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Abstract7

Identifying the parameters of a model and rating competitive models based on measured data8

has been among the most important and challenging topics in modern science and engineering, with9

great potential of application in structural system identification, updating and development of high10

fidelity models. These problems in principle can be tackled using a Bayesian probabilistic approach,11

where the parameters to be identified are treated as uncertain and their inference information12

are given in terms of their posterior probability distribution. For complex models encountered in13

applications, efficient computational tools robust to the number of uncertain parameters in the14

problem are required for computing the posterior statistics, which can generally be formulated as a15

multi-dimensional integral over the space of the uncertain parameters. Subset Simulation has been16

developed for solving reliability problems involving complex systems and it is found to be robust to17

the number of uncertain parameters. An analogy has been recently established between a Bayesian18

updating problem and a reliability problem, which opens up the possibility of efficient solution by19

Subset Simulation. The formulation, called BUS (Bayesian Updating with Structural reliability20

methods), is based the standard rejection principle. Its theoretical correctness and efficiency requires21

the prudent choice of a multiplier, which has remained an open question. This paper presents a22

fundamental study of the multiplier and investigates its bias effect when it is not properly chosen. A23

revised formulation of BUS is proposed, which fundamentally resolves the problem such that Subset24

Simulation can be implemented without knowing the multiplier a priori. An automatic stopping25

condition is also provided. Examples are presented to illustrate the theory and applications.26
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updating28

1. Introduction29

Making inference about the parameters of a mathematical model based on observed measurements30

of the real system is one of the most important problems in modern science and engineering. The31

Bayesian approach provides a fundamental means to do this in the context of probability logic32

[Malakoff, 1999, Richard, 1961, Jaynes and Bretthorst, 2003], where the parameters are viewed as33

uncertain variables and the inference results are cast in terms of their probability distribution after34

incorporating information from the observed data. In engineering dynamics, for example, vibration35

data from a structure is collected from sensors and used for identifying the modal properties (e.g.36

natural frequencies, damping ratios, mode shapes) and structural model properties (e.g. stiffness,37

mass) [Hudson, 1977, Ewins, 2000]. This has been formulated in a Bayesian context [Beck and38

Katafygiotis, 1998, Beck, 2010], which resolved a number of philosophically challenging issues of the39

inverse problem, such has the treatment of multiple sets of parameters giving the same model fit to40

the data, an issue known as identifiability.41

Let Θ ∈ Rn be a set of parameters of a modelM, based on which a probabilistic prediction of42

the data D can be formulated through the likelihood function P (D|θ,M). Clearly, the probability43

distribution of Θ depends on the available information. Based only on knowledge in the context of44

M, the distribution is described by the prior distribution P (θ|M). When data about the system is45

available, it can be used to update the distribution. Using Bayes’ Theorem, the posterior distribution46

that incorporates the data information in the context ofM is given by47

P (θ|D,M) = P (D|M)−1 P (D|θ,M)P (θ|M), (1.1)

where48
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P (D|M) =

∫
Θ
P (D|θ,M)P (θ|M) dθ, (1.2)

is a normalizing constant. Future predictions of a response quantity of interest, say r(θ), can be49

updated by incorporating data information, through the posterior expectation [Papadimitriou et al.,50

2001]:51

E[r(θ|D,M)] =

∫
r(θ)P (θ|D,M) dθ. (1.3)

As far as the posterior distribution of θ for a given modelM is concerned, the constant in Eq.52

(1.2) is immaterial because it does not change the distribution. However, It is the primary quantity53

of study in Bayesian model class selection problems where competing models are compared based on54

the value of P (M)P (D|M) [Carlin and Chib, 1995, Chen et al., 2012, Beck and Yuen, 2004]. In55

that context, P (D|M) is often called the evidence (the higher the better).56

Capturing efficiently essential information about the posterior distribution, i.e. posterior statistics,57

and calculating the posterior expectation is a non- trivial problem, primarily resulting from the58

complexity of the likelihood function. In many applications, the likelihood function is only implicitly59

known, i.e. its value can be calculated point-wise but its dependence on the model parameters is60

mathematically intractable. This renders analytical solutions infeasible and conventional numerical61

techniques inapplicable. In this case, Markov Chain Monte Carlo (MCMC) [Metropolis et al.,62

1953, Hastings, 1970, Robert and Casella, 2004, Fishman, 1996] is found to provide a powerful63

computational tool. MCMC allows the samples of an arbitrarily given distribution to be efficiently64

generated as the samples of a specially designed Markov chain. In MCMC, candidate samples are65

generated by a proposal distribution (chosen by the analyst) and they are adaptively accepted based66

on ratios of the target distribution value at the candidate and the current sample.67

While MCMC in principle provides a powerful solution for Bayesian computation, difficulties are68
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encountered in applications, motivating different variants of the algorithm. For example, in problems69

with a large amount of data, the posterior distribution takes on significant values only in a small70

region of the parameter space, whose size generally shrinks in an inverse square root law with the71

data size. Depending on sufficiency or relevance of the data for the model parameters, the regions of72

significant probability content can be around a set of isolated points (globally or locally identifiable)73

or a lower dimensional manifold (unidentifiable) with non-trivial geometry [Katafygiotis and Beck,74

1998, Katafygiotis and Lam, 2002]. To the least extent this causes efficiency problems, making the75

choice of the proposal distribution difficult and leading to high rejection rate of candidates and hence76

poor efficiency. When the issue is not managed, significant bias can result in the statistical estimation77

based on the samples. Strategies similar to simulated annealing have been proposed to convert the78

original difficult updating problem effectively into a sequence of more manageable problems with less79

data, thereby allowing the samples to adapt gradually [Beck and Au, 2002, Cheung and Beck, 2010,80

Ching and Chen, 2007]. Another issue is dimension sustainability, i.e. whether the algorithm remains81

applicable when the number of variables (i.e. dimension) of the problem increases. This imposes82

restrictions on the design of MCMC algorithms so that quantities such as the ratio of likelihood83

functions involved in the simulation process do not degenerate as the dimension of the problem84

increases.85

Application robustness and dimension sustainability are well-recognized in the engineering86

reliability method literature [Au and Beck, 2003, Schuëller et al., 2004, Katafygiotis and Zuev, 2008].87

In this area, the general objective is to determine the failure probability that a scalar response of88

interest exceeds a specified threshold value, or equivalently to determine its complementary cumulative89

distribution function (CCDF) near the upper tail (i.e. large thresholds). Subset Simulation (SuS)90

[Au and Beck, 2001, Au and Wang, 2014] has been developed as an advanced Monte Carlo strategy91

that is efficient for small failure probabilities (rare events) but still retain a reasonable robustness92

similar to the Direct Monte Carlo method. In SuS, samples conditional on a sequence of intermediate93

failure events are generated by MCMC and they gradually populate towards the target failure region.94

These conditional samples provide information for estimating the whole CCDF of the response95

quantity of interest. SuS typically does not make use of any problem-specific information, treating96
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the input-output relationship between the response and the uncertain parameters as a black box.97

