
Visibly Linear Dynamic LogicI

Alexander Weinert∗, Martin Zimmermann

Reactive Systems Group, Saarland University, 66123 Saarbrücken, Germany

Abstract

We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear
Temporal Logic (LTL) by temporal operators that are guarded by visibly push-
down languages over finite words. In VLDL one can, e.g., express that a function
resets a variable to its original value after its execution, even in the presence
of an unbounded number of intermediate recursive calls. We prove that VLDL
describes exactly the ω-visibly pushdown languages, i.e., that it is strictly more
expressive than LTL and able to express recursive properties of programs with
unbounded call stacks.

The main technical contribution of this work is a translation of VLDL into ω-
visibly pushdown automata of exponential size via one-way alternating jumping
automata. This translation yields exponential-time algorithms for satisfiability,
validity, and model checking. We also show that visibly pushdown games with
VLDL winning conditions are solvable in triply-exponential time. We prove all
these problems to be complete for their respective complexity classes.

Keywords: Temporal Logic, Visibly Pushdown Languages, Satisfiability,
Model Checking, Infinite Games

1. Introduction

Linear Temporal Logic (LTL) [2] is widely used for the specification of non-
terminating systems. Its popularity is owed to its simple syntax and intuitive
semantics, as well as to the so-called exponential compilation property, i.e., for
each LTL formula there exists an equivalent Büchi automaton of exponential
size. Due to the latter property, there exist algorithms for model checking in
polynomial space and for solving infinite games in doubly-exponential time.

While LTL suffices to express properties of circuits and non-recursive pro-
grams with bounded memory, its application to real-life programs is hindered
by its inability to express recursive properties. In fact, LTL is too weak to
even express all ω-regular properties. There are several approaches to address
the latter shortcoming by augmenting LTL, e.g., with regular expressions [3, 4],

ISupported by the projects “TriCS” (ZI 1516/1-1) and “AVACS” (SFB/TR 14) of the
German Research Foundation (DFG).
This is an extended and revised version of work first presented at FSTTCS ’16. [1]
∗Corresponding Author
Email addresses: weinert@react.uni-saarland.de (Alexander Weinert),

zimmermann@react.uni-saarland.de (Martin Zimmermann)

Preprint submitted to Elsevier February 27, 2018

finite automata on infinite words [5], and right-linear grammars [6]. We con-
centrate on the approach of Linear Dynamic Logic (LDL) [4], which guards the
globally- and eventually-operators of LTL with regular expressions. While the
LTL-formula Fψ simply means “Either now, or at some point in the future, ψ
holds”, the corresponding LDL operator 〈r〉ψ means “Either now, or at some
point in the future, ψ holds and the infix between these two points matches r”.

The logic LDL captures the ω-regular languages. In spite of its greater ex-
pressive power, LDL still enjoys the exponential compilation property, hence
there exist algorithms for model checking and solving infinite games in polyno-
mial space and doubly-exponential time, respectively.

While the expressive power of LDL is sufficient for many specifications, it
is still not sufficient to reason about recursive properties of systems. In order
to address this shortcoming, we replace the regular expressions guarding the
temporal operators with visibly pushdown languages (VPLs) [7] specified by
visibly pushdown automata (VPAs) [7].

A VPA is a pushdown automaton that operates over a fixed partition of
the input alphabet into calls, returns, and local actions. In contrast to classical
pushdown automata, VPAs may only push symbols onto the stack when reading
calls and may only pop symbols off the stack when reading returns. Moreover,
they may not even inspect the topmost symbol of the stack when not reading
returns. Thus, the height of the stack after reading a word is known a priori
for all VPAs using the same partition of the input alphabet. Due to this, VPAs
are closed under union and intersection, as well as complementation. The class
of languages accepted by VPAs is known as visibly pushdown languages.

The class of such languages over infinite words, i.e., ω-visibly pushdown lan-
guages, are known to allow for the specification of many important properties
in program verification such as “there are infinitely many positions at which at
most two functions are active”, which may, e.g., express repeated returns to a
main-loop, or “every time the program enters a module m while p holds true,
p holds true upon exiting m” [8]. The extension of VPAs to their variant oper-
ating on infinite words is, however, not well-suited to the specification of such
properties in practice, as Boolean operations on such automata do not preserve
the logical structure of the original automata. By guarding the temporal opera-
tors introduced in LDL with VPAs, VLDL allows for the modular specification
of recursive properties while capturing ω-VPAs.

1.1. Our contributions

We begin with an introduction of VLDL and give examples of its use. We
then provide translations from VLDL to VPAs over infinite words, so-called
ω-VPAs, and vice versa. For the direction from logic to automata we translate
VLDL formulas into one-way alternating jumping automata (1-AJA), which
are known to be translatable into ω-VPAs of exponential size due to Bozzelli
[9]. For the direction from automata to logic we use a translation of ω-VPAs
into deterministic parity stair automata by Löding et al. [10], which we then
translate into VLDL formulas. Afterwards, we compare and contrast VLDL
and Visibly Linear Temporal Logic (VLTL), another logic capturing visibly
pushdown languages. The logics VLDL and VLTL share the basic mechanism
of guarding temporal operators with languages of finite words.

Secondly, we prove the satisfiability problem and the validity problem for
VLDL to be ExpTime-complete. Membership in ExpTime follows from the

2

previously mentioned constructions, while we show ExpTime-hardness of both
problems by a reduction from the word problem for polynomially space-bounded
alternating Turing machines adapting a similar reduction by Bouajjani et al. [11].

As a third result, we show that model checking visibly pushdown systems
against VLDL specifications is ExpTime-complete as well. Membership in
ExpTime follows from ExpTime-membership of the model checking problem
for 1-AJAs against visibly pushdown systems. ExpTime-hardness follows from
ExpTime-hardness of the validity problem for VLDL.

Moreover, solving visibly pushdown games with VLDL winning conditions is
proven to be 3ExpTime-complete. Membership in 3ExpTime follows from the
exponential translation of VLDL formulas into ω-VPAs and the membership of
solving pushdown games against ω-VPA winning conditions in 2ExpTime due
to Löding et al. [10]. 3ExpTime-hardness is due to a reduction from solving
pushdown games against LTL specifications, again due to Löding et al. [10].

Finally, we show that replacing the visibly pushdown automata used as
guards in VLDL by deterministic pushdown automata yields a logic with an
undecidable satisfiability problem.

Our results show that VLDL allows for the concise specification of important
properties in a logic with intuitive semantics. In the case of satisfiability and
model checking, the complexity jumps from PSpace-completeness for LDL to
ExpTime-completeness. For solving infinite games, the complexity gains an
exponent moving from 2ExpTime-completeness to 3ExpTime-completeness.

We choose VPAs for the specification of guards in order to simplify arguing
about the expressive power of VLDL. In order to simplify the modeling of ω-
VPLs, other formalisms that capture VPLs over finite words may be used. We
discuss one such formalism in the conclusion.

1.2. Related Work

The need for specification languages able to express recursive properties has
been identified before and there exist other approaches to using visibly push-
down languages over infinite words for specifications, most notably VLTL [12]
and CaRet [8]. While VLTL captures the class of ω-visibly pushdown languages,
CaRet captures only a strict subset of it. For both logics there exist exponen-
tial translations into ω-VPAs. In this work, we provide exponential translations
from VLDL to ω-VPAs and vice versa. Hence, CaRet is strictly less power-
ful than VLDL, but every CaRet formula can be translated into an equivalent
VLDL formula, albeit with a doubly-exponential blowup. Similarly, every VLTL
formula can be translated into an equivalent VLDL formula and vice versa, with
doubly-exponential blowup in both directions. For a fragment of VLDL, how-
ever, a translation with only exponential blowup exists. This fragment retains
the expressiveness of the full logic. We discuss the connections between VLDL
and VLTL in more detail in Section 6.

Other logical characterizations of visibly pushdown languages include char-
acterizations by a fixed-point logic [9] and by monadic second order logic aug-
mented with a binary matching predicate (MSOµ) [7]. Even though these logics
also capture the class of visibly pushdown languages, they feature neither an
intuitive syntax nor intuitive semantics and thus are less applicable than VLDL
in a practical setting.

Moreover, the algorithm for checking satisfiability of VLDL formulas pre-
sented in this work relies on a translation of these formulas into a variant of

3

alternating automata. The emptiness problem for these automata is ultimately
solved via a reduction to the emptiness problem for pushdown systems. To the
best of our knowledge, no efficient solvers for this problem exist. In order to
alleviate this shortcoming of the existing algorithm, an alternative translation of
1-AJA into nondeterministic tree automata that preserves emptiness has been
presented [13]. By subsequently reducing the problem of checking tree automata
emptiness to that of solving Büchi games, this algorithm achieves asymptoti-
cally optimal runtime and reduces the problem of 1-AJA emptiness to one with
mature tool support.

2. Preliminaries

In this section we introduce the basic notions used in the remainder of this
work. A pushdown alphabet Σ̃ = (Σc,Σr,Σl) is a finite set Σ that is partitioned
into calls Σc, returns Σr, and local actions Σl. We write w = w0 · · ·wn and α =
α0α1α2 · · · for finite and infinite words, respectively. The stack height sh(w)
reached after reading w is defined inductively as sh(ε) = 0, sh(wc) = sh(w) + 1
for c ∈ Σc, sh(wr) = max{0, sh(w) − 1} for r ∈ Σr, and sh(wl) = sh(w) for
l ∈ Σl. We say that a call c ∈ Σc at some position k of a word w is matched
if there exists a k′ > k with wk′ ∈ Σr and sh(w0 · · ·wk) − 1 = sh(w0 · · ·wk′).
The return at the earliest such position k′ is called the matching return of c.
We define steps(α) := {k ∈ N | ∀k′ ≥ k. sh(α0 · · ·αk′) ≥ sh(α0 · · ·αk)} as the
positions reaching a lower bound on the stack height along the remaining suffix.
Note that we have 0 ∈ steps(α) and that steps(α) is infinite for infinite words α.

