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University of Bonn, Germany, atoennis@uni-bonn.de

We consider a stochastic online problem where n applicants arrive over time, one per time step. Upon
arrival of each applicant their cost per time step is revealed, and we have to fix the duration of employment,
starting immediately. This decision is irrevocable, i.e., we can neither extend a contract nor dismiss a
candidate once hired. In every time step, at least one candidate needs to be under contract, and our goal is
to minimize the total hiring cost, which is the sum of the applicants’ costs multiplied with their respective
employment durations. We provide a competitive online algorithm for the case that the applicants’ costs
are drawn independently from a known distribution. Specifically, the algorithm achieves a competitive ratio
of 2.965 for the case of uniform distributions. For this case, we give an analytical lower bound of 2 and
a computational lower bound of 2.148. We then adapt our algorithm to stay competitive even in settings
with one or more of the following restrictions: (i) at most two applicants can be hired concurrently; (ii) the
distribution of the applicants’ costs is unknown; (iii) the total number n of time steps is unknown. On the
other hand, we show that concurrent employment is a necessary feature of competitive algorithms by proving
that no algorithm has a competitive ratio better than Ω(

√
n/ logn) if concurrent employment is forbidden.

Key words : online algorithm, stopping problem, prophet inequality, Markov chain, secretary problem
MSC2000 subject classification : Primary: 60G40, 62L15, 68W27; secondary: 68W40, 68Q87
OR/MS subject classification : Primary: computers/computer science: analysis of algorithms ; secondary:

probability: Markov processes

∗ Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School CE
at TU Darmstadt.

†Research was carried out in the framework of Matheon supported by Einstein Foundation Berlin.

1

mailto:disser@mathematik.tu-darmstadt.de
mailto:john.fearnley@liverpool.ac.uk
mailto:gairing@liverpool.ac.uk
mailto:goebel@cs.rwth-aachen.de
mailto:max.klimm@hu-berlin.de
mailto:daniel.schmand@oms.rwth-aachen.de
mailto:skopalik@mail.uni-paderborn.de
mailto:atoennis@uni-bonn.de


Disser et al.: Hiring Secretaries over Time
2

1. Introduction The theory of optimal stopping is concerned with problems of finding the
best points in time to take a certain action based on a sequence of sequentially observed random
variables. Problems of this kind are ubiquitous in the area of operations research, e.g., when
hiring, selling, purchasing, or procurement decisions are made based on the partial observation of a
sequence of offers with known statistical properties. In one of the most basic stopping problems, a
gambler sequentially observes realizations x1 ∼X1, x2 ∼X2, . . . of a series of independent random
variables. After being presented a realization xi ∼ Xi, the gambler has to decide immediately
whether to keep the realization xi as a prize, or to continue gambling hoping for a better realization.
For this setting, the famous prophet inequality due to Krengel, Sucheston, and Garling (cf. [23, 24])
asserts that the best stopping rule of the gambler achieves in expectation at least half the optimal
outcome of a prophet that foresees the realizations of all random variables and, thus, gains the
expected maximal realization of all variables.

After the surprising result of Krengel et al., prophet-type inequalities were provided for several
generalizations of their model, including settings where both the gambler and the prophet may
stop multiple times (cf. Kennedy [20], Alaei [1]), settings where both choose a set subject to
matroid constraint (cf. Kleinberg and Weinberg [22]), polymatroid constraints (cf. Dütting and
Kleinberg [7]), and general constraints (cf. Rubinstein [28]).

In light of this remarkable progress in establishing prophet-type inequalities for various stochastic
environments, two remarks are in order. First, the known results consider maximization problems
only. While obviously important as a model for situations where, e.g., items are to be sold and
offers for the items arrive over time, they do not capture the “dual” problem where items need to
be procured. In fact, minimization problems in stochastic environments are sparsely studied. The
only work on minimization in the prophet inequality/secretary context is by Esfandiari et al. [8].
They show that there is no stopping rule that allows for a constant factor approximation compared
to the prophet’s outcome, even in the most basic case of single stopping and i.i.d. distributions.
Second, the models above are inherently static in the sense that the objective depends only on
the set of chosen realizations at the end of the sequence. This is a reasonable assumption when
the underlying selling or purchase decisions have a long-term impact, and the time during which
the sequence of random variables is observed can be neglected. On the other hand, they fail to
capture the natural situation where realizations are observed for a long period of time and selling
or procurement decisions are taking effect even while further offers are observed.