Based on an independent-component MCMC strategy, it is applicable for an arbitrary (potentially98

infinite) number of uncertain variables in the problem.99

By establishing an analogy with the reliability problem that SuS is originally designed to solve, it100

is possible to adapt SuS to provide an efficient solution for another class of problems. For example,101

by considering an augmented reliability problem where deterministic design parameters are artificially102

considered as uncertain, SuS has been applied to investigate the sensitivity of the failure probability103

with respect to the design parameters and their optimal choice without repeated simulation runs [Au,104

2005, Ching and Hsieh, 2007, Song and Kang, 2009, Taflanidis and Beck, 2009]. Another example105

can be found in constrained optimization problems, where an analogy was established between rare106

failure events in reliability problems and extreme events in optimization problems, allowing SuS to107

be applied to solving complex problems with nonlinear objective functions and potentially a large108

number of inequality constraints and optimization variables [Li and Au, 2010, Qi et al., 2011].109

In view of the application robustness and dimension sustainability, it would be attractive to adapt110

SuS for Bayesian computations. This is not trivial since the problem contexts are different. One111

major difference is that in the reliability problem the uncertain parameters follow standard classes of112

distributions (e.g. Gaussian, exponential) specified by the analyst; while in the Bayesian updating113

problem the uncertain parameters follow the posterior distribution, which generally does not belong114

to any standard distribution because the likelihood function is problem-dependent.115

Recent developments have shown promise for adapting SuS to Bayesian updating problems. In116

the context of Approximate Bayesian Computation (ABC), Chiachio et al. [2014] built an analogy117

with the reliability problem so that the posterior samples in the Bayesian updating problem can be118

obtained as the conditional samples in SuS at the highest simulation level determined by a tolerance119

parameter that gradually diminishes. The latter controls the approximation of the likelihood function120

through a proximity model (a feature of ABC) between the measured and simulated data for a given121

value of model parameter.122

Along another line of thought, Straub and Papaioannou [2014] recently provided a formulation123

called BUS (Bayesian Updating using Structural reliability methods) that opens up the possibility of124
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Bayesian updating using SuS. It combined an earlier idea [Straub, 2011] with the standard rejection125

principle to establish an analogy between a Bayesian updating problem and a reliability problem,126

or more correctly a probabilistic failure analysis problem [Au and Beck, 2003, Au, 2004, Au and127

Wang, 2014]. Through the analogy, the samples following the posterior distribution in the Bayesian128

updating problem can be obtained as the conditional samples in the reliability problem. Unlike ABC,129

the formulation is exact as it respects fully the original likelihood function; and in this sense it is130

more fundamental. One outstanding problem, however, is the choice of the likelihood multiplier, or131

multiplier in short, in the context of rejection principle. To guarantee the theoretical correctness of132

the analogy, it must be less than the reciprocal of the maximum value of the likelihood function,133

which is generally unknown especially before the problem is solved. Some suggestions have been given134

in Straub and Papaioannou [2014] based on inspection of the likelihood function. An adaptive choice135

was suggested based empirically on the generated samples [Betz et al., 2014]. It is more robust to136

applications as it does not require prior input from the analyst. It offers no guarantee on correctness,137

however, due to the incomplete nature of finite sampling information which seems inevitable. The138

problem with the choice of the multiplier remains open.139

This work is motivated by the choice of the multiplier and more fundamentally its mathematical140

and philosophical role in the BUS formulation. A rigorous mathematical study is carried out to141

provide fundamental understanding of the multiplier, which leads to a revised BUS formulation142

allowing SuS to be implemented independent of the choice of the multiplier and convergence of143

results to be checked formally. Essentially, by defining the failure event in the BUS formulation, we144

show that SuS can in fact be implemented without the multiplier and the samples beyond a certain145

simulation level all have the same target posterior distribution.146

This paper is organized as follows. We first give an overview of SuS and the original BUS147

formulation. The mathematical role of the multiplier and its bias effect arising from inappropriate148

choice are then investigated. A revised formulation is then proposed and associated theoretical issues149

are investigated, followed by a discussion on the application of SuS under the revised formulation.150

Examples are presented to explain the theory and illustrate its applications.151
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2. Subset Simulation152

We first briefly introduce Subset Simulation (SuS) to facilitate understanding its application in153

the context of Bayesian model updating and model class selection later. SuS is an advanced Monte154

Carlo method for reliability and failure analysis of complex systems, especially for rare events. It is155

based on the idea that a small failure probability can be expressed as a product of larger conditional156

failure probabilities, effectively converting a rare simulation problem into a series of more frequent157

ones.158

2.1. Reliability and failure analysis problem159

Despite the variety of failure events in applications, they can often be formulated as the exceedance160

of a critical response over a specified threshold. Let Y = h(θ), be a scalar response quantity of161

interest that depends on the set of uncertain parameters θ distributed as the parameter probability162

density function (PDF) q(θ). The function h(·) represents the relationship between the uncertain163

input parameters and the output response. The parameter PDF q(·) is specified by the analyst164

from standard distributions. Without loss of generality, the uncertain parameters are assumed to be165

continuous-valued and independent, since discrete-valued variables or dependent variables can be166

obtained by mapping continuous-valued independent ones.167

The primary interest of reliability analysis is to determine the failure probability P (Y > b) for a168

specified threshold value b:169

P (Y > b) =

∫
q(θ) I(θ ∈ F ) dθ, (2.1)

where170

F = {Y > b} = {θ ∈ Rn : h(θ) > b}, (2.2)

denotes the failure event or the failure region in the parameter space, depending on the context; I(·)171

7



is the indicator function, equal to 1 if its argument is true and zero otherwise. Probabilistic failure172

analysis on the other hand is concerned with what happens when failure occurs, which often involves173

investigating the expectation of some response quantity r(θ) (say) conditional on the failure event,174

i.e.175

E[r(θ)|F ] =

∫
r(θ) q(θ|F ) dθ, (2.3)

where176

q(θ|F ) = P−1F q(θ) I(θ ∈ F ), (2.4)

is the PDF of conditional on failure.177

When the relationship between Y and θ, i.e. the function h(·), is complicated, analytical or178

conventional numerical integration is not feasible for computing P (Y > b) or E[r(θ)|F ] and thus179

advanced computational methods are required for their efficient determination. SuS offers an efficient180

solution by generating a sequence of sample populations of θ conditional on increasingly rare failure181

events {Y > bi}, where {bi : 1, 2, . . .} is an increasing sequence of threshold values adaptively182

determined during the simulation run. These conditional samples provide information for estimating183

the CCDF of Y , i.e. P (Y > b) versus b from the frequent (left tail) to the rare (right tail) regime.184

When the right tail covers the threshold value associated with the target failure event, the required185

failure probability can be obtained from the estimate of the CCDF. The conditional samples can186

also be used for estimating the conditional expectation in probabilistic failure analysis, a feature187

not shared by conventional variance reduction techniques. As we shall see in the next section, the188

conditional samples provide the posterior samples required for Bayesian model updating. The failure189

probability provides the information for estimating the evidence for Bayesian model class selection.190
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2.2. Subset Simulation procedure191

