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Abstract

Risk management has become one of the core functions of all businesses over the
past 30 years, it is a vital part of every business organisation. Whilst a number of
risk management methods have been devised over the years to mitigate risk, many
firms still suffer from being unable to manage losses. Value at Risk has become an
industry standard for risk measurement and risk based decision making. However
Value at Risk based decision making leads to problems in managing the risk identi-
fied using this method. In this paper we provide a method for hedging risk that is
determined using the Value at Risk methodology.

Keywords: value at risk; risk management; hedging; uncertain systems; stochastic
processes.

1 University of Liverpool,

Brownlow Hill,

Liverpool,

L69 7ZX,

United Kingdom.

1



1. Introduction

Risk management has grown over the past 30 years, and is a vital part of every
business organisation. Essentially, risk management is the identification, mitigation
or reduction of uncertain outputs. Risks can occur from a variety of sources, such
as project risk, political risk, credit risk etc. to name a few risk factors. Given that
such risks can have significant impact on firms, there has been substantial research
to investigate methods to manage risk in general.

A key part of risk management is the identification and quantification of risk. In
order for risk to be managed effectively, it must firstly be identified. This is a non-
trivial task because it is widely reported that many unanticipated risks can cause
significant damage to a company. The issue of risk identification is a significant area
of research in itself, however the focus of our research is related to the other key
part of risk management: risk quantification.

Risk quantification or risk measurement has grown into a significant area of
research in itself, with applications across a range of industries. One of the most
widely used risk measures in industry is VaR (Value at Risk), which has grown in
popularity over the past 30 years. Whilst VaR has some significant disadvantages
(such as VaR cannot take into account diversification and is not a coherent risk
measure) it is still the most widely used risk measure; it is used by many industries.
VaR has the advantage of being widely applicable to a range of purposes, not just
investment analysis, it can be applied to many types of risk. Additionally, VaR
can be easily applied to risk analysis and risk based decision making, as it clearly
captures the risk facing a company.

Whilst VaR is a popular risk measure and has risk analysis advantages, the
method of measuring risk using VaR causes problems in risk management (for ex-
ample the VaR methodology tends to focus on losses, rather than gains, from any
risky event). One of the more fundamental problems with VaR based risk analysis
is that one needs to be able to devise a method of managing the risk. As mentioned
previously, risk management has been studied extensively due to its importance in
industry.

In the context of VaR, a possible risk management strategy would be risk elimi-
nation, that is the firm would exclude itself from such situations to remove exposure
to such risks. Whilst this strategy is attractive in simplicity it is also not frequently
practical, as many firms cannot exclude many situations and risks e.g. political
risk, economic risk etc.. Another risk management strategy that is more frequently
employed (and is more applicable to a range of situations) is hedging. This is essen-
tially purchasing some service or product to transfer the risk incurred by the firm.
Although the firm incurs a cost in purchasing the hedging contract, it is not exposed
to extreme losses. This is also consistent with the VaR risk measurement methodol-
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ogy in reducing risk. A practical case in point is the supply chain risk management
industry, where a VaR methodology may be applied along with a hedging contract.

We should note that whilst risk measures other than VaR exist, such as variance,
spectral analysis, and partial moments (see for instance [22] for a review), such risk
measures do not have such a direct physical representation in the real world. Hence
alternative risk measures would not be as preferable to VaR in industries that are
directly involved in real world operations. Furthermore, we should also note that
the incentive to purchase a hedging contract (when a VaR method is applied) is
not just applicable to the supply chain industry. Such hedging contracts would be
useful in other risk areas, such as project management risks, economic risks and
environmental risks.

In supply chain risk management, VaR has been used to measure the risk of firms
that supply goods to buyers (see for example [7] and [12]). In a VaR methodology
the risk represents the possibility that the supplier cannot sell its goods to a buyer,
in other words the supplier has an excess supply of goods. Hence under a VaR risk
management methodology the excess supply represents a risk or loss to the supplier.
One way to hedge out such a risk is to transfer this risk by selling to alternative
buyers. The supplier buys a contract so that it can sell excess supplies to alternative
buyers at a pre-agreed price. The alternative buyer may be interested in such an
arrangement because the supplier will typically agree to selling at a pre-agreed price
that is typically discounted to standard market prices.

The model of the hedging contract is as follows. The supplier purchases a con-
tract that enables it to sell its (excess) supply at a pre-agreed price to the alternative
buyer. The supplier is not obligated to sell the goods at any particular time, however
the buyer will pay for the goods once the supplier sells them. The buyer can then
sell the goods onto its own customers. Although the buyer cannot force the time of
sale of goods, the buyer can determine the timing of the sale of the hedging contract.
We model the sale of the hedging contract as an optimal stopping problem. The
method of optimal stopping has been used in many applications to improve resource
allocation problems, for example see [16], [20], [2], [14].

In order for this hedging method to be viable the (alternative) buyers need
to determine its buying price from the supplier. Additionally, the supplier’s excess
supply of goods will affect the price of the goods, since high supply reduces prices. In
this paper we provide a solution to the buyer’s purchasing problem when suppliers
adopt a VaR risk methodology for risk management. Specifically, we provide a
mathematical model of the hedging operation and optimise the buyer’s purchase
decision as an optimal stopping problem. We follow [21] in our proofs.

This paper makes a number of contributions. Firstly, we provide a mathematical
model of the hedging contract; we model the operations, the hedging contract and
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the decision to use and sell the contract. Secondly, we model the buyer’s decision as
an optimal stopping problem and solve this to provide the optimal stopping criteria.
Thirdly, we provide closed form solutions to payoffs in our model. Fourth, we derive
the limiting and long term behaviour of our hedging contract, which provides insight
on the long term impact of this process.

This paper is organised as follows. In the next section we introduce our prelim-
inaries, the supplier model for excess supply, the associated pricing model and the
discounting process. In the next section we model the buyer’s problem in terms of
an optimal stopping problem. In the next section we provide our solution to the
optimal stopping problem in Theorem 1. In the next section we provide closed form
solutions for our payoffs, specifically by proving Theorems 2 and 3. In the next sec-
tion we examine the long term behaviour of hedging operation, by proving 4 lemmas
which enable us to prove Theorem 4.

2. Preliminaries And Pricing Model

Let S(t) denote the excess supply of goods held by a supplier at time t. Let
us define the probability space for S(t) that is (Ω,F ,Ft,Ps), such that Ps(S(0) =

s) = 1. We assume that the filtration Ft for t ≥ 0 is right continuous. Let the
mapping s → Es[X] be measurable for some random variable X, where Es denotes
the expectation under probability measure Ps.

