 0,430

where C−11 =
∫ 0
− c
δ
e−βw

(
δw
c + 1

)λ
δ
−1

dw and thus we retrieve Theorem 12 of Dassios and431

Embrechts (1989) for the ruin probability in the classic model with debit interest.432

Example 1 (Comparison of SII insolvency versus the classical ruin probability). The main433

aim of the Solvency II regulation is to provide a more prudent risk management scheme,434

protecting both the company and its policyholders against possible insolvency. In this paper,435

as can be seen in reality, we attempt to achieve this by the addition of capital injections and436

borrowing. Therefore, it is of interest to consider, numerically, the effect of such measures.437

In order to compare the insolvency probability ψ+
SII(u), u > k with the classic ruin probability438

under exponentially distributed claim sizes, which is given by439

ψ(u) =
1

1 + η
e−

λη
c
u, u > 0,440
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consider the parameters λ = β = 1 and the positive safety loading variable η = 5% (typical441

value in the literature), which due to the net profit condition, fixes our premium rate at442

c = 1.05. We further set the debit force δ = 0.05 and the fix MCR barrier b̃ = 3, which443

in turn gives b = 24, since b = b̃ + c
δ . Table 1 (below) shows us the comparison of the444

classical and the SII ruin probabilities for several values of u and the SCR level k such that445

u > k > b = 24.446

Furthermore, in Table 2, numerics for the required initial capital are given in the case447

of a fixed probability of insolvency and SCR level.448

449

k = 25 k = 30 k = 50

u ψ(u) ψ+
SII(u) ψ(u) ψ+

SII(u) ψ(u) ψ+
SII(u)

k 0.290 0.509 0.228 6.933× 10−3 0.088 1.439× 10−11

k + 5 0.228 0.401 0.180 5.464× 10−3 0.069 1.134× 10−11

k + 10 0.180 0.316 0.142 4.306× 10−3 0.055 8.938× 10−12

k + 15 0.142 0.249 0.112 3.394× 10−3 0.043 7.044× 10−12

k + 20 0.112 0.196 0.088 2.675× 10−3 0.034 5.552× 10−12

Table 1: Classical ruin against SII insolvency probabilities, exponential claims.

u

ψ+
SII(u) k = 25 k = 26 k = 27

0.1 59.17 47.32 31.34
0.05 73.72 61.87 45.90
0.025 88.28 76.43 60.46
0.01 107.52 95.67 79.70

Table 2: Initial capital required for varying insolvency probabilities and SCR levels

Note that in the tables above, we give only numerical results for ψ+
SII(u) in order to be450

consistent with the SII framework. That is, the initial capital must be at least the value451

of the SCR level.452

3.2 Asymptotics results for the probability of insolvency453

Over the years a vast array of models have been proposed, and expressions derived, for ruin454

probabilities and related quantities, however explicit expressions are seldom obtained and,455

in fact, only some are derived even for special cases. Hence, in this subsection we will recall456

previously derived asymptotic expressions for the classic ruin related quantities in order457

to discover the behaviour of ψ+
SII(u), u > k as u → ∞, which by the close relationship to458

the classic ruin probability, will allow us to show that the asymptotic behaviour of ψ+
SII(u)459

differs by a constant factor to the the classic ruin behaviour as u → ∞. We will not460

consider the asymptotic behaviour of ψ−SII(u), since b̃ < u < b has an upper bound at b.461
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Let us begin by deriving asymptotic expressions for Gũ(y) and gũ(y). From Gerber462

et al. (1987), it follows that the distribution of the deficit at ruin, G(u, y) satisfies the463

following renewal equation eqRN1464

G(u, y) =
λ

c

∫ u

0
G(u− x, y)FX(x) dx+

λ

c

∫ u+y

u
FX(x) dx, (3.25)465

which is a defective renewal equation since λ
c

∫∞
0 FX(x) dx = λµ

c < 1, given that the net466

profit condition holds. Thus, as in Feller (1971) we can assume there exists a constant R,467

known as the Lundberg exponent, such that468

λ

c

∫ ∞
0

eRxFX(x) dx = 1,469

then, λ
c e
RxFX(x) forms a density of a proper probability function. Multiplying equation470