A typical SuS algorithm is presented as follows [Au and Beck, 2001, Au and Wang, 2014]. Two192

parameters should be set before starting a simulation run: 1) the level probability p0 ∈ (0, 1) and 2)193

the number of samples per level N . It is assumed that p0N and p−10 are positive integers. As will194

be seen shortly, these are respectively equal to the number of chains and the number of samples195

per chain at a given simulation level. In the reliability literature, a prudent choice is p0 = 0.1. The196

number of samples N controls the statistical accuracy of results (the higher the better), generally197

in an inverse square root manner. Common choice ranges from a few hundreds to over a thousand,198

depending on the target failure probability.199

A simulation run starts with Level 0 (unconditional), where N i.i.d. (independent and identically200

distributed) samples of θ are generated from q(·), i.e. direct Monte Carlo. The corresponding201

values of Y are computed and arranged in ascending order, giving an ordered list denoted by202

{b(0)k : k = 1, . . . , N}. The value b(0)k gives the estimate of b corresponding to the exceedance203

probability p(0)k = P (Y > b) where204

p
(0)
k =

N − k
N

, k = 1, . . . , N. (2.5)

The next level, i.e. Level 1, is conditional on the intermediate failure event {Y > b1}, where b1 is205

determined as the (p0N + 1)-th largest sample value of Y at Level 0, i.e.206

b1 = b
(0)
N(1−p0). (2.6)

By construction, the p0N samples of θ corresponding to {b(0)N(1−p0)+j : j = 1, . . . , p0N} are conditional207

on {Y > b1}. These conditional samples are used as seeds for generating additional samples conditional208

on {Y > b1} by means of MCMC. A MCMC chain of p−10 samples is generated from each seed, giving209

a total population of p0N × p−10 = N samples conditional on {Y > b1} at Level 1.210
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During MCMC the values of Y of the conditional samples at Level 1 have been calculated. They211

are arranged in ascending order, giving the ordered list denoted by {b(1)1 : k = 1, . . . , N}. The value212

b
(1)
k gives the estimate of b corresponding to exceedance probability p(1)k = P (Y > b) where213

p
(1)
k = p0

N − k
N

, k = 1, . . . , N. (2.7)

The next level, i.e. Level 2, is conditional on {Y > b2} where b2 is determined as the (p0N + 1)-th214

largest sample value of Y at Level 1, i.e.215

b2 = b
(1)
N(1−p0). (2.8)

The above process of generating additional MCMC samples and moving up simulation levels is216

repeated until the target threshold level or probability level has been reached. In general, at Level i217

(i = 1, . . . , N), in the ordered list of sample values of Y denoted by {b(i)k : k = 1, . . . , N}, the value218

b
(i)
k gives the estimate of b corresponding to exceedance probability p(i)k = P (Y > b) where219

p
(i)
k = pi0

N − k
N

, k = 1, . . . , N. (2.9)

Several features of SuS are worth-mentioning. It is population-based in the sense that the samples220

at a given level are generated from multiple (p0N) chains, making it robust to ergodic problems.221

An independent-component MCMC algorithm is used, which is the key to be sustainable for high222

dimensional problems [Au and Beck, 2001, Schuëller et al., 2004, Haario et al., 2005]. The conditional223

samples at each level all have the target conditional distribution and there is no burn-in problem224

commonly discussed in the MCMC literature. This is because the MCMC chains are all started with225

a seed distributed as the target distribution (conditional on that level), and so they are stationary226

right from the start.227
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Variants of the SuS algorithm have been proposed to improve efficiency, i.e. Papadopoulos et al.228

[2012], Zuev and Katafygiotis [2011], Bourinet et al. [2011]. See also the review in Section 5.9 of Au229

and Wang [2014]. The algorithm can even be implemented as a VBA (Visual Basic for Applications)230

Add-In in a spreadsheet [Au et al., 2010, Wang et al., 2010].231

3. BUS formulation232

In this section we briefly review the BUS formulation [Straub and Papaioannou, 2014, 2016] that233

builds an analogy between the Bayesian updating problem and a reliability problem, thereby allowing234

SuS to be applied to the former. For mathematical clarity and to simplify notation, in the Bayesian235

updating problem we use q(θ) to denote the prior PDF p(θ), L(θ) to denote the likelihood function236

p(θ|D,M), PD to denote the normalizing constant P (D|M), and pD(θ) to denote the posterior PDF.237

The same symbol q(θ) is used for the prior PDF in the Bayesian updating problem and the parameter238

PDF in the reliability problem, as it has the same mathematical property (chosen from standard239

distributions by the analyst) and role (the distribution to start the SuS run) in both problems. In240

a Monte Carlo approach the primary target in Bayesian model updating is to generate samples241

according to the posterior PDF pD(θ) (rewritten from (1.1)):242

pD(θ) = P−1D q(θ)L(θ). (3.1)

3.1. Rejection Principle243

The BUS formulation is based on the conventional rejection principle. Let c, called the likelihood244

multiplier in this work, or simply multiplier, be a scalar constant such that for all θ the following245

inequality holds:246

cL(θ) ≤ 1. (3.2)
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Also, assume that i.i.d. samples can be efficiently generated from the prior PDF q(θ). This is a247

reasonable assumption because the prior PDF is often chosen from a standard class of distributions248

(e.g. Gaussian, exponential). In the above context, a sample θ distributed as the posterior PDF249

pD(θ) ∝ q(θ)L(θ) in (3.1) can be generated from the following straightforward application of the250

rejection principle:251

Step 1. Generate U uniformly distributed on [0, 1] and θ distributed with the prior PDF q(θ).252

Step 2. If U < cL(θ), return θ as the sample. Otherwise go back to Step 1.253

It can be shown [Straub and Papaioannou, 2014] that the sample θ returned from the above algorithm254

is distributed as pD(θ), that is by marginalising the auxiliary component u as255

pθ′(θ) =

∫ 1

0
pθ′,u(θ, u) du ∝ pD(θ). (3.3)

Although the above rejection algorithm is theoretically viable, the acceptance probability and256

hence efficiency is often very low in typical updating problems with a reasonable amount of data.257

This is because a sample drawn from the prior PDF q(θ) often has a low likelihood value L(θ) when258

the data is informative about the uncertain parameters, leading to significant change from the prior259

to the posterior PDF.260

3.2. Equivalent reliability problem261

Recognizing the high rejection rate when the rejection principle is directly applied, BUS transforms262

the problem into a reliability problem. The premise is that this will allow the existing algorithms263

developed in the reliability method literature to be applied to Bayesian updating problems, especially264

those are that capable of generating samples from the frequent (safe) region to the rare (failure)265

region, such as SuS. The reliability problem analogy of the Bayesian updating problem is constructed266

as follows. Consider a reliability problem with uncertain parameters (θ, u) having the joint PDF267

q(θ) I(0 ≤ u ≤ 1), where the failure event is defined as268

12



F = {U < cL(θ)}. (3.4)