Without loss of generality, we will assume that (Ω,F) equals the canonical space
of continuous trajectories Ω = C([0,∞); R) with Borel σ-algebra F = B(Ω), so
that the shift operation Θt : Ω → Ω is well-defined by Θt(ω)(u) = ω(t + u), for
ω = (ω(u))u≥0 ∈ Ω and u, t ≥ 0. We will make use of the following known properties:
the Brownian motion S(t) is a strong Markov process relative to (Ω,F ,Ft,Ps) and
for a given Borel measurable subset X ⊆ R that the time

ΓX = inf{t ≥ 0|S(t) ∈ X},

is an F -stopping time, and we use the convention inf ∅ =∞.
The stochastic process S = {S(t)}t≥0 is a one dimensional Brownian motion

(also known as a Wiener process) on the probability space (Ω,F ,Ps). The S(t) has
continuous trajectories, that is t → S(t, ω) is continuous in t for all ω ∈ Ω, the
increments are independent, that is S(t2)−S(t1) and S(t4)−S(t3) are independent
for t1 < t2 ≤ t3 < t4, such that {t1, t2, t3, t4} ∈ R>0 . Additionally,

S(t2)− S(t1) ∼ N (0, t2 − t1),∀t1 < t2,

where N (ι, σ̃) denotes the Normal distribution with mean ι and variance σ̃.
The surplus model for {S(t) ∈ R+|t ≥ 0} implies that an oversupply of goods
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exists with the supplier. The supplier will dispose of excess supply for a number of
reasons: firstly the supplier will have limited space and will need to provide space
for newly arriving inventory, and secondly demand in the goods may have fallen for
a variety of reasons. The Brownian motion model for S(t) provides a good model of
surplus quantities because it enables us to model S(t) in continuous time, whilst also
taking into account the random (and unpredictable) nature of excess supply. This
is not an uncommon model for modelling excess supply, see for example [16], [1], [4].
We note in passing that our model can also take into account {S(t) ∈ R−|t > 0},
that is negative values which indicate a supply shortage.

In addition to the quantity of surplus supply S(t), we also require the price of
each good. We model the price of goods as a function of the quantity of supply, that
is price is modelled as f(S(t)). We model prices according to a set of scenarios as
follows: for {f(S(t)) = 0|S(t) ≥ µ2}, where µ2 ∈ R>0 is a constant. In this scenario
the excess supply is extremely high and the supplier simply needs to dispose of the
goods, and so will sell it at zero price. From an economic perspective, an excessively
high supply would push prices down along the supply curve, and so prices would be
very close to 0.

In a contrary scenario, where there is a high shortage of goods, we have {f(S(t)) =

Λ|S(t) ≤ µ1}, where Λ ∈ R>0 and µ1 ∈ R<0 are constants. In scenarios of high
shortage, the prices could theoretically increase as shortages increase (in accordance
with demand and supply curves). However, we assume the price will be limited to
Λ ∈ R>0, ∀S(t) ≤ µ1, so that firms cannot charge excessively high prices to con-
sumers. This is to reflect the pricing structure of many real world retail markets,
where market prices are regulated to protect consumers from excessively high prices.

In between the previous two scenarios, the prices will change with quantity S(t),
where there is an inverse relation between S(t) and f(S(t)). Consequently we have
the model

f(s) = Λ.1{s≤µ1} + (e+ ls).1{µ1<s≤µ2},

where S(t) = s is the current value of S(t), f(s) is the price of goods now, µ1 =
Λ− e
l

, µ2 =
−e
l
, e and l are constants, such that {Λ, e ∈ R>0} and {l ∈ R<0}. The

constant e determines the "equilibrium" price, that is the price that exists when
there is neither an oversupply nor a shortage.

We now examine the hedging contract to sell surplus goods to buyers. The
supplier purchases the contract V which enables the supplier to sell its surplus at
a pre-agreed price K (which we refer to as the strike price). The supplier must
purchase the contract a priori and has some forecasted estimate on the oversupply
of goods in the future. In other words, the supplier must have some measure of risk
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on the oversupply. To be more precise, let us assume we have a real valued random
variable X ∈ R within the measurable space {Ω,F}, where X follows a distribution
of losses G, then a risk measure λ̃ is defined by

λ̃ : G 7→ R.

We assume the standard risk measure assumptions of coherent risk measurement
[3], that is translation invariance, subaddivity, monotonicity and positive homogene-
ity and are given (respectively) as

λ̃(X + k) = λ̃(X) + k, for k ∈ R,

λ̃(X1 +X2) ≤ λ̃(X1) + λ̃(X2),

λ̃(X1) ≤ λ̃(X2),∀X1 ≤ X2,

λ̃(kX) = kλ̃(X),∀k ∈ R≥0.

One popular risk measure is VaR (Value at Risk) which is defined as

V aR%̂(X) = inf{x ∈ R : P(X ≤ x) ≥ α̂},

such that {α̂ ∈ R≥0|0 ≤ α̂ ≤ 1}. Essentially, an individual specifies a confidence
level (or risk level) α̂ and the associated threshold value is given by VaR. For our
supplier, this risk measure implies that the supplier would like to use the hedging
contract if s exceeds some threshold value s∗. We note the supplier would also
trigger the contract in the event s exceeds a known amount s∗, since there will be
operational constraints e.g. storage space.

The supplier determines the time to exercise the hedge. We can assume the
supplier exercises the hedge when s > s∗, where s∗ is a constant. The supplier
will receive price K for the goods, and the buyer pays K to the supplier. We note
that the buyer can sell the acquired goods later on, at any price it wishes to its
own customers. We now examine the arbitrage constraints regarding our contract.
Firstly, the buyer pays a price K for the goods, therefore

K ≤ Λ,

that is the strike must be less than the maximum sale price of goods Λ, otherwise the
buyer is guaranteed to make a loss with probability 1. This would be an arbitrage
opportunity [6], such opportunities do not exist in realistic and well-functioning
markets. An implication of this arbitrage constraint is that market regulation (which
may enforce Λ) will limit K and so limit the sale of hedging contracts.
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Secondly, the price V must be restricted by

V ≤ K,

that is the contract price must be limited by the strike. If this inequality did not exist
then the buyer can make a guaranteed profit if the supplier immediately exercises
the contract. Finally, we must have

f(s∗) < K − V,

that is the net cost for the buyer should be greater than the price of the goods f(s∗).
Again, if this inequality does not exist then the buyer makes a profit by instantly
selling goods at the market price f(s∗).

We now examine the discounting factor. The discount rate r(t) is required to
obtain the present value of any future cashflows. For a risk averse investor the
discount rate will equal the short rate r′(t) plus the risk premium rp , that is r(t) :=

r′(t) + rp [10]. We assume rp is constant and so r(t) can be modelled by a short rate
model. The modelling of stochastic interest rate factors is extensive. If we assume a
Markov diffusion process, under the risk neutral measure, then a stochastic interest
rate factor is defined as

dr(t) = ς1(r(t), t)dt+ σ(r(t), t)dB0(t),

where σ ∈ R>0, ς1 ∈ R>0, ς2 ∈ R>0 are constants and dB0(t) is a Brownian motion.
In particular, the interest rate diffusion can be modelled to be correlated with other
assets, with associated Wiener processes dB1(t) and dB2(t). The correlation matrix
[dB0(t), dB1(t), dB2(t)] is given by 1 ρ01 ρ02

ρ01 1 ρ12

ρ02 ρ12 1


where ρ01, ρ02, ρ12 are constants, such that {ρ01, ρ02, ρ12 ∈ ρ̃ ⊂ R|ρ̃2 ≤ 1}. In fact the
Brownian motions can be expressed as independent processes by

dB̃0(t) = dB0(t),

dB̃1(t) = ρ01dB0(t) +
√

1− ρ2
01dB1(t),

dB̃2(t) = ρ02dB0(t) +
ρ12 − ρ01ρ02√

1− ρ2
01

dB1(t) +

√
1− ρ2

02 −
(ρ12 − ρ01ρ02)2

1− ρ2
01

dB2(t).

