
Revisiting the Hamiltonian p-median problem: a new formulation on directed

graphs and a branch-and-cut algorithm

Tolga Bektaş1, Lúıs Gouveia2∗, Daniel Santos2

1University of Liverpool Management School
Chatham Street, Liverpool, L69 7ZH, United Kingdom

t.bektas@liverpool.ac.uk

2Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAF-CIO)
Faculdade de Ciências da Universidade de Lisboa

Lisboa, C6 - Piso 4, 1749-016, Portugal
legouveia@fc.ul.pt, d.r.santos@outlook.com

Abstract

This paper studies the asymmetric Hamiltonian p-median problem, which consists of finding p mutually
disjoint circuits of minimum total cost in a directed graph, such that each node of the graph is included in one
of the circuits. Earlier formulations view the problem as the intersection of two subproblems, one requiring at
most p, and the other requiring at least p circuits, in a feasible solution. This paper makes an explicit connection
between the first subproblem and subtour elimination constraints of the traveling salesman problem, and between
the second subproblem and the so-called path elimination constraints that arise in multi-depot/location-routing
problems. A new formulation is described that builds on this connection, that uses the concept of an acting depot,
resulting in a new set of constraints for the first subproblem, and a strong set of (path elimination) constraints for
the second subproblem. The variables of the new model also allow for effective symmetry-breaking constraints
to deal with two types of symmetries inherent in the problem. The paper describes a branch-and-cut algorithm
that uses the new constraints, for which separation procedures are proposed. Theoretical and computational
comparisons between the new formulation and an adaptation of an existing formulation originally proposed for
the symmetric Hamiltonian p-median problem are presented. Computational results indicate that the algorithm
is able to solve asymmetric instances with up to 171 nodes and symmetric instances with up to 100 nodes.

Keywords: Combinatorial optimization; Hamiltonian p-median; multi-cut inequalities; multi-depot routing;
branch-and-cut algorithm.

∗Corresponding author.

1

1 Introduction

The asymmetric Hamiltonian p-median problem (HpMP) consists of finding p circuits in a directed graph such
that each node of the graph is in one and only one circuit and the total cost of the selected arcs is minimized. If
p = 1 then the HpMP is the classical asymmetric traveling salesman problem (TSP).

The literature related to the HpMP is not as extensive as that of the TSP. To the best of our knowledge,
the HpMP was first introduced by Branco & Coelho (1990) who present two formulations, one of set partitioning
and the other defined on a directed graph in a similar vein to Fisher & Jaikumar (1981) for the vehicle routing
problem, and describe several heuristics, assuming symmetric cost instances. Other studies include that of Glaab
& Pott (2000) and Zohrehbandian (2007), either of which do not include a computational study, and more recently
by Hupp & Liers (2013) and Gollowitzer et al. (2014) concerning polyhedral studies on the HpMP. Most of the
algorithmic work on this problem is fairly recent (see, e.g., Gollowitzer et al. 2014, Erdoğan et al. 2016, Marzouk
et al. 2016) and introduces an additional requirement that the HpMP should not admit solutions that include
two-node circuits. Clearly, this requirement may lead to sub-optimal solutions to those of the original HpMP as
initially defined by Branco & Coelho (1990), but it is attractive for modeling purposes, since the problem can
then be modeled by using formulations based on undirected graphs with only a binary variable associated to
each edge. Modeling two-node cycles on an undirected graph, although not as straightforward, is still possible by
using {0,1,2} variables or, equivalently, an additional set of binary variables that specifically consider this case,
as is done in routing problems with multiple depots or in single-depot problems with multiple vehicles (see, e.g.,
Laporte et al. 1983, 1986, Araque G. et al. 1994, Belenguer et al. 2011, Benavent & Mart́ınez-Sykora 2013). Our
work will study the HpMP as was defined by Branco & Coelho (1990), that is, by allowing two-node circuits
to exist, however, we will compare our proposed formulation with an adaptation of the formulation proposed by
Erdoğan et al. (2016), which the authors proved to be effective for the undirected case in which two-node cycles
are not allowed.

Our approach follows the paradigm given in Gollowitzer et al. (2014) in that we present models for the HpMP
by partitioning the constraint set of the problem into two, namely one that guarantees that there are at most p,
and the other to ensure that there are at least p circuits in a feasible solution, which we will refer to as (≤ p)
and (≥ p) constraint sets, respectively. At this point, it is interesting to revisit the special case of the TSP, where
one wishes to obtain solutions with p = 1 circuit, for which reason one would need to eliminate solutions with
more than p = 1 circuit. This leads to the observation that the (≤ p) constraints are generalizations of (and
similar to) the subtour elimination constraints known from the TSP, and that the (≥ p) constraints are the “odd”
ones that are not easy to characterize. One of the contributions of our work is to show a connection between the
(≥ p) constraints and a different set of constraints that arise in multi-depot/location-routing problems, namely
the so-called path elimination constraints. To do so, we describe extended formulations for the HpMP that use
the concept of acting depots, which, although not an entirely new concept, can be explored in new ways. The
formulation proposed in this paper can be viewed as an extended version of the acting depot formulations. In
particular, we define additional (disaggregated) arc variables that describe whether an arc originates from, is
destined to, or is disconnected to an acting depot, and uses an adaptation of the multi-cut (path elimination)
constraints introduced by Bektaş et al. (2017). The new variables also allow for an effective way of dealing with
two types of symmetries inherent in the HpMP, one induced by the use of the concept of acting depot, and the
other resulting from two possible orientations of a given circuit.

The rest of the paper is structured as follows. Section 2 describes the concept of acting depot of a circuit
and shows an application on a valid formulation for the HpMP in this context. The new formulation for the
asymmetric HpMP is presented in Section 3. Section 4 describes alternative formulations for the problem, including
an adaptation an existing formulation originally proposed for the symmetric Hamiltonian p-median problem, and
presents theoretical comparison results. Section 5 has a particular focus on the various symmetry issues inherent
in formulations using the concept of an acting depot and shows how they can easily be dealt with using the
proposed formulation. Section 6 describes the branch-and-cut algorithm that uses the new formulation and its
components, namely exact and heuristic separation procedures as well as a primal heuristic. This section presents
computational results for asymmetric and symmetric instances, both to assess the effectiveness of the proposed
algorithm and to numerically compare the new formulation with the alternative formulations described in this
paper. Section 6 also presents comparison results with existing methods on symmetric instances in which two-node
circuits are not allowed. Finally, conclusions are stated in Section 7.

2

2 Generic formulations for the HpMP

We define the HpMP on a directed graph G = (V,A), with a set V = {1, . . . , n} of nodes, a set A = {(i, j) : i, j ∈
V, i 6= j} of arcs, and a cost function c associated to the set of arcs. We say that a set of circuits covers the
node set V , or is a cover of V , if each node is included in one and only one of the circuits. The objective of the
HpMP is to find a minimum cost set of p disjoint circuits that covers V . For simplification, we will assume that
G is a complete graph. Our results are applicable to incomplete graphs by simply not considering the pairs (i, j)
such that (i, j) /∈ A in all of the mathematical expressions below. The formulations use the following notation:
for any general one-index variable u we write u(S) =

∑
i∈S ui; for any general two-index variable v we write

v(S) =
∑

i,j∈S, i 6=j vij and v(S1, S2) =
∑

i∈S1,j∈S2
vij , where S1 ∩ S2 = ∅. For singleton node subsets, say I = {i},

we write i instead of {i}.
This section presents two generic formulations for the HpMP, one defined in the space of the arc variables

alone, and the other that uses an additional set of variables that differentiate the so-called acting depots from the
client nodes.

2.1 A generic formulation with arc variables

In many network design problems, the most efficient formulations in practice are the ones that use arc variables
alone, as they have fewer variables as compared to other formulations. Although such formulations usually include
exponential-size sets of constraints, effective branch-and-cut algorithms can be devised if the separation of such
inequalities can be done efficiently, as often is the case. The generic formulation presented below follows this line
of thought and is an adaptation of the one proposed by Gollowitzer et al. (2014) for the symmetric HpMP to the
asymmetric case. The model uses binary variables xij = 1 if arc (i, j) ∈ A is used in any one of the p circuits and,
xij = 0 otherwise.

Minimize
∑

(i,j)∈A

cijxij

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (1)

∑
j∈V

xji = 1 ∀i ∈ V (2)

{(i, j) ∈ A : xij = 1} forms at most p circuits (3)

{(i, j) ∈ A : xij = 1} forms at least p circuits (4)

xij ∈ {0, 1} ∀(i, j) ∈ A. (5)

Clearly, any solution of (1)–(2) and (5), usually referred to as the assignment relaxation, corresponds to a set
of disjoint circuits that cover V . However, such solutions may be composed of more, or of less, than p circuits.
The generic constraints (3) ensure that there are at most p circuits in the solution, whereas the generic constraints
(4) ensure that any solution is composed of at least p circuits.

In the formulation described by Gollowitzer et al. (2014), constraints (3) are modeled as generalizations of the
cut inequalities known from the TSP, whereas inequalities (4) are in the form of cycle-elimination constraints. A
polyhedral study based on these inequalities was initiated in Hupp & Liers (2013) and Gollowitzer et al. (2014).
The two sets of inequalities can easily be adapted to the asymmetric HpMP. The main drawback, however, is
that the separation of both sets of inequalities is NP-hard. This was proven by Gollowitzer et al. (2014) for the
symmetric case. The complexity of the separation is still open for the asymmetric HpMP but there is no reason
to suspect that it will be different to the symmetric case. This motivates the study of solution methods for the
HpMP based on formulations using additional sets of variables such that the separation problem is polynomial,
and which is one of the contributions of this paper.

2.2 A generic formulation extended with acting depot variables

The HpMP can be modeled by using a connection with multi-depot/location-routing problems that considers p
nodes of V to be viewed as the acting depots of the p circuits. We now present another generic formulation for
the HpMP that uses additional variables for the nodes acting as depots, namely a set of binary variables yi = 1 if

3

node i ∈ V is an acting depot, and yi = 0 otherwise. For simplicity, we will refer to a node i as a depot if yi = 1,
and as a client if yi = 0, in a given solution.

Minimize
∑

(i,j)∈A

cijxij

subject to:
∑
j∈V

xij = 1 ∀i ∈ V (1)

∑
j∈V

xji = 1 ∀i ∈ V (2)

∑
i∈V

yi = p (6)

{(i, j) ∈ A : xij = 1 and i ∈ V : yi = 1} contains no circuit with zero depots (7)

{(i, j) ∈ A : xij = 1 and i ∈ V : yi = 1} contains no circuit with two or more depots (8)

xij ∈ {0, 1} ∀(i, j) ∈ A (5)

yi ∈ {0, 1} ∀i ∈ V. (9)

Constraints (6) ensure that there are exactly p depots in any feasible solution, while constraints (7) and (8)
relate the y variables with the x variables and guarantee that in each circuit one and only one node has the
corresponding y variable equal to 1. To see the connection with the HpMP, observe that if there exists a solution
with less than p circuits then at least one of the circuits has more than one depot, and if there exists a solution
with more than p circuits then at least one of the circuits will have zero depots. In this respect, constraints (7)
and (8) correspond to (3) and (4), respectively.

In the context of multi-depot/location-routing problems, the generic inequalities (7) are modeled as classical
subtour elimination constraints and the generic inequalities (8) as path elimination constraints, which are used to
prevent paths between two depots. By using the acting depot concept, we can “translate” these inequalities to
the context of the HpMP. In fact, the generic subtour elimination constraints (7) can be used to prevent circuits
composed of only client nodes (i.e., nodes such that yi = 0), whereas the generic path elimination constraints (8)
prevent the formation of paths between two depots (i.e., nodes such that yi = 1).

To illustrate this connection we present a valid formulation for the HpMP defined on the space of the x and
y variables. To model the generic inequalities (7), we use the following set of (subtour elimination) constraints

x(S) ≤ |S| − 1 + y(S) ∀S ⊂ V, S 6= ∅, (10)

that correspond to the directed version of a set of inequalities proposed by Laporte et al. (1983) (see also Gollowitzer
et al. 2014), which are based on the observation that if for a given subset S of nodes we have y(S) = 0, that is,
there is no acting depot in the set S, then a circuit composed only of nodes of S cannot exist.

As for the generic inequalities (8), we can adapt, in a non-straightforward way, the multi-cut inequalities
presented by Bektaş et al. (2017) for a multi-depot routing problem to the space of the x and y variables as
follows:

x(S′, i) + x(S′, S) + x(i, S) ≥ yi + y(I)− |I| ∀ partitions S′, S, I, {i} of V , (11)

such that |I| = p − 1. The reason why these constraints are not a straightforward adaptation of the inequalities
from Bektaş et al. (2017) is that in the multi-depot routing problem there is a clear differentiation between two
sets of nodes, namely that of candidate depots or that of customers. In the HpMP, there is no distinction between
the two sets, and we need to select a set of candidate nodes to play the role of acting depots. This is the role of the
subset I given in the previous expression. Observe that the inequality is of interest only when node i and all nodes
in I are acting depots, in which the interpretation of the inequality is then the same as the one in Bektaş et al.
(2017). That is, if there is another acting depot, say j ∈ I, in the circuit containing node i (which we assumed
is an acting depot otherwise the inequality would be redundant), by selecting S′ as the set of nodes which are in
the path between i and j and by choosing S as the remaining nodes, that is, S = V \ (S′ ∪ I ∪ {i}), we can easily
see that a constraint (11) is violated.

By using the indegree constraints (2) for node i, it is easy to observe that if S = ∅ then constraints (11) become
y(I) + x(I, i) + yi ≤ 1 + |I|. Thus, when S = ∅, these constraints assure that there can be no arcs between nodes
chosen as depots, which is consistent with the interpretation of nodes acting as depots.

4

The observations above indicate that we obtain a valid formulation for the HpMP by using inequalities (11) to
model the generic set (8) for all partitions S′, S, I, {i} of V such that |I| = p− 1. Although not needed to obtain
a valid integer formulation, we believe that the cases where |I| < p− 1 might not be redundant in the associated
linear programming relaxation. In fact, by using again the degree constraints, it can be seen that inequality (11)
for I = {j} is a stronger version of the following path elimination inequalities

yi + x(Pij) + yj ≤ |Pij | ∀i, j ∈ V, i 6= j, (12)

where Pij is an elementary path linking nodes i and j and |Pij | is the number of nodes in the path.
There are, however, two clear drawbacks to using a model that uses arc variables and acting depot variables,

such as the one defined above including the inequalities (10) and (11):

1. The first drawback is related to the separation of the inequalities (11). Even though the exact separation
algorithm used by Bektaş et al. (2017) could be adapted to this case, it would no longer be polynomial
in time given that the set of depots is no longer fixed and, thus, one would need to fix every possible set
I ∪ {i} such that |I ∪ {i}| = p. The other option would be to find a different separation algorithm that
would determine the partition of V \ {i} into the three sets S′, S and I and that would simultaneously
minimize the left-hand side and maximize the right-hand side of the inequalities (11). In our opinion, it is
not clear that the resulting algorithm would be polynomial in time. Observe that if we resorted to heuristic
separation algorithms, then this would defeat the purpose of using this formulation in the (x, y)-space since
we might as well be using a formulation in the x-space based on the one proposed by Gollowitzer et al.
(2014). One might argue that other adaptations of path elimination constraints could be used instead of
inequalities (11). In any case, we believe that any “good” set of path elimination constraints relies on the
fact that the depots and the clients are clearly identified.