Suppose that by some means (e.g. SuS) we can obtain a failure sample distributed as q(θ) I(0 ≤ u ≤ 1)269

and conditional on the failure event F . The PDF of the failure sample, denoted by (θ′, U ′), is given270

by271

pθ′,U ′(θ, u) = P−1F q(θ) I(0 ≤ u ≤ 1) I(u < cL(θ)), (3.5)

where272

PF =

∫ ∫
q(θ) I(0 ≤ u ≤ 1) I(u < cL(θ)) du dθ, (3.6)

is the failure probability of the reliability problem.273

In the above formulation, the driving response variable can be defined as274

Y = cL(θ)− U, (3.7)

so that the failure event corresponds to275

F = {Y > 0}. (3.8)

Populations of failure samples conditional on the intermediate failure events Fi = {Y > bi} for276

adaptively increasing bi (i = 1, 2, . . .) are then generated until they pass the target failure event277

F = {Y > 0}, from which the samples conditional on F are collected as the posterior samples.278
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Note that in the original formulation the driving response variable was in fact defined Y =279

U − cL(θ). The presentation in (3.7) is adopted so that it is consistent with the conventional SuS280

literature, where the intermediate threshold levels increase rather than decrease as the simulation281

level ascends.282

4. Likelihood multiplier283

One issue of concern in the BUS formulation is the choice of the multiplier c satisfying the284

inequality in (3.2), which is not always trivial. Some suggestions were given, by inspecting the285

mathematical structure of the likelihood function [Straub and Papaioannou, 2014]; or by adaptively286

using empirical the information from the generated samples [Betz et al., 2014]. The latter is more287

robust as it does not require preliminary analysis, but, as stated by the authors, in order to guarantee288

that it satisfies the inequality, more theoretical analysis is needed. In this section we rigorously289

investigate more fundamentally the role of the multiplier and its effect on the results if it is not290

properly chosen. The investigation leads to a reformulation of BUS, to be proposed in the next291

section.292

In the context of BUS, the multiplier needs to be chosen before starting a SuS run as it affects293

the definition of the driving variable Y in (3.7). Clearly, the multiplier affects the distribution of294

the driving variable as well as the generated samples. Recall that only those samples conditional295

on Y = cL(θ)− U > 0 are collected as the posterior samples. The larger the value of c the more296

efficient the SuS run, because this will increase Y and the failure probability P (Y > 0), thereby297

reducing the number of simulation levels required to reach the target failure event.298

From the inequality in (3.2), the choice of the multiplier is governed by the region in the parameter299

space of θ where the value of L(θ) is large. The largest admissible value of c is given by300

cmax = [maxθ L(θ)]−1 . (4.1)

This result is well-known in the rejection sampling literature. Clearly, this value is not known before301
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computation. While using a value smaller than cmax will be less efficient but still give the correct302

distribution in the samples, using a value larger than cmax will lead to bias in the distribution of the303

samples. In some problems it is possible to investigate the mathematical structure of L(θ) and derive304

inequalities to propose a choice of c that guarantees cL(θ) ≤ 1. In such cases, it is computationally305

beneficial to use that value. However, in general it is difficult by numerical means to have a choice of306

c that guarantees the inequality.307

When an inadmissible (too large) value of the multiplier is used, the resulting distribution of308

the failure samples will be truncated, leading to bias in the posterior statistical estimates based on309

them. To see this, note that the inequality (3.2) was used in establishing the third equality in (3.3).310

Suppose this inequality is violated, say, within some region B:311

B = {θ ∈ Rn : cL(θ) > 1}. (4.2)

Then for any θ ∈ B, I(u < cL(θ)) = 1 for u ∈ (0, 1) and so (3.3) implies312

pΘ(θ) = P−1F q(θ)

∫ 1

0
I(u < cL(θ))du = P−1F q(θ). (4.3)

For those θ not in B, the inequality is satisfied and the PDF value pΘ(θ) remains to be the correct313

posterior PDF pD(θ) as in (3.3):314

pΘ(θ) = P−1F q(θ) cL(θ) ∝ pD(θ). (4.4)

Thus, an inadmissible (too large) value of c introduces bias in the problem by truncating the315

posterior PDF to be the prior PDF in the region of θ where the inequality is violated. Intuitively, in316

the context of rejection principle, if the multiplier is not small enough, the samples drawn from the317

prior PDF are accepted (incorrectly) too often, rendering their distribution closer to the prior PDF318

15



than they should be.319

The truncation effect is illustrated in Figure 1, where the shaded interval denotes the region B.320

The prior PDF q(θ) is taken to be constant and so pD(θ) ∝ cL(θ). Instead of the target posterior321

PDF, the resulting distribution of the sample takes the shape of the center line. Within the region B322

it is truncated to the shape of q(θ).323

Figure 1: Truncation of distribution in rejection algorithm. Center line - resulting distribution (short of the
constant P−1

F ); shaded interval - truncation region B where cL(θ) > 1.

As long as the multiplier satisfies the inequality in (3.2), it is completely arbitrary and it does324

not affect the distribution of the resulting samples, which is equal to the correct posterior PDF. This325

observation is trivial but has important implications. In the original BUS context, for example, it326

implies that the samples generated in different simulation runs with different admissible values of327

the multiplier can be simply averaged for estimating posterior statistics, because they all have the328

same correct posterior distribution. This fact shall also be used later when developing the proposed329

algorithm in this work.330

5. Alternative BUS formulation331

Having clarified the role of the multiplier, we now present a modification of the original BUS332

formulation that isolates the effect of the multiplier in a fundamental manner. This leads to333

a formulation where SuS can be performed without having to choose the multiplier before the334

simulation run; and where the effect of the multiplier appears clearly in the accuracy of the posterior335

distribution. The modification is based on the simple observation that the failure event in (3.4) can336

be rewritten as337
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F =

{
ln

[
L(Θ)

U

]
> − ln c

}
. (5.1)

This means that the driving variable in SuS can be defined as338

Y = ln

[
L(Θ)

U

]
, (5.2)

and the target failure event can now be written as339

F = {Y > b}, (5.3)

where340

b = − ln c. (5.4)

The base of the logarithm is arbitrary but we choose to use natural logarithm here to facilitate the341

analysis.342

Despite the apparently slight change in definition of the driving variable, the setup above changes343

the philosophy behind the multiplier and the way SuS is implemented to produce the posterior344

samples. The driving variable no longer depends on the multiplier and so the choice of the latter is345

no longer needed to start the SuS run. The multiplier only affects the target threshold level b beyond346

which the samples can be collected as posterior samples. As remarked at the end of the last section,347

as long as the multiplier is sufficiently small to satisfy the inequality in (3.2), the distribution of348

the samples conditional on the failure event F = {U < cL(θ)} is invariably equal to the posterior349

distribution. This implies that in the proposed formulation the distribution of the samples conditional350
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on {Y > b} will settle (remain unchanged) for sufficiently large b. In the original BUS formulation351

where the driving variable is defined as Y = cL(θ)− U in (5.4) for a particular value of c (assumed352

to be admissible), only the samples conditional on the failure event F = {Y > 0}, i.e. for a threshold353

value of exactly zero, have the posterior distribution.354

Substituting b = − ln c from (5.4) into (3.2) and rearranging, the inequality constraint in terms355

of b is given by, for all θ,356

b > lnL(θ). (5.5)