For our model a continuous affine process in one dimension would be sufficient,
a review is available in [18]. A standard interest rate model for r(t) is the Vasicek
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model [23], which has been used in derivatives pricing [11] and has been favoured in
modelling [13]. The Vasicek model follows an Ornstein-Uhlenbeck process [5]. Let
our discounting process r(t) follow

dr(t) = (ς1 − ς2r(t))dt+ σdB(t),

so that dr(t) ∈ R,∀ς1, ς2, σ.
To determine r(t) we see that

d(exp(ς1t)r(t)) = exp(ς2t)dr(t) + ς2exp(ς2t)r(t)dt,

= exp(ς2t)(ς1 − ς2r(t))dt+ exp(ς2t)σdB(t) + ς2exp(ς2t)r(t)dt,

⇒ exp(ς1t)r(t) = r(0) + ς1

∫ t

0

exp(ς2u)du+ σ

∫ t

0

exp(ς2u)dB(u),

∴ r(t) = r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

+ σexp(−ς2t)
∫ t

0

exp(ς2u)dB(u).

Assuming that r(0) is a constant then we have a Gaussian distribution with mean

E[r(t)] = E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t)) + σexp(−ς2t)

∫ t

0

exp(ς2u)dB(u)

]
,

= E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

]
+ E

[
σexp(−ς2t)

∫ t

0

exp(ς2u)dB(u)

]
,

= E

[
r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t))

]
,

= r(0)exp(−ς2t) +

(
ς1
ς2

)
(1− exp(−ς2t)),

≈
(
ς1
ς2

)
, for t→∞.

We also have variance Var(r(t)) , denoted v2, given by

v2 = E[r(t)2]− E2[r(t)],

= σ2

(
1− exp(−2ς1t)

2ς1

)
,

→
(
σ2

2ς1

)
, for t→∞.

For a supplier hedging contract we expect a low volatility, and so ς1 >> σ2 ⇒ v2 →
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δ, ∀t, where δ is small. We now apply the Chebyshev inequality

P(|r(t)− E[r(t)]| ≥ k) ≤ v2

k2
,

P(|r(t)− E[r(t)]| ≥ k) ≤ δ2

k2
,

where k ∈ R>0 is a constant. Hence for small v the probability of values diverging
from E[r(t)] will be small, hence

r(t) ≈ E[r(t)],

≈
(
ς1
ς2

)
.

Thus the discount rate is effectively constant and we denote this by r for convenience.

3. Buyer Model As An Optimal Stopping Problem

The buyer’s problem of purchasing goods from the supplier can be analysed in
terms of an optimisation problem, specifically by dynamic programming and an
optimal starting-stopping problem (see for instance [17] and [19]). Hence let us
define θ that is a measurable function, such that θ : R→ [0,∞] then θ is r-excessive
relative to S(t) if θ is r-superaveraging, that is

exp(−rt)Es[θ(S(t))] ≤ θ(s),∀s ∈ R, t ≥ 0,

and that θ has the limit

lim
t↓0

exp(−rt)Es[θ(S(t))] = θ(s), ∀s ∈ R,

where {r ∈ R+} is the discount rate. We now provide the following property, Propo-
sition 1.

Proposition 1. If θ : R → [0,∞] is r-excessive relative to S(t) then we can
state that, firstly, the mapping

t→ θ(S(t)),

is right continuous on [0,∞) and has left hand limits on (0,∞], almost surely.
Secondly, if θ(S(t)) is integrable for all t ≥ 0, then

exp(−rt)θ(X(t)),∀t ≥ 0,

is a right continuous supermartingale. Thirdly, for all s ∈ R we have

Es[exp(−rT2)θ(S(T2))] ≤ Es[exp(−rT1)θ(S(T1)],∀T2 ≥ T1,

for all stopping times T1, T2, almost surely.
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The buyer’s optimisation problem is undertaken with the probability measure Ps; for
the benefit of clarity this represents the real world or physical probability measure.

Assuming the supplier purchases the hedging contract, the supplier will exercise
this contract if supply quantity exceeds his storage capacity, denoted by s*. This
frequently occurs if the supplier cannot shift goods from its own sales. Hence the
supplier exercises the hedging contract at time

Γs∗,∞ := inf{t ≥ 0|S(t) ≥ s∗},

that is Γs∗,∞ denotes the minimum time t at which the range of S(t) values exceed
s∗, for S(t) ∈ {s∗,∞}.

Let us, initially, assume the buyer has sufficient storage space so that it can sell
the hedging contract to the supplier, and in the event the contract is triggered (by
the supplier) the buyer can store the goods. The buyer will pay the strike price K
for the goods, hence we have the following discounted expected payoff g2(K, s) for
the buyer

g2(K, s) = Es[−Kexp(−rΓs∗,∞)],

which can be expressed as

g2(K, s) = −K , for s > s∗,

= −Kz(s), for s ≤ s∗,

where z(s) = exp(κ(s− s∗)), κ denotes κ =
√

2r for convenience. The payoff under
the second condition (for s ≤ s∗) is obtained using the well known Laplace transform
for the hitting time of S(t) at a given point x ∈ R, that is Γx = inf{t ≥ 0|S(t) = x},
is given by

Es[−Kexp(−rΓx)] = exp(−κ|x− s|).

Whilst in our model the buyer cannot determine the time of exercise of the hedge
(since the exercise is controlled by the supplier and the supplier’s excess supply
follows a random process), the buyer can however determine the time of offering
the hedge and should optimise this time to maximise its income. Assuming the
buyer behaves rationally, the optimisation problem can be modelled as an optimal
stopping problem with stopping time τ ∈ T , where T ∈ R+ denotes the set of all
stopping times. If we take into account the income from the sale of the hedge V ,
where V ∈ R+, then our optimisation problem is

g1(K, s) = sup
τ2∈T

Ex[exp(−rτ2)(V + g2(S(τ2)))],
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where τ2 is the optimal stopping time for our optimisation.
In order to enable optimal timing of the sale of the hedge, the buyer must have

sufficient physical empty space (to store the additional goods from the supplier) at
the point of offering such a hedge. This storage issue is an important aspect of
the model because the lack of storage space is one of the main motives behind the
supplier selling excess goods to the buyer. Hence we must take into account storage
constraints with the buyer. Consequently, in order for the buyer to optimise its sale
of the contract, we must also take into account the sale of its inventory to vacate
space for the goods from the supplier. This sale time can also be modelled as an
optimal stopping problem at optimal stopping time τ1, such that the set of optimal
times is given by

T2 = {(τ1, τ2) ∈ T × T |τ1 ≤ τ2}.

Given that the buyer sells at time τ2, that is price f(S(τ2)), our optimisation problem
is

αV (s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))]. (1)

4. Optimal Starting-Stopping Solution

To solve the optimal solution to equation (1) by the principle of recursion (and
dynamic programming), the equation (1) would be solved as

U(s) := sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + g1(K,S(τ)))].

Alternatively, our optimal starting-stopping problem is optimisation of the expres-
sion

Js(τ1, τ2) = Es[η1(S(τ1))exp(−rτ1) + η2(S(τ2))exp(−rτ2)],∀(τ1, τ2) ∈ T2,

where η1(.), η2(.) are real-valued functions. In association with this optimisation, we
define two optimal stopping problems

β̂(s) = sup
τ∈T

Es[exp(−rτ)η2(S(τ))],

α̂(s) = sup
τ∈T

Es[exp(−rτ)η1(S(τ)) + η1(S(τ))],

with stopping sets ζα̂ and stopping time Γα̂ as

ζα̂ = {s ∈ R|α̂(s) = η1(s) + β̂(s)}, with Γα̂ = inf{t ≥ 0|S(t) ∈ ζα̂},
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similarly for

ζβ̂ = {s ∈ R|β̂(s) = η2(s)}, with Γβ̂ = inf{t ≥ 0|S(t) ∈ ζβ̂}.