2. The second drawback arises from a symmetry problem that is a consequence of this modeling approach that
selects nodes to be the acting depots of the circuits, allowing too many alternative representations of a given
solution. For example, a circuit (i1, i2, ..., im, i1), with ij ∈ V, ∀j ∈ {1, . . . ,m}, can be represented in m
different ways, depending on the selection of m possible acting depots. It is not clear how this symmetry
problem can be addressed with formulations based on these two sets of variables.

In the next section, we present a new formulation for the HpMP that overcomes the two drawbacks identified
above, and yields path elimination constraints stronger than (11) that we will show to be polynomially separable.

3 The PQR formulation

In the formulation discussed in Section 2.2 we used the binary y variables to indicate whether a node is an acting
depot. In this section, we propose a model which “attaches” this information to the arc variables. More precisely,
we propose three new sets of binary variables which distinguish between the cases of whether or not an arc (i, j)
is used in one of the circuits and where either (i) i is a depot; (ii) j is a depot; and (iii) neither i nor j are depots.
More precisely, for each arc (i, j), we create a binary variable pij which indicates whether or not arc (i, j) is used
in one of the circuits where i is a depot; a binary variable qij which indicates whether or not arc (i, j) is used in
one of the circuits where j is a depot; and a binary variable rij indicating whether or not arc (i, j) is used in one
of the circuits where neither i nor j are depots. None of the three cases described above consider the situation
where the two nodes i and j can be depots at the same time. Therefore, the definition of the three new sets of
variables prevents solutions where two depots are directly linked. In other words, we ensure that if an (infeasible)
path between two depots exists then at least one client node is included in that path.

In the next two sections we show how to model the two main sets of constraints, that is, the (≥ p) constraints
and the (≤ p) constraints, by using the new sets of variables.

3.1 Modeling the (≥ p) constraints

Recall that the (≥ p) constraints ensure that the solution has at least p circuits which can be modeled by ensuring
that there are no circuits with two or more acting depots. These constraints in the PQR formulation are defined
as follows:

q(S′, i) + r(S′, S) + p(i, S) ≥ yi ∀i ∈ V, ∀ partitions (S′, S) of V \ {i}. (13)

5

The proof of the validity of these multi-cut constraints is similar to the proof of constraints (11) described in
the previous section.

Proposition 1. The inequalities (13) are valid and eliminate circuits with two acting depots.

Proof. Constraints (13) are clearly valid if yi = 0. When yi = 1, let (S′, S) form a partition of V \{i} and suppose
that q(S′, i) = r(S′, S) = p(i, S) = 0. Since i is a depot then it must be that q(S, i) = 1 = p(i, S′). Note that in
the circuit of depot i there can be no more depots, hence all remaining arcs must be r arcs. But then it is not
possible to complete the circuit for depot i since r(S′, S) = 0.

To see why these constraints cut-off solutions in which there are two depots in the same circuit suppose that
i is an acting depot (yi = 1) and that there exists a node j ∈ V \ {i} such that yj = 1 and that i and j are in the
same circuit. In this situation, there must exist at least one client node in the path from i to j since both nodes
i and j are depots (this follows from the observation made regarding the definition of the p, q and r variables). If
we consider that the set of nodes which are in the path from i to j are in S′ and that the remaining nodes, except
i and j, are in S, we obtain p(i, S) = 0, since the arc leaving i goes to S′, and q(S′, i) = 0, since the arc entering
i comes from S. In addition, because j is a depot, then there is no r-arc incident to j, and regardless of whether
j ∈ S or j ∈ S′ we have r(S′, S) = 0.

An important remark regarding the new constraints (13) is that they are defined for all partitions (S′, S) of
V \ {i}, in contrast to the previous constraints (11) that were defined for all partitions (S′, S, I) of V \ {i}. The
difference in the number of subsets in the partition is relevant for the complexity of the corresponding separation
problem and, in fact, as we shall show later on, constraints (13) can be separated in polynomial time by resorting
to max-flow/min-cut computations. In a subsequent section we will show that constraints (13) imply a set of
constraints similar to (11) and rewritten with the p, q and r variables. In other words, we will show that the
additional set I in constraints (11) does not need to be explicitly considered in order to write inequalities in the
space of the new variables since it is implicitly contained in their definition.

3.2 Modeling the (≤ p) constraints

The (≤ p) constraints ensure that any solution has at most p circuits which, as previously stated, can be modeled
by preventing solutions containing circuits with no acting depots. From the definition of the p, q and r variables,
a circuit will be composed of client nodes only, or equivalently have no acting depots, if and only if all arcs in
the circuit are r-arcs. Hence, in order to prevent such a situation, we can use use any set of subtour elimination
constraints that is known from the literature on the TSP (possibly with minor modifications motivated by the
context) rewritten with the client-only variables r. For our model we use the well-known exponentially-sized set
due to Dantzig et al. (1954), namely

r(S) ≤ |S| − 1 ∀S ⊂ V. (14)

Other sets of inequalities in place of (14) could be used instead. For instance, Bektaş (2012) uses the Miller-
Tucker-Zemlin constraints (see Miller et al. 1960) for a related problem which have the advantage of being poly-
nomial in number, but lead to substantially weaker LP relaxation bounds when compared to other formulations
that use exponentially-sized sets of constraints such as (14).

The information provided by the variables of the PQR formulation permit us to strengthen constraints (14),
as the following result shows.

Proposition 2. The following inequalities are valid for the PQR formulation:

p(i, S) + y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V, ∀i ∈ S (15)

q(S, i) + y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V, ∀i ∈ S. (16)

Proof. We start by observing that the following weaker set of constraints,

y(S \ {i}) + r(S) ≤ |S| − 1 ∀S ⊂ V, ∀i ∈ S, (17)

are valid based on the fact that y(S \{i}) ≤ |S|−1 and on the observation that if yj = 1 then r(j, V) = r(V, j) = 0
for any j ∈ V . We now lift inequalities (17) by adding the term αp(i, S) to the left hand side, where α is the
lifting coefficient. The only case of interest is p(i, S) = 1. If y(S \ {i}) = k ≥ 0, then r(S) ≤ |S| − k− 2, implying
that the maximum value of the lifting coefficient is α = 1 and thus yielding (15). A similar lifting procedure using
the term αq(S, i) yields (16).

6

From here on out, we will use the inequalities (15) and (16) as the (≤ p) constraints in the PQR formulation,
replacing the weaker set (14). Observe that the inequalities (15) and (16) can be equivalently written in cut-like
form, respectively, as follows:

p(V, S) + r(S′, S) ≥ 1− p(i, S′) ∀ partitions (S′, S) of V, ∀i ∈ S (18)

p(V, S) + r(S′, S) ≥ 1− q(S′, i) ∀ partitions (S′, S) of V, ∀i ∈ S, (19)

which can be easily seen by appropriately using constraints which will be presented in the next section. The cut-
like form of these inequalities suggests that they can be separated by resorting to max-flow/min-cut computations
on a suitable graph. Such separation algorithms will be described in Section 6.2.1.

Inequalities (15) and (16) can be strengthened when |S| > p, as shown in the proposition below.

Proposition 3. The following inequalities are valid for the PQR formulation:

y(S) + r(S) ≤ |S| − 1 ∀S ⊂ V : |S| > p. (20)

Proof. The proof of this result follows from the fact that y(S) ≤ p ≤ |S| − 1 and, thus, we can apply the same
reasoning used to prove the validity of inequalities (17).

Inequalities (20), which can be written in cut-like form as

p(V, S) + r(S′, S) ≥ 1 ∀ partitions (S′, S) of V : |S| > p, (21)

will be added as valid inequalities in the branch-and-cut algorithm. They only provide slight improvements in the
algorithm, however, we can easily incorporate their separation in the separation algorithm of inequalities (15) and
(16) by resorting to negligible-time computations.

3.3 The complete formulation

For completeness and clarity, we provide below the complete PQR formulation. Observe, first, that the “old” x
and y variables and the “new” p, q and r variables are related by the following equalities (which are easily seen
to be valid):

xij = pij + rij + qij ∀(i, j) ∈ A (22)

yi =
∑

j∈V \{i}

pij =
∑

j∈V \{i}

qji ∀i ∈ V. (23)

The complete PQR formulation can be described by using only the p, q and r variables due to the above
relations, however, for simplification, we will use the y variables as well. It is as follows:

Minimize
∑

(i,j)∈A

cij (pij + qij + rij)

subject to:
∑

j∈V \{i}

(pij + qij + rij) = 1 ∀i ∈ V (24)

∑
j∈V \{i}

(pji + qji + rji) = 1 ∀i ∈ V (25)

yi =
∑

j∈V \{i}

pij =
∑

j∈V \{i}

qji ∀i ∈ V (23)

∑
i∈V

yi = p (6)

q(S′, i) + r(S′, S) + p(i, S) ≥ yi ∀i ∈ V, ∀ partitions (S′, S) of V \ {i} (13)

p(V, S) + r(S′, S) ≥ 1− p(i, S′) ∀ partitions (S′, S) of V, ∀i ∈ S (18)

p(V, S) + r(S′, S) ≥ 1− q(S′, i) ∀ partitions (S′, S) of V, ∀i ∈ S (19)

pij ∈ {0, 1} ∀(i, j) ∈ A (26)

qij ∈ {0, 1} ∀(i, j) ∈ A (27)

rij ∈ {0, 1} ∀(i, j) ∈ A (28)

yi ∈ {0, 1} ∀i ∈ V. (9)

7

In addition, and in order to simplify the proofs in the next section, we will also consider the two following sets
of equalities, ∑

j∈V \{i}

(qij + rij) = 1− yi ∀i ∈ V (29)

∑
j∈V \{i}

(pji + rji) = 1− yi ∀i ∈ V, (30)

the validity of which can easily be proven by appropriately combining (23) with the degree constraints (24) and
(25), respectively.

3.4 Inequalities in the (x, y)-space implied by the PQR formulation

Due to the relations (22) and (23) we can view the PQR formulation as an extended version of a formulation
defined in the (x, y)-space. This raises the question of which (≤ p) and (≥ p) inequalities defined on the (x, y)-
space can be obtained by projecting the feasible set of the linear programming relaxation of the PQR formulation
onto the (x, y)-space. Obtaining the complete description of the projected polyhedron does not appear to be an
easy task. It is, however, possible to establish two results concerning the way in which inequalities (10) and (11)
are related to the projection.

Proposition 4. The LP relaxation of the PQR formulation implies inequalities (10).

Proof. Consider a set S ⊂ V . By adding y(S) + p(i, S′), where i ∈ S, to each side of (15) and by using the
relations (23) between the y and the p variables for node i, we obtain

y(S) + y(S) + r(S) ≤ |S| − 1 + y(S) + p(i, S′).

Now, by using the relations (23) between the y and p variables for the first y(S) term on the left-hand side,
and the relations (23) between the y and q variables for the second y(S) term on the left-hand side, we obtain

p(S) + p(S, S′) + q(S) + q(S′, S) + r(S) ≤ |S| − 1 + y(S) + p(i, S′).

From the relations (22) between the x and the p, q and r variables, we know that x(S) = p(S) + r(S) + q(S).
Hence, we can write the previous equation as follows:

x(S) ≤ |S| − 1 + y(S) + p(i, S′)− p(S, S′)− q(S′, S).

Finally, since the expression p(i, S′)− p(S, S′)− q(S′, S) is non-positive, we obtain an inequality that implies
(10) for the same set S. A similar proof exist by starting with inequalities (16).

Regarding the inequalities (11), first consider the following inequalities which can be seen as (11) rewritten
with the p, q and r variables:

q(S′, i) + r(S′, S) + p(i, S) ≥ yi + y(I)− |I| ∀ partitions S′, S, I, {i} of V . (31)

The following proposition shows that these inequalities are redundant in the PQR formulation.

Proposition 5. The LP relaxation of the PQR formulation implies inequalities (31).

Proof. Consider an inequality (13) for a node i ∈ V , a partition (S′, S) of V \ {i} and such that S′ = B′ ∪C ′ and
S = B ∪ C, which can be written as:

q(B′, i) + q(C ′, i) + r(B′, B) + r(C ′, C) + r(B′, C) + r(C ′, B) + p(i, B) + p(i, C) ≥ yi.

By defining I = C ∪C ′, and by using |C ′| − y(C ′) ≥ q(C ′, i) + r(C ′, C) + r(C ′, B) and |C| − y(C) ≥ r(B′, C) +
p(i, C), where both inequalities follow from (29) and (30), respectively, we obtain inequality (31) for the partition
(B′, B, I) of V \ {i}.

In the proof of Proposition 5, the subsets C and C ′ correspond to sets of potential acting depots included in
S and S′, respectively. This shows that the variables of the PQR formulation implicitly hold information about
the set I of potential acting depots. The following result therefore follows from Proposition 5.

Proposition 6. The LP relaxation of the PQR formulation implies inequalities (11).

Proof. It suffices to add adequate non-negativity constraints for the variables p, q and r to the left-hand side of
(31) and to use equality (22) that relates the x with the p, q and r variables.

8

4 Alternative formulations for the asymmetric HpMP

This section presents three alternative formulations for the asymmetric HpMP, namely (i) a compact formulation
that is based on a 3-layered graph, (ii) an adaptation of an existing formulation of the problem proposed by
Erdoğan et al. (2016) for the symmetric HpMP, and (iii) a formulation that provides a stronger LP bound than
both (i) and (ii). We also present theoretical results comparing the three formulations and the PQR formulation,
in the same way as in the work by Gollowitzer et al. (2014), that is, by differentiating between the cases (≤ p)
and the (≥ p). This distinction follows from a finding suggested by preliminary computational experiments. In
particular, let p′ be the number of circuits in the assignment relaxation of the problem. Then, apart from a few
exceptions, the models described in this paper yield the same optimal solution and LP bound without the (≥ p)
constraints for when p < p′, and without the (≤ p) constraints when p > p′. Additionally, we find that either
none or very few violated constraints of the type (≥ p) are identified when p < p′, and none or very few violated
constraints of the type (≤ p) are identified if p > p′, in a branch-and-cut algorithm.

4.1 A compact formulation of the (≥ p) constraints and connections with the multi-cut
inequalities (13)

The multi-cut inequalities (13) can be viewed as standard cut constraints in a corresponding 3-layered graph (see
Bektaş et al. 2017) which allows for a better explanation of their underlying separation procedure as well as a
derivation of a compact representation of the same set of constraints.

Consider a 3-layered graph L = (VL, AL) where VL is composed of three copies of each node in V . VL is
partitioned into three subsets, which are the three layers of L, each subset with a copy of each original node. The
first layer and the third layer represent the copies of the nodes of graph G that are viewed as the acting depots.
The two layers correspond to viewing them, respectively, as starting points and as ending points of one of the p
circuits. The second layer represents the copies of nodes of the graph G that are viewed as the client nodes. The
arc set AL is also partitioned into three subsets. The first subset corresponds to the arcs going from the first layer
to the second layer, with an arc existing for every existing p variable. The second subset corresponds to the arcs
between the nodes in the second layer, which are represented by the r variables in the original graph. Finally, the
second layer has arcs linking it to the third layer, with an arc existing if and only if a corresponding q variable
exists.