Visibly Pushdown Systems A visibly pushdown system (VPS) S =

(Q, Σ̃,Γ,∆) consists of a finite set Q of states, a pushdown alphabet Σ̃, a stack
alphabet Γ, which contains a stack-bottom marker ⊥, and a transition relation

∆ ⊆ (Q× Σc ×Q× (Γ \ {⊥})) ∪ (Q× Σr × Γ×Q) ∪ (Q× Σl ×Q) .

The order of the elements of the relation induces a functional view of the
transition relation: When processing calls, the automaton outputs a stack sym-
bol to be placed on top of the stack, while when processing a return, it takes
the symbol on top of the stack as input and only outputs the state to move to.

A configuration (q, γ) of S is a pair of a state q ∈ Q and a stack content
γ ∈ ContΓ = (Γ \ {⊥})∗ · ⊥. The VPS S induces the configuration graph GS =
(Q×ContΓ, E) with E ⊆ ((Q×ContΓ)×Σ×(Q×ContΓ)) and ((q, γ), a, (q′, γ′)) ∈
E if, and only if, either

1. a ∈ Σc, (q, a, q′, A) ∈ ∆, and Aγ = γ′,
2. a ∈ Σr, (q, a,⊥, q′) ∈ ∆, and γ = γ′ = ⊥,
3. a ∈ Σr, (q, a,A, q′) ∈ ∆, A 6= ⊥, and γ = Aγ′, or
4. a ∈ Σl, (q, a, q′) ∈ ∆, and γ = γ′.

For an edge e = ((q, γ), a, (q′, γ′)), we call a the label of e. A (finite or infinite)
run π = (q0, γ0)(q1, γ1)(q2, γ2) · · · of S on w = w0w1w2 · · · is a sequence of
configurations where ((qi, γi), wi, (qi+1, γi+1)) ∈ E in GS for all i ∈ [0; |π|) or
for all i ∈ N in the case of infinite runs. The VPS S is deterministic if for each
vertex (q, γ) in GS and each a ∈ Σ there exists at most one outgoing a-labeled
edge from (q, γ). In figures, we write ↓A, ↑A and → to denote pushing A onto
the stack, popping A off the stack, and local actions, respectively.

4

(Büchi) Visibly Pushdown Automata A visibly pushdown automaton

(VPA) [7] is a six-tuple A = (Q, Σ̃,Γ,∆, I, F), where S = (Q, Σ̃,Γ,∆) is a VPS
and I, F ⊆ Q are sets of initial and final states. A run (q0, γ0)(q1, γ1)(q2, γ2) · · ·
of A is a run of S, which we call initial if (q0, γ0) = (qI ,⊥) for some qI ∈ I. A
finite run π = (q0, γ0) · · · (qn, γn) is accepting if qn ∈ F . A VPA A accepts a
finite word w if there exists an initial accepting run of A on w. We denote the
family of languages accepted by VPA by VPL.

A Büchi VPA (BVPA) is syntactically identical to a VPA, but we only
consider runs over infinite words. An infinite run is Büchi-accepting if it visits
states in F infinitely often. A BVPA A accepts an infinite word α if there exists
an initial Büchi-accepting run of A on α. We denote the family of languages
accepted by BVPA by ω-VPL.

Finally, we define the size of a VPA or a BVPA A as |A| = |Q|+ |Γ|.

3. Visibly Linear Dynamic Logic

We fix a finite set P of atomic propositions and a partition Σ̃ = (Σc,Σr,Σl)
of 2P throughout this work. The syntax of VLDL is defined by the grammar

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | [A]ϕ , 1

where p ∈ P and where A ranges over testing visibly pushdown automata
(TVPA) over Σ̃. We define a TVPA A = (Q, Σ̃,Γ,∆, I, F, t) as consisting of

a VPA (Q, Σ̃,Γ,∆, I, F) and a partial function t mapping states to VLDL for-

mulas over Σ̃.2 Intuitively, such an automaton accepts an infix αi · · ·αj of
an infinite word α0α1α2 · · · if the embedded VPA has an initial accepting run
(qi, γi) · · · (qj+1, γj+1) on αi · · ·αj such that, if qi+k is marked with ϕ by t, then
αi+kαi+k+1αi+k+2 · · · satisfies ϕ.

We define the size of ϕ as the sum of the number of subformulas (including
those contained as tests in automata and their subformulas) and of the sizes of
the automata contained in ϕ. As shorthands, we use tt := p∨¬p and ff := p∧¬p
for some atomic proposition p. Even though the testing function t is defined as
a partial function, we generally assume it is total by setting t : q 7→ tt if q is not
in the domain of t. If t labels each state of A with tt, we say that A is test-free.

Let α = α0α1α2 · · · be an infinite word over 2P and let k ∈ N be a position
in α. We define the semantics of VLDL inductively via

• (α, k) |= p if, and only if, p ∈ αk,

• (α, k) |= ¬ϕ if, and only if, (α, k) 6|= ϕ,

• (α, k) |= ϕ0 ∧ ϕ1 if, and only if, (α, k) |= ϕ0 and (α, k) |= ϕ1, and dually
for ϕ0 ∨ ϕ1,

• (α, k) |= 〈A〉ϕ if, and only if, there exists l ≥ k s.t. (k, l) ∈ RA(α) and
(α, l) |= ϕ,

1The logic VLDL does not feature the standard temporal operators X and U from LTL.
We show that these operators can be added without changing the expressiveness or complexity
of the logic in Section 6.

2Obviously, there are some restrictions on the nesting of tests into automata. More for-
mally, we require the subformula relation to be acyclic as usual.

5

• (α, k) |= [A]ϕ if, and only if, for all l ≥ k, (k, l) ∈ RA(α) implies (α, l) |=
ϕ,

whereRA(α) contains all pairs of positions (k, l) such that A accepts αk · · ·αl−1.
Formally, we define

RA(α) := {(k, l) ∈ N× N |
there exists an initial accepting run (qk, γk) · · · (ql, γl) of A on αk · · ·αl−1

and ∀m ∈ {k, . . . , l}. (α,m) |= t(qm)}.

We write α |= ϕ as a shorthand for (α, 0) |= ϕ and say that α is a model of ϕ
in this case. The language of ϕ is defined as L(ϕ) := {α ∈ (2P)ω | α |= ϕ}.
As usual, disjunction and conjunction are dual, as well as the 〈A〉-operator
and the [A]-operator, which can be dualized using De Morgan’s law and the
logical identity [A]ϕ ≡ ¬〈A〉¬ϕ, respectively. Note that the latter identity only
dualizes the temporal operator, but does not require complementation of the
automaton guarding the operator. We additionally allow the use of derived
boolean operators such as → and ↔, as they can easily be reduced to the basic
operators ∧, ∨ and ¬.

The logic VLDL combines the expressive power of visibly pushdown au-
tomata with the intuitive temporal operators of LDL. Thus, it allows for concise
and intuitive specifications of many important properties in program verifica-
tion [7]. In particular, VLDL allows for the specification of recursive properties,
which makes it more expressive than both LDL [4] and LTL [2]. In fact, we can
embed LDL in VLDL in linear time.

Lemma 1. For any LDL formula ψ over P we can effectively construct a VLDL
formula ϕ over Σ̃ := (∅, ∅, 2P) in linear time such that L(ψ) = L(ϕ).

Proof. We define ϕ by structural induction over ψ. Recall that the syntax and
semantics of LDL is very similar to that of VLDL, but uses regular expressions
with tests as guards instead of visibly pushdown automata. The only interesting
case of the induction is ψ = 〈r〉ψ′, where r is a regular expression containing
tests, since all other cases follow from closure properties and duality. We obtain
the VLDL formula ϕ′ over Σ̃ equivalent to ψ′ by induction and construct the
finite automaton Ar from r using the construction of Faymonville and Zimmer-
mann [14]. This construction yields an automaton equivalent to r by adapting
the well-known Thompson construction [15] in order to account for the tests
occurring in r. The automaton Ar contains tests, but is not equipped with a
stack. Since Σ̃ = (∅, ∅, 2P) only contains local actions, we can interpret Ar as a
TVPA without changing the language it recognizes. We call the TVPA A′r and
define ϕ = 〈A′r〉ϕ′.

Since LTL can be in turn embedded in LDL in linear time, Lemma 1 di-
rectly implies the embeddability of LTL in VLDL in linear time. Note that this
proof motivates the use of TVPAs instead of VPAs without tests as guards in
order to obtain a concise formalism. We later show that removing tests from
these automata does not change the expressiveness of VLDL. It is, however,
open whether it is possible to translate even LTL formulas into VLDL formulas
without tests in polynomial time.

6

Aωr Ar
Σc, ↓A
Σr, ↑A

Σc, ↓A
Σr, ↑A

Σr, ↑⊥

Σc, ↓A
Σr, ↑A

Σr, ↑⊥

Figure 1: The automata Aω
r and Ar used in Example 2. We draw the accepting states with a

double circle.

4. Examples of VLDL Specifications

As we will show in Section 5, VLDL captures the visibly pushdown languages
and thus, it is strictly more expressive than traditional Büchi automata. In fact,
VLDL allows for concise formulations of a number of important properties of
recursive programs in program verification. We give some examples of such
properties and their formalization in this section.

Example 2. Assume that we have a program that may call some module and
that has the observable atomic propositions P := {c, r}, where c and r denote
function calls and returns, respectively. Our aim is to specify a very basic
assumption on the consistency of the trace: “During the run of a program,
no unmatched returns may occur.” Although each actual trace of a program
satisfies this property, it is instructive to specify it formally.

For the sake of readability, we assume that the program emits either {c}
or {r} in each step. Since we want to keep track of the calls and returns
occurring in the program using the stack, we choose the pushdown alphabet
Σ̃ = (Σc,Σr,Σl) with Σc = {c}, Σr = {r}, and Σl = ∅.

The ω-VPA Aωr shown in Figure 1 recognizes the traces satisfying this re-
quirement. When specifying the property as a VLDL formula, we only require
minute modifications to Aωr in order to transform it into an automaton that
accepts any prefix of a word that ends in an unmatched return. We show this
automaton Ar in Figure 1. Using this automaton, we can specify the property
above with the VLDL formula ϕ = ¬〈Ar〉tt.