From (4.1), the maximum admissible value of c is cmax = [maxθ L(θ)]−1. Correspondingly the357

minimum value of b beyond which the distribution of samples will settle at the posterior PDF is358

bmin = − ln cmax = ln [maxθ L(θ)] . (5.6)

Similar to cmax, the value of bmin is generally unknown but this does not affect the SuS run. Under359

the proposed formulation, one can simply perform SuS with increasing levels until one determines360

that the threshold level of the highest level has passed bmin. Despite not knowing bmin, this turns out361

to be a more well-defined task as it is shown later that the CCDF of Y , i.e. P (Y > b) versus b, has362

characteristic behaviour for b > bmin .363

The logarithm in the above formulation is introduced for analytical and computational reasons,364

so that the driving variable is a well-defined random variable. In particular365

Y = ln

[
L(θ)

U

]
= lnL(θ) + ln(U−1). (5.7)

For U uniformly distributed on [0, 1], ln(U−1) is exponentially distributed with mean 1. For a366

well-posed likelihood function L(θ) one can expect that lnL(θ) is a well-defined random variable367

18



when θ is distributed as q(·) , and so is the driving variable Y . In particular, if the first two moments368

of lnL(θ) are bounded, then the same is also true for the first two moments of Y because369

E[Y ] = E[lnL(θ) + lnU−1]

= E[lnL(θ)] + 1, (5.8)

E[Y 2] = E{[lnL(θ) + lnU−1]2}

= E{[lnL(θ)]2}+ 2E[lnL(θ)]E[lnU−1] + E{[lnU−1]2}

= E{[lnL(θ)]2}+ 2E[lnL(θ)] + 2, (5.9)

since E[lnU−1] = 1 and E{[lnU−1]2} = 2 (properties of the exponential variable lnU−1).370

The authors believe that, while respecting the originality of BUS, the proposed formulation resolves371

the issue with the multiplier, as the requirement of choosing it a priori in the original formulation372

has been eliminated. The theoretical foundation of the proposed formulation is encapsulated in the373

following theorem.374

Theorem 1. Let θ ∈ Rn be a random vector distributed as q(θ) and U be a random variable uniformly375

distributed on [0, 1]; with θ and U independent. Let L(θ) be a non-negative scalar function of θ.376

Define Y = ln[L(θ)/U ] and b = − ln c, for c ∈ R. Then, for any b > ln[maxθL(θ)]:377

1. The distribution of θ conditional on {Y > b} is pD(θ) = P−1D q(θ)L(θ) where PD =
∫
q(z)L(z) dz378

is a normalizing constant;379

2. PD = eb P (Y > b).380

Proof. In order to prove the first part of the above theorem, first note that events {Y > b} and381

{cL(θ) > U} are equivalent. Integrating out the uniform random variable from the PDF of the382

failure sample given by equation (3.5) gives:383
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pθ′(θ) =

∫ 1

0
pθ′,U ′(θ, u) du

= p−1F q(θ)

∫ 1

0
I(0 ≤ u ≤ 1) I(u < cL(θ)) du (5.10)

= p−1F q(θ) cL(θ)

∝ pD(θ).

The result will be valid for any c < [maxθL(θ)]−1, or equivalently for any b > ln[maxθL(θ)].384

For the second part of the theorem, since Y = ln[L(θ)/U ] and (θ, U) has a joint PDF q(θ)I(0 < u < 1),385

P (Y > b) is given by386

P (Y > b) =

∫ ∫
q(θ) I(0 < u < 1) I

(
ln

[
L(θ)

u

]
> b

)
du dθ

=

∫
q(θ)

∫ 1

0
I(u < e−bL(θ)) du dθ (5.11)

= e−b
∫
q(θ)L(θ) dθ,

since
∫ 1
0 I(u < e−bL(θ)) du = e−bL(θ) when e−bL(θ) < 1 for all θ (b is admissible). Observe, from387

the definition of the posterior (1.1), that PD is simply the last integral in (5.10). Thus,388

PD = ebP (Y > b) b > bmin. (5.12)

That is, when b > bmin, PD can be obtained as a product of eb and the failure probability P (Y > b)389

it corresponds to.390

�391
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6. Bayesian model class selection392

In addition to providing the posterior distribution and estimating the updated expectation in393

(1.3), the posterior samples can be used for estimating the normalizing constant PD in (1.2). This394

is the primary target of computation in Bayesian model class selection problems, where competing395

models are rated. In this section we show how this can be done using the conditional samples396

generated by SuS in the context of the proposed formulation.397

Let b be an admissible threshold level, i.e. b > bmin , so that the samples conditional on {Y > b}398

have the correct posterior distribution pD(θ). Consider the failure probability P (Y > b), which can399

be estimated using the samples in SuS.400

Note that equation (5.12) can be rewritten as401

P (Y > b) = e−bPD b > bmin. (6.1)

Since PD is constant for a given problem, this suggests that for sufficiently large b, P (Y > b) will402

decay exponentially with b. Interpreting P (Y > b) as the CCDF of Y , this exponential decay gives403

a picture similar to a typical CCDF encountered in reliability analysis. This is another (though404

secondary) merit of introducing the logarithm in the definition of the driving variable Y in (5.2).405

7. Characteristic trends406

As shown in the last section, when b > bmin the failure probability P (Y > b) is theoretically407

related to the evidence PD through (5.12). In the actual implementation, bmin is not known and so408

it is necessary to determine whether b > bmin so that the samples conditional on {Y > b} can be409

confidently collected as posterior samples. We argue that the variation of P (Y > b) with b takes on410

different characteristics on two different regimes of b. This can be used to tell whether the threshold411

value of a particular simulation level has already passed bmin in a SuS run, thereby suggesting a412

stopping criterion.413
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First, note that P (Y > b) is a non-increasing function of b. When b is at the left tail of the414

CCDF, P (Y > b) ≈ 1 and it typically decreases with b, equal to PD at b > bmin. When b > bmin,415

we know from (6.1) that P (Y > b) = PDe
−b and so it decays exponentially with b. We can thus416

expect that, as b increases from the left tail and passes bmin, the CCDF of Y typically changes from417

a decreasing function to a fast (exponentially) decaying function. Correspondingly, the function418

lnP (Y > b) changes from a slowly decreasing function to a straight line with a slope of -1.419

On the other hand, consider the following function:420

V (b) = b+ lnP (Y > b). (7.1)

This function can be used for computing the log-evidence lnPD as it can be readily seen that421

V (b) = lnPD b > bmin. (7.2)

When b is at the left tail of the CCDF, lnP (Y > b) ≈ 0 and so V (b) ≈ b increases linearly with b.422

The above means that as b increases from the left tail of the CCDF of Y the function V (b) increases423

linearly, going through a transition until it settles (remains unchanged) at lnPD after b > bmin. The424

characteristic behavior of lnP (Y > b) and V (b) are depicted in Figure 2.425

Figure 2: Characteristic trends of lnP (Y > b) and V (b).