(3.25) by eRu, with R satisfying the above condition, we have eqRN2471

eRuG(u, y) =
λ

c

∫ u

0
eR(u−x)G(u− x, y)eRxFX(x) dx+

λ

c
eRu

∫ u+y

u
FX(x) dx, (3.26)472

which is now in the form of a proper renewal equation. Then, direct application of the Key473

Renewal Theorem [see Rolski et al. (1999), Thm 6.1.11], gives that474

lim
u→∞

eRuG(u, y) =

∫∞
0 eRt

∫ t+y
t FX(x) dxdt∫∞

0 teRtFX(t) dt
.475

Following a similar argument [see also, Grandell (1999)], we obtain the following asymptotic476

expression for the classic probability of ruin477

lim
u→∞

eRuψ(u) =

∫∞
0 eRt

∫∞
t FX(x) dxdt∫∞

0 teRtFX(t) dt
.478

Finally, since Gu(y) = G(u,y)
ψ(u) , by a similar argument as in Willmot (2002), since , we have479

lim
u→∞

Gu(y) =

∫∞
0 eRt

∫ t+y
t FX(x) dxdt∫∞

0 eRt
∫∞
t FX(x) dxdt

.480

from which it follows, by differentiating the above equation with respect to y, that481

lim
u→∞

gu(y) =

∫∞
0 eRtFX(t+ y)dt∫∞

0 eRt
∫∞
t FX(x) dxdt

.482

Thus, the asymptotic behaviour of ψ+
SII(u) as u→∞ is given by the following Proposition.483
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Proposition 3. The probability of Insolvency, ψ+
SII(u), behaves asymptotically as484

ψ+
SII(u) ∼ Kψ(u), u→∞.485

where ψ(u) is the classic ruin probability and K is given by486

K = 1−
φ(0)

[∫∞
0 eRt

∫ t+(k−b)
t FX(x) dxdt+

∫ k−b̃
k−b

∫∞
0 eRtFX(t+ y)χ

δ
(k − y) dt dy

]
µη
R

(
1− λ

c

(
µFe(k − b) +

∫ k−b̃
k−b FX(y)χ

δ
(k − y) dy

)) .487

4 Probability characteristics of the accumulated capital in-488

jections489

In order to enforce measures against insolvency, by means of capital injections, it is nec-490

essary to acquire a source of such funds. Usually, these are either; capital injections from491

the national government (if it is in their interest to keep the company solvent) or injections492

from the companies shareholders - Dickson and Waters (2004) proposed “As the share-493

holders benefit from the dividend income until ruin, it is reasonable to expect that the494

shareholders provide the initial surplus u and take care of the deficit at ruin”. In extreme495

cases capital injections can be offered by a reinsurer, as considered by Pafumi (1998) and496

Nie et al. (2011), among others. Regardless from which scheme the capital injections are497

received, it will be prudent for the source to understand its potential liabilities, in order to498

manage their own portfolios. Based on such information, the primary source of funds can499

be compensated accordingly i.e. it allows the company to fix certain dividend levels for the500

shareholders based on their risk, or set a premium level to pay for a reinsurance contract.501

In this section we aim to obtain the probabilistic characteristics of the accumulated502

capital injections up to the time of insolvency, including an expression for the moment503

generating function. For the latter, we show that the distribution of the accumulated504

capital injections up to the time of insolvency is a degenerate distribution.505

4.1 Moments of the accumulated capital injections up to time of insol-506

vency507

Let the total accumulated capital injections, up to time t > 0, be denoted by the pure508

jump process {Z(t)}t>0 and consider E(Zu,k) where Zu,k = Z(Tδ) is the accumulated509

capital injections up to the time of insolvency, given the initial capital level u. For similar510

reasons as the insolvency probability, E(Zu,k) can be decomposed depending on the size of511

the initial capital. It is therefore convenient to define E(Zu,k) = E(Z+
u,k) when u > k and512

E(Zu,k) = E(Z−u,k), when b̃ < u < b. Using a similar argument as in the previous section513

(that is, conditioning on the amount of the first drop below the SCR barrier k), we have514
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that E(Z+
u,k), for u > k, satisfies eqCInj1515