Example 3. Now assume that we have a program that may call some mod-
ule and that has the observable atomic propositions P := {c, r, p, q}, where c
and r denote calls to and returns from the module, and p and q are arbitrary
propositions.

We now construct a VLDL formula that describes the condition “If p holds
true immediately after entering the module, it shall hold immediately after the
corresponding return from the module as well” [8]. Under the assumption that
the module is able to call itself recursively this property is not ω-regular. For
the sake of readability, we make similar assumptions on the program as in the
previous example, i.e., we assume that the program never emits both c and r
in the same step and that it emits at least one atomic proposition in each step.
Since we want to count the calls and returns occurring in the program using

7

Ac Σc, ↓A
Σr, ↑A
Σl,→

Σc, ↓A

Figure 2: The automaton Ac used in Example 3.

the stack, we pick the pushdown alphabet Σ̃ = (Σc,Σr,Σl) such that P ′ ⊆ P is
in Σc if c ∈ P ′, P ′ is in Σr if r ∈ P ′, but c /∈ P ′, and P ′ is in Σl otherwise.

The formula ϕ := [Ac](p→ 〈Ar〉p) captures the condition above, where Fig-
ure 2 shows Ac, whereas Ar is the automaton from Example 2 shown in Figure 1.
The automaton Ac accepts all finite words ending with a call to the module,
whereas the automaton Ar accepts all words ending with a single unmatched
return.

Figure 3 shows a BVPA describing the same specification as ϕ. For the sake
of readability, we use Σpx = {P ′ ∈ Σx | p ∈ P ′} and Σ¬px = {P ′ ∈ Σx | p /∈ P ′} for
x ∈ {c, r, l}. In contrast to ϕ, which uses only a single stack symbol, namely A,
the BVPA has to rely on the two stack symbols P and P̄ to track whether
or not p held true after entering the module m. Moreover, there is no direct
correlation between the logical structure of the specification and the structure
of the BVPA, which exemplifies the difficulty of maintaining specifications given
as BVPAs.

Avpa

Σl,→

Σpc , ↓P
Σpr , ↑P

Σ¬pc , ↓ P̄
Σ¬pr , ↑ P̄

Σc, ↓P
Σr, ↑P

Σpl ,→

Σc, ↓P
Σr, ↑P

Σ¬pl ,→

Σpc , ↓ P̄
Σpr , ↑ P̄

Σ¬pc , ↓P
Σ¬pr , ↑P

Figure 3: The BVPA Avpa specifying the same language as ϕ from Example 3.

Finally, one could also specify the property above using the formalism of
VLTL [12], which relies on augmented regular expressions instead of automata.
Since VLTL supports the guarded existential modality as well, it suffices to
translate the VPAs Ac and Ar into VREs. Using the VREs rc = Σ∗r and rr =
((cl∗r)∗l∗)	lr, which specify the languages recognized by Ac and Ar, respec-

8

Apriv Apar

cd↓, ↓ A
cd↑, ↑ A
cd↑, ↑ ⊥

logout,→

sudo,→

cd↓, ↓ A
cd↑, ↑ A

cd↑, ↑ ⊥

logout,→

Figure 4: The automata Apriv and Apar used in Example 4.

tively, as well as the duality 〈A〉ϕ ≡ ¬[A]¬ϕ we obtain the VLTL formula

ψ = ¬(rc;¬(p→ (rr; p)))

which specifies the property given above. We compare the two logics VLDL and
VLTL more in-depth in Section 6.

In contrast to these two alternative formal specifications, VLDL offers a
well readable and intuitive formalism that combines the well-known standard
acceptors for visibly pushdown languages with guarded versions of the widely
used temporal operators of LTL and the readability of classical logical operators.

Note that the stack is simply used as a counter in Example 3. This technique
suffices for the specification of other properties as well, such as tracking the path
through a directory structure instead of a call stack.

Example 4. We consider a simplified system model, in which a user can move
through directories and obtain and relinquish superuser rights. To this end,
we consider the set of atomic propositions P = {cd↓, cd↑, sudo, logout}, where
cd↓ denotes moving into a subdirectory of the current working directory, cd↑
denotes moving to the parent directory, sudo denotes the acquisition of el-
evated privileges, and logout denotes relinquishing them. For readability,
we only define the pushdown alphabet for singleton subsets of P and pick
Σ̃ := ({cd↓}, {cd↑}, {sudo, logout}) in order to formalize the property “If the
program acquires elevated privileges, it has to relinquish them before moving
out of its current directory” [16].

We use the stack as a counter using the stack alphabet Γ := {⊥, A}. Then
the formula ϕ := [Apriv]¬〈Apar 〉tt, specifies the property above, where Apriv

accepts all prefixes of runs of the program that end with the acquisition of
elevated privileges, and Apar tracks the depth of the current working directory.
We depict the automata Apriv and Apar in Figure 4.

While the previous example shows how to handle programs that can simply
request a single set of elevated rights, in actual systems the situation is more
complicated. In reality, a program may request the rights of any user of the
system by logging in as that user. When logging out, the rights revert to those
of the previously logged in user. In the following example we use the stack to
keep track of the currently logged in user and ensure that system calls are not
executed with elevated privileges.

9

Example 5. We remove some of the simplifications of the previous exam-
ple and model the login mechanism of an actual system more precisely. To
this end, let P = {exec, logins, loginu, logout}, where exec denotes the
execution of a system call, logins and loginu denote the login as the su-
peruser and some other user, respectively, and logout denotes logging the
current user out and reverting to the previous user. The pushdown alphabet
Σ̃ := ({logins, loginu}, {logout}, {exec}) allows us to keep track of the stack
of logged in users. We want to specify the property “No system calls shall be
executed while the user has obtained elevated privileges.”

Recall that visibly pushdown automata are not allowed to inspect the top
of the stack. Thus, in order to correctly trace the currently logged in user,
we need to store both the current user and the previously logged in user on the
stack. The automaton Auser performs this bookkeeping using the stack alphabet
Γ := {(c, p) | c, p ∈ {s, u}}, where c denotes the currently logged in user, and p
denotes the previously logged in user. It moves to the state u when a normal
user is logged in and to the state s when a superuser is logged in.

Auser

u s

exec,→
loginu, ↓(u, u)
logout, ↑(u, u)

exec,→
logins, ↓(s, s)
logout, ↑(s, s)logins, ↓(s, u)

logout, ↑(u, s)

loginu, ↓(u, s)
logout, ↑(s, u)

Figure 5: The automaton Auser , which keeps track of the status of the currently logged in
user.

Since the only action available to the program in this example apart from
logging users in or out is to execute system calls, we do not need an additional
automaton to capture the undesired behavior, but can simply use the atomic
proposition exec in the formula. Hence, the formula ϕ := [Auser]¬exec defines
the desired behavior.

Due to the modular nature of VLDL, we can easily reuse existing automata
and subformulas. Consider, e.g., a setting similar to that of Examples 4 and 5
with the added constraint that we want to make sure that superusers neither
execute system calls, nor leave the directory they were in when they acquired
superuser-privileges. Using some simple modifications to Auser and Apar to work
over an extended set of atomic propositions, we can specify the conjunction of
the previously defined behaviors without having to construct new automata
from scratch.

5. VLDL Captures ω-VPL

In this section we show that VLDL captures ω-VPL. Recall that a language
is in ω-VPL if, and only if, there exists a BVPA recognizing it. We provide

10

effective constructions transforming BVPAs into equivalent VLDL formulas and
vice versa.

Theorem 6. For any language of infinite words L ⊆ Σω there exists a BVPA
A with L(A) = L if, and only if, there exists a VLDL formula ϕ with L(ϕ) = L.
There exist effective translations for both directions.

In Section 5.1 we show the construction of VLDL formulas from BVPAs via
deterministic parity stair automata. In Section 5.2 we construct one-way alter-
nating jumping automata from VLDL formulas. These automata are known to
be translatable into equivalent BVPAs. Both constructions incur an exponen-
tial blowup in size. We show this blowup to be unavoidable in the construction
of BVPAs from VLDL formulas. It remains open whether the blowup can be
avoided in the construction for the other direction.

5.1. From Stair Automata to VLDL

In this section we construct a VLDL formula of exponential size that is
equivalent to a given BVPA A. To this end, we first transform A into an
equivalent deterministic parity stair automaton (DPSA) [10] in order to simplify

the translation. A parity stair automaton (PSA) A = (Q, Σ̃,Γ,∆, I,Ω) consists

of a VPS S = (Q, Σ̃,Γ,∆), a set of initial states I, and a coloring Ω: Q → N.
The automaton A is deterministic if S is deterministic and if |I| = 1. The size
of a PSA is the size of its underlying VPS.

A (finite or infinite) run of A on a word α is a (finite or infinite) run of
the underlying VPS S on α. Recall that a step of α is a position at which
the stack height reaches a lower bound for the remainder of the word. A stair
automaton only evaluates the parity condition at the steps of the word. Re-
call that every word α over Σ̃ has infinitely many steps. Let k0 < k1 <
k2 · · · be the ordered enumeration of these steps. Now, the unique initial
run ρα = (q0, σ0)(q1, σ1)(q2, σ2) · · · of A on α induces a sequence of colors
Ω(ρα) := Ω(qk0)Ω(qk1)Ω(qk2) · · · . A DPSA A accepts an infinite word α if the
largest color appearing infinitely often in the color sequence Ω(ρα) induced by
the unique initial run ρα of A on α is even. The language L(A) of a parity stair
automaton A is the set of all words α that are accepted by A.

Lemma 7 ([10]). For each BVPA A there exists an effectively constructible
equivalent DPSA Ast with |Ast | ∈ O(2|A|).