We are now ready to state Theorem 1 which provides a solution in terms of the
optimal stopping problems previously discussed.

Theorem 1. If the functions η1 and η2 are bounded and continuous, then we de-
duce that β̂(.) and α̂(.) are continuous and bound functions. The function β̂(.) is
the smallest r-excessive majorant of η2 and Γζβ̂ is the optimal stopping time to β̂(s):

β̂(s) = Es[exp(−rΓζβ̂)η2(S(Γζβ̂))], ∀s ∈ R.

Also, α̂(s) is the smallest r-excessive majorant of η(.) + β̂(.) and Γζα̂ is the optimal
stopping time to α̂(s):

α̂(s) = Es[exp(−rΓζα̂)(η1(S(Γζα̂)) + β̂(S(Γζα̂)))],∀s ∈ R.

Secondly, α̂(.) satisfies α̂(.) ≥ α(.), where

α̂(s) = Js(τ̂1, τ̂2) = α(s),∀s ∈ R, for τ̂1 = Γζα̂ , τ̂2 = τ̂1 + Γζβ̂ ◦Θτ̂1 .

Furthermore, if we have η1(.) = f(.) and η2(.) = V + g2(K, s) are continuous and
bounded functions, then g1(K, s) and U(s) are continuous, bounded functions and r-
excessive, and U(s) is a solution to the optimal starting-stopping problem in equation
(1), that is

U(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))].

Proof. We apply the results of [9] where ψr, φr are defined in [9]: given that η2(.)

is a bounded function then applying [9] gives

lim
s→∞

sup
η+

2 (s)

ψr(s)
= lim

s→∞
sup

η+
2 (s)

exp(κs)
= 0,

lim
s→−∞

sup
η+

2 (s)

φr(s)
= lim

s→−∞
sup

η+
2 (s)

exp(−κs)
= 0.

Using these equations, given that η2 is continuous, and applying Propositions 5.11
and 5.13 in [9], we conclude that β̂(.) is continuous, the smallest r-excessive majorant
of η2 and Γζβ̂ is the optimal stopping time. Similarly, using analogous arguments,
given that η1 + β̂(.) is continuous and bounded, we can then conclude that α̂ is
continuous, bounded, the smallest r-excessive majorant of η1 + β̂(.) and that the
optimal stopping time is Γζα̂ .

To prove the second part of the Theorem, our proof follows the same way as in [15]
and the reader is referred to [15] for more information. Given that we have already
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deduced that α̂(.), β̂(.) are continuous, bounded functions, with their respective
majorants, then for any set of stopping times (τ1, τ2) ∈ T2 and using Proposition 1
then we have the following:
Since

Js(τ1, τ2) = Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ2)η2(S(τ2))],

and that

α̂(s) ≥ Es[exp(−rτ1)α̂(S(τ1))],

≥ Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ1)β̂(S(τ1))],

⇒ α̂(s) ≥ Es[exp(−rτ1)η1(S(τ1)) + exp(−rτ2)η2(S(τ2))].

∴ α̂(s) ≥ sup
(τ1,τ2)∈T2

Js(τ1, τ2).

Now if we have
τ̂1 = Γζα̂ , τ̂2 = τ̂1 + Γζβ̂ ◦Θτ̂1 ,

and α̂(s) and β̂(s) are the functions for the optimal stopping problem with respective
stopping times τ̂1 and τ̂2, then we can apply the strong Markov property of S(t) so
that since

Js(τ̂1, τ̂2) = Es[exp(−rτ̂1)η1(S(τ̂1)) + Es[exp(−rτ̂2)η2(S(τ̂2))|Fτ̂1 ]],

then

Js(τ̂1, τ̂2) = Es[exp(−rτ̂1)(φ1S(τ̂1) + β̂(S(τ̂1)))],

= α̂(s).

Now a simple instance of the above proof, and if we have η1(.) = f(.) and η2(.) =

V + g2(K, s) are continuous and bounded functions, then g1(K, s) and U(s) are
continuous, bounded functions and r-excessive. Also U(s) is a solution to the optimal
starting-stopping problem in equation (1), so that we can write

U(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g2(K, s))].

Hence our proof is completed. �

5. Closed Form Solutions For Payoffs

In this section we prove Theorems 2 and 3, and so provide closed form solutions
to g1(s,K) and U(s). To achieve this we follow [21] and first introduce Proposition 2.
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Proposition 2. (Proposition 5.12, [9]) Let us denote

H(s) :=
ψr(s)

φr(s)
= exp(2κs),

where H : R → (0,∞), s 7→ ψr(s) := exp(κs), and s 7→ φr(s) := exp(−κs) are the
fundamental solutions of the differential equation

1

2
.
d2

ds2
w(s)− rw(s) = 0.

Let us also define a continuous and bounded function g : R 7→ R, and let λ : [0,∞) 7→
[0,∞) be the smallest non-negative concave majorant of

F (x) =
g(H−1(x))

φr(H−1(x))
.1{x>0}. (2)

The function U(.) for the optimal stopping problem

U(s) = sup
τ∈T

Es[exp(−rτ)g(S(τ))],

can be expressed as U(s) = φr(s)λ(H(s)) with optimal stopping time τ ∗ as

τ ∗ = ΓζU := inf{t ≥ 0 : S(t) ∈ ζU},

where

ζU := {s ∈ R : U(s) = g(s)} = {s ∈ R : φr(s)λ(H(s)) = g(s)}.

We now provide closed form solutions for g1(s,K) and U(s).

Theorem 2. The function g1(s,K) is given by

g1(s,K) = z(s)
(
Υ3.1{s>µ3} −K.1{s≤µ3}

)
+ V.1{s≤µ3},

with stopping region ζg1(s,K) = (−∞, µ3], where

µ3 = µ4 + s∗, µ4 =
ln(V/2K)

κ
,Υ3 =

V 2

4K
.

Proof. To prove this Theorem we apply Proposition 2. Let x∗ = H(s∗) = exp(2κs∗)

then we have

F1(x) =

V + g2

(
K,

lnx

2κ

)
x−

1
2

= q̂1(x).1{x>x∗} + q1(x).1{0<x≤x∗},
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where

q1(x) =
√
x

(
V −

√
x
K√
x∗

)
, for q1(x) ∈ (0,∞),

q̂1(x) =
√
x(V −K), for q̂1(x) ∈ (0,∞),

and q1(x),q̂1(x) are real-valued functions.
Now we find the smallest, positive, concave majorant of F1. We observe that

q′1(x) =
1

2

V√
x
− K√

x∗
⇒ q′′1(x) = −1

4
V x−

3
2 ,

q̂′2(x) =
1

2

(
V√
x
− K√

x

)
⇒ q̂′′2(x) = −1

4
V x−

3
2 +

1

4
Kx−

3
2 .

We recall that 0 < V < K. From the previous equations we deduce that q̂1(x) is a
monotonically decreasing, negative, and convex function on (0,∞), whereas q1(x) is
concave on (0,∞). We have the unique root of q1(x)

γ1 =

(
V
√
x∗

K

)2

,

and the unique root of q̂1(x) is γ2 =
γ1

4
, where γ2 < γ1 < x∗ because V < K. We

can consequently conclude that q1 on (i) (0, γ2]: concave, increasing and positive (ii)
(γ2, γ1): decreasing, concave, decreasing and positive (iii) (γ2,∞): concave, decreas-
ing and negative. Therefore it follows that F1 on: (i) (0, γ2]: concave, increasing
and positive (ii) (γ2, γ1): decreasing, concave, decreasing and positive (iii) (γ2, x

∗):
concave, decreasing and negative (iv) (x∗,∞): convex, decreasing and negative.
We therefore deduce that the smallest non-negative concave majorant of F1 is

λ(x) = q1(x.1{0≤x≤γ2} + γ2.1{x>γ2}).