Strictly speaking, the above arguments only apply to the theoretical quantities. In a SuS run the426

quantities lnP (Y > b) and V (b) as a function of b can only be estimated on a sample basis. The427
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resulting estimated counterparts will exhibit random deviation from the theoretical trends due to428

statistical estimation error, whose extent depends on the number of samples used in the simulation429

run (the larger the number of samples, the smaller the error). Nevertheless, the above arguments and430

Figure 2 provide the basis for determining the simulation level to stop and to collect the posterior431

samples, that is, once the trainsition in the slope of lnP (Y > b) and V (b) is complete. On this basis,432

we present an automatic stopping condition that is enforced once the algorithm detects that the433

transition has occurred.434

8. Automatic Stopping Strategy435

In the proposed context, the posterior samples can be obtained from the conditional samples in a436

straightforward manner from a SuS run. No modification of SuS is necessary. Below we outline how437

this can be done, focusing only on issues directly related to the Bayesian updating problem.438

The primary target of the Bayesian updating problem is to generate posterior samples of Θ439

distributed as the posterior PDF pD(θ) ∝ q(θ)L(θ), where q(θ) is the prior distribution assumed440

to be chosen from a standard class of distributions (e.g., Gaussian, exponential); and L(θ) is the441

likelihood function for a given set of data. As reviewed in Section 2, a SuS run produces the estimate442

of the CCDF of the driving variable Y , i.e. P (Y > b) versus b. The posterior samples for Bayesian443

model updating can be obtained as the conditional samples in a SuS run for the reliability problem444

with driving variable Y = ln[L(θ)/U ], where θ is distributed as q(θ) and U is uniformly distributed445

on [0,1]; with θ and U independent. The conditional samples are collected from the level whose446

threshold level is determined to be greater than bmin.447

8.1. Stopping criterion448

From the discussion in Section 7 and the definition of SuS, it is clear that the intermediate449

failure levels will continue to increase as the algorithm progresses. For a given level k where bk is an450

admissible value for the failure event, the samples generated will eventually be distributed as desired.451

The following theorem establishes theoretical guarantees that such failure level can be achieved in452
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a finite number of iterations, given some regularity assumptions. Moreover, it provides a stopping453

criterion to terminate the algorithm and prevent the generation of unnecessary SuS levels.454

Theorem 2. Let the Bayesian inference problem be defined by an upper-bounded likelihood function455

L(θ), a prior density q(θ) and associated posterior p(θ|D). The marginal distribution of θ conditional456

on the intermediate failure levels, denoted by p(θ|Fk), converges to the posterior. Moreover, there457

exist constants e−bk and a monotone decreasing sequence ak, such that458

lim
k→∞

ak = 0. (8.1)

where ak is the prior probability of the set Bk = {θ : e−bkL(θ) > 1}.459

Proof. In Theorem 1, it was proved that as long as the j-th failure level satisfies bj > bmin, any460

sample generated will be distributed according to the target posterior distribution. The level bj is461

said to be a terminal level since any value of bj+1 is, by definition, bj+1 > bj . Hence, the samples462

will be distributed as desired for any terminal level.463

To prove the theorem, let us characterise a non-terminal level k such that bk < bmin. For the464

optimal threshold level bmin, the inequality465

u < e−bminL(θ) < 1, (8.2)

is guaranteed for any value of a failure sample (θ, u) being distributed jointly as equation (3.5). In466

contrast, a non-terminal level satisfies e−bminL(θ) < e−bkL(θ) and it is not possible to determine467

an analogous right-hand side of inequality (8.2). Let the inadmissible set be defined as Bk = {θ :468

e−bkL(θ) > 1}. It follows that the marginal distribution of the target variable is given by469
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p(θ|Fk) ∝


q(θ) ifθ ∈ Bk

e−bk q(θ)L(θ) ifθ ∈ Bc
k.

(8.3)

Note that for all samples in the inadmissible set Bk, the marginal is proportional to the prior470

distribution, whilst for the samples in the admissible set Bc
k the target density is proportional to the471

posterior distribution. Marginalising in order to compute the normalising constant results in472

PFk
=

∫
Θ

[
q(θ) I(θ ∈ Bk) + e−bk q(θ)L(θ) I(θ ∈ Bc

k)
]
dθ

=

∫
Bk

q(θ) dθ + e−bk
∫
Bc

k

q(θ)L(θ) dθ

= Pθ(Bk) + e−bk PD Pθ|D(Bc
k), (8.4)

where Pθ(Bk) denotes the probability of event Bk under the prior distribution and Pθ|D(Bc
k) denotes473

the probability of event Bc
k under the posterior distribution. Note that equation (8.4) is consistent474

with the case where bk is a terminal level. If that is the case, the pair (θ, u) satisfies u < e−bkL(θ)475

by the definition of the driving variable Y and thus Bk = ∅. Let us rewrite the inadmissible set as476

Bk = {θ : L(θ) > ebk}. (8.5)

Given an increasing sequence of failure levels, it can be seen that the sequence of inadmissible sets is477

monotone decreasing, namely478

Bk ⊃ Bk+1 ⊃ . . . ⊃ ∅. (8.6)
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This fact is depicted in Figure 3.479

Figure 3: Increasing failure levels and likelihood.

Additionally, since the prior distribution is a probability measure, it satisfies the monotonicity480

property, namely P (Bk+1) ≤ P (Bk) for all k. Let us define the sequence ak as the prior probability481

of the inadmissible sets, i.e. ak = Pθ(Bk). As a consequence of the monotonicity property, it follows482

that ak is a monotone decreasing sequence of values converging to zero from above, denoted by483

ak ↘ 0. (8.7)

Moreover, since the sets Bk are monotone decreasing, then the sequence of complements is484

increasing, that is485

Bc
k ⊂ Bc

k+1 ⊂ . . . ⊂ Θ. (8.8)

Let mk denote the posterior probability of the set Bc
k. Analogous to ak, the sequence mk is monotone486

increasing converging to 1 from below. This is denoted by487

mk ↗ 1. (8.9)
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Expressions (8.7) and (8.9) allow to establish that for a sufficiently large value of k488

pFk
= e−bk PD, (8.10)

is satisfied and the result is established.489

�490

The preceding theorem allows us to propose a stopping criterion for the BUS algorithm with491

driving variable Y = log[L(θ)/u] using SuS . The value of ak can be made arbitrarily small by means492

of the failure level bk, which is learnt automatically during the algorithm. The computation of ak is493

challenging, since it involves a multiple integral. Note that the prior probability can be written as494

ak = Pθ(Bk) = Pθ(L(θ) > ebk) (8.11)

which is in itself a reliability problem, where the likelihood L(θ) takes the role of a performance495

function and ebk is a reliability threshold. Since the prior distributions are chosen from a standard496

catalogue of density functions and the probability is assumed to be small, such integral can also be497

computed by means of SuS. In this setting, computing equation (8.11) can be regarded as performing498

an inner level SuS. The sampling of the expanded variables (θ, u) from the failure levels in equation499