Since the stair automaton Ast equivalent to a BVPA A is deterministic, the
acceptance condition collapses to the requirement that the unique run of Ast

on α must be accepting. Another important observation is that every time Ast

reaches a step of α, the stack may be cleared: Indeed, since the topmost element
of the stack will never be popped after reaching a step, and since VPAs cannot
inspect the top of the stack, neither this symbol, nor the ones below it have any
influence on the remainder of the run.

Thus, the formula equivalent to Ast has to specify the following constraints
on the unique run of Ast on a given input:

• There must exist some state q of even color such that the stair automaton
visits q at a step,

11

• afterwards the automaton may never visit a higher color again at a step,
and

• each visit to q at a step must be followed by another visit to q at a step.

All of these conditions can be specified by VLDL formulas in a straightforward
way, since Ast is deterministic and since there is only a finite number of colors
in Ast .

Lemma 8. For each DPSA A there exists an effectively constructible equivalent
VLDL formula ϕA with |ϕA| ∈ O(|A|2).

Proof. We first construct a formula ϕst such that, for each word α, we have
(α, k) |= ϕst if, and only if, k ∈ steps(α): Let Ast be a VPA that accepts
upon reading an unmatched return, constructed similarly to Ar from Example 2.
Then we can define ϕst := ¬〈Ast〉tt, i.e., we demand that the stack height never
drops below the current level by disallowing Ast to accept any prefix.

Let Q and Ω be the state set and the coloring function of A, respectively.
In the remainder of this proof, we write I′AF ′ to denote the TVPA that we
obtain from combining the VPS of A with the sets I ′ and F ′ of initial and
final states. Additionally, we require that I′AF ′ does not accept the empty
word. This is trivially true if the intersection of I ′ and F ′ is empty, and easily
achieved by adding a new initial state if it is not. Furthermore, we define
Qeven := {q ∈ Q | Ω(q) is even} and Q>q := {q′ ∈ Q | Ω(q′) > Ω(q)}.

Recall that A accepts a word α if the largest color seen infinitely often at a
step during the unique run of A on α is even. This is equivalent to the existence
of a state q as characterized above. These conditions are formalized as

ϕ1(q) := 〈IA{q}〉(ϕst ∧ [{q}AQ>q
]¬ϕst)

and
ϕ2(q) := [IA{q}](ϕst → 〈{q}A{q}〉ϕst) ,

respectively. We obtain ϕA :=
∨
q∈Qeven

(ϕ1(q)∧ϕ2(q)). Clearly, ϕA is of quadratic
size in the number of states of A.

The construction of ϕ2(q) relies heavily on the determinism of the DPSA A.
If A were not deterministic, the universal quantification over all runs ending
in q at a step would also capture eventually rejecting partial runs. Since there
only exists a single run of A on the input word, however, ϕA has the intended
meaning. Furthermore, both ϕ1(q) and ϕ2(q) use the observation that we are
able to clear the stack every time that we reach a step. Thus, although the
stack contents are not carried over between the different automata, combining
the automata in the formula does not change the resulting run. Hence, we have
α ∈ L(A) if, and only if, (α, 0) |= ϕA and thus L(A) = L(ϕA).

Combining Lemmas 7 and 8 yields that VLDL is at least as expressive as
BVPA. The construction inherits an exponential blowup from the construction
of DPSAs from BVPAs and proves one direction of Theorem 6.

In the next section we show that each VLDL formula can be transformed into
an equivalent VPA of exponential size. Thus, the construction from the proof
of Lemma 8 yields a normal form for VLDL formulas. In particular, formulas in
this normal form do not use tests and only use temporal operators up to nesting
depth three.

12

Proposition 9. Let ϕ be a VLDL formula. There exists an equivalent formula
ϕ′ =

∨n
i=1(〈A1

i 〉(ϕst ∧ [A2
i]¬ϕst) ∧ [A1

i](ϕst → 〈A3
i 〉ϕst)), for some n that is

doubly-exponential in |ϕ|, where all Aji share the same underlying VPS, ϕst is

fixed over all ϕ, and neither the Aji nor ϕst contain tests.

Proposition 9 shows that tests are not essential for the expressiveness of
VLDL. However, removing them incurs a doubly-exponential blowup. It re-
mains open whether this blowup can be avoided.

5.2. From VLDL to 1-AJA

We now construct a BVPA equivalent to a given VLDL formula. A direct
construction would incur a non-elementary blowup due to the unavoidable ex-
ponential blowup of complementing BVPAs. Moreover, it would be difficult to
handle runs of the VPAs over finite words and their embedded tests, which run
in parallel. Thus, we extend a construction by Faymonville and Zimmermann
[14], where a similar challenge was addressed using alternating automata. In-
stead of alternating visibly pushdown automata [9], however, we use one-way
alternating jumping automata (1-AJA), which can be translated into equivalent
BVPAs of exponential size [9].

A 1-AJA A = (Q, Σ̃, δ, I,Ω) consists of a finite state set Q, a visibly push-

down alphabet Σ̃, a transition function δ : Q × Σ → B+(CommsQ), where
CommsQ := {→,→a} ×Q×Q, with B+(CommsQ) denoting the set of positive
Boolean formulas over CommsQ, a set I ⊆ Q of initial states, and a color-
ing Ω: Q → N. We define |A| = |Q|. Intuitively, when the automaton is in
state q at position k of the word α = α0α1α2 · · · , it guesses a set of commands
R ⊆ CommsQ that is a model of δ(q, αk). It then spawns one copy of itself
for each command (d, q, q′) ∈ R and executes the command with that copy. If
d = →a and if αk is a matched call, the copy jumps to the position of the
matching return of αk and transitions to state q′. Otherwise, i.e., if d = →,
or if αk is not a matched call, the automaton advances to position k + 1 and
transitions to state q. All copies of A proceed in parallel. A single copy of A
accepts if the highest color visited infinitely often is even. A 1-AJA accepts α
if all of its copies accept.

Example 10. Consider the property “During the run of a program, no un-
matched returns may occur”, which we already formalized as a VPA and as a
VLDL formula in Example 2. In order to demonstrate the concepts used by
1-AJAs, we construct a 1-AJA recognizing this property.

Recall that 1-AJAs can deterministically decide whether or not a call is
matched upon reading it. Hence, in order to obtain an idiomatic 1-AJA, we
leverage the fact that a trace satisfies the above property if it either contains an
unmatched call or if each call at stack height zero is matched.

Using this observation, we construct a 1-AJA with three states q, q⊥, and q>,
where q⊥ and q> serve as a rejecting and an accepting sink, respectively. The
automaton “jumps” along the steps of stack height zero in state q. If it en-
counters an unmatched call in state q, it moves to state q>, while it moves to
state q⊥ upon processing a return in state q.

Formally, we define the 1-AJA A = ({q, q⊥, q>}, Σ̃, δ, {q},Ω) with

13

• δ(q, x) =

(→a, q⊥, q) if x ∈ Σc

(→, q, q) if x ∈ Σl

(→, q⊥, q⊥) if x ∈ Σr

• δ(q⊥, x) = (→, q⊥, q⊥) for x ∈ Σ

• δ(q>, x) = (→, q>, q>) for x ∈ Σ

and with

• Ω(q) = 0

• Ω(q⊥) = 1

• Ω(q>) = 0.

As argued previously, the automaton A accepts those traces that satisfy the
property given above.

It is known that 1-AJAs have the same expressiveness as VPAs, i.e., they
characterize the class ω-VPL.

Lemma 11 ([9]). For each 1-AJA A there exists an effectively constructible
equivalent BVPA Avp with |Avp | ∈ O(2|A|).

For a given VLDL formula ϕ we now inductively construct a 1-AJA that
recognizes the same language as ϕ. The main difficulty lies in the translation
of formulas of the form 〈A〉ϕ, since these require us to translate TVPAs over
finite words into 1-AJAs over infinite words. We do so by adapting the idea for
the translation from BVPAs to 1-AJAs by Bozzelli [9] and by combining it with
the bottom-up translation from LDL into alternating automata by Faymonville
and Zimmermann [14].

Lemma 12. For each VLDL formula ϕ there exists an effectively constructible
equivalent 1-AJA Aϕ with |Aϕ| ∈ O(|ϕ|2).

Proof. We construct the automaton inductively over the structure of ϕ. The
case ϕ = p is trivial. For Boolean operations, we obtain Aϕ by closure of 1-AJAs
under these operations [9]. If ϕ = [A]ϕ′ we use the identity [A]ϕ′ ≡ ¬〈A〉¬ϕ′
and construct A¬〈A〉¬ϕ′ instead.

We now consider ϕ = 〈A〉ϕ′, where A is some TVPA and construct a 1-
AJA Aϕ. By induction we obtain a 1-AJA A′ equivalent to ϕ′. Aϕ simulates a
run of A on a prefix of α and, upon acceptance, nondeterministically transitions
into A′.

Consider an initial run of A on a prefix w. Since w is finite, steps(w) is
finite as well. Hence, each stack height may only be encountered finitely often
at a step. At the last visit to a step of a given height, A either accepts, or it
reads a call action. The symbol pushed onto the stack in that case does not
influence the remainder of the run. We show such a run on the word clcrrcclrll
in Figure 6, where c is a call, r is a return, and l is a local action.

The idea for the simulation of the run of A by Aϕ is to have a main copy
of Aϕ that jumps along the steps of the input word. When Aϕ encounters a
call c ∈ Σc it guesses whether or not A encounters the current stack height

14

c l c r r c c l r l l
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

B B B
A A A A A A A A A A

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

α
q

γ

· · ·
· · ·

· · ·

Figure 6: Run of a VPA on the word clcrrcclrll.

again. If it does, then Aϕ guesses q′, q′′ ∈ Q and A ∈ Γ such that (q, c, q′, A)
is a transition of A, it jumps to the matching return of c with state q′′ and it
spawns a copy that verifies that A can go from the configuration (q′, A) to the
configuration (q′′,⊥). If A supposedly never returns to the current stack height,
then Aϕ only guesses q′ ∈ Q and A ∈ Γ such that (q, c, q′, A) is a transition
of A, moves to state q′, and stores in its state space that it may not read any
returns anymore. This is repeated until the main copy guesses that A′ accepts
the prefix read so far.