Now if we use Proposition 2 then we obtain:

g1(s,K) = z(s)
(
Υ3.1{s>µ3} −K.1{s≤µ3}

)
+ V.1{s≤µ3}

with stopping region ζg1(s,K) given by

ζg1(s,K) =

(
−∞, ln(V/2K)

κ
+ s∗

]
= (−∞, µ3].

�

We note in passing that V ≤ K is a necessary condition (as mentioned earlier)
to prevent arbitrage profit taking, as we would expect in a well functioning and
realistic market. If this condition is not obeyed then the solution would change

15



(however this would admit arbitrage and so would be unrealistic). Another useful
conclusion is that

0 < V ≤ K ⇒ µ4 < 0,

and Theorem 2 implies that if a supplier is expected to exercise his contract imme-
diately then it is not optimal for the buyer to offer the contract.

We now provide a closed form solution to U(s) in the following Theorem, which

is characterised in terms of s4, where s4 ∈
(
−∞,−(e+ V )

l

]
is a solution to the

equation

0 =
1

2
exp(−κs)

(
e+ V +

l

κ
+ ls

)
−Kexp(−κs∗).

Based on Theorem 2, it is beneficial to analyse U(s) when s∗ ≥ µ1 − µ3 and
s∗ < µ2 − µ3, as these situations represent the typical scenarios facing the supplier.
The other scenarios occur during extremely high excess supply or high shortage of
goods, both of which would not normally happen.

Theorem 3. The function U(s) over s∗ ≥ µ1 − µ4 and s∗ < µ2 − µ4, is given by:

(a) for the condition µ3 > s4 > µ1 then

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1,

= e+ ls+ V −Kz(s), for µ1 < s < s4,

= exp(−κ(s− s4))(e+ ls4 + V −Kexp(κ(s4 − s∗))), for s > s4,

with stopping region (−∞, s4];
(b) for the condition s4 ≤ µ1 then

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1,

= exp(−κs)exp(µ1κ) (Λ + V −Kexp(µ1κ− κs∗)) , for s > µ1,

with stopping region (−∞, µ1];
(c) for the condition s4 ≥ µ3 then

U(s) = Λ + V −Kz(s), for −∞ < s < µ1,

= e+ ls+ V −Kz(s), for µ1 ≤ s ≤ µ3,

= e+ ls+ z(s)Υ3, for µ3 < s ≤ −µ5,

= − l
κ
exp

(
−κe
l
− 1− κs

)
+ z(s)Υ3, for s > −µ5,

where −µ5 = −
(
e

l
+

1

κ

)
, with stopping region (−∞,−µ5].

Proof.
We first define some auxillary functions: x = H(s) = exp(2κs), so that
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x∗ = H(s∗) = exp(2κs∗). We also have

Q(x) =
√
x

(
e+ Υ1 + V −

√
x
K√
x∗

)
, where Υ1 =

l.ln(x)

2κ
,

⇒ Q′(x) =
1

2
√
x

(
e+ V +

l

κ
+ Υ1 −

K√
x∗

)
⇒ Q′′(x) = −1

4
x−

3
2 (e+ V + Υ1) ,

with

Q̂(x) =
√
x

(
e+ Υ1 +

√
x∗√
x

Υ3

)
,

⇒ Q̂′(x) =
1

2
√
x

(
e+

l

κ
+ Υ1 −

K√
x∗

)
⇒ Q̂′′(x) = −1

4
x−

3
2 (e+ Υ1) ,

with

Q1(x) =
√
x

(
Λ + V −

√
x
K√
x∗

)
,

⇒ Q′1(x) =
1

2
√
x

(Λ + V )− K√
x∗
⇒ Q′′1(x) = −1

4
x−

3
2 (Λ + V ),

with

Q̂1(x) = Λ
√
x+
√
x∗

V

4K
,⇒ Q̂′1(x) =

1

2
√
x
.Λ⇒ Q̂′′1(x) = −1

4
x−

3
2 Λ,

with

Q2(x) =
√
xV − xK

x∗
⇒ Q′2(x) =

V

2
√
x
− K√

x∗
⇒ Q′′2(x) = −V

4
x−

3
2 ,

and

Q̂2(x) = (
√
x∗)Υ3 ⇒ Q̂′2(x) = 0⇒ Q̂′′2(x) = 0.

Hence we can deduce Q̂1(.) is concave and increasing on R≥0. The function Q′′(.) is
also continuous on R≥0, it has a unique root at

x1 = exp

(
−2κ

l
(e+ V )

)
,

it is negative on (0, x1), and positive on (x1,∞). Also, as Q′(.) is continuous,
monotone and decreasing on (0, x1), limx↓0Q

′(x) = ∞, Q′(x1) < 0, and Q′(.) has a
unique root x4 ∈ (0, x1). Moreover, as Q′(.) is continuous, monotone and increasing
on (x1,∞) with limx↑∞Q

′(x) = − K√
x∗
< 0, we conclude that Q′(.) is negative on

(x4,∞) and has a minimum at x1.
Next we deduce that Q(.) is concave and increasing on (0, x4), concave and

decreasing on (x4, x1), convex and decreasing on (x1,∞). Also, Q̂′(.) is continuous
on (0,∞), has a unique root at x2 = exp((−2κe

l
)− 2), Q̂′(.) is positive on (0, x2) and
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negative on (x2,∞). Moreover Q̂′′(.) has a unique root x3 = exp(−2κe
l

) < x1, it is
negative on (0, x3) and positive on (x3,∞), where x2 < x3.

Next we deduce that Q̂(.) is concave and increasing on (0, x2], concave and
decreasing on (x2.x3), convex and decreasing on (x3,∞), and

Q̂(x2) =
−2lexp(−κe

l
− 1)

2κ
+ (
√
x∗)Υ3 > Q̂2(x), for {x ∈ R|x ≥ 0}.

Also, Q1(.) is concave on (0,∞), Q′1(.) is continuous and monotone on R≥0. More-
over, as limx↓0Q

′
1(x) = ∞, and limx↑∞Q

′
1(x) = − K√

x∗
< 0, Q′1(.) has a unique

root x5 ∈ R≥0 where x5 =

(√
x∗(Λ+V )

2K

)2

. We therefore can conclude that Q1(.) is

increasing on (0, x5] and decreasing on (x5,∞).
The function Q2(.) is concave on R≥0, with Q′2(.) continuous and monotonically

decreasing on R≥0. Furthermore, Q′2(.) has a unique root γ2 ∈ R≥0, which is γ2 =(√
x∗V
2K

)2

< x5. Therefore Q2(.) is increasing on (0, γ2] and decreasing on (γ2,∞).
Let

γs = exp (2κµ1) ,

and so

Q1(γs) = Q(γs) =
√
γs

(
Λ + V −K

√
γs

x∗

)
,

Q′1(γs) =
1

2
√
γs

(Λ + V )− K√
x∗
,

Q′(γs) =
Λ + l

κ

2
√
γs
,

therefore there is a continuous fit between Q1, Q at γs but we fail to have a smooth
fit because Q(γs) < Q1(γs). Now for Q̂1 and Q̂ we have

Q̂1(γs) = Q̂(γs) = Λ
√
γs + (

√
x∗)Υ3,

Q̂′1(γs) =
Λ

2
√
γs
,

Q̂′(γs) =
Λ + l

κ

2
√
γs
,

and shows an continuous fit at γs but not a smooth fit because Q̂1(γs) > Q̂(γs). At
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point x3 we have

Q(x3) = Q2(x3) = exp

(
−κe
l

)
V − exp

(
−2κe

l

)
K√
x∗
,

Q′(x3) =
1

2
exp

(κe
l

)(
V +

l

κ

)
− K√

x∗
,

Q′2(x3) =
1

2
exp

(κe
l

)
V − K√

x∗
.