E(Z+
u,k) =

∫ k−b

0

(
y + E(Z+

k,k)
)
g(ũ, y) dy +

∫ k−b̃

k−b

(
(k − b) + E(Z+

k,k)
)
g(ũ, y)χ

δ
(k − y)dy516

=

∫ k−b

0
yg(ũ, y) dy + (k − b)

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y)dy517

+ E(Z+
k,k)

[
G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y)dy

]
,

(4.1)

518

519

where χ
δ
(x), defined in equation (3.4) for b̃ < x < b, has been extensively studied in the520

previous section. In order to complete the calculation for E(Z+
u,k), given by the above521

expression, we need to compute the value of E(Z+
u,k) at u = k, namely E(Z+

k,k), which522

follows immediately by setting u = k in equation (4.1). Hence,523

E(Z+
k,k) =

∫ k−b

0
yg(0, y) dy + (k − b)

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y)dy524

+ E(Z+
k,k)

[
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y)dy

]
,525

526

from which we have that eqCInj2527

E(Z+
k,k) =

∫ k−b
0 yg(0, y) dy + (k − b)

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

1−
(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y)dy

) . (4.2)528

In order to compute E(Z−u,k), for b̃ < u < b, note that E(Z−u,k) satisfies529

E(Z−u,k) = χ
δ
(u)
(

(k − b) + E(Z+
k,k)
)
, b̃ < u < b,530

with E(Z+
k,k) given by equation (4.2).531

To illustrate the applicability of the results for E(Z+
u,k) and E(Z−u,k), we give explicit ex-532

pressions for the two types of the expected accumulated capital injections up to the time533

of insolvency, when the claim amounts are exponentially distributed.534 Prop5

Proposition 4. Assume that the claim amounts follow an exponential distribution with535

parameter β > 0 i.e. F (x) = 1 − e−βx, x > 0. Then, the expected accumulated capital536

injections, E(Z+
u,k) for u > k, is given by eqExp3537

E(Z+
u,k) =

A1

η + C1
c
λe
−βk e

−λη
c
(u−k). (4.3)538
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For b̃ < u < b, E(Z−u,k) is given by eqExp5539

E(Z−u,k) =
A2

η + C1
c
λe
−βk

∫ u

b̃
e−βw

(
δ(w − b)

c
+ 1

)λ
δ
−1

dw, (4.4)540

where541

A1 =
1

β

(
1− e−β(k−b)

)
− (k − b)C1

c

λ
e−βk542

and543

A2 = C1

(
1

β

(
1− e−β(k−b)

)
+ η(k − b)

)
.544

Remark 6. Proposition 4 is obtained from equation (??) and the ruin related quantities,545

for exponential claims, used in Section 3.1. It is not difficult to obtain an explicit expression546

for E
(

(Z+
u,k)

2
)

and greater moments, when the claim sizes are exponentially distributed,547

however since computing the expressions is cumbersome, we omit the results here.548

4.2 The Distribution of the Accumulated Capital Injections up to the549

Time of Insolvency550

In this subsection we show that the distribution of the accumulated capital injections up551

to the time of insolvency is a mixture of a degenerative distribution at 0 and a continuous552

distribution. To obtain this result, we derive the moment generating function of Z+
u,k and553

Z−u,k, extending the arguments of Nie et al. (2011).554

First consider the case where u = k. Then, the probability that there is a first capital555

injection is; the probability that the surplus process drops, due to a claim, between k and556

b, which happens with probability G(0, k− b); or the surplus process drops, due to a claim,557

between b and b̃ and then recovers back up to the level b before crossing b̃, which happens558

with probability
∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy.559

Given that there is a first capital injection, the process restarts from the level k. Hence,560

if N denotes the number of capital injections, N has a geometric distribution with p.m.f,561

for n = 0, 1, 2, . . .562

P(N = n) =

(
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy

)n
563

×

(
1−

[
G(0, k − b) +

∫ k−b̃

k−b
g(0, y)χ

δ
(k − y) dy

])
,564

565
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with probability generating function given by566

E(zN ) = PN (z) =
1−

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

)
1− z

(
G(0, k − b) +

∫ k−b̃
k−b g(0, y)χ

δ
(k − y) dy

) .567

Then, the accumulated amount of the capital injections up to the time of insolvency starting568

from u = k, namely Z+
k,k, has a compound geometric distribution of the form569

Z+
k,k =

N∑
i=1

Vi,570

where {Vi}∞i=1 are i.i.d random variables, denoting the size of the i-th injection, with p.d.f571

fV (y) =


g(0,y)