This construction is not able to leverage the ability of 1-AJAs to distinguish
matched and unmatched calls due to the different scope of the words processed
by the simulated VPA and the simulating 1-AJA. Consider, for example, the
prefix w = clc of the word α = clcrrcclrll. While the first two calls of α are
clearly matched, they are unmatched in the prefix w. Hence, if we relied on this
built-in mechanism of 1-AJAs, the automaton resulting from our construction
would be unable to simulate acceptance of the prefix w, as it is only able to
accept with its main copy.

c l c r r c c l r l l

0

1

2
X

X

X

(q0, 0)

(q1, q5, A)

(q2, q5, A)

(q3, q4, B)

(q4, q5, A)del

(q4, q5, A)

(q5, 0)del

(q5, 0)

(q6, 1)

(q7, q9, B)
(q8, q9, B)

(q9, 1)del

(q9, 1) (q10, 1) (q11, 1)

Figure 7: Simulation of the run from Figure 6 by a 1-AJA.

Figure 7 shows the run of such a 1-AJA corresponding to the run of A
shown in Figure 6. The gray line indicates the stack height, while the solid
and dashed black paths denote the run of the main automaton and those of
the verifying automata, respectively. Dotted lines indicate spawning a verifying
automaton. For readability, the figure does not include copies of the automata
that are spawned to verify that the tests of A hold true. The main copy of the
automaton uses states of the form (q, 0) if it has not yet ignored any call actions,
and states of the form (q, 1) if it has done so. Additionally, since 1-AJAs jump
to the position of a matching return instead of the succeeding position, the main
copy additionally uses states of the form qdel , i.e., we delay further processing
of the input for an additional step. The states (q, q′, A) denote verification
copies that verify A’s capability to move from the configuration (q, A) to the
configuration (q′,⊥). The verification automata work similarly to the main

15

automaton, except that they assume all pushed symbols to be eventually popped
and reject if they encounter an unmatched call. We now construct the 1-AJA Aϕ
equivalent to 〈A〉ϕ′ formally.

Let A = (QA, Σ̃,ΓA,∆A, IA, FA, tA), let A′ = (Q′, Σ̃, δ′, I ′,Ω′) be the 1-AJA

equivalent to ϕ′ and, for each ϕi ∈ range(tA), let Ai = (Qi, Σ̃, δi, Ii,Ωi) be a
1-AJA equivalent to ϕi. The automata A′ and Ai are obtained by induction.

We use the set of states

Q := {q, qdel | q ∈ (QA × {0, 1}) ∪ (QA ×QA × Γ)}∪

{rej} ∪Q′ ∪
⋃

ϕi∈range(t)
Qi ,

where the state rej is a rejecting sink. The states from QA × {0, 1} are used to
simulate the original automaton at steps with stack height zero (QA×{0}) and
stack height at least one (QA × {1}), respectively.

For the sake of readability, we define the transition function for the different
components of the automaton separately. We also write (→, q) and (→a, q)
as shorthands for (→, q, rej) and (→a, rej , q), respectively. Intuitively, (→, q)
denotes that we demand the current symbol to be a return, a local action, or
an unmatched call. Dually, the transition (→a, q) denotes that we demand the
current symbol to be a matched call.

The easiest parts of the transition function are those which control the delay
states and the rejecting sink rej , which are defined as δdel(qdel , a) = q and as
δsink (rej , a) := (→, rej) for all q ∈ (QA×{0, 1})∪ (QA×QA×Γ) and all a ∈ Σ.

When encountering a final state of A, we need to be able to move to the suc-
cessors of the initial states of A′ in order to model acceptance of A on the finite
prefix read so far. To achieve a uniform presentation, we define the auxiliary
formula χf (q, a) :=

∨
q′I∈I′

δ′(q′I , a) if q ∈ FA and χf (q, a) := (→, rej) otherwise.

Moreover, we need notation to denote transitions into the automata Ai im-
plementing the tests of A. More precisely, since we only transition into these
automata upon leaving the states labeled with the respective test, we need to
transition into the successors of one of the initial states of the implementing
automata. To this end, we define the auxiliary formula θaq :=

∨
qI∈Ii δ

i(qI , a),
where t(q) = ϕi.

For local actions the main copy of the automaton can simply simulate the
behavior of A on the input word. Hence we have

δmain((q, b), l) :=
[
χf (q, l) ∨

∨
(q,l,q′)∈∆

(→, (q′, b))
]
∧ θlq

for l ∈ Σl, b ∈ {0, 1}

When reading a call, the automaton nondeterministically guesses whether it
jumps to the matching return or whether it simulates the state transition while
ignoring the effects on the stack. In the former case, it guesses a transition
(q, c, q′, A) ∈ ∆ and a state q′′ ∈ Q, spawns a verification automaton verifying
that it is possible to go from q′ to q′′ by popping A off the stack in the final
transition, and continues at the matching return in state q′′. In the latter case

16

it ignores the effects on the stack.

δmain((q, b), c) :=
[
χf (q, c)∨∨

(q,c,q′,A)∈∆,q′′∈Q

[
(→, (q′, q′′, A)) ∧ (→a, (q

′′, b)del)
]
∨∨

(q,c,q′,A)∈∆
(→, (q′, 1))

]
∧ θcq for c ∈ Σc, b ∈ {0, 1}

The main automaton may only handle returns as long as it has not skipped
any calls. If it encounters a return after having skipped a push action, it rejects
the input word, since the return falsifies its earlier guess of an unmatched call.

δmain((q, 0), r) :=
[
χf (q, r) ∨

∨
(q,r,⊥,q′)∈∆

(→, (q′, 0))
]
∧ θrq for r ∈ Σr

δmain((q, 1), r) := (→, rej) for r ∈ Σr

The transition function δmain determines the behavior of the main automa-
ton. It remains to define the behavior of the verifying automata. These behave
similarly to the main automaton on reading local actions and calls. The main
difference in handling calls is that these automata do not need to guess whether
or not a call is matched: Since they are only spawned on reading supposedly
matched calls and accept upon reading the matching return, all calls they en-
counter must be matched as well. Additionally, they never transition to the
automaton A′, but merely to the automaton implementing the test of the cur-
rent state upon having verified their guess.

δver ((q, q′, A), l) :=
[∨

(q,l,q′′)∈∆
(→, (q′′, q′, A))

]
∧ θlq if l ∈ Σl

δver ((q, q′, A), c) :=
[∨

(q,c,q′′,A′)∈∆,q′′′∈Q
(→, (q′′, q′′′, A′))∧

(→a, (q
′′′, q′, A)del)

]
∧ θcq if c ∈ Σc

δver ((q, q′, A), r) := θrq if r ∈ Σr, (q, r, A, q
′) ∈ ∆

δver ((q, q′, A), r) := (→, rej) if r ∈ Σr, (q, r, A, q
′) 6∈ ∆

We then define the complete transition function δ of Aϕ as the union of the
previously defined partial transition functions. Since their domains are pairwise
disjoint, this union is well-defined.

δ := δsink ∪ δdel ∪ δ′ ∪
⋃

ϕi∈range(t)
δi ∪ δmain ∪ δver

The coloring of Aϕ is obtained by copying the coloring of A′ and the Ai and
by coloring all states resulting from the translation of A with 1. Thus, we force
every path of the run of A to eventually leave this part of the automaton, since
this automaton only accepts a finite prefix of the input word. The 1-AJA

Aϕ := (Q, Σ̃, δ, IA × {0},Ω ∪ Ω′ ∪
⋃

ϕi∈range(tA)
Ωi)

then recognizes the language of ϕ = 〈A〉ϕ′, where Ω : q 7→ 1 for all q ∈ {q, qdel |
q ∈ (QA × {0, 1}) ∪ (QA ×QA × Γ)} ∪ {rej}.

17

By combining Lemmas 11 and 12 we see that BVPAs are at least as expres-
sive as VLDL. This proves the direction from logic to automata of Theorem 6.
The construction via 1-AJAs yields automata of exponential size in the number
of states. This blowup is unavoidable, which we show by relying on the analo-
gous lower bound for translating LTL into Büchi automata. This lower bound
is obtained by encoding an exponentially bounded counter in LTL.

Lemma 13. There exists a pushdown alphabet Σ̃ such that for all n ∈ N there
exists a language Ln that is defined by a VLDL formula over Σ̃ of polynomial
size in n, but every BVPA over Σ̃ recognizing Ln has at least exponentially many
states in n.

Proof. We use the pushdown alphabet Σ̃ = (Σc,Σr,Σl) = (∅, ∅, {0, 1,#}). For
any n ∈ N and any i ∈ [0; 2n − 1] we write 〈i〉n to denote the binary encoding
of i using n bits. Moreover, we define the language Ln := {#〈0〉n# · · ·#〈2n −
1〉n#ω}, which only contains a single word encoding an n-bit counter. It is
known that there exists an LTL formula of polynomial length in n that de-
fines Ln. Thus, there also exists a VLDL formula of polynomial length defining
this language due to Lemma 1.

Furthermore, since all symbols are local actions, any BVPA recognizing Ln
cannot use its stack and thus has to work like a traditional finite automaton
with Büchi acceptance. Again, it is known that all Büchi automata recogniz-
ing Ln have at least exponentially many states in n. Consequently, all BVPAs
recognizing Ln have at least exponentially many states in n.

After having shown that VLDL has the same expressiveness as BVPAs, we
now turn our attention to several decision problems for this logic. Namely, we
study the satisfiability and the validity problem, as well as the model checking
problem. Moreover, we consider the problem of solving visibly pushdown games
with VLDL winning conditions.

Before studying these decision problems, however, we contrast and compare
our logic with the logic VLTL. This logic has the same expressiveness as VLDL
and features a similar technical core, i.e., it contains temporal operators that
are guarded with visibly pushdown languages.

6. Comparison between VLDL and VLTL

The logic VLTL, introduced by Bozzelli and Sánchez [12], follows the same
basic idea as VLDL, i.e., that of augmenting temporal modalities with visibly
pushdown languages in order to obtain a logic that captures the ω-visibly push-
down languages. The main difference between the two logics lies in the choice
of temporal operators as well as in the specification of the guards.