This is also a continuous fit but fails because Q′(x3) < Q′2(x3). However, at γ2 there
is

Q2(γ2) = Q̂2(γ2) = (
√
x∗)Υ3,

Q′2(γ2) = Q̂′2(γ2) = 0,

which proves a continuous and smooth fit between Q̂2 and Q2 at γ2. Also for Q and
Q̂(.) we have a smooth and continuous fit at γ2

Q(γ2) = Q̂′(γ2)e
√
γ2 + l

√
γ2
ln(γ2)

2κ
+ (
√
x∗)Υ3,

Q′(γ2) = Q̂′(γ2) =
1

2
γ−

1
2

(
e+

l

κ
+
l.ln(γ2)

2κ

)
.

Similarly, for Q1(.) and Q̂1(.) there is a continuous and smooth fit at γ2

Q1(γ2) = Q̂1(γ2) = Λ

(√
x∗V

2K

)
+ (
√
x∗)Υ3,

Q′1(γ2) = Q̂′1(γ2) =
ΛK

V
√
x∗
.

Also at x3 we have

Q̂(x3) = Q̂2(x3) = (
√
x∗).Υ3,

Q̂′(x3) = exp
(κe
l

) l

2κ
,

Q̂′2(x3) = 0,

and so we have a continuous fit at x3 but not a smooth fit because Q̂′(x3) < Q̂′2(x3).
With all the previous results we can solve the two stage optimal stopping prob-

lem. We have 0 < γs ≤ γ2 < x3 and F2(.) is given by

F2(.) =
{f + g1}(H−1(x))

x−
1
2

, (3)

= Q1(x).1{0<x<γs} +Q(x).1{γs≤x≤γ2} + Q̂(x).1{γ2<x≤x3} (4)

+ Q̂2(x).1{x3<x}. (5)
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With the previous derivations we are now in a position to prove the Theorem. Firstly,
we characterise the small non-negative majorant λ of F2(.) as given in equations
(3)-(5). As deduced previously, we have: Q1(.) is concave everywhere, increasing
on (0, x5] where x5 > γs; we have Q′(γs) < Q′1(γs), and Q′(γ2) > Q̂′(γ2);Q̂(.) is
concave everywhere, increasing on (0, x2], decreasing on (x2,∞), with 0 < x2 <

x3 < x1;Q̂(x2) > Q̂(x),∀x ∈ R≥0. Now from equations (3)-(5) we can deduce that
the transformed stopping region is {λ(.) = F2(.)} = (0,Π] where Π ≤ x2.

We now determine U(s) for the specific subregions by applying Proposition 2.
For:
(a) in this region we have γ2 > x4 > γs, the stopping region is (0, x4], for x ≥ x4 the
function λ(.) is constant with value Q(x4):

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
, for 0 < x < γs,

=
√
x

(
e+ Υ1 + V −K

√
x√
x∗

)
, for γs < x ≤ x4,

=
√
x4

(
e+ l.

ln(x4)

2κ
+ V −K

√
x4

x∗

)
, for x4 < x.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1,

= e+ ls+ V −Kz(s), for µ1 < s < s4,

= exp(−κ(s− s4))(e+ ls4 + V −Kexp(κ(s4 − s∗))), for s > s4,

(b)in this region we have x4 ≤ γs, with stopping region (0, γs], and x ≥ γs we have
λ(.) is constant with value Q(γs):

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
, for 0 < x ≤ γs,

=
√
γs

(
Λ + V −K

√
x√
x∗

)
, for x > γs.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s ≤ µ1,

= exp(−κs)exp(µ1κ)(Λ + V −Kexp(µ1κ− κs∗)), for s > µ1.

(c) in this region we have x4 ≥ γ2, however this inequality can be re-expressed as
x2 ≥ γ2; the proof is as follows. For x4 ≥ γ2 ⇒ Q̂′(γ2) ≥ 0 because Q̂′(γ2) = Q′(γ2),
and Q′(.) is non-negative on (0, x4]. Also as Q̂′(.) is non-negative on (0, x2], negative
on (x2,∞) and has unique root at x2, then Q̂(γ2) ≥ 0⇒ x2 ≥ γ2.

The stopping region given by (0, x2], and x ≥ x2 the function λ(.) is constant
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with value Q̂(x2)

λ(x) =
√
x

(
Λ + V −K

√
x√
x∗

)
.1{0<x<γs} +

√
x

(
e+ Υ1 + V −K

√
x√
x∗

)
.1{γs<x≤γ2}

+
√
x

(
e+ Υ1 +

√
x√
x∗
.Υ3

)
.1{γ2<x≤x2} −

l

κ

√
x2 +

√
x∗.Υ3.1{x>x2}.

Hence by applying Proposition 2 we have

U(s) = Λ + V −Kz(s), for −∞ < s < µ1,

= e+ ls+ V −Kz(s), for µ1 ≤ s ≤ µ3,

= e+ ls+ exp(κ(s∗ − s))Υ3, for µ3 < s ≤ −µ5,

= − l
κ
exp

(
−κe
l
− 1− κs

)
+ exp(κ(s∗ − s))Υ3, for s > −µ5,

Hence this completes our proof. �

6. Limiting Behaviour

Whilst we have provided equations to our payoffs on a single exchange (that is
selling of goods to vacate space at the buyer and then selling the contract), it would
be useful to understand the long term behaviour after n exchanges or operations,
specifically for n→∞. In other words we wish to know the limiting behaviour of our
operation. In order to analyse this situation we make the assumption that the buyer
must await for the supplier to exercise the nth contract, before the (n+1)th contract
can be offered. Consequently, the following function can be defined recursively as

αn = sup
(τ1,τ2)∈T2

Es[f(S(τ1))exp(−rτ1) + (V + gn2 (K,S(τ2)))exp(−rτ2)], (6)

where

gn2 (K,S(τ2)) = Es[exp(−rΓ[s∗,∞))(α
n−1
V (S(Γ[s∗,∞))−K)],

with α0
V := 0, and

βn(s) = sup
τ∈T

Es[exp(−rτ)(V + gn2 (K,S(τ2)))]. (7)

Hence we are particularly interested in the limiting behaviour of

α∗(s) = lim
n→∞

αn(s),∀s ∈ R,

β∗(s) = lim
n→∞

βn(s),∀s ∈ R.

In order to understand the limiting behaviour of our optimisation problem, we follow
[21] and present a number of proofs. First we provide a Lemma on the functions
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αn(.), βn(.), gn2 (.) and their sequences (Lemma 1). We then provide a Lemma on
the optimal stopping problem and Brownian motion (Lemma 2). Next we provide a
Lemma (Lemma 3) on optimal stopping problems for gξ2(.) (to be defined later) and
the stopping region for function gξ1 (to be defined later). We then use the previous
Lemmas to prove the limiting function of α∗(.) (Lemma 4), and the previous Lem-
mas are used to prove Theorem 4 on α∗(.).