G(0,k−b)+
∫ k−b̃
k−b g(0,x)χδ (k−x) dx

0 < y < k − b,∫ k−b̃
k−b g(0,x)χδ (k−x) dx

G(0,k−b)+
∫ k−b̃
k−b g(0,x)χδ (k−x) dx

y = k − b,
572

and thus the moment generating function of Z+
k,k (a compound geometric) can be expressed573

by574

MZ+
k,k

(z) = PN (MV (z)),575

where576

MV (z) = E(ezV ) =

∫ k−b
0 ezyg(0, y) dy + ez(k−b)

∫ k−b̃
k−b g(0, x)χ

δ
(k − x) dx

G(0, k − b) +
∫ k−b̃
k−b g(0, x)χ

δ
(k − x) dx

.577

Now, in order to find the moment generating functions of the accumulated capital injections
up to the time of insolvency for general initial capital, namely Z+

u,k when u > k and

Z−u,k, when b̃ < u < b, we first note that Z+
u,k and Z−u,k are equivalent in distribution to

(Y +
u + Z+

k,k)I{A+} and (Y −u + Z+
k,k)I{A−}, respectively, where Y +

u is the amount of the first

capital injection, starting from initial capital u > k, Y −u from initial capital b̃ < u < b and
I{·} is the indicator function with respect to the event the event that a capital injections
occurs from initial capital u. Note that the event that a capital injections occurs from
initial capital u can be decomposed to the sub events depending the value of the initial
capital and thus we denote A+ and A− the events that a capital injections occurs from
initial capital u > k and b̃ < u < b, respectively, with probabilities

P(A+) = G(ũ, k − b) +

∫ k−b̃

k−b
g(ũ, y)χ

δ
(k − y) dy,
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and
P(A−) = χ

δ
(u).

Based on the above notation, for ũ = u− k, the density of Y +
u is given by578

fY +
u

(y) =


g(ũ,y)

G(ũ,k−b)+
∫ k−b̃
k−b g(ũ,x)χδ (k−x) dx

0 < y < k − b,∫ k−b̃
k−b g(ũ,x)χδ (k−x) dx

G(ũ,k−b)+
∫ k−b̃
k−b g(ũ,x)χδ (k−x) dx

y = k − b,
579

while Y −u has a probability mass function of the following form580

P(Y −u = i) =

{
1, i = k − b
0 otherwise.

581

Then, since Y +
u and Z+

k,k are independent, the moment generating function of Z+
u,k is given582

by583

MZ+
u,k

(z) =
(
MY +

u
(z)MZ+

k,k
(z)
)
P(A+) + P((A+)c), (4.5)584

where585

MY +
u

(z) = E(ezY
+
u ) =

∫ k−b
0 ezyg(ũ, y) dy + ez(k−b)

∫ k−b̃
k−b g(ũ, x)χ

δ
(k − x) dx

G(ũ, k − b) +
∫ k−b̃
k−b g(ũ, x)χ

δ
(k − x) dx

586

while, following a similar argument as above, the moment generating function of Z−u,k is587

given by588

MZ−u,k
(z) =

(
MY −u

(z)MZ+
k,k

(z)
)
P(A−) + P((A−)c), (4.6)589

where590

MY −u
(z) = E(ezY

−
u ) = ez(k−b),591

From equations (4.5) and (4.6), it follows the following proposition.592

Proposition 5. The distribution of the accumulated capital injections up to the time of593

insolvency, is mixture of a degenerative distribution at 0 and a continuous distribution.594