Since both VLDL and VLTL capture the class of ω-visibly pushdown lan-
guages, for each VLDL formula there exists an equivalent VLTL formula and
vice versa. Moreover, as there exist effective translations to and from VPA for
VLTL [17], these equivalent formulas can be effectively constructed. However,
both VLDL and VLTL incur an exponential blowup when translating to and
from VPAs. Hence, these näıve translations between the two logics incur a
doubly exponential blowup in both directions. In this section we investigate
translations with a smaller blowup between fragments of the two logics.

18

AX AϕU

Σc, ↓A
Σr, ↑A

Σl
ϕ

Σc, ↓A
Σr, ↑A

Σl Σc, ↓A
Σr, ↑A

Σl

Figure 8: The automata AX and Aϕ
U used for translating the formulas Xψ and ϕUψ into

VLDL.

Our logic only uses guarded variants of the operators F and G of LTL. Simi-
larly to LTL, these operators are dual due to the presence of negation in VLDL:
Removing either of them from the logic does not change its expressiveness or
the computational complexity of the decision problems for this logic. Moreover,
due to the identities Xϕ ≡ [AX]ϕ and ϕUψ ≡ 〈AϕU〉ψ, with the automata AX

and AϕU as shown in Figure 8, the next- and the until-operator can be added to
VLDL without changing its expressiveness or the complexity of its associated
decision problems.

In contrast, the logic VLTL has a much richer suite of temporal operators.
In addition to an analogue of the guarded eventually operator, called the se-
quencing operator, it contains guarded versions of the until and the weak until
of LTL, called the power operator and the weak power operator, respectively.
Moreover, VLTL allows for the use of past versions of these operators. A more
in-depth introduction to the syntax and semantics of VLTL can be found in the
work of Bozzelli and Sánchez [12].

The guards of VLDL are specified as nondeterministic visibly pushdown
automata with tests. These automata extend VPAs, the canonical acceptor for
visibly pushdown languages, with tests in order to enable concise rewritings
of LTL formulas into VLDL. In contrast, the guards in VLTL are specified
via visibly rational expressions (VREs) [17], an extension of regular expressions
that captures visibly pushdown languages.

It is known that VPAs without tests can be transformed into VREs and
vice versa with an exponential blowup in both directions [17]. Due to this
transformation, we are able to directly translate the test-free fragment of VLDL
into VLTL without taking a detour via VPAs.

Theorem 14. For each VLDL formula ϕ in which all automata are test-free
there exists an effectively constructible equivalent VLTL formula ψ with |ψ| ∈
O(2|ϕ|).

Proof. Since both logics feature the standard Boolean connectives, it suffices to
describe how to translate the guarded eventually operator due to the equiva-
lence [A]ϕ′ ≡ ¬〈A〉¬ϕ′. Due to the similar semantics, this operator can easily be
translated into an application of the sequencing operator. This transformation
does, however, incur an exponential blowup inherited from the blowup in the
transformation of VPAs into VREs. The resulting VLTL formula ψ is thus of
exponential size in the size of ϕ, contains only the (future) sequencing operator
and defines the same language as ϕ.

19

For the other direction, i.e., the translation from VLTL into VLDL, it is
trivial to translate the sequencing operator of VLTL into the guarded eventu-
ally operator of VLTL. Moreover, it is straightforward to translate the power
operator into VLDL by slightly extending the above translation of the U op-
erator from LTL. The greatest hurdle for a translation is, however, presented
by the weak power operator of VLTL. This operator is the guarded analogue
of the weak until operator of LTL and allows for an infinite sequence of finite
words satisfying the guard. Thus, intuitively, the automaton representing the
guard is required to restart infinitely often after visiting an accepting state. This
Büchi condition over a nondeterministic automaton is not directly expressible in
VLDL and it remains open how to concisely translate the weak power operator
of VLTL into VLDL.

Both VLDL and VLTL capture the class of ω-VPLs. In fact, Proposition 9
yields that even the test-free fragment of VLDL suffices to characterize this
class. Hence, we obtain that a small fragment of VLTL indeed already suffices
to capture the ω-visibly pushdown languages.

Corollary 15. For each ω-VPL L there exists a VLTL formula ψ that only
uses the future sequencing operator with L(ψ) = L.

Previous results have already shown that the past modalities of VLTL do not
contribute to its expressiveness [12]. Corollary 15 extends this result by showing
that the future power and future weak power operator are also not required for
the expressiveness of VLTL. It does, however, remain open whether or not these
operators contribute to the conciseness of VLTL.

7. Satisfiability and Validity are ExpTime-complete

We say that a VLDL formula ϕ is satisfiable if it has a model. Dually, we
say that ϕ is valid if all words are models of ϕ. Instances of the satisfiability and
validity problem consist of a VLDL formula ϕ and ask whether ϕ is satisfiable
and valid, respectively. Both problems are decidable in exponential time. We
also show both problems to be ExpTime-hard.

We obtain this result by modifying a proof by Bouajjani et al. [11], with
which they showed model checking pushdown systems against LTL specifications
to be ExpTime-hard. We adapt this proof for showing ExpTime-hardness of
the satisfiability problem by encoding the transition system into the resulting
formula.

Theorem 16. The satisfiability problem and the validity problem for VLDL are
ExpTime-complete.

Proof. Due to duality of the problems, we only show ExpTime-completeness
of the satisfiability problem. Membership follows from the 1-AJA-emptiness-
problem being in ExpTime [9] and Lemma 12.

It remains to show ExpTime-hardness, which we prove by providing a reduc-
tion from the word problem for polynomially space-bounded alternating Turing
machines. This problem asks whether a given word is accepted by a given al-
ternating Turing machine which only uses polynomial space in the size of the
input. Since a terminating run of an alternating Turing machine is a finite tree,

20

it can be serialized as a word, where the subtrees are delimited by special sym-
bols. Such a word can then be checked for correctly encoding some tree using
the stack of a VPA. Adherence to the transition relation, as well as the property
that the tree describes an accepting run of the Turing machine can be checked
mostly locally without using the stack. These constraints can be expressed in
VLDL, such that their conjunction is satisfiable if, and only if, there exists an
accepting run of the Turing machine on the word, i.e., if the Turing machine
accepts the word.

Formally, an alternating Turing machine (ATM) [18] T = (Q∃, Q∀,Γ, qI ,∆, F)
consists of two finite disjoint sets Q∃ and Q∀ of states, which are called existen-
tial and universal states, respectively, for which we write Q := Q∃ ∪Q∀, a tape
alphabet Γ containing a blank symbol B, an initial state qI ∈ Q\F , a transition
relation ∆ ⊆ Q× Γ×Q× Γ× {L,R}, and a set of final states F ⊆ Q.

Let p(n) be some polynomial. A configuration c of a p(n)-bounded ATM T
on an input word w is a word of length p(|w|) + 1 over the alphabet Γ∪Q that
contains exactly one symbol from Q. Let Conf := Γ∗QΓ∗∩(Q∪Γ)p(|w|)+1 denote
the set of such configurations. If c ∈ Conf contains a symbol from Q∃ (Q∀),
we call c existential (universal). Analogously, if c contains a symbol from F , we
call c accepting. Furthermore, a transition (q, a, q′, a′, D) ∈ ∆ with D ∈ {L,R}
is existential (universal), if q ∈ Q∃ (q ∈ Q∀). We assume w.l.o.g. that every
configuration has exactly two applicable transitions and that the initial state is
not final.

A run of a p(n)-bounded ATM T on w is a finite tree that is labeled with
configurations of T on w. Each non-terminal vertex has either one or two
successors, depending on whether it is labeled with an existential or a universal
configuration. Each successor is labeled with a successor configuration. These
successors have to be labeled by one or two successor configurations. A run is
accepting if all terminal vertices are labeled with accepting configurations. An
ATM T accepts a word w if there exists an accepting run of T on w.

An instance of the word problem consists of a p(n)-space-bounded ATM T
and a word w and asks whether or not T accepts w. This problem is ExpTime-
hard [18].

We encode runs of T by linearizing them as words using tags of the form <iτ
and >iτ for i ∈ {1, 2} to delimit the encoding of the first and second subtree of a
vertex (recall that we assume that every configuration has at most two succes-
sors). Here, τ denotes the transition that is applied to obtain the configuration
of the root of this subtree. Moreover, we use the tags <` and >` to denote
leaves.

Formally, we define the pushdown alphabet Σ̃ = (Σc,Σr,Σl) with

• Σc = ((Q ∪ Γ)× {↓}) ∪ {<1
τ | τ ∈ ∆} ∪ {<`},

• Σr = ((Q ∪ Γ) × {↑}) ∪ {>1
τ | τ existential} ∪ {>2

τ | τ universal} ∪ {>`},
and

• Σl = {>1
τ , <

2
τ | τ universal} ∪ {#}.

Let Tags = {<1
τ , >

1
τ | τ existential}∪ {<1

τ , >
1
τ , <

2
τ , >

2
τ | τ universal}∪ {<`, >`}.

For C = c0 · · · cn ∈ Conf ∗ and d ∈ {↓, ↑}, let (C, d) := (c0, d) · · · (cn, d),
which we lift to languages in the straightforward way. Furthermore, for an
arbitrary word w = w0 · · ·wn, let wr := wn · · ·w0. Let c ∈ Conf . We define
push(c) := (c, ↓) and pop(c) := (cr, ↑)

21

Using this, we encode a run of T by recursively iterating over its vertices v
as follows:

• enc(v) := <` · push(c) · >` · pop(c), if v is a leaf labeled with the configu-
ration c.

• enc(v) := <1
τ · push(c) · enc(v1) · >1

τ · pop(c), if v has a single child v1, v
is labeled by the (existential) configuration c, and τ is the transition that
is applied to c to obtain the label of v1.