Lemma 1. The functions αn(.), βn(.) and gn2 (.) are continuous and bounded func-
tions for all n ≥ 1. Also, the sequence of functions {αn(.)}n≥0, {βn(.)}n≥1 and
{gn2 (.)}n≥1 are non-decreasing.

Proof. First, we apply Theorem 1 to show β1 and α1 are continuous and bounded.
We observe that functions αn(.), gn+1

2 (.) and βn+1(.) are continuous and bounded, we
have α0 = 0 is bounded and continuous, which implies the function g1

2(.) is bounded
and continuous by definition. By Theorem 1 this implies that β1 and α1 are contin-
uous and bounded. Therefore for n = 1 we have αn−1 is continuous and bounded
implying that αn, βn and gn2 are continuous and bounded. If we then assume that
for a given n ≥ 1 that αn−1 is continuous and bounded, we can also assert similarly
that αn, βn and gn2 are continuous and bounded. By induction we therefore conclude
that n ≥ 1.

We now apply Theorem 1 to prove that the sequences {αn}n≥0, {βn}n≥1 and
{gn2 }n≥1 are non-decreasing. By Theorem 1 we have α1 is non-negative, therefore
g2

2 ≥ g1
2. Now as α1, α2 are solutions to the equation (6) (respectively), then

g2
2 ≥ g1

2 ⇒ α2 ≥ α1.

Similarly, if αn ≥ αn−1 for some n ≥ 1, then gn+1
2 ≥ gn2 and therefore αn+1 ≥ αn. By

a similar approach we deduce that βn+1 ≥ βn because βn is the solution to equation
(7). Hence by induction on n ≥ 1 the proof is completed. �

Using the previous Lemma we have {αn}n≥0 and {βn}n≥1 are non-decreasing se-
quences of continuous and bounded functions. Now using Theorem 1 we can also
deduce that αn for equation (6) also satisfies

αn(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + βn(S(τ))], n ≥ 1. (8)

We now wish to determine the optimal stopping problem for Brownian motion.

Lemma 2: For Brownian motion S(t) with initial value s ∈ R, on probability
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space (Ω,F ,Ps), then

U(s1) ≤ U(s2), for s1 > s2 ≥ s∗,

where function g(.) : R → R is continuous, bounded and decreasing after s∗, that is
g(s1) ≤ g(s2), and U(s) is the optimal stopping problem

U(s) = sup
τ∈T

Es[exp(−rτ)g(S(τ))].

Proof: Let us define the stopping region ζU = {s ∈ R : U(s) = g(s)} for the optimal
stopping problem, with ΓζU = inf{t ≥ 0 : S(t) ∈ ζU}. For ζU = ∅ ⇒ U = 0 and the
claim holds. For ζU 6= ∅ then we have at least one of the points, or none of points
s1, s2 are in the stopping region. If we take the scenario that at least one point is
in the stopping region, let s1 ∈ ζU ⇒ U(s1) = g(s1) and g(s1) ≤ g(s2) ≤ U(s2). If
s2 ∈ ζU ⇒ S(ΓζU ) ≥ s2, ∀s > s2 ⇒ g(S(ΓζU )) ≤ g(s2) = U(s2),∀s > s2, including
s1. We therefore have U(s1) ≤ U(s2) by using the non-negativity of U(.) and optimal
value of ΓζU .

We now examine the scenario for neither points {s1, s2} in the stopping region.
First we examine ζU ∩ {s1, s2} 6= ∅. Let s4 ∈ ζU ⇒ U(s4) = g(s4), with s4 ∈
ζU ∩ {s1, s2}, then g(s2) ≥ g(s4)⇒ U(s2) ≥ U(s4). Also as S(ΓζU ) ≥ s4,∀s > s4 ⇒
g(S(ΓζU )) ≤ g(s4), and g(s4) = U(s4). Hence U(s1) ≤ U(s4) ≤ U(s2). We now
examine the scenario ζU ∩{s1, s2} = ∅: if ζU ∩ (∞, s∗] = ∅ ⇒ ζU ⊆ [a,∞) where a ∈
ζU ∩ (s∗,∞) because ζU is non-empty and closed. Given that 0 ≤ U(a), U(a) = g(a)

and if we now use the optimality of ΓζU then we have g(s∗) < U(s∗) ≤ g(a), which
contradicts the assumption that g(.) is decreasing [s∗,∞), hence ζU ∩ (−∞, s∗] 6= ∅.
Now suppose first that ζU ⊂ (−∞, s2), which is a closed and non-empty set, then
there must exist a point l ∈ ζU , such that ζU ⊆ (−∞, l]. Therefore

U(s1) = exp(κ(l − s1))U(l),

U(s2) = exp(κ(l − s2))U(l)⇒ U(s1) ≤ U(s2).

Now finally, suppose that ΓU ∩ (−∞, a1] ∪ [a2,∞), where a1 < s2 < s1 < a2

and a1, a2 ∈ ζU . If we apply Lemma 4.3 from [9] we obtain U(s) = f(a1, a2, s, κ)
and by differentiating we obtain U ′(s) and the conditions to determine that U(.) is
decreasing on [s∗,∞). �

We now introduce our Lemma on the functions gξ1(.) and gξ2(s,K).

Lemma 3: Let ξ : R → R be a continuous and bounded function, decreasing on
[x∗,∞) and ξ(s∗) > K. Let us also define

gξ2(s,K) = Es[exp(−rΓ[s∗,∞])−K)],
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and also the optimal stopping problem

gξ1(s) = sup
τ2

Es[exp(−rτ2)(V + gξ2(s,K))],

then we have (∞, s∗] ⊆ Γζ
g
ξ
1

= {gξ1 = V + gξ2}.

Proof: We first apply Proposition 2 to V + gξ2(s,K), and define F : [0,∞)→ R as

F (x) =
√
x

(
V +

(ξ(s∗)−K)
√
x

exp(κx∗)

)
.1{0<x≤x∗} +

√
x

(
V +

ln(x)

2κ
−K

)
.1{x>x∗}

where x∗ = F (s∗) = exp(2κs∗). Also, let us define q̂1(.) and q̂2(.), both defined on
R≥0, with

q̂1(x) =
√
x

(
V + ξ

(
ln(x)

2κ

)
−K

)
,

and

q̂2(x) =
√
x

(
V +

ξ(s∗ −K)
√
x

exp(κs∗)

)
⇒ q̂′2(x) =

1

2
V x−

1
2 +

ξ(s∗)−K
exp(κs∗)

,

⇒ q̂′′2(x) = −1

4
V x−

3
2 ,

noting that q̂′2(.) = F (.) over [0, x∗], and q̂′1(.) = F (.) over [x∗,∞]. Now if ξ(s∗) > K

then the differentials of q̂2 imply that q̂2 is non-negative, concave and increasing
function. Therefore the smallest non-negative concave majorant of q̂2 is itself, and
q̂2 majorises F because q̂2(x) ≥ q̂1(x) and q̂1(x) = F (x) over [x∗,∞):

q̂2(x)− q̂1(x) =
√
x

(
V +

ξ(s∗ −K)
√
x

exp(κs∗)

)
−
√
x

(
V + ξ

(
ln(x)

2κ

)
−K

)
,

=
x

exp(κs∗)
(ξ(s∗)−K)−

√
x

(
ξ

(
ln(x)

2κ

)
−K

)
,

≥
√
x

( √
x

exp(κs∗)
− 1

)
(ξ(s∗)−K)⇒ q̂2(x) ≥ q̂1(x),

where we utilise s→ ξ(s) is decreasing on [s∗,∞),
√
x >
√
x∗ and x∗ = exp(κs∗) over

(x∗,∞). Therefore the smallest non-negative concave majorant of F and λ therefore
gives λ ≤ q̂2. However, on [0, x∗] we have F = q̂2 and so λ = q̂2 = F, ∀[0, x∗],
alternatively (−∞, s∗] ⊆ Γζξ1

. Hence the proof is completed. �

We now introduce Lemma 4, which requires Lemmas 2 and 3. Lemma 4 is re-
quired so that we can prove Theorem 4.
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Lemma 4. The limiting function of α∗ = limn→∞ α
n is bounded.