5 Constant dividend barrier strategy with SII constraints595

In reality the surplus of a company will not be left to grow indefinitely, and as a proportion596

of the profits are paid out as dividends to its shareholders. As mentioned in the previous597

section, the shareholders in a company are one potential source of Solvency regulation,598

by means of capital injections, for which they would expect financial incentives/security599

and therefore the consideration of dividend payments is important when analysing a firms600
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portfolio and insolvency probabilities. Dividend strategies have been extensively studied in601

the risk theory literature since their introduction by De Finetti (1957), with a main focus602

on optimisation of the companies utility, see Avanzi (2009) and references therein for a603

comprehensive review.604

In this section we derive an explicit expression for the insolvency probability to the risk605

model under the SII framework, proposed in the previous sections, with the addition of a606

constant dividend barrier d > k, such that when the surplus reaches the level d, dividends607

are paid continuously at rate c until a new claim appears (see Fig:2). The amended surplus608

process, denoted UZδ,d(t), has dynamics609

dUZδ,d(t) =


−dS(t), UZδ,d(t) = d,

cdt− dS(t), k 6 UZδ,d(t) < d,

∆Z(t), b 6 UZδ,d(t) < k,[
c+ δ(UZδ (t)− b)

]
dt− dS(t), b̃ < UZδ,d(t) < b.

610

611

612

In a similar way as the model without the presence of a dividend barrier, the time to613

insolvency in the dividend amended model can be defined by614

Tδ,d = inf
{
t > 0 : UZδ,d(t) 6 b̃|UZδ,d(0) = u

}
615

and the probability of insolvency (ruin), which we denote by ψSII,d(u), is defined as616

ψSII,d(u) = P
(
Tδ,d <∞

∣∣UZδ,d(0) = u
)
,617

with the corresponding solvency (survival) probability defined by φSII,d(u) = 1− ψSII,d(u).618

We once again note that the insolvency probability ψSII,d(u), can be decomposed for619

k 6 u 6 d and b̃ < u < b, for which we define ψSII,d(u) = ψ+
SII,d(u) and ψSII,d(u) = ψ−

SII,d(u),620

for the two separate cases with corresponding solvency probabilities φ+
SII,d(u) and φ−

SII,d(u),621

respectively.622
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Figure 2: Example Sample Path of the Surplus Process under SII constraints with Constant Divi-
dend Barrier

In order to derive an expression for the solvency probability φ+
SII,d(u), for k 6 u 6 d, (or623

equivalently the insolvency probability ψ+
SII,d(u)) we will need to define the first crossing624

time of the surplus below the SCR level k, as we did in Section 3.625

Let Td = inf{t > 0 : UZδ,d(t) < k|UZδ,d(0) = u > k} to be the first time the process down626

crosses the barrier k. Then, the probability of crossing the SCR level, for some k 6 u 6 d,627

can be given as628

ξd(u) = P(Td <∞|UZδ,d(0) = u).629

It is evident, by a similar argument as in Section 3, that the dynamics of the surplus630

process UZδ,d(t) above the SCR level are equivalent to that of the classic surplus process631

with a constant dividend barrier b̃ = b−k, only (i.e. no capital injections or debit borrowing632

barriers). That is, for k 6 UZδ,d(t) 6 d, we have dUZδ,d(t) ≡ dŨd̃(t) where633

Ũd̃(t) = ũ+ ct− S(t), Ũd̃(0) = ũ > 0,634

with dynamics635

dŨd̃(t) =

{
−dS(t), Ũd̃(t) = d̃,

cdt− dS(t), 0 6 Ũd̃(t) < d̃.
636

637

638

It follows that the probability of the surplus process under the SII framework with divi-639

dends, UZδ,d(t), for k 6 u 6 d, crossing the SCR level, namely ξd(u), is simply the probability640

that the process Ũd̃(t) crosses zero, which is given as the shifted analogue of the classical641
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probability of ruin under a constant dividend barrier strategy, i.e. ξd(u) = ψd̃(ũ), with642

initial capital 0 6 ũ 6 d̃. It follows that the probability of never down-crossing the SCR643

level, for k 6 u 6 d, is equivalent to the shifted analogue of the classic survival probability644

under a constant dividend barrier i.e. φd̃(ũ) = 1 − ψd̃(ũ) = 1 − ξd(u). (Note that when645

d = ∞, then T∞ = T and ξd(u) = ξ(u). That is, we return to the problem without a646

divided barrier as proposed in Section 3).647

Now, since we have once again alluded to the connection between the probability of648

down crossing the SCR barrier with the shifted classic ruin probability, we further define649

Gd̃(ũ, y) = P
(
Td <∞, |Ũd(Td)| 6 y

∣∣Ũd(0) = ũ
)