• enc(v) := <1
τ1 · push(c) · enc(v1) · >1

τ1 · pop(c) · <2
τ2 · push(c) · enc(v2) · >2

τ2
· pop(c), if v has two children v1 and v2, v is labeled by the (universal)
configuration c, and τi, for i ∈ {1, 2}, is the transition that is applied to c
to obtain the label of vi.

Thus, a complete run with root v is encoded by enc(v) · #ω. Our goal is to
construct a formula that is satisfied only by words that encode initial accepting
runs of T on w. To this end, we need to formalize the following six conditions
on an infinite word α ∈ Σω:

1. α ∈ (Tags ·Conf)+ ·#ω and begins with <1
τ · (cI , ↓), where cI is the initial

configuration of T on w and where τ is a transition that is applicable to cI .

2. Every <iτ , i ∈ {1, 2}, is directly followed by (c, ↓) for some configuration c
to which τ is applicable. Furthermore, say the stack height is n after this
infix. Then, we require that this stack height is reached again at a later
position, and at the first such position, the infix >1

τ · (cr, ↑) starts.

3. Every >1
τ with universal τ , which is directly followed by (cr, ↑) for some

configuration c (assuming the previous condition is satisfied), is directly
followed by (cr, ↑) · <2

τ ′ · (c, ↓), where τ ′ 6= τ is the unique other transition
that is applicable to c.

4. Every <iτ , i ∈ {1, 2}, is directly followed by (c, ↓) < (c′, ↓) for some
< ∈ {<1

τ | τ ∈ ∆} ∪ {<`} such that τ is applicable to c and c′ is the
corresponding successor configuration.

5. Every <` is directly followed by (c, ↓) >` (cr, ↑) for some accepting con-
figuration of T .

6. Stack height zero has to be reached after a non-empty prefix, and from
the first such position onwards, only # appears.

It is straightforward to come up with polynomially-sized VLDL formulas
expressing these conditions (note that only the second and sixth condition re-
quire non-trivial usage of the stack). Furthermore, α satisfies the conjunction
of these properties if, and only if, it encodes an accepting run of T on w. Thus,
as the word problem for polynomially space-bounded ATMs is ExpTime-hard,
the satisfiability problem for VLDL is ExpTime-hard as well.

8. Model Checking is ExpTime-complete

We now consider the model checking problem for VLDL. An instance of this
problem consists of a VPS S, an initial state qI of S, and a VLDL formula ϕ
and asks whether traces(S, qI) ⊆ L(ϕ) holds true, where traces(S, qI) denotes
the set obtained by mapping each run of S starting in qI to the sequence of

22

labels of the traversed edges. This problem is decidable in exponential time due
to Lemma 12 and an exponential-time model checking algorithm for 1-AJAs [9].
Moreover, the problem is ExpTime-hard, as it subsumes the validity problem.

Theorem 17. Model checking VLDL specifications against VPS’s is ExpTime-
complete.

Proof. Membership in ExpTime follows from Lemma 12 and the membership of
the problem of checking visibly pushdown systems against 1-AJA specifications
in ExpTime [9]. Moreover, since the validity problem for VLDL is ExpTime-
hard and since validity of ϕ is equivalent to traces(Suniv) ⊆ ϕ, where Suniv
with traces(Suniv) = Σω is effectively constructible in constant time, the model
checking problem for VLDL is ExpTime-hard as well.

9. Solving VLDL Games is 3ExpTime-complete

In this section we investigate visibly pushdown games with winning condi-
tions given by VLDL formulas. We consider games with two players, called
Player 0 and Player 1, respectively.

A two-player game with VLDL winning condition G = (V0, V1,Σ, E, vI , `, ϕ)
consists of two disjoint, at most countably infinite sets V0 and V1 of vertices,
where we define V := V0 ∪ V1, a finite alphabet Σ, a set of edges E ⊆ V × V ,
an initial state vI ∈ V , a labeling ` : V → Σ, and a VLDL formula ϕ over some
partition of Σ, called the winning condition. In order to avoid dealing with finite
plays, we demand that for each v ∈ V there exists a v′ ∈ V with (v, v′) ∈ E.

A play π = v0v1v2 · · · of G is an infinite sequence of vertices of G with
(vi, vi+1) ∈ E for all i ≥ 0. The play π is initial if v0 = vI . It is winning
for Player 0 if `(v1)`(v2)`(v3) · · · is a model of ϕ.3 Otherwise π is winning for
Player 1.

A strategy for Player i is a function σ : V ∗Vi → V , such that (v, σ(w ·v)) ∈ E
for all v ∈ Vi, w ∈ V ∗. A play π = v0v1v2 · · · is consistent with σ if σ(v0 · · · vn) =
vn+1 for all finite prefixes v0 · · · vn of π with vn ∈ Vi. A strategy σ is winning
for Player i if all initial plays that are consistent with σ are winning for that
player. We say that Player i wins G if she has a winning strategy. If either
player wins G, we say that G is determined.

A visibly pushdown game (VPG) with a VLDL winning condition H =

(S, Q0, Q1, qI , ϕ) consists of a VPS S = (Q, Σ̃,Γ,∆), a partition of Q into

Q0 and Q1, an initial state qI ∈ Q, and a VLDL formula ϕ over Σ̃. Recall
that ContΓ denotes the set of stack contents over Γ. The VPG H then induces
the two-player game GH = (V0, V1,Σ, E, vI , `, ϕ) with Vi := Qi × ContΓ × Σ,
vI = (qI ,⊥, a) for some a ∈ Σ (recall that the trace disregards the label of the
initial vertex), ((q, γ, a), (q′, γ′, a′)) ∈ E if there is an a′-labeled edge from (q, γ)
to (q, γ′) in the configuration graph GS , and ` : (q, γ, a) 7→ a. Solving a VPG H
means deciding whether Player 0 wins GH.

Proposition 18. VPGs with VLDL winning conditions are determined.

3For technical reasons, the sequence of labels omits the label of the first vertex.

23

Proof. Since each VLDL formula defines a language in ω-VPL due to Theorem 6,
each VPG with VLDL winning condition is equivalent to a VPG with an ω-VPL
winning condition. These are known to be determined [10].

We show that solving VPGs with winning conditions specified in VLDL is
harder than solving VPGs with winning conditions specified by BVPAs. Indeed,
the problem is 3ExpTime-complete. We obtain this result by adapting a proof
by Löding et al. [10], which shows 3ExpTime-hardness of solving pushdown
games with LTL winning conditions. The technical core of our proof lies in the
translation of pushdown games into visibly pushdown games.

Theorem 19. Solving VPGs with VLDL winning conditions is 3ExpTime-
complete.

Proof. We solve VPGs with VLDL winning conditions by first constructing a
BVPA Aϕ of exponential size from the winning condition ϕ and by then solving
the resulting visibly pushdown game with a BVPA winning condition [10]. As
VPGs with BVPA winning conditions can be solved in doubly-exponential time
in the size of the BVPA and in exponential time in the size of the VPS, this
approach takes triply-exponential time in |ϕ| and exponential time in |S|.

We show 3ExpTime-hardness of the problem by a reduction from solving
pushdown games with LTL winning conditions, which is known to be 3ExpTime-
complete [10]. A pushdown game with an LTL winning conditionH = (S, V0, V1, ψ)
is defined similarly to a VPG, except for the relaxation that S may now be a
traditional pushdown system instead of a visibly pushdown system. Specifically,
we have ∆ ⊆ (Q×Γ×Σ×Q×Γ≤2), where Γ≤2 denotes the set of all words over Γ
of at most two letters. Stack symbols are popped off the stack using transitions
of the form (q, A, a, q′, ε), the top of the stack can be tested and changed with
transitions of the form (q, A, a, q′, B), and pushes are realized with transitions
of the form (q, A, a, q′, BC). Additionally, the winning condition is given as an
LTL formula instead of a VLDL formula. The two-player game GH is defined
analogously to the visibly pushdown game.

Since the pushdown game admits transitions such as (q, A, a, q′, BC), which
pop A off the stack and push B and C onto it, we need to split such transitions
into several transitions in the visibly pushdown game. We modify the origi-
nal game such that every transition of the original game is modeled by three
transitions in the visibly pushdown game, up to two of which may be dummy
actions that do not change the stack. As each transition may perform at most
three operations on the stack, we can keep track of the list of changes still to
be performed in the state space. We perform these actions using dummy letters
c and l, which we add to Σ and read while performing the required actions on
the stack. We choose the vertices V ′i = Vi ∪ (Vi × (Γ ∪ {#})≤2) for i ∈ {0, 1}
and the alphabet Σ̃ = ({c},Σ, {l}).

We transform H as shown in Figure 9 and obtain the VPG H′. Moreover,
we transform the winning condition ψ of H into ψ′ by inductively replacing
each occurrence of Xψ by X3ψ′ and each occurrence of ψ1Uψ2 by (ψ′1 ∨ c ∨
l)U(ψ′2 ∧¬c∧¬l). We subsequently translate the resulting LTL formula ψ′ into
an equivalent VLDL formula ϕ using Lemma 1. The input player wins H′ with
the winning condition ϕ if, and only if, he wins H with the winning condition ψ.
Hence, solving VPGs with VLDL winning conditions is 3ExpTime-hard.

24

(i)

(ii)

(iii)

q q′,## q′,# q′
a, ↑A l,→ l,→

q q′, B# q′,# q′
a, ↑A c, ↓B l,→

q q′, BC q′, B q′
a, ↑A c, ↓C c, ↓B

Figure 9: Construction of a VPG from a pushdown game for transitions of the forms (i)
(q, a,A, q′, ε), (ii) (q, a,A, q′, B), and (iii) (q, a,A, q′, BC).

Moreover, Löding et al. have shown that in a visibly pushdown game with
a winning condition given by a BVPA, Player 0, in general, requires infinite
memory in order to win [10]. Thus, there is, in general, no winning strategy for
her that is implemented by a finite automaton with output.4 Such automata are
sufficient, e.g., for omega-regular games on finite graphs. As we can translate
BVPAs into VLDL formulas, we obtain the same lower bound for VPGs with
VLDL winning conditions.