To model the (≥ p) constraints of the HpMP in the 3-layered graph we need to guarantee the existence of
p paths in L such that each path starts in a node in the first layer and ends in a node in the third layer, with
the additional constraint that the start and end nodes of a path are copies of the same corresponding node in
the original graph. Consider the following compact system of constraints based on the binary variables zkij = 1

if an arc (i, j) is in the path from the copy of node k in the first layer to its copy in the third layer, and zkij = 0
otherwise. The same variables also indicate whether or not arc (i, j) is used in the circuit of the acting depot k in
the original graph. The (≥ p) constraints in the 3-layered may be modeled by the constraints below:∑

j∈V,j 6=k

zkkj = yk ∀k ∈ V (32)

∑
j∈V,j 6=k

zkjk = yk ∀k ∈ V (33)

∑
j∈V,j 6=i

zkji =
∑

j∈V,j 6=i

zkij ∀k ∈ V, ∀i ∈ V : i 6= k (34)

zkkj ≤ pkj ∀k ∈ V, ∀(k, j) ∈ A (35)

zkjk ≤ qjk ∀k ∈ V, ∀(j, k) ∈ A (36)

zkij ≤ rij ∀k ∈ V, ∀(i, j) ∈ A (37)

zkij ∈ {0, 1} ∀k ∈ V, ∀(i, j) ∈ A. (38)

9

Let 3I be the system defined by (32)–(37) and the following non-negativity constrains:

zkij ≥ 0 ∀k ∈ V, ∀(i, j) ∈ A (39)

pij ≥ 0 ∀(i, j) ∈ A (40)

qij ≥ 0 ∀(i, j) ∈ A (41)

rij ≥ 0 ∀(i, j) ∈ A (42)

yi ≥ 0 ∀i ∈ V. (43)

By using a result similar to that shown by Bektaş et al. (2017), one can prove that the projection of the
polyhedron defined by 3I onto the space of the p, q, r and y variables is given by the multi-cut inequalities (13)
and the non-negativity constraints (40)–(43), as the following proposition shows. The proof is similar to the one by
Bektaş et al. (2017), however it is important to explicitly show it here since it will be fundamental to understand
another result further on.

Proposition 7. The projection of the polyhedron defined by 3I onto the space of the p, q, r and y variables is
given by the multi-cut inequalities (13) and the non-negativity constraints (40)–(43).

Proof. The result follows from the max-flow/min-cut theorem and the interpretation of the 3I system in the 3-
layered graph L. The max-flow/min-cut theorem states that for each node k, yk units of flow are sent from its
copy in the first layer, say k1, to its copy in the third layer, say k3, without passing through its copy in the second
layer (due to the flow-conservation constraints (34) which are not defined for the copy of node k in the second
layer), with arc capacities given by the values of the variables p, q and r, if and only if every cut separating
k1 from k3 has capacity with value at least yk. This last requirement corresponds precisely to the constraints
q(S′, k) + r(S′, S) + p(k, S) ≥ yk for all partitions (S′, S) of V \ {k}, which are the multi-cut inequalities (13).

Consider the formulation obtained from the complete model of Section 3.3 by replacing the multi-cut inequal-
ities (13) with the inequalities (32)–(38), which we denote by PQRz formulation. The result of Proposition 7
indicates that the two formulations provide the same LP bound.

The 3I system can be strengthened by replacing (37) with the stronger set of constraints,∑
k∈V \{i,j}

zkij ≤ rij ∀(i, j) ∈ A, (44)

and define a system, denoted by 3I+, that includes fewer but stronger sets of constraints as compared to 3I.
We denote by PQRz+ the formulation PQRz where constraints (37) are replaced by (44). As we will see, our
computational experiment shows that the PQRz+ formulation is able to provide some improvements on the LP
bounds when compared to the PQRz and the PQR formulations in a few cases. However, the PQRz+ formulation
includes many more variables and constraints than the PQR formulation and, thus, in practice, it has a worse
performance. One topic worth of studying is to check whether the stronger system 3I+ implies a generalized version
of the multi-cut inequalities (13), in the same way as was done by Bektaş et al. (2017) for the multi-depot routing
problem, and use the resulting formulation in a branch-and-cut approach as it is suggested in this paper by using
the multi-cut inequalities (13) alone. However, it is not clear how to generalize the multi-cut inequalities in the
setting of the PQR formulation and, in addition, the reported improvements obtained by the PQRz+ formulation
when compared to the PQR formulation are not substantial. Thus, we will not explore this any further.

4.2 The x-v formulation and a comparison with the PQR formulation

In this section we present an adaptation of a model known from the literature for the symmetric HpMP. Besides
the xij and yi variables, the model also uses node-depot assignment binary variables vji for nodes i, j ∈ V such

that vji = 1 if node j is in the circuit of the acting depot i, and vji = 0 otherwise. For a given subset of nodes

S ⊂ V , we write vjS to denote
∑

i∈S v
j
i .

10

The following formulation, denoted by x-v, is an adaptation of the model by Erdoğan et al. (2016), which in
turn is a strengthened version of that of Gollowitzer et al. (2014):

Minimize
∑

(i,j)∈A

cijxij

subject to: (1), (2), (5), (6) and (9)

yi = vii ∀i ∈ V (45)∑
j∈V

vij = 1 ∀i ∈ V (46)

vji ≤ v
i
i ∀i, j ∈ V : i 6= j (47)

x(S′, S) ≥ viS′ ∀ partitions (S′, S) of V, ∀i ∈ S (48)

viS + xij ≤ vjS + 1 ∀i, j ∈ V : i 6= j, ∀S ⊂ V \ {j} (49)

vji ∈ {0, 1} ∀i, j ∈ V. (50)

In contrast with the model presented by Erdoğan et al. (2016), the model presented above uses arc variables
xij to allow asymmetric costs to be modeled, whereas the original model uses edge variables. Additionally, normal
constraint adaptations that are motivated from changing from an undirected model into a directed one result
in constraints (48) and (49) that are simply directed counterparts of constraints in the earlier model. Another
difference between the two models is, however, more relevant and results from the fact that two-node circuits are
allowed in the version of the problem studied in this paper while they are not in the work by Erdoğan et al. (2016),
as we mentioned in the introduction of this paper. In order to allow two-node circuits to exist, our adapted model
uses single terms +xij in constraints (49) in contrast to using terms +xij + xji which would provide valid and
stronger inequalities in the case where two-node circuits are not allowed.

As with the previous models, the x-v model can also be viewed as containing two specific sets of constraints,
one preventing less than p circuits and the other preventing more than p circuits. Constraints (49) are the (≥ p)
constraints and they are a nice generalization proposed by Erdoğan et al. (2016) of simpler inequalities described
in Gollowitzer et al. (2014). The cut constraints (48) model the (≤ p) constraints and, as pointed out before, they
are the directed version of inequalities presented by Erdoğan et al. (2016) and earlier by Gollowitzer et al. (2014).

Observe that we can relate the v and the z variables in the following way:

vik =
∑
j∈V

zkij ∀k ∈ V, ∀i ∈ V. (51)

The validity of these equalities is easy to establish and one can also see that the addition of these definitional
constraints does not alter the LP value of the 3I+ system. Observe that due to the flow conservation constraints
(34), we can also derive the following set of equivalent “reversed” linking equalities:

vik =
∑
j∈V

zkji ∀k ∈ V, ∀i ∈ V. (52)

Clearly, in the presence of the flow conservation constraints (34), we only need to add either (51) or (52). In
the following, and to simplify the proofs of the propositions appearing in the remainder of Section 4, we assume
that the two equivalent linking equalities are added to the 3I+ system. We show next that the LP relaxation of
this “augmented” 3I+ system implies constraints (49).

Proposition 8. The 3I+ system with the addition of either (51) or (52) implies the (≥ p) constraints (49) of the
x-v model.

Proof. Consider two nodes i, j ∈ V : i 6= j and a subset S ⊂ V \ {j}. We will prove the result assuming that
i ∈ S. For the case in which i /∈ S, the proof is similar.

If we add the flow conservation constraints (34) for the nodes in the subset S and, for node j, use the equality
(51) and weaken the right-hand side of the resulting equation, we obtain:

vjS =
∑
d∈S

∑
k∈V

zdjk =
∑
d∈S

∑
k∈V

zdkj ≥
∑
d∈S

zdij .

11

Now, if we add
∑

d∈S
∑

k∈V :k 6=j z
d
ik to both sides of the inequality above and use (51) for node i we obtain:

vjS +
∑
d∈S

∑
k∈V :k 6=j

zdik ≥ viS .

Finally, observe that∑
d∈S

∑
k∈V :k 6=j

zdik =
∑

k∈V :k 6=j

∑
d∈S\{i},d6=k

zdik +
∑

d∈S\{i}

zdid +
∑

k∈V :k 6=j

ziik,

and that∑
k∈V :k 6=j

∑
d∈S\{i},d 6=k

zdik +
∑

d∈S\{i}

zdid +
∑

k∈V :k 6=j

ziik ≤ r(i, V \ {j}) + q(i, S \ {i}) + p(i, V \ {j}) ≤ x(i, V \ {j}).

In the expression above, the first inequality follows from the linking constraints (35), (36) and (44) and the
last one from the equalities (22). Then, by using the degree constraints (1) we obtain

vjS + 1 ≥ viS + xij ,

which is the inequality (49) for node j and the subset S.

The discussion above has two main implications in terms of LP relaxations:

• PQRz+ dominates PQR (Proposition 7),

• If the (≤ p) constraints are removed from both formulations, then

– PQRz+ dominates x-v (Proposition 8)

– It can be shown that there is no dominance between PQR and x-v, the details of which we omit here
for reasons of brevity.

From a practical point of view, however, we will show in Section 6 that the reduction in the LP relaxation value
going from the PQRz+ model to the PQR model is much smaller when compared to weakening PQRz+ to the x-v
model.

4.3 Strengthening the PQRz+ formulation (and comparing the (≤ p) constraints)

We now consider the situation when the (≥ p) constraints are removed from both PQR and x-v, and in this case,
no dominance relationship can be established between the two formulations in terms of the LP relaxations, the
details of which we also omit here for the sake of brevity. One way to arrive at a dominance relationship is to
incrementally strengthen both formulations. Instead, we will describe in this section a strengthening of PQRz+

that also dominates x-v. This is achieved by the addition of a new set of cut-like (≤ p) constraints to PQRz+ as
shown in the formulation below, which we denote by PQRz+-v:

Minimize
∑

(i,j)∈A

cij (pij + qij + rij)

subject to: (6), (9), (23)–(28), (32)–(36),

(38), (44), (45)–(47) and (50)–(51)

zk(S′, S) ≥ vik ∀ partitions (S′, S) of V : k ∈ S′, i ∈ S. (53)

Since PQRz+-v includes the 3I+ system, then it implies the (≥ p) constraints of both PQR and x-v. In the
remainder of this section, we will show that it also implies the (≤ p) constraints of both models.

The validity of the new constraints (53) is easy to establish. Their “reversed” counterpart

zk(S, S′) ≥ vik ∀k ∈ V, ∀ partitions (S′, S) of V : k ∈ S′, i ∈ S, (54)

12

is redundant due to the flow-conservation constraints (34). Note also that when |S| = 1, the inequality (53) is
implied by constraints (51).

Constraints (53) can be separated in polynomial-time by resorting to max-flow/min-cut computations, however,
the PQRz+-v model is hard to use in practice. The interest of this model is mainly theoretical since it allows us
to compare the (≤ p) constraints of the PQR and the x-v models in an indirect way. We start by showing that
the PQRz+-v model implies the following new large set of cut-like constraints, that strictly contains (48):

x(S′, S) ≥ vi1L1
+ . . .+ vikLk

∀ partitions (S′, S) of V, ∀ partitions (L1, . . . , Lk) of S′, i1, . . . , ik ∈ S. (55)

Proposition 9. The linear programming relaxation of the PQRz+-v model implies constraints (55).

Proof. Let k ≥ 1 and consider i1, . . . , ik distinct nodes of a set S ⊂ V and L1, . . . , Lk a partition of S′ = V \ S.
For each m = 1, . . . , k consider the following constraints (53)

zk(S′, S) ≥ vimk ∀k ∈ Lm,

which can be equivalently written as ∑
j∈S′

zk(j, S) ≥ vimk ∀k ∈ Lm.

By adding all of these constraints for m = 1, . . . , k, we obtain:

k∑
m=1

∑
d∈Lm

∑
j∈S′

zd(j, S) ≥
k∑

m=1

∑
d∈Lm

vimd = vi1L1
+ . . .+ vikLk

.

The right-hand side of the above constraint is equal to the right-hand side of constraints (55). As for the
left-hand side, observe that it can be written as:

k∑
m=1

∑
d∈Lm

∑
j∈S′

zd(j, S) =
∑
d∈S′

∑
j∈S′

zd(j, S) =
∑
d∈S′

zd(d, S) +
∑
j∈S′

∑
d∈S′,d 6=j

zd(j, S). (56)

Finally, by using the relations (35) for the first term of the above third expression, the relations (44) for the
second term of the above third expression and, lastly, the relations (22) between the x and the p, q and r variables
we obtain: ∑

d∈S′
zd(d, S) +

∑
j∈S′

∑
d∈S′,d 6=j

zd(j, S) ≤ p(S′, S) + r(S′, S) ≤ x(S′, S),

which completes the proof.

The inequalities (55) include as a special case the (≤ p) constraints of the x-v model when k = 1. One
interesting question, from a practical point of view, is to see how the efficiency of the inequalities (55) changes
when the value of k increases. In fact, given that the left-hand side of the inequalities (55) is a cut-set, an
exact separation algorithm for these inequalities consists in performing max-flow/min-cut computations in an
adequate graph in which the nodes i1, . . . , ik have to be fixed as target nodes. Clearly, as k increases, there
are more possibilities for fixing target nodes and, thus, many more max-flow/min-cut computations have to be
performed to ensure exactness in the separation. Additionally, much like constraints (48) are directed counterparts
of inequalities presented by Erdoğan et al. (2016) and Gollowitzer et al. (2014), it is possible to adapt inequalities
(55) for k ≥ 2 to the symmetric HpMP case.

Another interesting investigation is to see how the new formulation and the (≤ p) constraints of the PQR
model are related. In fact, we can prove that the PQRz+-v model implies constraints (18) and (19), which are
the (≤ p) constraints of the PQR model.

Proposition 10. The linear programming relaxation of the PQRz+-v model implies constraints (18) and (19).

13

Proof. Consider a partition (S′, S) of V , a node i ∈ S and, for each d ∈ S \ {i}, an inequality (53) as follows:

zd(S′ ∪ {d}, S \ {d}) ≥ vid.

By adding these constraints for all d ∈ S \ {i} we obtain:∑
d∈S\{i}

zd(S′ ∪ {d}, S \ {d}) ≥ viS\{i}.

Now consider the third expression under (56) in the proof of Proposition 9 in the case in which k = 1. If we
add that expression to the above inequality we obtain:∑

d∈S′
zd(d, S) +

∑
j∈S′

∑
d∈S′,d 6=j

zd(j, S) +
∑

d∈S\{i}

zd(S′ ∪ {d}, S \ {d}) ≥ viS′ + viS\{i} = 1− yi.

By manipulating the expression on the left-hand side of the above inequality, the details of which we omit for
simplification, we can arrive at the following expression:∑

d∈V \{i}

zd(d, S) +
∑
j∈S′

∑
d∈V \{i},d 6=j

zd(j, S \ {d}).