Proof. To prove this, we examine α∗ value with respect to K. First for α∗ ≤ K,
we apply Lemma 2 and using an induction argument prove that αn(s∗) ≥ αn(s),
∀s ≥ s∗,∀n ≥ 1. This inequality true for n = 0, and if we assume it is also true for
n = m = 1, then payoff V + gm2 is decreasing on [s∗,∞) and by Lemma 2 the same
also holds for βm+1(s). Since f(.) is also decreasing on R, by Lemma 2 and the char-
acterisation of αm+1 in equation (8) to claim that αm+1 is decreasing on [s∗,∞). Now
since αn(s∗) ≤ K, ∀n ≥ 0 then gn2 (s) ≤ 0 on (−∞, s∗],∀n ≥ 1. However, by the prior
argument gn2 (s) = αn−1(s)−K ≤ αn(s∗)−K ≤ 0 over (s∗,∞)⇒ gn2 (s) ≤ 0,∀s ∈ R.
Now we recall that V > 0 is constant, f(.) ≤ Λ, the characteristation of αn in
equation (6) to deduce that αn ≤ Λ + V, ∀n ≥ 1⇒ α∗ ≤ Λ + V .

We now examine the case for α∗(s∗) > K and that there exists an index n ≥ 1: for
equations (7) and (8) we assign the stopping sets, respectively ζnβ = {s ∈ R|βn(s) =

V + gn2 (s)}, ζnα = {s ∈ R|αn(s) = f(s) + βn(s)}, with respective stopping times
τn1 = Γζαn , and τ

n
2 = τn1 + Γζβn ◦Θτn1

. We now apply Theorem 1 ∀n ≥ 1, so that

αn(s) = Es[exp(−rτn1 )f(S(τn1 )) + exp(−rτn2 (V + gn2 (S(τn2 )))].

Now if we define n0 as the first n ≥ 1 such that αn > K, then using previous ar-
guments we have ∀n ≥ n0 the inequality gn+1

2 (s) ≤ gn+1
2 (s∗),∀s ≥ s∗. Moreover,

s∗ is the global maximum for gn+1
2 (s) and from equation (7) one can show ∀n ≥ n0

that βn+1(s∗) = V + gn+1
s (s∗), and βn+1(s∗) ≥ βn+1(s). The remainder of the proof

is found by following [21] and the proof is outlined here. Firstly by deducing that
the stopping region is ζαn+1 ∩ (−∞, s′) 6= ∅,∀n ≥ n0 and s′ < s∗ is a constant.
We then deduce that for every m ≥ 1 there exists a point s ∈ ζαm+n0 , such that
αm+n0(s∗) ≤ αm+n0(s). The next deduction is that for all m ≥ 1 then we must have
at least one point sm+n0 ∈ ζαm+n0 ∩ (−∞, s′], such that αm+n0(s∗) ≤ αm+n0(sm+n0).
Now by applying Lemma 3 we find that αn ≤ αn+1 ≤ V + Λ + Υ2,∀n ≥ n0, where
Υ2 <∞. If we take the limit for n→∞ then we have α∗ ≤ V + Λ + Υ2. �

Now that we have stated our lemmas, we are now ready to state our Theorem.

Theorem 4. The functions α∗ and β∗ are lower semicontinuous functions and
are bounded. The functions have the following properties: firstly, α∗ is the smallest
r-excessive majorant of f + β∗. Secondly, β∗ is the smallest r-excessive majorant of
V + g∗2, where

g∗2(s) = (α∗(s)−K).1{s>s∗} + (α∗(s∗)−K).z(s).1{s≤s∗}.

Thirdly, α∗ and β∗ are functions of the optimal stopping problems:

α∗(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + β∗(S(τ)))],

β∗(s) = sup
τ∈T

Es[exp(−rτ)(V + g∗2(S(τ)))].
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Finally, α∗ is the function of the implicit optimal starting-stopping problem

α∗(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g∗2S(τ2))].

Proof. We note that α∗ and β∗ are the supremum of non-decreasing sequences of
bounded and continuous functions, hence we can deduce the functions exists and
are lower semicontinuous. Moreover, Lemma 4 implies that α∗ is bounded, and so
g∗2 and β∗ are bounded.

We now wish to prove that α∗ is the smallest r-excessive majorant of f + β∗.
From [8] we can assert that as the limiting function of an increasing sequence of
r-excessive functions, then α∗ is also r-excessive. Now given that αn is the smallest
r-excessive majorant of f+βn for n ≥ 1 then α ≥ f+βn, ∀n ≥ 1. If we now take the
limit in terms of n then we obtain α∗ ≥ f + β∗, and α∗ is the r-excessive majorant
of f + β∗. To prove that α∗ is the smallest, let ᾱ : R → [0,∞] be any r-excessive
function dominating f + β∗, that is ᾱ ≥ f + β∗ ≥ f + βn,∀n ≥ 1. Given that we
know that αn is the smallest r-excessive majorant of f + βn,∀n ≥ 1, then

ᾱ ≥ αn,∀n ≥ 1⇒ ᾱ ≥ sup
n
αn ⇒ ᾱ ≥ α∗.

Moreover, to prove β∗ is the smallest r-excessive majorant of V +g∗2, we use a similar
argument to that applied to α∗ previously.

To prove that α∗ and β∗ are functions of the optimal stopping problems, we first
observe that β∗ is the smallest r-excessive function majorising V + g∗2, therefore it
is the function of the optimal stopping problem

β∗(s) = sup
τ∈T

Es[exp(−rτ)(V + g∗2(S(τ)))].

Now by applying Proposition 5.13 in [9] we can conclude β∗ is continuous and
bounded. If we now repeat previous arguments then we can conclude that β∗ is the
function of the optimal stopping problem

α∗(s) = sup
τ∈T

Es[exp(−rτ)(f(S(τ)) + β∗(S(τ)))],

and so is continuous and bounded. If we now apply Theorem 1 then we can deduce
that

α∗(s) = sup
(τ1,τ2)∈T2

Es[exp(−rτ1)f(S(τ1)) + exp(−rτ2)(V + g∗2S(τ2))].

Hence this completes our proof. �
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7. Conclusion

Risk management is a fundamental function of all businesses nowadays, and
its importance has grown over the past 30 years. In particular, suppliers need to
manage their goods and Value at Risk (VaR) is a popular risk measurement for
risk analysis. Within a VaR risk methdology we have analysed a risk management
strategy, through transferring risk with a hedging contract to alternative buyers. We
provide a mathematical model of the hedging contract and operation, modelling it as
an optimal stopping problem. We solve the problem to derive the optimal stopping
criteria. We provide closed form solutions to the payoffs involved in the model, and
we derive the limiting and long term behaviour of our operations. In terms of future
work, we would like extend our model to take into account additional transaction
costs (such as taxes) to determine the impact on payoffs. We would also like to
investigate the impact of introducing switching clauses in our contract to improve
hedging costs.
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