Moreover, for each VPG G with winning condition ϕ, we can easily construct
the game G′ over the same VPS by exchanging the states of Player 0 and Player 1
and obtain that Player 0 wins G with winning condition ϕ if, and only if, she
loses G′ with winning condition ¬ϕ. Hence, Player 1 requires, in general, infinite
memory as well in order to win a VPG with VLDL winning condition.

Corollary 20. There exists a VPG G with VLDL winning condition such that
Player 0 wins G, but requires infinite memory to do so. Similarly, there exists a
VPG G′ with VLDL winning condition such that Player 1 win G′, but requires
infinite memory to do so.

10. Deterministic Pushdown Linear Dynamic Logic

In this work we extended LDL by replacing the regular languages used as
guards for the temporal operators by visibly pushdown languages. We obtain an
even more powerful logic by using more expressive languages as guards, e.g., de-
terministic pushdown languages, which have deterministic pushdown automata
(DPDA) as their canonical acceptors. However, all relevant decision problems
for the resulting logic called Deterministic Pushdown Linear Dynamic Logic
(DPLDL) are undecidable, most importantly the satisfiability problem.

Theorem 21. The satisfiability problem for DPLDL is undecidable.

4See the work by Löding et al. for a formal definition of memory [10].

25

Proof. We reduce the problem of deciding nonemptiness of the intersection of
two DPDA, which is known to be undecidable [19], to the satisfiability problem
for DPLDL. Let A1 and A2 be two DPDA over a shared alphabet Σ, pick
/∈ Σ and consider ϕ := 〈A1〉# ∧ 〈A2〉#. Then ϕ is satisfiable if, and only if,
L(A1) ∩ L(A2) 6= ∅. Hence satisfiability of DPLDL is undecidable.

As the satisfiability problem reduces to model checking and to solving push-
down games with DPLDL winning conditions, both problems are also undecid-
able.

Corollary 22. The validity problem and the problem of checking DPLDL speci-
fications against VPS’s as well as the problem of solving pushdown games against
DPLDL winning conditions are undecidable.

Since every DPDA is also a PDA, the extension of DPLDL by nondeter-
ministic pushdown automata inherits these undecidability results from DPLDL.
Thus, VLDL is, to the best of our knowledge, the most expressive logic that
combines the temporal modalities of LDL with guards specified by languages
over finite words and still has decidable decision problems, just as VLTL is
the most expressive logic that combines LTL with VREs that has the same
property.

11. Conclusion

We have introduced Visibly Linear Dynamic Logic (VLDL) which strength-
ens Linear Dynamic Logic (LDL) by replacing the regular languages used as
guards in the latter logic with visibly pushdown languages. VLDL characterizes
the class of ω-visibly pushdown languages. We have provided effective transla-
tions from VLDL to BVPA and vice versa with an exponential blowup in size in
both directions. From automata to logic, this blowup cannot be avoided while
it remains open whether or not it can be avoided in the other direction.

Figure 10 shows the formalisms that capture ω-VPL as well as CaRet and
the translations between them. Our constructions are marked by solid lines, all
others by dotted lines. All constructions are annotated with the blowup they
incur. In that figure we include a translation from DPSA to 1-AJA. This trans-
lation can easily be obtained by adapting the “guess-and-verify“-construction
used in the translation of VLDL into 1-AJAs in the proof of Lemma 12 in order
to directly translate DPSA into 1-AJA without a detour via VLDL.

In particular, there exist translations between VLTL and VLDL via BVPAs
that incur a doubly-exponential blowup in both directions, as shown in Fig-
ure 10. In spite of this blowup the satisfiability problem and the model checking
problem for both logics are ExpTime-complete. It remains open whether there
exist efficient translations between the two logics.

We showed the satisfiability and the emptiness problem for VLDL, as well
as model checking visibly pushdown systems against VLDL specifications, to be
ExpTime-complete. Also, we proved that solving visibly pushdown games with
VLDL winning conditions is 3ExpTime-complete.

Extending VLDL by replacing the guards with a more expressive family of
languages quickly yields undecidable decision problems. In fact, using deter-
ministic pushdown languages as guards already renders all decision problems
discussed in this work undecidable.

26

CaRetVLTLBVPA

DPSA VLDL1-AJA

2-AJA
O(n) [12]

O(2n) [12]

O(2n) [12]

O
(2
n
)

[10]

O(n2)

O(n2)

O(n2)

O
(1

)
[9

]

O(2n) [9]

O(n 2
) [9]

O
(2
n
)

w
it

h
ou

t
te

st
s

Figure 10: Formalisms capturing (subsets of) ω-VPL and translations between them.

In contrast to LDL [4] and VLTL [12], VLDL uses automata to define guards
instead of regular or visibly rational expressions. We are currently investigating
a variant of VLDL where the VPAs guarding the temporal operators are replaced
by visibly rational expressions (with tests), which is closer in spirit to LDL and
VLTL.

Finally, another algorithm for solving the satisfiability problem and the
model checking problem for VLDL has recently been proposed [13]. This al-
gorithm also first translates the given VLDL formula into a 1-AJA, but sub-
sequently constructs an emptiness-equivalent tree automaton from the 1-AJA.
Hence, this construction ultimately reduces the problem of VLDL satisfiability
and VLDL model checking to solving Büchi games. This contrasts our algo-
rithm presented in this work, in which we ultimately reduce the problems to
checking emptiness of context-free grammars. We are working on an implemen-
tation of the two algorithms in order to evaluate their respective strengths and
weaknesses.

Acknowledgements The authors would like to thank Laura Bozzelli for
providing the full version of [9] and Christof Löding for pointing out the 3ExpTime-
hardness of solving infinite games for visibly pushdown games against LTL spec-
ifications. Moreover, we would like to thank the reviewers for their valuable and
constructive comments which improved the paper considerably. In particular,
we thank an anonymous reviewer for the observation formalized in Corollary 15.

References

[1] A. Weinert, M. Zimmermann, Visibly linear dynamic logic, in:
A. Lal, S. Akshay, S. Saurabh, S. Sen (Eds.), FSTTCS 2016,
Vol. 65 of LIPIcs, Schloss Dagstuhl - LZI, 2016, pp. 28:1–28:14.
doi:10.4230/LIPIcs.FSTTCS.2016.28.

[2] A. Pnueli, The temporal logic of programs, in: FOCS 1977, IEEE, 1977,
pp. 46–57. doi:10.1109/SFCS.1977.32.

[3] M. Leucker, C. Sanchéz, Regular linear temporal logic, in: C. B.
Jones, Z. Liu, J. Woodcock (Eds.), ICTAC 2007, no. 4711 in LNCS.
doi:10.1007/978-3-540-75292-9 20.

27

[4] M. Vardi, The rise and fall of LTL, in: G. D’Agostino, S. L. Torre (Eds.),
EPTCS 54, 2011.

[5] M. Vardi, P. Wolper, Reasoning about infinite computations, Inf. and
Comp. 115 (1994) 1–37. doi:10.1006/inco.1994.1092.

[6] P. Wolper, Temporal logic can be more expressive, Inf. and Cont. 56 (1983)
72–99. doi:10.1016/S0019-9958(83)80051-5.

[7] R. Alur, P. Madhusudan, Visibly pushdown languages, in: STOC 2004,
ACM, 2004, pp. 202–211. doi:10.1145/1007352.1007390.

[8] R. Alur, K. Etessami, P. Madhusudan, A temporal logic of nested calls and
returns, in: TACAS 2004, Vol. 2988 of LNCS, Springer, 2004, pp. 467–481.
doi:10.1007/978-3-540-24730-2 35.

[9] L. Bozzelli, Alternating automata and a temporal fixpoint calculus for visi-
bly pushdown languages, in: L. Caires, V. T. Vasconcelos (Eds.), CONCUR
2007, Vol. 4703 of LNCS, Springer, 2007, pp. 476–491. doi:10.1007/978-3-
540-74407-8 32.

[10] C. Löding, P. Madhusudan, O. Serre, Visibly pushdown games, in: L. Lo-
daya, M. Mahajan (Eds.), FSTTCS 2004, Vol. 3328 of LNCS, Springer,
2005, pp. 408–420. doi:10.1007/978-3-540-30538-5 34.

[11] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown au-
tomata: Application to model-checking, in: A. Mazurkiewicz, J. Winkowski
(Eds.), CONCUR 1997, Vol. 1243 of LNCS, Springer, 1997, pp. 135–
150, Full version available at http://www.liafa.univ-paris-diderot.

fr/~abou/BEM97.pdf. doi:10.1007/3-540-63141-0 10.

[12] L. Bozzelli, C. Sánchez, Visibly linear temporal logic, in: IJCAR 2014, Vol.
8562 of LNCS, 2014, pp. 418–483. doi:10.1007/978-3-319-08587-6 33.

[13] A. Weinert, VLDL Satisfiability and Model Checking via Tree Au-
tomata, in: S. Lokam, R. Ramanujam (Eds.), FSTTCS 2017,
Vol. 93 of LIPIcs, Schloss Dagstuhl - LZI, 2017, pp. 47:1–47:13.
doi:10.4230/LIPIcs.FSTTCS.2017.47.

[14] P. Faymonville, M. Zimmermann, Parametric linear dynamic logic, Inf.
Comput. 253 (2017) 237–256. doi:10.1016/j.ic.2016.07.009.

[15] K. Thompson, Programming techniques: Regular expression search algo-
rithm, C. ACM 11 (6) (1968) 419–422.

[16] H. Chen, D. Wagner, MOPS: an infrastructure for examining security prop-
erties of software, in: V. Atluri (Ed.), CCS 2002, ACM, 2002, pp. 235–244.
doi:10.1145/586110.586142.

[17] L. Bozzelli, C. Sánchez, Visibly rational expressions, Act. Inf. 51 (1) (2014)
25–49.

[18] A. Chandra, L. Stockmeyer, Alternation, in: FOCS 1976, IEEE, 1976, pp.
98–108. doi:10.1145/322234.322243.

[19] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 2001.

28