If we add zi(i, S) to both sides, we obtain:∑
d∈V

zd(d, S) +
∑
j∈S′

∑
d∈V \{i},d6=j

zd(j, S \ {d}) ≥ 1− zi(i, S′). (57)

Thus, we can derive,

1− p(i, S′) ≤ 1− zi(i, S′) ≤
∑
d∈V

zd(d, S) +
∑
j∈S′

∑
d∈V \{i},d 6=j

zd(j, S \ {d}) ≤ p(V, S) + r(S′, S),

which are exactly the (≤ p) constraints (18).
Regarding constraints (19), we can start the proof from the “reversed” constraints (54) and use a similar

reasoning.

We conclude this section by noting that constraints (21) that are valid only for |S| > p are not implied by the
LP relaxation of the PQRz+-v model. This can be easily seen by identifying solutions of the LP relaxation of the
model that violate (21), the details of which we do not present here for reasons of brevity.

5 Symmetry-breaking constraints

This section discusses how to address two types of symmetries existing in the solutions obtained by the formulations
described in Sections 3 and 4.

5.1 Symmetry of type I - Reducing the number of candidate acting depots in a circuit

This type of symmetry is induced by the m different ways a circuit (i1, i2, ..., im, i1) can be represented by selecting
each node of the circuit as an acting depot. To address it, we use constraints that are motivated by the well-
known idea (see, e.g., Campêlo et al. 2004) that the acting depot in any circuit should be the node with the lowest
index to reduce the m possible representations into one, e.g., choosing node 2 as an acting depot for the circuit
(3, 2, 7, 6, 3). This idea can be easily implemented in the PQRz+-v, PQRz+ and the PQRz models presented in
Section 4 as follows,

zkkj = 0 ∀k ∈ V, ∀(k, j) ∈ A : k > j (58)

zkjk = 0 ∀k ∈ V, ∀(j, k) ∈ A : k < j (59)

zkij = 0 ∀k ∈ V, ∀(i, j) ∈ A : i < k or j < k, (60)

14

which collectively impose that the depot of each circuit should be the node with the lowest index by disallowing
the use of arcs that do not satisfy this condition, and which can be partially adapted to the PQR formulation by
considering the following set of symmetry-breaking constraints:

pij = 0 ∀(i, j) ∈ A : i > j (61)

qij = 0 ∀(i, j) ∈ A : i < j. (62)

Constraints (61)–(62) prevent some alternative representations of the same circuit, but do not guarantee that
the depot of a circuit will be the node with the lowest index. For example, whereas they eliminate the solution
(3, 2, 7, 6, 3) since p32 = 0, they would not eliminate solutions such as the circuit (3, 7, 2, 6, 3).

Constraints to deal with these type of symmetries have already been proposed by Gollowitzer et al. (2014)
(and later used by Erdoğan et al. 2016) in the context of undirected versions of the x-v model. In fact, the x-v
model can also benefit from using the following symmetry-breaking constraints

vji = 0 ∀i, j ∈ V : j < i, (63)

which we can see to be equivalent to the symmetry-breaking constraints (58)–(60) due to the the equalities (51)
or (52).

It is not straightforward how to adapt a similar idea to the context of the PQR model. However, we can
indirectly provide such a set of constraints by using (58)–(60) together with the projection result of Proposition 7.
In particular, since there exists a path of value yi from the copy of node i in the first layer to the copy of the same
node in the third layer if the capacity of any cut separating the node copies of node i is at least yi, restricting
the arcs allowed to be in the path by removing arcs in the second layer according to constraints (58)–(60) also
restricts the arcs allowed in the cut sets. This leads to the following restricted multi-cut inequalities that can be
used for symmetry-breaking purposes,

q(S′, i) + r(S′, S) + p(i, S) ≥ yi ∀i ∈ V, ∀ partitions (S′, S) of V \ {1, . . . , i}, (64)

which use all the information provided by the inequalities (58)–(60) and therefore ensure that the acting depot
in any circuit will be the node with the lowest index. As the computational results will show, the computational
times substantially decrease when the restricted multi-cut constraints (64) are used instead of (13). Although
equalities (61)–(62) are not needed in the presence of the restricted multi-cut inequalities, we will still use them
as they help to eliminate nearly half the number of p and q variables from the PQR formulation.

In many situations, symmetry-breaking constraints do not improve the value of the LP relaxation. However,
for the case of the PQR model with the restricted multi-cut constraints (64) (and the PQRz+-v, PQRz+ and
PQRz models with the symmetry-breaking constraints (58)-(60)) the computational results show that there are
non-negligible improvements on the LP bounds for asymmetric instances.

5.2 Symmetry of type II - Eliminating reversed circuits

In the HpMP modeled on directed graphs with a symmetric cost function, one other symmetry arises for a
circuit and its reverse, both of the same cost, and which therefore represent equivalent solutions even if they are
structurally different. Observe that for circuits with only two nodes this problem is non-existent, thus, we focus
on circuits which have at least three nodes. These equivalent solutions can pose a non-negligible problem if a
large number, say m, of the p circuits in any solution are circuits with at least three nodes, since by combining
both possible orientations for these m ≤ p circuits we have 2m different representations of the same solution. We
discuss below how such symmetries can be broken in the PQR formulation for circuits which have at least three
nodes.

Observe that in a given circuit with at least three nodes, one of the two nodes adjacent to the acting depot has
a smaller index than the other. In order to break these symmetries, we enforce that the first node visited after the
acting depot is given a lower index than the node visited just before the acting depot. In the case of the circuits
c1 = (2, 5, 7, 4, 2) and c2 = (2, 4, 7, 5, 2), for example, the circuit c1 would be considered “infeasible”, leaving circuit
c2 to be one of the p possible circuits. This idea has already been discussed for solving symmetric instances of the
TSP using formulations based on directed graphs, and it can be introduced to the PQR formulation by the use of
the following constraints: ∑

k≥j
qki ≥ pij , ∀i, j ∈ V, i 6= j. (65)

15

Inequalities (65) state that if i is an acting depot and node j is visited immediately after i, then the node
k visited just before i should be such that k ≥ j. Notice that the case k = j is required in order to avoid
cutting-off solutions that are composed of two-node circuits. Furthermore, we can do even better and strengthen
the inequalities (65) to: ∑

k≥j
qki ≥

∑
k≥j

pik, ∀i, j ∈ V, i 6= j. (66)

To see that this lifted version is valid, consider a pair of nodes i and j, and observe that: i) the right-hand
side of these constraints is still at most 1; ii) if pij = 1, then the validity of the lifted constraints follows from
the validity of the original constraints (65); iii) if pij = 0 and pik′ = 1 for a node k′ > j then the validity of the
constraints follow from the validity of the original constraint (65) for the case when j = k′; and iv) for j = n the
lifted constraints and the original constraints are the same.

Observe that this idea heavily relies on the fact that the acting depot information is in the arc variables,
namely the p and the q variables of the PQR formulation. Hence, we believe that it is not as easy to implement
this idea in formulations such as the x-v model. Nevertheless, the solutions identified are usually comprised of
several circuits with two nodes, that is, m is usually much lower than p, and, thus, this type of symmetry is not
as problematic as the one of the previous section.

We conclude this section by noting that constraints analogue to (66), that is, constraints in which the q
variables are on the right-hand side and the p variables are on the left-hand side, can also be defined, however
they can be shown to be redundant in the presence of constraints (23).

6 Computational results

In this section we present the numerical results from our computational experiment. Section 6.1 provides infor-
mation on the instances used in the computations. In Section 6.2 we present details of the method proposed in
this paper based on the PQR formulation. In Section 6.2.1 we present the separation algorithms for the set of
constraints (13), the new restricted set (64), and the set of constraints (18) and (19). In Section 6.2.2 we present
a basic primal heuristic that feeds feasible solutions to the branch-and-cut method by using information given by
the LP relaxation in the branch-and-bound nodes. Section 6.2.3 describes the full branch-and-cut procedure used
to obtain the numerical results. Finally, Section 6.3 shows the numerical results obtained with this branch-and-cut
algorithm.

The last two subsections of this section consider additional computational results. Section 6.4 presents results
to compare the models presented in this paper and in Section 6.5 we present results for our method based on
the PQR formulation adapted to the case in which two-node circuits are not allowed and compare them to ones
provided by Erdoğan et al. (2016) and Marzouk et al. (2016).

6.1 Instances

For the computational experiments reported in this paper we use two sets, A and B, of instances. The first set A is
a subset of the very well-known TSPLIB symmetric TSP benchmark instances, namely dantzig42, swiss42, att48,
gr48, hk48, eil51, berlin52, brazil58, st70, eil76, pr76, gr96, rat99, kroA100, kroB100, kroC100, kroD100, kroE100
and rd100. The number of nodes in these instances varies from 42 to 100. The set B of instances includes TSPLIB
asymmetric TSP benchmark instances, namely ftv33 to ftv170, p43, ry48p, ft53, ft70 and kro124p, with a number
of nodes which varies from 34 to 171. The complete description for the sets A and B of instances is available
at https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/. In the symmetric instances of
set A where node coordinates are provided instead of explicit cost values, we determine the cost of an arc (i, j),
and consequently of arc (j, i), by rounding up the Euclidean distance between i and j.

6.2 The branch-and-cut algorithm

This section describes the branch-and-cut algorithm devised to solve the problem and its ingredients, namely exact
and heuristic separation procedures, and a primal heuristic to generate feasible solutions.

16

6.2.1 Separation procedures

These procedures are relevant to inequalities (13) and their symmetry-breaking restricted version (64), which
model the (≥ p) constraints of the PQR formulation, and the inequalities (18) and (19), which model the (≤ p)
constraints of the PQR formulation.

• Separating inequalities (13) and (64)

The algorithm to separate the inequalities (13) is based on the 3-layered graph L view of the HpMP described
in Section 4.1. Let (p∗, q∗, r∗, y∗) denote the current solution (either fractional or integer). For each arc of
L, we set its capacity to the corresponding p∗, q∗ or r∗ value. Then, for every node i ∈ V , we remove node
i from the second layer and determine the maximum flow v from the copy of node i in the first layer to the
copy of the same node i in the third layer. If v < y∗i then we have found a minimum-cut with a value lower
than y∗i which partitions the nodes in the second layer into two subsets S′ and S such that S′ ∪S = V \ {i}.
This cut unequivocally identifies a violated inequality (13), which is associated to the sets S′ and S and node
i. In order to separate the restricted symmetry-breaking version of the multi-cut inequalities (64), we use
the same algorithm but in which the max-flow procedure is performed in a restricted 3-layered graph where
not only node i but also every node j such that j < i is removed from the second layer. These procedures
are similar to the one presented by Bektaş et al. (2017) for the multi-cut constraints for the multi-depot
routing problem. Observe that the procedures just described are exact, that is, if no violated inequality is
found then the current solution (p∗, q∗, r∗, y∗) satisfies all the inequalities (13) or (64), respectively.

• Separating inequalities (18) and (19)

To separate the inequalities (18) and (19), and additionally the slightly improved set (21), we devised a
single procedure that attempts to find violated inequalities of all the three sets at once, for reasons that will
be explained at the end of this subsection. Let (p∗, q∗, r∗, y∗) denote the current solution (either fractional
or integer). We start by constructing a 2-layered graph which is, essentially, the 3-layered graph L without
the third layer, to which we add an extra node s. This node s is connected to each node in the first layer by
an arc with capacity equal to 1. The arcs linking the first with the second layer have as maximum capacity
the corresponding value p∗, and the arcs in the second layer have as capacity the corresponding value r∗.

For each node i ∈ V , we determine the maximum flow v from s to the copy of node i in the second layer.
If, on the one hand, the maximum flow v is greater than or equal to 1, then there is no violated inequality
(18), (19) or (21). On the other hand, if v is less than 1, then a minimum cut that partitions the nodes in
the second layer into two subsets S′ and S, such that i ∈ S, is obtained. If |S| > p, then we have found a
violated inequality (21). If |S| ≤ p, then we evaluate the expressions v < 1− p∗(i, S′) and v < 1− q∗(S′, i),
to check whether an inequality (18) or (19) is violated by the current solution. If both v < 1− p∗(i, S′) and
v < 1− q∗(S′, i), then we only consider the inequality (18) or (19) for which the violation is the greatest.

The separation procedure described above is not exact for any of the three sets of inequalities (18), (19) or
(21). Regarding the inequalities (18) or (19), note that the right-hand side depends on the set S′. More
precisely, we do not take into account the values p∗(i, S′) and q∗(S′, i) when determining the minimum-cut.
As for the inequalities (21), the additional condition that |S| > p is also not taken into account during
the minimum-cut computation. In other words, the proposed max-flow/min-cut procedure is, in fact, a
relaxation (without the respective additional conditions) of the three min-cut procedures that we would
need to solve in order to separate in an exact way the three sets of inequalities. Nevertheless, the proposed
separation procedure is exact with respect to the following weaker set of inequalities

p(V, S) + r(S′, S) ≥ 1− yi ∀ partitions (S′, S) of V, ∀i ∈ S, (67)

which are the cut-form of constraints (17).

These inequalities can also model the (≤ p) constraints of the PQR model, however, they are dominated by
(18) and (19) as we mentioned. Nevertheless, observe that when the algorithm stops, if |S| > p we know
that v ≥ 1 ≥ 1− y∗i for any i ∈ S, and if |S| ≤ p we know that v ≥ max{1− p∗(i, S′), 1− q∗(S′, i)} ≥ 1− y∗i
for any i ∈ S. Thus, it is ensured that all the inequalities (67) are not violated, and, therefore, no client-only
circuits will exist in the solution after the algorithm stops, since, as we have just pointed out, inequalities
(67) are sufficient to model the (≤ p) constraints.

17

• Heuristic separation procedure

The separation algorithms described above run in polynomial-time. Prior to applying them, however, we
first attempt to find violated inequalities (13) or (64) and (18) or (19) (or (21)) by using a standard heuristic
procedure that was developed for separating subtour elimination constraints in general problems (see, e.g.,
Fischetti et al. 1997), and which is adapted to our case. The use of the separation heuristic at the beginning
of the whole separation procedure allows for the reduction in the computational times.

The heuristic procedure consists in determining the connected components induced by the fractional values
p∗, q∗ and r∗ by considering the arcs (i, j) such that p∗ij > 0 or q∗ij > 0 or r∗ij > 0. Three cases can be
obtained: i) a component is comprised of client nodes only, and hence, we can define a violated inequality
(18) or (19) (or (21)); ii) a component contains two or more acting depots and, in this case, we can define a
violated inequality (13) or (64) by finding a path that links two of the acting depots in the component; iii)
a component contains only one acting depot and no violated inequality can be defined.

6.2.2 Primal heuristic

During the branch-and-cut algorithm we apply an heuristic procedure that generates a feasible solution by using
the information given by the LP relaxation of a branch-and-bound tree node. The aim is to improve the current
best known solution.

Given a cost function c′, we start by finding the cheapest p arcs to start the p circuits. Then, by using a
nearest neighbor type of criteria we insert the remaining nodes in the best possible circuit until we form p disjoint
circuits that cover V . To further optimize these p circuits we apply local search operators that first swap nodes
inside the circuits and then move nodes from their circuit to a different circuit. If the heuristic is applied by using
the original cost function c, the solutions obtained will usually be of poor quality. Instead, we use the fractional
values p∗, q∗ and r∗ at a given node of the tree to modify the cost of an arc (i, j) to cij × (1− p∗ij − r∗ij − q∗ij). The
reasoning for this modified cost function is that arcs for which the LP value is close to 1 will have a lower cost and
hence have a higher chance of being chosen in the constructive part of the heuristic, that is, the feasible solution
obtained before applying local search will be as “close” as possible to the current LP solution. The heuristic is
applied at every five nodes during the first 250 nodes explored in the branch-and-bound tree, following which the
frequency is increased to every 10 nodes.