650

to be the distribution of the deficit below k at the time of crossing the barrier, under the651

constant dividend barrier constraint, with gd̃(ũ, y) = ∂
∂yGd̃(ũ, y) its corresponding density.652

To obtain an expression for the insolvency probability under a constant dividend barrier653

strategy, let us condition on the occurrence and amount of the first drop below the SCR654

barrier, k. Then for k 6 u 6 d, the respective solvency probability φ+
SII,d(u), is given by eqDB1655

φ+
SII,d(u) = φd̃(ũ) +

∫ k−b

0
gd̃(ũ, y)φ+

SII,d(k) dy +

∫ k−b̃

k−b
gd̃(ũ, y)φ−

SII,d(k − y) dy656

= φd̃(ũ) +Gd̃(ũ, k − b)φ
+
SII,d(k) +

∫ k−b̃

k−b
gd̃(ũ, y)φ−

SII,d(k − y) dy. (5.1)657

658

For b̃ < u < b, we have eqDB2659

φ−
SII,d(u) = χ

δ
(u)φ+

SII,d(k), (5.2)660

where χ
δ
(u) is the probability of hitting the upper barrier b before the lower barrier b̃, in a661

debit environment, as studied in the previous sections. We point out that the function χ
δ
(u)662

is unaffected by the addition of the dividend barrier and therefore the integro-differential663

equation given in Proposition 2 still holds, along with the corresponding boundary con-664

ditions. Following similar algebraic arguments as in Section 3 we obtain the following665

Theorem.666 ThmDB1

Theorem 3. For k 6 u 6 d,the probability of insolvency under a constant dividend barrier667

strategy, ψ+
SII,d(u), satisfies eqDB36668

ψ+
SII,d(u) = ψd̃(ũ)−

φd̃(0)
[
Gd̃(ũ, k − b) +

∫ k−b̃
k−b gd̃(ũ, y)χ

δ
(k − y) dy

]
1−

(
Gd̃(0, k − b) +

∫ k−b̃
k−b gd̃(0, y)χ

δ
(k − y) dy

) . (5.3)669

For b̃ < u < b, ψ−
SII,d(u) is given by eqDB4670

ψ−
SII,d(u) = 1−

φd̃(0)χ
δ
(u)

1−
(
Gd̃(0, k − b) +

∫ k−b̃
k−b gd̃(0, y)χ

δ
(k − y) dy

) . (5.4)671
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Rem10

Remark 7. Similarly to Remark 2, we point out that from equations (5.3) and (5.4), that672

the two types of insolvency probabilities for the risk model under SII constraint with the673

addition of a constant dividend barrier, are given in terms of the (shifted) ruin probabil-674

ity and deficit of the classical risk model with constant dividend barrier, as well as the675

probability of exiting between two barriers. Thus, ψ+
SII,d(·) and ψ−

SII,d(·) can be calculated by676

employing known results, with respect to Gd(·, ·) and ψd(·) (see Lin et al. (2003), among677

others), whilst the latter exiting probability, χ
δ
(u), has been extensively studied in Section678

3.679

In more details, Lin et al. (2003), show that the well known Gerber-Shiu function - for680

which the ruin probability and deficit at ruin are special cases (for details see Gerber and681

Shiu (1998)) - under a constant divided barrier strategy, denoted by md(u), satisfies an682

integro-differential equation, from which the general solution can be expressed as a linear683

combination of the corresponding Gerber-Shiu function without the presence of dividends684

and a secondary function v(u). That is, the Gerber-Shiu function under a constant dividend685

barrier strategy, namely md(u), with initial capital 0 6 u 6 d, can be expressed as eqDVG686

md(u) = m∞(u)− m′∞(d)

v′(d)
v(u), 0 6 u 6 d, (5.5)687

where m∞(u) is the classic Gerber-Shiu function without dividend constraints and v(u) is688

a function satisfying a homogenous integro-differential equation, from which the general689

solution is given by690

v(u) =
1−Ψ(u)

1−Ψ(0)
,691

for some auxiliary function Ψ(u), the details of which are not needed for this paper. How-692

ever, we point out that when the Gerber-Shiu function is reduced to the special cases of693

the ruin probability or the deficit at ruin, for which equation (5.5) holds, the auxiliary694

function above is equivalent to the classic ruin function i.e. Ψ(u) = ψ(u).695
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