(3.5), is regarded as outer level SuS.500

8.2. Posterior statistical estimation501

The posterior samples {θ(m)
k : k = 1, . . . , N} obtained from simulation levelm for which bm > bmin502

can be used for estimating posterior statistics in Bayesian updating problem and the evidence for503

Bayesian model class section. For the former, the posterior expectation in (1.3) is estimated by504

simple averaging:505
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E[r(θ)|D,M)] ≈ 1

N

N∑
k=1

r(θ
(m)
k ). (8.12)

On the other hand, based on (5.12), the evidence can be estimated by506

P (D|M) = PD ≈ P̂D = ebmpm0 . (8.13)

Taking logarithm, the log-evidence is estimated by507

lnP (D|M) = lnPD ≈ ln P̂D = bm +m ln p0. (8.14)

8.3. Statistical error assessment508

Some comments are in order regarding the statistical error of the results, in terms of the quality509

of the posterior samples and the statistical variability of the log-evidence estimator. Provided510

that the threshold value of the simulation level is greater than bmin, its conditional samples are511

always distributed as the target posterior PDF pD(θ). As MCMC samples they are correlated,512

however. When used for statistical estimation they will give less information compared to if they513

were independent. Typically their correlation tends to increase with the simulation level. In view of514

this, it is not necessary to perform more simulation levels than necessary. The stopping criterion515

based on the inner-outer procedure discussed above guards against this scenario.516

For the evidence estimate in (8.13), it should be noted that its statistical variability arises517

from bm. By taking small random perturbation of the estimation formula, it can be reasoned518

that c.o.v.(lnP ) ≈ std(lnP ) ≈ std(bm), where std is an abbreviation for standard deviation. An519

estimation formula for the c.o.v. of bm based on samples in a single SuS run is not available, however.520

Conventionally only the c.o.v. of the estimate P̂b (say) for P (Y > b) for fixed b is available, rather521

than the c.o.v. of the b quantile value bm for fixed exceedance probability. It can be reasoned,522
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however, that the c.o.v. of P̂D (where bm is random) can be approximated by the c.o.v. of ebP̂b for523

fixed b (then taking b = bm obtained in a simulation run). The latter is equal to the c.o.v. of P̂b, for524

which standard estimation formula is available [Au and Beck, 2001, Au and Wang, 2014].525

8.4. Comparison with original BUS formulation526

Table 1 provides a comparison between the original BUS and the proposed formulation. Imple-527

menting SuS under the proposed framework has several advantages over the original BUS, stemming528

mainly from the treatment of the multiplier in the former. First of all, there is no need to determine529

the appropriate value of the multiplier to start the simulation run. The definition of the driving530

variable is more intrinsic as it only depends on the likelihood function and not on the multiplier. In531

the BUS context, if the chosen value of the multiplier is not small enough, it will lead to bias in the532

distribution of the samples, unfortunately in the high likelihood region of the posterior distribution533

that is most important. If it is chosen too small it will result in lower efficiency, as it requires more534

simulation levels to reach the target event from which the samples can be taken as posterior samples.535

In both cases if it is found after a SuS run that the choice of the multiplier is not appropriate, one536

needs to perform an additional run with a (hopefully) better choice of the multiplier. These issues537

are all irrelevant in the proposed context because the problem specification of the SuS run does not538

depend on the multiplier.539
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BUS Proposed
Driving variable Y = cL(θ)− U Y = ln[L(θ)/U ]

for any c < [maxθ L(θ)]−1

Target failure event F = {Y > 0} F = {Y > b}
for any b > ln[maxθ L(θ)]

Evidence calculation PD = cP (Y > 0) PD = ebP (Y > b)
for any b > ln[maxθ L(θ)]

Stopping criterion When threshold value of After inner-outer SuS procedure
simulation level is equal automatically determines that the
to zero. threshold bmin has been crossed by

driving the sequence ak ↘ 0.

Table 1: Comparison of original BUS and proposed reformulation. Note that the original definition of the
driving variable in BUS is Y = U−cL(θ). For consistency with SuS literature, it has been reexpresed
as shown here.

On the other hand, in the BUS context the posterior samples must be obtained as those conditional540

on the target failure event {Y > 0} where Y = cL(θ) − U . For example, samples conditional on541

Y > 0.1 cannot be directly used. Since the threshold values b1, b2, . . . generated adaptively in different542

simulation levels of SuS are random, they generally do not coincide with 0 , i.e. the target threshold543

value of interest. In this case, not all samples can be used directly as conditional samples. In the544

original BUS algorithm if the threshold level of the next level determined adaptively from the samples545

of the current level is greater than zero, it is set equal to zero so that the next (and final) level546

is exactly conditional on {Y > 0}. In the proposed context, the posterior samples can be directly547

collected from the samples generated in SuS. This is because any sample conditional on {Y > b}548

with b > bmin (Y = ln[L(θ)/U ]) can be taken as a posterior sample. The value of bmin is unknown549

but whether b > bmin can be determined from the inner-outer procedure discussed in Section 8.550

9. Illustrative examples551

We now present two examples that illustrate the applicability of the proposed methodology. The552

first one is the locally identifiable case of a two-degree-of- freedom shear building model originally553

presented in Beck and Au [2002]. The second example is the unidentifiable case of the same model.554
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9.1. Example 1. Two-DOF shear frame: locally identifiable case555

Consider a two-storied building structure represented by a two-degree-of-freedom shear building556

model. The objective is to identify the interstory stiffnesses which allow the structural response to be557

subsequently updated. The first and second story masses are given by 16.5× 103 kg and 16.1× 103558

kg respectively. Let θ = [θ1, θ2] be the stiffness parameters to be identified. The interstory stiffnesses559

are thus parameterized as k1 = θ1k1 and k2 = θ2k2, where the nominal values for the stiffnesses are560

given by k1 = k2 = 29.7 × 106 N/m. The joint prior distribution q(·) for θ1 and θ2 is assumed to561

be the product of two Lognormal distributions with most probable values 1.3 and 0.8 respectively562

and unit standard deviations. For further details on the assumptions behind the parameterization563

and the choice of nominal values, refer to Beck and Au [2002]. Let D = {f̃1, f̃2} be the modal data564

used for the model updating, where 3.13 Hz and 9.83 Hz are the identified natural frequencies. The565

posterior PDF is formulated following Vanik et al. [2000] as566

pD ∝ exp[−J(θ)/2ε2] q(θ), (9.1)

where ε is the standard deviation of the prediction error and J(θ) is a modal measure-of-fit function567

given by568

J(θ) =

2∑
j=1

λ2j [f2j (θ)/f̃2j − 1]. (9.2)

Here, λ1 and λ2 are weights and f1(θ) and f2(θ) are the modal frequencies predicted by the569

corresponding finite element model.570

For the implementation of SuS, a conventional choice of algorithm parameters in the reliability571

literature is adopted in this study. The level probability is chosen to be p0 = 0.1 and the number of572

samples per level N is fixed at 10,000. In the standard Gaussian space, the one-dimensional proposal573

PDF is chosen to be uniform with a maximum step width of 1. A relatively large number of samples574
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per level is been chosen in this study to illustrate the theoretical aspects of the proposed method.575

Strategies for efficiency improvement such as adaptive proposal PDF or likelihood function can be576

explored but are not further investigated here.577

Figure 4 shows the Markov chain samples for θ = [θ1, θ2] at six consecutive simulation levels.578

The results are shown in the Lognormal space after the application of the relevant transformation.579

Level 0 corresponds to the unconditional case (i.e. Direct Monte Carlo), that is, the joint prior PDF.580

As the simulation level ascends, the distribution of the samples evolves from the prior distribution to581

the target posterior distribution, which is bimodal in the present example.582

Figure 4: Markov chain samples in the Lognormal space for the stiffness parameters θ = [θ1, θ2] from Level
0 (prior distribution) to Level 5.