6.2.3 Description of the overall algorithm

A standard branch-and-cut algorithm is applied to the PQR formulation. Before starting the algorithm, we
determine the number of circuits in the assignment relaxation, which we denote by p′, since we can use this value
to guide the algorithm (note that the assignment problem is polynomially solvable, hence, it is reasonable to
perform this first step). In each node of the branch-and-bound tree, we use the separation procedures described
in Section 6.2.1. However, and motivated by an earlier discussion, the order in which we use them depends on the
value of p′. If p < p′, we start with the separation procedure for the (≤ p) constraints, whereas if p > p′ we start
with the separation procedure for the (≥ p) constraints. As explained previously, our initial computational tests
lead to the conclusion that if p < p′ then it is likely (but not certain) that the optimal solution (and LP bound)
can be obtained solely by separating the (≤ p) constraints, and if p > p′ then we have the reverse conclusion that
it is likely (but, again, not certain) that the optimal solution (and LP bound) can be obtained solely by separating
the (≥ p) constraints. Note that for the (≥ p) constraints we use the restricted multi-cut constraints (64), seeing
as they perform much better than their standard counterpart, except if stated otherwise.

A maximum of 20 inequalities are added in total before re-optimizing. However, if more than five violated
inequalities of the first set of constraints to be separated are found, then the separation of the second set of
constraints to be separated is skipped and the re-optimization phase begins immediately. In addition, we use the
primal heuristic described in Section 6.2.2 and the symmetry-breaking constraints (66) when applicable.

The branch-and-cut algorithm was ran on an Intel Core i7-4790 3.6GHz processor with 8GB of RAM, within
which CPLEX 12.6.1 Concert Technology for C++ was used. A time limit of 10800 seconds (three hours) has
been imposed on the solution time. When obtaining the LP relaxation value for a given instance, we deactivate
all pre-processing, heuristics (but not heuristic separations) and CPLEX’s general-purpose cuts.

18

6.3 Numerical results

This section presents the results obtained with the branch-and-cut algorithm. We first analyse the effect of
using the two types of symmetry-breaking constraints discussed in Section 5, and then provide results for both
asymmetric instances and symmetric instances.

6.3.1 Showcasing the effect of using symmetry-breaking constraints

Following the discussion in Section 5, we provide some insight on the benefits of using symmetry-breaking con-
straints. For that we compare three variants of the algorithm:

1. The branch-and-cut (B&C) procedure described in Section 6.2.3 in which no symmetry-breaking constraints
are used, that is, the standard multi-cut constraints (13) are used as (≥ p) constraints and, for symmetric
instances, we do not use (66);

2. The B&C procedure described in Section 6.2.3 in which the restricted multi-cut constraints (64) are used as
(≥ p) constraints but, for symmetric instances, we do not use (66);

3. The B&C procedure described in 6.2.3 in which all symmetry-breaking constraints are used (i.e., the standard
approach).

Table 1 shows the comparison results and is divided into four parts. The first column shows the name of the
instance, where ftv170 is an asymmetric instance and rat99 is a symmetric one. The next two columns show the
number p′ of circuits in the assignment relaxation and the value of p. For each variant of the B&C, we then report
the LP relaxation value (LP), the time tL (in seconds) required to obtain the LP value, the optimal value (OPT)
and the time t (in seconds) required to obtain the optimal value.

No symmetry-breaking (SB) Only type I SB Both type I and type II SB
Name p′ p LP tL OPT t LP tL OPT t LP tL OPT t
ftv170 17 5 2662 1 2683 15 2662 1 2683 14 - - - -

10 2635 2 2636 8 2635 2 2636 8 - - - -
15 2631 1 2631 0 2631 1 2631 0 - - - -
20 2631 6 2631 0 2631 2 2631 0 - - - -
25 2631 9 2639 972 2635.14 16 2639 28 - - - -
30 2632.95 15 [2646, 2658] 10800* 2644.38 9 2658 44 - - - -
35 2643.57 87 [2664, 2705] 10800* 2671.92 56 2704 290 - - - -
40 2670.93 133 [2713, 2736] 10800* 2714.81 103 2736 508 - - - -
45 2719.42 169 [2779, 2799] 10800* 2772.13 603 2799 356 - - - -
50 2781.78 759 [2842, 2884] 10800* 2844.78 1153 2884 735 - - - -
55 2861.38 962 [2937, 3012] 10800* 2954.38 2083 3008 2470 - - - -
60 2989.2 1374 [3080, 3212] 10800* 3105.34 4248 3205 3648 - - - -
65 3198.03 5260 [3246, 3695] 10800* 3325.09 9716 [3428, 3432] 10800* - - - -
70 3450.56 10800* [3518, 3826] 10800* 3567.63 10800** [3684, 3706] 10800* - - - -
75 ** ** ** ** 3727.48 10800** [3767, 4091] 10800* - - - -
80 ** ** ** ** 3962.44 10800** [4099, 4403] 10800* - - - -
85 ** ** ** ** 4644.5 1081 4777 7647 - - - -

rat99 45 5 1228.5 1 1237 17 1228.5 1 1237 9 1228.5 1 1237 8
10 1196.5 1 1212 41 1196.5 1 1212 58 1196.5 1 1212 68
15 1178.17 1 1195 37 1178.17 1 1195 25 1178.17 1 1195 39
20 1164.17 2 1184 321 1164.17 2 1184 308 1164.17 2 1184 172
25 1154.38 0 1170 279 1154.38 0 1170 113 1154.38 1 1170 177
30 1148 2 1159 100 1148 2 1159 51 1148 3 1159 41
35 1144.44 8 1153 150 1144.44 8 1153 108 1144.44 2 1153 50
40 1142.17 2 1145 76 1142.17 2 1145 14 1142.17 2 1145 15
45 1142 0 1142 0 1142 0 1142 0 1142 0 1142 0

*Not solved to optimality within the time limit of three hours, ** Ran out of memory before the time limit

Table 1: Comparison results between the different types of symmetry-breaking constraints

The results for the asymmetric instance ftv170 show a substantial improvement by the use of the restricted
multi-cut inequalities (64) that allow to optimally solve eight more instances, namely for p = 30, . . . , 60 in incre-
ments of five and p = 85. A reduction in computational times is observed for other instances that were already
solved to optimality, such as the instance with p = 25, for which the computational time decreased from about
fifteen minutes to only 28 seconds. The results also show that the LP bounds in general increase, which also helps
to explain the overall improved results.

19

As for the symmetric instance rat99, the use of symmetry-breaking constraints does not have a significant effect.
This can be easily explained. In particular, there is no increase in LP bound when using the restricted multi-cut
constraints (64) to replace their “weaker” counterpart (13). As for the use of the symmetry-breaking constraints
(66), most of these solutions have many circuits with only two nodes which only allow one representation and,
thus, the effect of the symmetry-breaking constraints is diminished.

To summarize, the results shown in Table 1 give us two indications. First, the restricted multi-cut constraints
(64) are very effective for asymmetric instances and somewhat effective for symmetric instances. Note, however,
that for the symmetric case the restricted multi-cut inequalities (64) should still be used instead of their “weaker”
version (13) since the separation algorithm is very similar but is, in general, faster as the max-flow computations are
done in smaller-sized auxiliary graphs. Second, the symmetry-breaking constraints of type II provide a negligible
improvement, however, overall the average computational times are slightly reduced. For these reasons we include
all symmetry-breaking constraints in the remainder of the experiments.

6.3.2 Results on asymmetric instances

This section presents the results obtained on the asymmetric test instances by using the standard (most effective)
B&C procedure presented in Section 6.2.3. Given the rather large number of test instances, we only present
results for a subset of the set B of instances in Table 2 in the main body of text, and present the results for the
remainder of instances in set B in Table 8 of the appendix. Both tables follow the following format. For each
instance, the first three columns indicate the name of the instance, the number p′ of circuits in the assignment
relaxation and the value of p used, respectively. The next four columns are relevant to the LP relaxation, namely
the LP relaxation bound (LP), the computational time needed to solve the LP relaxation (tL), in seconds, and
the number of violated (≤ p) and (≥ p) constraints found when computing the LP bound, respectively. The last
four columns provide information related to the optimal integer solution, where OPT and t are the optimal value
of the corresponding instance and the corresponding computational time required, in seconds, and #(≤ p) and
#(≥ p) are the total number of violated (≤ p) and (≥ p) constraints found during the branch-and-cut procedure,
respectively. For each instance, we present results for values of p which are multiples of 5, starting with p = 5 and
up to the maximum possible value of p for that instance (e.g., for an instance with 40 nodes, the value of p can
go up to 20).

20

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
ft70 10 5 38055.6 0 89 1 38120 3 851 62

10 37978 0 7 0 37978 0 0 0
15 38018.5 0 0 59 38033 1 0 114
20 38275.2 0 0 185 38390 7 5 976
25 39027.9 1 0 417 39233 9 0 1604
30 40258.3 2 0 800 40539 11 0 1460
35 42297 0 0 119 42908 2 0 166

ftv70 11 5 1804.78 1 137 11 1826 2 474 7
10 1766 0 8 10 1766 0 0 0
15 1769.5 0 0 61 1771 0 0 56
20 1837 0 0 130 1841 1 0 86
25 1954.41 0 0 241 1978 1 0 243
30 2140.94 0 0 285 2210 2 0 469
35 2496.63 0 0 383 2535 1 0 156

kro124p 32 5 35114.9 0 229 3 35435 13 1035 50
10 34681.5 1 265 2 35010 15 1848 71
15 34421.8 1 215 1 34799 68 4924 207
20 34227.8 4 463 4 34433 62 5651 161
25 34083.1 0 69 7 34267 87 6107 358
30 33990 0 51 1 34002 1 52 6
35 34050 0 0 13 34050 0 0 0
40 34294.1 0 3 24 34310 0 0 9
45 35082 0 0 28 35331 1 0 39
50 36663 0 0 23 37541 1 0 53

ftv170 17 5 2662 1 50 0 2683 14 339 7
10 2635 2 124 1 2636 8 148 0
15 2631 1 27 7 2631 0 0 0
20 2631 2 59 107 2631 0 0 0
25 2635.14 16 2 440 2639 28 1 455
30 2644.38 9 0 454 2658 44 38 825
35 2671.92 56 0 1152 2704 290 1240 4304
40 2714.81 103 0 1698 2736 508 0 3548
45 2772.13 603 1 3385 2799 356 64 3758
50 2844.78 1153 1 4950 2884 735 0 4825
55 2954.38 2083 0 7090 3008 2470 10 8649
60 3105.34 4248 0 10647 3205 3648 0 9703
65 3325.09 9716 0 14291 [3428, 3432] 10800* 31 17838
70 3567.63 10800* 0 16163 [3684, 3706] 10800* 0 14429
75 3727.48 10800* 0 15918 [3767, 4091] 10800* 0 16046
80 3962.44 10800* 0 15316 [4099, 4403] 10800* 0 15483
85 4644.5 1081 0 5890 4777 7647 2 12350

*Not solved to optimality within the time limit of three hours

Table 2: Results for a subset of (asymmetric) instances in set B

The results suggest that the proposed B&C is able to effectively solve asymmetric instances of up to 100 nodes
in at most around two minutes. The method was also able to solve most of the p values for instance ftv170,
except for p = 65, 70, 75, 80. Observe that in these cases the value of p is much larger than p′ which leads to the
generation of too many violated restricted multi-cut inequalities (64).

6.3.3 Results on symmetric instances

Computational results for a subset of the set A of symmetric instances are shown in Table 3. Results for the
remaining instances in set A are presented in Tables 9 and 10 provided in the appendix. The tables follow the
same format as described in the previous section.

21

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
pr76 36 5 91255.6 0 135 0 [96104, 97764] 10800* 79582 738

10 85634 2 534 0 [90747, 91883] 10800* 120131 944
15 81211.5 0 58 0 86380 1066 46964 178
20 79365.2 0 50 0 82311 99 9705 35
25 78332 0 52 1 82040 1757 39375 137
30 77731.8 0 52 1 [80612, 81961] 10800* 54850 491
35 77207.3 1 671 0 77973 1 159 4

rat99 45 5 1228.5 1 297 0 1237 8 1580 3
10 1196.5 1 198 0 1212 68 4726 46
15 1178.17 1 218 0 1195 39 5975 35
20 1164.17 2 250 1 1184 172 25897 145
25 1154.38 1 272 0 1170 177 18906 198
30 1148 3 325 1 1159 41 6544 47
35 1144.44 2 146 0 1153 50 9912 46
40 1142.17 2 254 0 1145 15 8129 35
45 1142 0 30 0 1142 0 0 0

kroB100 43 5 20282.3 1 220 0 [21023, 21093] 10800* 55636 4706
10 19230.5 1 297 0 [19869, 20289] 10800* 120403 4976
15 18438 2 286 1 [19198, 19364] 10800* 123221 3219
20 17849.5 1 114 3 18727 8587 96014 1077
25 17357.5 1 119 2 18132 8559 102279 1484
30 17057.8 1 138 1 17606 4426 76271 921
35 16890.3 1 117 5 17210 109 8919 86
40 16834 112 2527 0 16921 80 8506 62
45 16830 1 78 0 16838 2 329 2
50 16830 0 0 0 18684 2 0 0

kroC100 45 5 19016 1 208 0 19998 7676 64310 1693
10 18250 1 143 0 19077 1769 38756 1126
15 17713.5 0 92 0 18454 1950 34709 907
20 17344.8 1 93 1 17958 208 16261 323
25 17116.3 2 245 0 17668 930 24979 499
30 16959.5 1 115 2 [17421, 17539] 10800* 93350 1604
35 16863.5 24 1499 0 17189 5820 54226 610
40 16808.6 2 240 8 16926 74 8571 104
45 16801 2 177 1 16801 0 0 0
50 16801 0 0 0 17738 2 0 0

*Not solved to optimality within the limit of three hours.

Table 3: Results for a subset of (symmetric) instances in set A

The main conclusion we derive from the results of this section is that the B&C is worse in performance for
symmetric instances as compared to asymmetric instances. One possible explanation for this behavior is the
result that the multi-cut inequalities (13) of the PQR model do not improve the bounds given by the assignment
relaxation in the case of symmetric costs. This result can be proved by using a similar argument to that given
by Bektaş et al. (2017) for a multi-depot routing problem, and is therefore omitted here. In addition, and as
mentioned in Section 6.3.1, whereas the restricted multi-cut constraints (64) substantially improve the results for
asymmetric instances, the improvement is negligible for symmetric instances.

6.4 Comparisons between the PQR formulation and other formulations

In this section we provide some computational results with two purposes: i) evaluating the quality of the LP
bounds given by the PQRz+ and the PQRz+-v formulations compared to the x-v and the PQR formulations; and
ii) comparing the performance of the branch-and-cut algorithm based on the PQR model to the performance of a
branch-and-cut algorithm based on the x-v model.