Figure 5 shows the marginal histograms for θ1 and θ2 corresponding to those samples in Figure583

4. For comparison, the solid lines show the target marginal posterior distributions obtained by584

numerically integrating the expression for the posterior PDF, which is still feasible for this two-585

dimensional example. It is apparent that the distribution of the samples has settled either in Level586

4 or Level 5. In reality, the exact target PDF is not available and so alternative means must be587

employed to determine whether the distribution of the samples has settled at the target one. Within588

the context of the current methodology, this is done through the proposed automatic stopping strategy589

and confirmed by the plots of the log-failure probability and log-evidence versus the threshold level.590
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Figure 5: Posterior marginal PDF for θ2 at different simulation levels. The target marginal posteriors were
obtained numerically and are shown for comparison.

Figure 6 plots the estimate of the log-CCDF of Y , i.e. lnP (Y > b) versus b. The general shape591

of the resulting simulated curve coincides with the characteristic trend predicted by the theory (see592

Figure 2), that is, there is a transition from a slowly decreasing function to a line with slope equal593

to -1. When zooming into the region where b > 0, the figure shows the boundaries of each level594

computed via SuS. Additionally, the log-evidence was computed following (7.1) and is shown in595

Figure 6. As with the log-CCDF, the theoretical prediction of the characteristic trend is also verified596

for this case, whereby the curve flattens when the transition is complete. Table 2 shows the evolution597

of the threshold (columns 2 and 3). The transition is complete after Level 4, where the probability598

of inadmissibility ak converges to zero (as defined in Section 8). For a tolerance of ak = 10−8, the599

fourth column in Table 2 shows that the posterior samples should be collected from Level 5. This600

corresponds with the clearly bimodal distributions in figures 4 and 5. It is guaranteed that the601

samples in the subsequent Sus levels would all be distributed according to the target posterior PDF.602

However, for statistical estimation their quality deteriorates as the simulation level ascends because603

their correlation tends to increase. Thus, the algorithm stops in Level 5.604
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Figure 6: Log-CCDF computed through SuS (left plot) for the identifiable case. The curve slowly transitions
into a straight line with negative unit slope. Correspondingly, the log-evidence (right plot) flattens
as the threshold exceeds bmin. The dotted lines show the thresholds for different simulation levels.

Level bk ck ak
0
1 -4.291e+02 2.325e+186 5.3300e-01
2 -6.237e+01 1.221e+27 1.3800e-01
3 -9.331e+00 1.128e+04 2.8700e-02
4 2.203e+00 1.105e-01 4.0400e-03
5 5.780e+00 3.088e-03 0.0000e+00

Table 2: Evolution of the threshold and the probability of inadmissibility.

9.2. Example 2. Two-DOF shear frame: unidentifiable case605

The exercise was repeated for the case where the story masses are also unknown and need to606

be updated. The problem is characterized as unidentifiable, since there are an infinite number of607

combinations of parameter values that can explain the measured modal frequencies. In addition to the608

stiffnesses, the masses are parameterized as m1 = θ3m1 and m2 = θ4m2, where the nominal values for609

the are given by m1 = 16.5× 103 kg and m2 = 16.1× 103 kg. Thus, for this case, θ = [θ1, θ2, θ3, θ4]610

where the marginal prior distributions for θ1 and θ2 are the same Lognormals as in the previous611

example. The prior marginal distributions for θ3 and θ4 are both assumed to be Lognormals with612

most probable values equal to 0.95 and standard deviation of 0.1. The joint prior PDF is therefore613

taken as the product of the four Lognormals. Figure 7 shows the Markov chain samples for θ (θ1614

versus θ2 for visualization purposes) at simulation levels 0 through 5. Again, the updated distribution615

results in a bimodal posterior PDF.616
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Figure 7: Markov chain samples in the Lognormal space for the stiffness parameters θ1 and θ2 of the
unidentifiable case at simulation levels 0 (prior distribution) to level 5.

Analogously, Figure 8 shows the samples for θ3 and θ4 in the Lognormal space. There is no617

noticeable pattern in the distribution of the masses, consistent with the findings in Beck and Au [2002].618

The characteristics of this example are very similar to the ones displayed by the locally identifiable619

case. The automatic stopping condition is also reached when ak ≤ 10−8, for which the posterior620

samples are also collected in Level 5. We omit the characteristic trend plots and corresponding table621

for brevity.622

Figure 8: Markov chain samples in the Lognormal space for the mass parameters θ3 and θ4 of the unidentifiable
example at simulation levels 0 to level 5.
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9.3. Example 3. Model Class Selection623

Following the two preceding examples, we can estimate the log-evidence corresponding to each624

model according to equation (8.14). Figure 9 shows the ratio of the evidence for the identifiable case625

to the evidence of the locally unidentifiable case. Discounting the random deviation due to simulation626

error, the ratio of evidence seems to converge to 1, which suggests that, given the available data,627

there is no reason to prefer the unidentifiable model over the more parsimonious one.628

Figure 9: Ratio of evidence of the identifiable model to the evidence of the locally unidentifiable model. Since
this ratio converges to 1, there is no preference of either model over each other, given the available
data.

10. Conclusions629

We have presented a fundamental analysis of BUS, a recently proposed framework that establishes630

an analogy between the Bayesian updating problem and the engineering reliability problem. This631

work was motivated by the question of choosing the correct likelihood multiplier and it has led to632

an improved formulation which resolves this question. By redefining the target failure event, we633

have expressed the driving variable in the equivalent reliability problem using the likelihood function634

alone, without the multiplier. This redefinition provides the key advantage over the original BUS,635

since our implementation no longer requires a predetermined value for the multiplier in order to636

start the SuS runs. This immediately eliminates the need to perform additional runs in case an637

inadmissible or inefficient value for the multiplier is chosen. Moreover, it was shown that the samples638

generated at different levels of SuS can be used directly as posterior samples as long as their threshold639

is greater than the minimum admissible value and the probability of inadmissibility is zero. We640
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have proposed an inner-outer SuS procedure that provides an automatic stopping condition for the641

algorithm. The theoretical predictions of our study have been verified by applying our proposed642

strategy to illustrative examples.643
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