Table 4 shows the comparison results in terms of LP bound between the x-v, the PQR, the PQRz+ and the
PQRz+-v models. In addition to the name of instance (namely the asymmetric instances ftv55 and ftv70 and the
symmetric instance brazil58), the value of p′ and the value of p, there is a fourth column indicating the optimal
value of the instance. The remaining eight columns are divided into four groups of two, with each group showing
the LP relaxation bound (LP) and the computational time needed to solve the LP relaxation (tL) for each of the
four models.

22

x-v PQR PQRz+ PQRz+-v
Name p′ p OPT LP tL LP tL LP tL LP tL
ftv55 10 5 1482 1462.67 0 1460.33 0 1460.33 3 1462.67 147

10 1435 1435 0 1435 0 1435 2 1435 36
15 1445 1438.33 3 1443.5 0 1443.5 4 1443.5 20
20 1548 1453.67 11 1510 0 1525.5 4 1525.5 9
25 1790 1515.98 101 1754 0 1769.5 5 1769.5 5

ftv70 11 5 1826 1806.88 1 1804.78 1 1804.78 204 1809.5 995
10 1766 1766 0 1766 0 1766 28 1766 369
15 1771 1766.67 4 1769.5 0 1769.5 48 1769.5 77
20 1841 1783.44 64 1837 0 1839.5 35 1839.5 53
25 1978 1830.07 364 1954.41 0 1963 40 1963 48
30 2210 1896.28 1393 2140.94 0 2182 16 2182 15
35 2535 1988.87 8552 2496.63 0 2499.5 27 2499.5 3

brazil58 27 5 20150 19103.3 0 18569.1 0 18569.1 1 19958 1584
10 18407 17776.5 1 17369 0 17369 3 18407 1763
15 17582 17191.5 1 16877 0 16877 1 17569 1014
20 17017 16748.5 1 16652 0 16652 1 17005.5 982
25 16583 16582 0 16573 1 16573 3 16583 166

Table 4: LP relaxation comparison between the x-v, the PQR, the PQRz+ and the PQRz+-v formulations

Given the observation stated at the beginning of Section 4, we will divide our evaluation of the results between
the p > p′ case and the p < p′ case. In addition, we will not focus on comparing the PQR and the x-v models
since we will provide an extended comparison afterwards.

Regarding the p > p′ case, the results of Table 4 show that the PQRz+ formulation is able to provide improved
LP bounds when compared to the PQR formulation. Additionally, we can see that the LP bound “loss” from going
from the PQRz+ formulation to the PQR is much lower than it is when going from the PQRz+ formulation to the
x-v model. Observe also that the PQRz+-v formulation provides the same LP bound as the PQRz+ formulation.

Regarding the p < p′ case, we can see that the PQRz+-v formulation provides substantially improved LP
bound when compared to the other models. In this case, however, it is the “loss” from going to the x-v model
which is lower. Nevertheless, the difference is much greater than the ones reported for the p < p′ case, which
indicates that there are many improvements still to be made for that case.

We now compare the PQR model and the x-v model in more detail. Observe that the x-v model has two
exponentially sized sets of inequalities, namely inequalities (48) and inequalities (49). In the corresponding branch-
and-cut, inequalities from these two sets were separated by using straightforward adaptations of the separation
algorithms presented in Gollowitzer et al. (2014) and Erdoğan et al. (2016), respectively. The branch-and-cut
algorithm for the x-v model implemented for this comparison also includes all the features used in the branch-
and-cut algorithm for the PQR model, including the use of heuristic separation algorithms and a primal heuristic.
Also, the symmetry-breaking constraints (63) were also incorporated.

Table 5 shows the comparison results in terms of their linear programming relaxation bounds and optimal
integer solution times. The instances used for the comparison are the asymmetric instances ftv70 and kro124p
and the symmetric instances kroB100 and kroC100. The format of this table is similar to the one of previous
tables, with only the number of separated (≤ p) and (≥ p) constraints separated being omitted. The remaining
comparison results of the PQR and the x-v models for the instances in sets A and B are available in Appendix in
Tables 11, 12 and 13.

23

PQR model x-v model
Name p′ p LP tL OPT t LP tL OPT t
ftv70 11 5 1804.78 1 1826 2 1806.88 1 1826 3

10 1766 0 1766 0 1766 0 1766 0
15 1769.5 0 1771 0 1766.67 4 1771 25
20 1837 0 1841 1 1783.44 64 [1790, 1990] 10800*
25 1954.41 0 1978 1 1830.07 364 [1841, 2092] 10800*
30 2140.94 0 2210 2 1896.28 1393 [1766, 2320] 10800*
35 2496.63 0 2535 1 1988.87 8552 [2009, 2878] 10800*

kro124p 32 5 35114.9 0 35435 13 35212.9 6 35435 20
10 34681.5 1 35010 15 34812.5 28 35010 41
15 34421.8 1 34799 68 34523.6 32 34800 3320
20 34227.8 4 34433 62 34280.5 37 34433 35
25 34083.1 0 34267 87 34115.6 17 34267 43
30 33990 0 34002 1 34002 2 34002 0
35 34050 0 34050 0 34019.8 2 34050 3257
40 34294.1 0 34310 0 34171.5 4 34310 8
45 35082 0 35331 1 34487.2 14 [33991, 36206] 10800*
50 36663 0 37541 1 34982.3 379 [33978, 46790] 10800*

kroB100 43 5 20282.3 1 [21034, 21093] 10800* 20495.5 1 21082 1995
10 19230.5 1 [19872, 20289] 10800* 19635.9 42 20127 3929
15 18438 2 [19204, 19364] 10800* 18944.9 34 19307 1775
20 17849.5 1 18727 8587 18324.2 70 18727 305
25 17357.5 1 18132 8559 17809.9 53 18132 93
30 17057.8 1 17606 4426 17395.5 122 17606 21
35 16890.3 1 17210 109 17048.2 77 17210 30
40 16834 112 16921 80 16861.8 11 16921 8
45 16830 1 16838 2 16830 1 16838 3
50 16830 0 18684 2 16830 2 [16830, 21852] 10800*

kroC100 45 5 19016 1 19998 7676 19357.2 21 [19421, 21265] 10800*
10 18250 1 19077 1769 18618.2 122 [18760, 19211] 10800*
15 17713.5 0 18454 1950 18058 59 [18300, 18651] 10800*
20 17344.8 1 17958 208 17670 75 [17878, 17958] 10800*
25 17116.3 2 17668 930 17367.8 43 [17528, 17668] 10800*
30 16959.5 1 [17434, 17539] 10800* 17118.9 57 [17379, 17476] 10800*
35 16863.5 24 17189 5820 16940.5 42 17189 123
40 16808.6 2 16926 74 16816.5 7 16926 23
45 16801 2 16801 0 16801 1 16801 0
50 16801 0 17738 2 16801 1 [16801, 21066] 10800*

*Not solved to optimality within the time limit of three hours

Table 5: Comparing the performance of the PQR model and x-v model

We will separate our evaluation on the reported results between the asymmetric instances and the symmetric
instances. In the former case, in terms of obtaining the optimal integer solution, the results show that the CPU
times of the PQR formulation are in general much lower than the ones obtained by the x-v model. The PQR
formulation is able to solve all of the reported instances whereas the x-v model is unable to solve 6 of them.
In addition, regarding the instances where both models are able to solve them, the times given by the PQR
formulation are much lower, with exception to a few cases. In terms of LP values, the PQR formulation provides
better bounds for the case with p > p′ and the x-v model for the case with p < p′. However, the difference in
the LP values between the two models is much greater in the p > p′ case. Regarding the complete results for the
instance set B, excluding instance ftv170 for which we did not test the x-v model, the PQR formulation is able to
solve all of the 65 instances whereas the x-v model is unable to solve 19 of those 65.

Regarding symmetric instances, and in contrast with the asymmetric case, the dominance of the performance
of the PQR model over the performance of the x-v model is not as impressive. In terms of the time needed to
obtain the optimal integer solution, the PQR formulation is able to solve 16 out of 20 instances of Table 5 whereas
the x-v model only 12. However the x-v model was able to solve 3 instances that the PQR formulation was not,
namely instances kroB100 for p = 5, 10, 15. In addition, in some cases, the times needed by the x-v model to solve
the instances are lower than the times needed by the PQR formulation. In general and on average, however, the
PQR formulation still performs better even if the x-v model is more competitive than in the asymmetric case. In
terms of LP values, we have similar conclusions as the ones for the asymmetric case. In particular, for the case
with p > p′ the PQR formulation provides better LP bounds, whereas for the case with p < p′ the X-v formulation
provides better LP bounds. The main difference of these results, and in contrast to the results of the asymmetric
case, is that instances with p < p′ arise much more often in the symmetric case since the value of p′ is in general
quite large. This helps to explain why the x-v model is more competitive since, as already noted before for the
asymmetric case, the cases with p > p′ are the cases where the PQR model provides better LP bounds. Regarding

24

the complete results for the instance set A, the PQR formulation is able to solve 124 out of 134 instances whereas
the x-v model only 109. We also observe that among the 134 instances, we chose “favorable” instances for the x-v
model to show in Table 5.

To conclude the comparison between these two models, in general the PQR formulation performs much better
than the x-v model does. This dominance is more noticeable for the asymmetric case, although, even in the
symmetric case, the PQR model is able to solve many more instances than the x-v model does. We believe that
the advantages of the PQR model which allow it to perform better for asymmetric instances are the efficiency of
the separation of the multi-cut inequalities, the fact that we were able to include symmetry-breaking constraints
in their restricted version and the good LP bounds for p > p′. For the symmetric instances, the case p > p′ is
quite rare and, thus, one of three advantages is lost. Nevertheless, the other two appear to still allow the PQR
formulation to outperform, in general, the x-v model. An important observation is that the performances of any
model greatly depend on whether p < p′ or p > p′.

6.5 Results on symmetric instances where two-node circuits are not allowed

Most of the recent literature on the symmetric HpMP is based on undirected graphs and does not allow two-node
cycles. In this section, we first show how the PQR formulation can be modified to handle this case, and then
present the associated computational results.

Possibly the most trivial way to prevent two-node circuits is to add subtour elimination constraints for two
nodes, which can be written using the p, q and r variables as follows:

pij + pji + rij + rji + qij + qji ≤ 1 ∀i, j ∈ V, i 6= j. (68)

The interpretation of the variables in the PQR formulation also allows for other “trivial” ways to model this
situation as, for instance, shown by the following set of constraints:∑

k 6=j

qki ≥ pij ∀i, j ∈ V, i 6= j. (69)

Note that constraints (68) state that an arc (i, j) cannot be used in both directions, whereas constraints (69)
say that if an arc (i, j) is used in which i is an acting depot, then the arc that enters into i must come from a
node k such that k 6= j.

It can be easily shown that, with respect to the LP relaxation, one set does not dominate the other, how-
ever their behavior is similar in the sense that they both perform quite bad computationally. In fact, some
computational experiments while attempting to solve symmetric instances in which two-node circuits are not
allowed by adding (68) or (69) (or even both) suggest that the PQR formulation with such constraints does not
compete with current state-of-the-art methods . However, by using similar (but adequately modified) symmetry-
breaking concepts to the symmetry-breaking constraints (66) presented in Section 5.2, we can derive a new set
of constraints that dominates both (68) and (69) and permits the resolution of previously unsolved benchmark
symmetric instances where two-node circuits are not allowed.

Observe that since every circuit must have at least three nodes, we can use an adaptation of the symmetry-
breaking constraints (66) to impose this condition. In particular, consider the following inequalities:∑

k>j

qki ≥
∑
k≥j

pik, ∀i, j ∈ V, i 6= j. (70)

The difference when compared to the symmetry-breaking constraints (66) is that on the left-hand side we
can remove the case k = j since we do not want circuits with only two nodes. The most important observation
is that in the regular case in which two-node circuit are allowed we observed that many solutions have a large
number of circuits with two nodes and, thus, the use of the symmetry-breaking constraints (66) provided only
a slight improvement in the computational times, however, in this case these symmetry-breaking constraints are
extremely effective in order to prevent alternative representations of solutions and, additionally, implicitly ensure
that every circuit has at least three nodes. We reinforce what we observed at the end of Section 5.2, namely that
these constraints heavily depend on the fact that the acting depot is clearly identified in the arc variables, which
is a characteristic of the p and the q variables.

25

The next table is similar to Table 6. It shows the relevance of the symmetry-breaking constraints (70) to
improve the LP bounds and reduce the solution times for obtaining the optimal solution of instance rat99 for 5
values of p, for the symmetric case where two-node cycles are not allowed.

No symmetry-breaking (SB) Only type I SB Both type I and type II SB
Name p′ p LP tL OPT t LP tL OPT t LP tL OPT t
rat99 8 9 1203.54 18 1209.09 148 1203.54 27 1209.09 76 1203.98 2 1209.09 12

14 1203.54 206 [1214.84, 1224.1] 10800* 1203.54 839 1224.1 3079 1214.61 5 1224.1 23
19 1203.99 39 [1224.86, 1245.16] 10800* 1203.99 65 1245.16 7102 1235.13 23 1245.16 43
24 1209.71 31 [1240.62, 1277.99] 10800* 1209.71 18 [1267.22, 1273.23] 10800* 1263.17 36 1273.23 44
33 1238.64 47 [1287.55, 1469.58] 10800* 1238.64 55 [1309.4, 1397.26] 10800* 1343.4 32 1373.37 3003

*Not solved to optimality within the time limit of three hours

Table 6: Comparison results between the different types of symmetry-breaking constraints for symmetric instances
where 2-node circuits are not allowed

For a comprehensive experimentation we used a subset of the instance set that Erdoğan et al. (2016) use,
which is comprised of the TSPLIB symmetric instances of set A with the addition of instance u159 that has 159
nodes. Most of the results are given in Table 7, except for results for instances of smaller size which are shown in
Table 14 in appendix. The tables follow the same format as the ones in the previous sections. However, the way
that the values for p are chosen for these instances follows Gollowitzer et al. (2014) and Erdoğan et al. (2016).

26

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
eil76 4 7 541.493 4 224 415 542.954 10 168 338

10 543.297 5 110 660 545.021 38 681 1928
15 547.805 12 224 1001 552.149 58 482 2859
19 553.543 14 257 1172 563.955 133 658 4978
25 572.847 30 323 1674 [590.395, 612.852] 10800* 1646 39658

pr76 8 7 99028.9 1 168 37 101401 5 851 28
10 99263 1 91 63 101779 8 280 142
15 100667 1 155 154 103663 34 1583 306
19 102559 2 234 237 104482 7 123 210
25 108023 4 324 166 110074 12 174 385

gr96 14 5 151513 1 312 0 153568 119 4565 553
20 150339 18 684 494 151403 77 1624 825

rat99 8 9 1203.98 2 199 100 1209.09 12 187 104
14 1214.61 5 329 231 1224.1 23 408 352
19 1235.13 23 335 725 1245.16 43 382 868
24 1263.17 36 406 1179 1273.23 44 354 995
33 1343.4 32 286 1483 1373.37 3003 2866 14681

kroA100 13 10 19570.2 11 680 3 19900.9 151 6723 385
14 19380.7 6 635 106 19637.5 95 4110 428
20 19523.3 20 974 290 19868.6 30 681 440
25 19815.7 21 920 356 20279.5 51 1275 583
33 20542.7 106 1726 627 [21498, 23591] 10800* 3130 31147

kroB100 20 10 20444.8 3 507 4 20823.1 145 7759 860
14 20396.3 7 679 2 20762.9 143 5317 607
20 20414 18 1151 43 20660 75 2726 185
25 20581.7 49 1588 448 20786.9 16 87 274
33 21413.9 39 1306 336 [22204.6, 24968.4] 10800* 2587 33454

kroC100 13 10 19703.3 5 695 2 19923.3 98 5063 526
14 19725.6 14 725 296 19938.8 67 4141 1006
20 19853.1 39 1065 511 20135 55 1120 890
25 20033.8 28 813 692 20428 436 3698 1959
33 20286 30 899 672 [21536.6, 23759] 10800* 5350 25233

kroD100 14 10 19957 3 462 6 20270.6 48 2775 212
14 19962.9 12 825 57 20267.2 42 1347 147
20 20021.2 46 1086 495 20457 197 4308 2070
25 20156.9 52 971 455 20671.2 160 2803 2090
33 20669.6 64 1802 487 [21720.3, 22439.7] 10800* 4162 25151

kroE100 12 10 20651 3 451 1 20766.4 25 2164 297
14 20641 5 467 213 20777.7 37 1529 449
20 20715 18 859 444 20937.4 65 1677 1251
25 20891.6 37 920 632 21174.9 92 2372 1114
33 21485.3 40 1271 450 [22470.1, 22843.6] 10800* 5026 20484

rd100 14 10 7338.77 4 648 3 7524.08 147 5527 662
14 7336.96 20 1142 28 7500.44 57 2449 105
20 7354.05 33 1424 216 7537.98 101 4456 1131
25 7419.3 37 1103 511 7555.83 42 721 699
33 7670.45 35 1184 443 [7919.09, 8211.2] 10800* 3624 27475

u159 20 5 41079 3 236 1 41695 1194 8017 312
30 41071.4 309 2667 81 41723 540 8432 306

*Not solved to optimality within the limit of three hours.

Table 7: Results for the symmetric case in which two-node circuits are not allowed

A comparison of our results with those reported by Erdoğan et al. (2016) shows that we have been able to
optimally solve instances that Erdoğan et al. (2016) have not, namely the instance pr76 with p = 15, instance gr96
with p = 20, instance rat99 with p ∈ {14, 19, 24, 33} and instance u159 with p ∈ {5, 30}. Conversely, there are
other instances which we have been unable to solve to optimality that Erdoğan et al. (2016) have, namely instance
att48 with p = 16 reported in the Appendix, instance eil76 with p = 25 and instance kroE100 with p = 33.

As for the branch-and-price algorithm described by Marzouk et al. (2016), we observe that this algorithm is
not able to easily solve instances with small values of p, whereas the algorithm we propose here is. In particular,
we have been able to optimally solve a number of instances that were not solved by Marzouk et al. (2016) (e.g.,
pr76 for p = 15, gr96 for p = 5 and kroA100, kroB100 and kroD100 for p ∈ {10, 14}). In contrast, some instances
optimally solved by Marzouk et al. (2016) proved difficult to solve with our algorithm (for instance, eil76 for
p = 25), in addition to other values of p that we have not tested which they have (note that Marzouk et al. (2016)
test, for many instances, all values of p).

Although the PQR formulation was created to solve the original HpMP as described by Branco & Coelho
(1990), the results provided for the case in which two-node circuits are not allowed suggest that the algorithm we
proposed is able to compete with the current state-of-the-art methods by providing optimal solutions for instances

27

that were previously unsolved. In relation to the difficulty of the problem, we concur with Erdoğan et al. (2016)
that the instances with larger values of p appear to be the hardest ones to solve. As for instances with small
values of p, those seem, in general, easier to solve by our method but appear to be harder to solve by the method
described by Marzouk et al. (2016). We conclude by emphasizing that constraints (70) which play the role of both
symmetry-breaking and two-node circuit elimination were key in the efficiency of the method based on the PQR
formulation.

7 Conclusions

One of the main contributions of this paper was to describe a formulation for the Hamiltonian p-median prob-
lem (HpMP), primarily aimed at solving the problem as was originally defined on a directed graph. The new
formulation has revealed rich theoretical insight as regards to the relationship to other alternative formulations
of the problem. The new formulation also allows for ways to effectively eliminate symmetries caused by the use
of acting depot variables. Using the symmetry breaking constraints in combination with separation algorithms
and a primal heuristic, the paper described a branch-and-cut algorithm operating on the new formulation that
allowed to optimally solve asymmetric instances with up to 171 nodes. Finally, the paper numerically showed that
the new formulation could be used to optimally solve instances of the symmetric HpMP of up to 100 nodes, and
described how it could be adapted to model the recently studied version of the problem, namely where two-node
circuits are not allowed, enabling to optimally solve symmetric instances previously unable to be solved.

Acknowledgments

We thank the two reviewers whose comments have helped to improve the paper. L. Gouveia and D. Santos
were supported by Portuguese National Funding from Fundação para a Ciência e a Tecnologia, under projects
UID/MAT/04561/2013 and PTDC/MAT-NAN/2196/2014. D. Santos was supported by a Programa de Bolsas
de Doutoramento da Universidade de Lisboa grant.

References

Araque G., J. R., Kudva, G., Morin, T. L. & Pekny, J. F. (1994), ‘A branch-and-cut algorithm for vehicle routing
problems’, Annals of Operations Research 50(1), 37–59.

Bektaş, T. (2012), ‘Formulations and Benders decomposition algorithms for multidepot salesmen problems with
load balancing’, European Journal of Operational Research 216(1), 83–93.

Bektaş, T., Gouveia, L. & Santos, D. (2017), ‘New path elimination constraints for multi-depot routing problems’,
Networks 70(3), 246–261.

Belenguer, J.-M., Benavent, E., Prins, C., Prodhon, C. & Wolfler Calvo, R. (2011), ‘A branch-and-cut method for
the capacitated location-routing problem’, Computers & Operations Research 38(6), 931–941.

Benavent, E. & Mart́ınez-Sykora, A. (2013), ‘Multi-depot multiple TSP: a polyhedral study and computational
results’, Annals of Operations Research 207(1), 7–25.

Branco, I. M. & Coelho, J. D. (1990), ‘The Hamiltonian p-median problem’, European Journal of Operational
Research 47(1), 86–95.

Campêlo, M., Corrêa, R. & Frota, Y. (2004), ‘Cliques, holes and the vertex coloring polytope’, Information
Processing Letters 89(4), 159–164.

Dantzig, G., Fulkerson, D. & Johnson, S. (1954), ‘Solution of a large-scale traveling-salesman problem’, Journal
of the Operations Research Society of America 2(4), 393–410.

Erdoğan, G., Laporte, G. & Rodŕıguez-Ch́ıa, A. M. (2016), ‘Exact and heuristic algorithms for the Hamiltonian
p-median problem’, European Journal of Operational Research 253(2), 280–289.

28

Fischetti, M., Salazar-González, J.-J. & Toth, P. (1997), ‘A branch-and-cut algorithm for the symmetric generalized
traveling salesman problem’, Operations Research 45(3), 378–394.

Fisher, M. L. & Jaikumar, R. (1981), ‘A generalized assignment heuristic for vehicle routing’, Networks 11(2), 109–
124.

Glaab, H. & Pott, A. (2000), ‘The Hamiltonian p-median problem’, The Electronic Journal of Combinatorics
7(1), 42.

Gollowitzer, S., Gouveia, L., Laporte, G., Pereira, D. L. & Wojciechowski, A. (2014), ‘A comparison of several
models for the Hamiltonian p-median problem’, Networks 63(4), 350–363.

Hupp, L. & Liers, F. (2013), ‘A polyhedral study of the Hamiltonian p-median problem’, Electronic Notes in
Discrete Mathematics 41, 213–220.

Laporte, G., Nobert, Y. & Arpin, D. (1986), ‘An exact algorithm for solving a capacitated location-routing
problem’, Annals of Operations Research 6, 293–310.

Laporte, G., Nobert, Y. & Pelletier, P. (1983), ‘Hamiltonian location problems’, European Journal of Operational
Research 12(1), 82–89.

Marzouk, A. M., Moreno-Centeno, E. & Üster, H. (2016), ‘A branch-and-price algorithm for solving the Hamilto-
nian p-median problem’, INFORMS Journal on Computing 28(4), 674–686.

Miller, C. E., Tucker, A. W. & Zemlin, R. A. (1960), ‘Integer programming formulation of traveling salesman
problems’, Journal of the Association for Computing Machinery 7(4), 326–329.

Zohrehbandian, M. (2007), ‘A new formulation of the Hamiltonian p-median problem’, Applied Mathematical
Sciences 1(8), 355–361.

29

A Additional computational results

The Appendix presents additional results obtained by the methods proposed in this paper.

A.1 Asymmetric instances with the PQR formulation

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
ftv33 8 5 1193.11 0 98 4 1201 0 109 4

10 1186 0 4 14 1187 0 0 10
15 1247.8 0 0 14 1261 0 0 6

ftv35 8 5 1383.75 0 77 1 1387 0 114 0
10 1382.5 0 0 6 1383 0 0 6
15 1471.25 0 0 12 1480 0 0 20

ftv38 8 5 1440.75 0 56 2 1444 0 56 0
10 1439.5 0 0 10 1440 0 0 10
15 1520.5 0 0 29 1534 0 0 44

p43 16 5 187.833 0 108 1 199 7 1446 52
10 152 0 262 4 158 3 1029 57
15 148 0 125 0 148 0 0 0
20 148 0 5 4 160 0 0 11

ftv44 9 5 1529.25 0 32 3 1543 1 275 15
10 1522 0 0 8 1522 0 0 0
15 1570.5 0 0 35 1573 0 1 36
20 1691 0 0 40 1691 0 0 0

ftv47 11 5 1661.13 0 95 0 1672 1 128 8
10 1652 0 20 7 1652 0 0 0
15 1691.5 0 0 55 1703 1 0 90
20 1815 0 0 48 1815 0 0 0

ry48p 20 5 13165.3 0 125 1 13497 1 417 23
10 12735.8 0 85 1 12868 1 165 10
15 12579.3 0 72 0 12677 1 120 16
20 12517 0 8 0 12517 0 0 0

ft53 8 5 6004.07 0 57 0 6022 1 66 1
10 5942 0 2 41 5942 0 0 0
15 6027.75 0 0 57 6049 1 0 67
20 6272.3 0 0 116 6305 0 0 72
25 6973.5 0 0 43 7639 1 0 134

ftv55 10 5 1460.33 0 220 2 1482 1 354 14
10 1435 0 65 27 1435 0 0 0
15 1443.5 0 0 90 1445 0 0 87
20 1510 0 0 92 1548 1 0 106
25 1754 0 0 232 1790 0 0 242

ftv64 9 5 1729.17 0 134 14 1732 0 98 4
10 1721 0 131 58 1721 0 0 0
15 1721 0 34 54 1721 0 0 0
20 1760.5 0 0 146 1767 0 0 128
25 1878 0 0 136 1888 0 0 101
30 2098.5 0 0 206 2140 1 0 129

Table 8: Results for the remaining (asymmetric) instances in set B

30

A.2 Symmetric instances with the PQR formulation

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
dantzig42 20 5 579.5 0 131 0 604 4 1977 17

10 545 0 24 0 573 3 1033 11
15 534 0 79 0 548 1 333 4
20 532 0 3 1 532 0 0 0

swiss42 20 5 1123.17 0 83 0 1155 1 294 10
10 1045 0 26 1 1084 2 1103 25
15 1021.83 0 62 2 1034 1 77 3
20 1009 0 100 0 1009 0 0 0

att48 22 5 28724.3 0 227 0 29816 4 1442 44
10 27039.8 0 114 2 27456 2 758 50
15 26675.5 0 33 1 27009 2 800 42
20 26600.3 0 213 1 26692 1 170 4

gr48 23 5 4469.25 0 113 0 4544 1 190 0
10 4248 0 23 0 4318 1 471 26
15 4164.75 0 65 1 4231 4 1622 58
20 4139.6 0 102 2 4157 0 132 15

hk48 18 5 10511.8 0 107 0 10834 3 1804 57
10 10083.5 0 126 0 10345 6 3634 59
15 9899 0 204 0 9946 0 223 6
20 9870 0 96 8 9916 1 235 21

eil51 23 5 437.13 0 157 0 441 1 123 2
10 423.9 0 101 0 428 2 652 7
15 414.75 0 71 0 418 2 1124 58
20 408 0 222 1 408 0 0 0
25 408 0 2 4 409 0 2 0

berlin52 23 5 6816.5 0 206 0 7052 3 1069 33
10 6491.83 0 106 0 6609 9 3113 114
15 6388.75 0 244 0 6444 2 887 15
20 6322.39 0 221 1 6359 2 580 9
25 6312 0 3 0 6373 0 2 0

brazil58 27 5 18569.1 0 68 1 20150 14 2135 109
10 17369 0 88 0 18407 61 8346 227
15 16877 0 107 0 17582 120 14661 330
20 16652 0 50 0 17017 53 6665 151
25 16573 1 287 0 16583 0 88 4

st70 31 5 643.25 1 268 0 665 87 9800 474
10 603.083 0 101 2 631 156 8656 300
15 574.25 1 239 2 607 447 20353 838
20 564 0 75 2 589 435 13435 356
25 561.5 2 291 0 573 68 3736 71
30 560 1 302 1 561 1 374 1
35 560 0 0 0 610 1 0 0

eil76 35 5 560.1 0 121 1 563 4 480 2
10 546.25 1 376 0 550 4 923 23
15 539.75 0 109 2 545 45 5528 735
20 535.75 0 84 7 539 3 621 7
25 533.167 1 205 0 536 5 1005 57
30 531.778 1 125 3 533 4 732 34
35 531 0 20 0 531 0 0 0

gr96 45 5 147533 1 240 0 150721 45 2012 70
10 143407 1 173 0 147495 226 10814 435
15 140685 2 393 0 144249 137 10476 475
20 138559 1 225 0 142035 492 17145 815
25 137118 1 158 1 139977 560 20101 1163
30 136510 0 62 2 138216 60 6985 137
35 136096 2 162 0 137453 222 11954 375
40 135777 1 67 0 136338 23 3225 38
45 135563 1 75 0 135563 0 0 0

Table 9: Results for the remaining (symmetric) instances in set A

31

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
kroA100 45 5 19658 1 143 0 20224 61 2127 55

10 18699.5 1 226 1 19392 249 11519 297
15 18078 1 140 3 18755 447 22261 598
20 17726.9 1 146 0 18383 1481 30894 529
25 17442.7 1 120 1 17924 113 7391 101
30 17278.3 2 233 0 17666 5801 64283 785
35 17199.3 1 95 2 17432 287 14109 111
40 17168.5 3 177 0 17212 8 1016 17
45 17153 3 299 0 17153 0 0 0
50 17153 0 0 0 18618 1 0 0

kroD100 44 5 19322 1 221 0 20284 10221 60366 7862
10 18353.7 1 170 0 [19106, 19372] 10800* 103038 4750
15 17662.2 1 293 0 [18330, 18713] 10800* 83788 5871
20 17177.8 1 125 0 17914 4433 54159 3153
25 16899.9 1 196 1 17401 3989 57340 2106
30 16740.5 1 156 1 17015 130 10774 231
35 16663 3 271 1 16752 4 537 5
40 16617.3 24 828 0 16650 4 419 12
45 16585 1 56 4 16625 1 16 3
50 16585 0 0 0 18474 39 0 0

kroE100 45 5 20337.3 1 288 0 20839 88 4251 189
10 19096 1 126 0 19595 16 1030 24
15 18260.5 1 226 0 18958 174 11682 280
20 17763.5 1 100 0 18424 631 27384 573
25 17376.3 1 147 0 17958 1556 37284 809
30 17151.8 4 257 0 17489 82 6066 68
35 16968.2 3 238 5 17080 6 723 3
40 16803 1 108 0 16952 39 4674 33
45 16741 1 0 0 16741 0 0 0
50 16741 0 0 0 17730 1 0 0

rd100 46 5 7368 1 184 0 7668 526 11318 349
10 7074.5 1 158 0 7436 5829 54921 3168
15 6904.67 4 611 0 [7211, 7234] 10800* 98725 1938
20 6777.25 2 323 1 7028 8312 84520 651
25 6698 2 225 1 6871 2506 57975 1689
30 6650 4 460 1 6777 822 21619 309
35 6625.75 10 670 0 6698 936 33427 488
40 6616.5 3 306 0 6660 114 7620 87
45 6613 8 471 8 6617 5 1377 3
50 6613 0 0 0 6910 1 0 0

*Not solved to optimality within the limit of three hours.

Table 10: Results for the remaining (symmetric) instances in set A (continued)

32

A.3 Comparison between the PQR model and the x-v model

PQR model x-v model
Name p′ p LP tL OPT t LP tL OPT t
ftv33 8 5 1193.11 0 1201 0 1194 0 1201 0

10 1186 0 1187 0 1185 0 1187 0
15 1247.8 0 1261 0 1209.63 1 1261 15

ftv35 8 5 1383.75 0 1387 0 1385 0 1387 0
10 1382.5 0 1383 0 1381.5 0 1383 1
15 1471.25 0 1480 0 1415.72 15 1480 59

ftv38 8 5 1440.75 0 1444 0 1442 0 1444 0
10 1439.5 0 1440 0 1438.5 1 1440 0
15 1520.5 0 1534 0 1465.05 22 1534 3775

p43 16 5 187.833 0 199 7 199 0 199 0
10 152 0 158 3 157 0 158 0
15 148 0 148 0 148 0 148 0
20 148 0 160 0 148 0 160 138

ftv44 9 5 1529.25 0 1543 1 1529.89 0 1543 1
10 1522 0 1522 0 1522 0 1522 0
15 1570.5 0 1573 0 1540.83 23 1573 91
20 1691 0 1691 0 1597.39 49 1691 3711

ftv47 11 5 1661.13 0 1672 1 1664.75 0 1672 1
10 1652 0 1652 0 1652 0 1652 0
15 1691.5 0 1703 1 1656 2 1703 453
20 1815 0 1815 0 1707.81 20 [1774, 1837] 10800*

ry48p 20 5 13165.3 0 13497 1 13320 0 13497 1
10 12735.8 0 12868 1 12797.8 0 12868 1
15 12579.3 0 12677 0 12597.5 0 12677 0
20 12517 0 12517 0 12517 0 12517 0

ft53 8 5 6004.07 0 6022 1 6012.8 0 6022 0
10 5942 0 5942 0 5936.33 1 5942 5
15 6027.75 0 6049 1 5960 0 6049 80
20 6272.3 0 6305 0 6031 1 [6242, 6305] 10800*
25 6973.5 0 7639 1 6183.19 7 [6203, 8206] 10800*

ftv55 10 5 1460.33 0 1482 1 1462.67 0 1482 1
10 1435 0 1435 0 1435 0 1435 0
15 1443.5 0 1445 0 1438.33 3 1445 9
20 1510 0 1548 1 1453.67 11 [1478, 1601] 10800*
25 1754 0 1790 0 1515.98 101 [1436, 1802] 10800*

ftv64 9 5 1729.17 0 1732 0 1731.2 1 1732 0
10 1721 0 1721 0 1721 1 1721 0
15 1721 0 1721 0 1721 2 1721 0
20 1760.5 0 1767 0 1726.83 27 [1735, 1843] 10800*
25 1878 0 1888 0 1767.62 228 [1778, 1958] 10800*
30 2098.5 0 2140 1 1836.25 407 [1721, 2229] 10800*

ft70 10 5 38055.6 0 38120 3 38113.7 0 38120 1
10 37978 0 37978 0 37978 0 37978 0
15 38018.5 0 38033 1 37984.5 3 38033 1078
20 38275.2 0 38390 7 38013 9 [38040, 39247] 10800*
25 39027.9 1 39233 9 38109.8 122 [38139, 40027] 10800*
30 40258.3 2 40539 11 38356.7 640 [38394, 40823] 10800*
35 42297 0 42908 2 38718.1 1179 [38791, 44946] 10800*

*Not solved to optimality within the limit of three hours.

Table 11: Comparing the performance of the PQR model and x-v model (asymmetric instances continued)

33

PQR model x-v model
Name p′ p LP tL OPT t LP tL OPT t
dantzig42 20 5 579.5 0 604 4 599 0 604 0

10 545 0 573 3 561.5 1 573 3
15 534 0 548 1 542.7 1 548 1
20 532 0 532 0 532 0 532 0

swiss42 20 5 1123.17 0 1155 1 1141.75 0 1155 1
10 1045 0 1084 2 1065.5 0 1084 1
15 1021.83 0 1034 1 1026.5 0 1034 0
20 1009 0 1009 0 1009 0 1009 0

att48 22 5 28724.3 0 29816 4 29195.5 0 29816 1
10 27039.8 0 27456 2 27256.5 0 27456 1
15 26675.5 0 27009 2 26794.3 0 27009 1
20 26600.3 0 26692 1 26610.5 0 26692 0

gr48 23 5 4469.25 0 4544 1 4526.06 0 4544 0
10 4248 0 4318 1 4260.5 0 4318 1
15 4164.75 0 4231 4 4183.17 1 4231 2
20 4139.6 0 4157 0 4140.5 0 4157 1

hk48 18 5 10511.8 0 10834 3 10769.6 1 10834 0
10 10083.5 0 10345 6 10219.7 0 10345 1
15 9899 0 9946 0 9918.8 1 9946 0
20 9870 0 9916 1 9870 0 9916 2

eil51 23 5 437.13 0 441 1 438.571 0 441 1
10 423.9 0 428 2 425.5 0 428 3
15 414.75 0 418 2 414.8 1 418 2
20 408 0 408 0 408 0 408 0
25 408 0 409 0 408 0 409 0

berlin52 23 5 6816.5 0 7052 3 6913.43 0 7052 1
10 6491.83 0 6609 9 6564 2 6609 2
15 6388.75 0 6444 2 6400.5 0 6444 2
20 6322.39 0 6359 2 6337 1 6359 1
25 6312 0 6373 0 6312 0 6373 46

brazil58 27 5 18569.1 0 20150 14 19103.3 0 20150 1
10 17369 0 18407 61 17776.5 1 18407 2
15 16877 0 17582 120 17191.5 1 17582 2
20 16652 0 17017 53 16748.5 1 17017 2
25 16573 1 16583 0 16582 0 16583 0

st70 31 5 643.25 1 665 87 662.1 2 665 2
10 603.083 0 631 156 621.4 18 631 26
15 574.25 1 607 447 594.154 19 607 479
20 564 0 589 435 576.3 5 589 29
25 561.5 2 573 68 563.5 3 573 2
30 560 1 561 1 560.167 1 561 0
35 560 0 610 1 560 0 [560, 728] 10800*

*Not solved to optimality within the limit of three hours.

Table 12: Comparing the performance of the PQR model and x-v model (symmetric instances continued)

34

PQR model x-v model
Name p′ p LP tL OPT t LP tL OPT t
eil76 35 5 560.1 0 563 4 560.889 0 563 6

10 546.25 1 550 4 548.382 2 550 5
15 539.75 0 545 45 543 2 545 4
20 535.75 0 539 3 538 10 539 6
25 533.167 1 536 5 534 5 536 4
30 531.778 1 533 4 532 7 533 7
35 531 0 531 0 531 1 531 0

pr76 36 5 91255.6 0 [96104, 97764] 10800* 93076.5 1 [96803, 97450] 10800*
10 85634 2 [90747, 91883] 10800* 88006 5 [90206, 92329] 10800*
15 81211.5 0 86380 1066 84413.3 14 86380 51
20 79365.2 0 82311 99 81247 13 82311 5
25 78332 0 82040 1757 79681.2 18 [81148, 82253] 10800*
30 77731.8 0 [80612, 81961] 10800* 78302.5 10 [79655, 82651] 10800*
35 77207.3 1 77973 1 77260.5 2 77973 1

gr96 45 5 147533 1 150721 45 149292 2 150721 75
10 143407 1 147495 226 145200 17 [146647, 147635] 10800*
15 140685 2 144249 137 142426 51 [143749, 146342] 10800*
20 138559 1 142035 492 140240 80 142035 9113
25 137118 1 139977 560 138444 67 139977 64
30 136510 0 138216 60 137192 47 138216 40
35 136096 2 137453 222 136350 10 137453 37
40 135777 1 136338 23 135861 5 136338 11
45 135563 1 135563 0 135563 1 135563 0

rat99 45 5 1228.5 1 1237 8 1231.5 1 1237 3
10 1196.5 1 1212 68 1207.6 14 1212 6
15 1178.17 1 1195 39 1190.88 222 1195 48
20 1164.17 2 1184 172 1175 38 1184 2837
25 1154.38 1 1170 177 1161 8 1170 683
30 1148 3 1159 41 1152.54 33 1159 48
35 1144.44 2 1153 50 1147.86 23 [1151, 1159] 10800*
40 1142.17 2 1145 15 1144 20 1145 10
45 1142 0 1142 0 1142 2 1142 0

kroA100 45 5 19658 1 20224 61 20046.3 2 20224 148
10 18699.5 1 19392 249 19236.3 19 19392 69
15 18078 1 18755 447 18572.6 17 18755 94
20 17726.9 1 18383 1481 18043.8 19 18383 75
25 17442.7 1 17924 113 17717.8 25 17924 29
30 17278.3 2 17666 5801 17451.6 74 17666 30
35 17199.3 1 17432 287 17253.2 13 17432 27
40 17168.5 3 17212 8 17179.5 7 17212 5
45 17153 3 17153 0 17153 1 17153 0
50 17153 0 18618 1 17153 2 [17153, 22460] 10800*

kroD100 44 5 19322 1 20284 10221 19915.5 5 20284 22
10 18353.7 1 [19106, 19372] 10800* 18934.2 100 19275 150
15 17662.2 1 [18330, 18713] 10800* 18234.2 104 [18489, 19128] 10800*
20 17177.8 1 17914 4433 17670.4 77 17914 89
25 16899.9 1 17401 3989 17259.2 30 17401 17
30 16740.5 1 17015 130 16935.5 33 17015 11
35 16663 3 16752 4 16718.5 8 16752 2
40 16617.3 24 16650 4 16634 8 16650 5
45 16585 1 16625 1 16585 2 16625 16
50 16585 0 18474 39 16585 1 [16585, 20732] 10800*

kroE100 45 5 20337.3 1 20839 88 20427 1 20839 128
10 19096 1 19595 16 19430 11 19595 21
15 18260.5 1 18958 174 18644 23 18958 50
20 17763.5 1 18424 631 18043.5 45 18424 1887
25 17376.3 1 17958 1556 17629 48 17958 3899
30 17151.8 4 17489 82 17292.9 11 17489 108
35 16968.2 3 17080 6 17014.8 13 17080 7
40 16803 1 16952 39 16827.1 7 16952 17
45 16741 1 16741 0 16741 1 16741 0
50 16741 0 17730 1 16741 1 [17062, 18524] 10800*

rd100 46 5 7368 1 7668 526 7508.33 2 [7550, 8143] 10800*
10 7074.5 1 7436 5829 7222.75 103 [7361, 7716] 10800*
15 6904.67 4 [7211, 7234] 10800* 7024.45 43 [7146, 7264] 10800*
20 6777.25 2 7028 8312 6860 23 [6949, 7048] 10800*
25 6698 2 6871 2506 6762.5 20 6871 64
30 6650 4 6777 822 6703.75 112 6777 39
35 6625.75 10 6698 936 6658.5 42 6698 27
40 6616.5 3 6660 114 6629.75 28 6660 15
45 6613 8 6617 5 6614 10 6617 1
50 6613 0 6910 1 6613 1 [6613, 8100] 10800*

*Not solved to optimality within the limit of three hours.

Table 13: Comparing the performance of the PQR model and x-v model (symmetric instances continued)

35

A.4 Additional results for the symmetric case in which two-node circuits are not allowed

Name p′ p LP tL #(≤ p) #(≥ p) OPT t #(≤ p) #(≥ p)
dantzig42 8 3 641 0 79 0 648 1 226 5

10 651.5 0 79 17 654 0 62 18
swiss42 7 4 1214.5 0 197 0 1232 1 211 7

6 1214.5 0 165 21 1231 1 176 25
8 1218.81 0 131 43 1231 1 87 65
10 1225.75 0 246 75 1238 1 95 105
14 1270 0 22 104 1292 1 10 285

att48 5 4 31703.7 0 231 4 31903.3 1 168 3
6 31671.4 0 134 55 31836.1 1 56 61
9 31756.7 0 96 83 32195.5 2 99 170
12 32083.2 1 195 188 32742.9 4 81 416
16 33217 1 111 289 [35667.8, 37874.3] 10800* 989 29397

gr48 6 4 4770 0 125 1 4841 3 417 120
6 4769.75 0 144 30 4805 2 308 243
9 4807 0 37 224 4926 13 364 1094
12 4886.21 1 73 395 5011 8 145 1094
16 5119.74 4 234 711 5445 208 407 6848

hk48 6 4 11197.5 0 174 2 11271 2 400 52
6 11197 0 129 6 11197 0 0 0
9 11250.3 0 180 139 11292 2 151 270
12 11367.7 1 191 238 11450 4 315 383
16 11742.7 1 92 378 12215 118 558 4030

eil51 3 5 419.58 1 131 155 422.323 4 286 354
7 421.306 1 94 195 424.356 5 153 540
10 424.737 1 128 312 432.489 10 282 1114
12 428.425 2 141 441 436.587 14 440 1518
17 445.355 3 379 423 473.977 1701 978 9965

berlin52 7 5 7167.14 0 165 20 7182.23 2 282 46
7 7166.87 0 141 21 7167.2 1 134 14
10 7182.32 1 189 176 7206.7 2 116 70
13 7263.34 1 247 225 7298.63 2 109 209
17 7559.85 0 17 167 7800.77 36 179 2031

brazil58 12 5 21001 0 196 1 21744 12 1314 191
8 20904 1 421 8 21289 6 896 98
11 20902.4 3 581 31 21080 5 892 16
14 21023.2 2 689 97 21221 2 70 90
19 21631.7 1 266 205 22635 71 556 2925

st70 12 7 631.417 1 227 4 638.221 5 437 18
10 628.559 6 1077 5 632.54 4 430 23
14 628.708 13 1109 187 630.902 3 102 141
17 630.017 10 676 367 636.194 9 283 403
23 648.67 7 560 266 694.495 3739 2440 9607

*Not solved to optimality within the limit of three hours.

Table 14: Results for the symmetric case in which two-node circuits are not allowed (continued)

36