To illustrate the key differences between static and dynamic settings, consider a firm that in each
time step needs to be able to perform a certain task in order to be operational. Traditionally, the
firm could advertise a position and hire an applicant able to perform the task. Assuming that the
firm strives to minimize labour cost, this leads to a (static) prophet-type problem where the costs
of the applicants are drawn from a distribution and the firm strives to minimize the realized costs.
Alternatively, online marketplaces like oDesk.com and Freelance.com provide the opportunity to
hire applicants with a limited contract duration and to possibly hire another contractor when a new
offer with lower cost arrives. The constant rise of the revenue generated by these platforms (reaching
1 billion USD in 2014) suggests that the latter approach has growing economic importance [31].

Hiring employees for a limited amount of time leads to a new kind of stopping problem where the
ongoing observation period overlaps with the duration of contracts, and active contracts need to
be maintained over time while receiving new offers. To model these situations, we study a natural
setting where at least one contract needs to be active at each point in time, while there is no
additional benefit of having more than one active contract.1 This covering constraint renders it
beneficial to accept good offers even when other contracts are still active, and a key challenge is to
manage the tradeoff between accepting good offers while avoiding contract overlaps.

1 We discuss a relaxation of the strict covering constraint in Section 9.
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Specifically, we assume that in every time step i ∈ [n] we observe the cost of the i-th applicant
xi, where the values xi are drawn i.i.d. from a common distribution X. In each time step i, we
have to decide on a number of time steps ti for which to hire the i-th applicant. This duration
is fixed irrevocably at time i and extension or shortening of this duration is impossible later on.
Hiring applicant i with realized cost xi results in costs of xiti. We are interested in minimizing
the expected total hiring cost Ex1∼X,...,xn∼X

[∑n

i=1 tixi
]
, subject to the constraint that at least one

applicant is under employment at all times.

1.1. Results and Outline When the total number of time steps and the distribution are
known, the dynamic stopping problem considered in this paper can be solved by a straightforward
dynamic program (DP). The DP maintains a table of n2 optimal threshold values depending on
the number of remaining covered and uncovered time steps. Like other optimal solutions for similar
stochastic optimization problems, the DP suffers from the fact that it relies on the exact knowledge
of the distribution and the number of time steps, and does not allow to quantify the optimal
competitive ratio.

The results we give in this paper address these shortcomings. We give online algorithms with
constant competitive ratios, and in doing so, we prove that the optimal online algorithm also gives
a constant competitive ratio for any cost distribution that is known upfront. Our techniques are
robust with respect to incomplete information and can be extended to the case where the cost
distribution and/or the total number of time steps is unknown, while still providing a constant
competitive ratio. Furthermore, our approach is conceptually simple, efficient and not tailored to
specific distributions.

For ease of exposition, we present our algorithm in incremental fashion starting with a simplified
version for uniform distributions in § 4.1. The algorithm maintains different threshold values over
time and hires applicants when their realized cost is below the threshold. By relating the execution
of the algorithm with a Markov chain and by analyzing its hitting time, we bound the competitive
ratio of the algorithm. In § 4.2, we refine the algorithm and its analysis to show that it is 2.965-
competitive in the uniform case. We provide an analytical lower bound of 2 for the best possible
competitive ratio via a relaxation to the Cayley-Moser-Problem (cf. Moser [26]), and we give a
computational lower bound of 2.14. For the analytical lower bound, we consider a relaxation of
the problem where an applicant can be hired for any subset of future time steps (not necessarily
contiguous and not necessarily starting immediately). We analyze the optimal online algorithm for
the relaxation and show that it is 2-competitive for the relaxation which implies a lower bound of 2
on the competitive ration of any online algorithm for the original problem. We further show that
the optimal online algorithm for the relaxation is 2-competitive for a large class of distributions.

Subsequently, in § 5, we generalize the algorithm to arbitrary distributions. Here, the main
technical difficulty is to obtain a good estimation of the offline optimum. As we bound the offline
optimum by a sum of conditional expectations given that the value lies in an intervals bounded by
exponentially decreasing quantiles of the distribution, we are able to derive a competitive ratio of
6.052.

In § 6, we further generalize our techniques to give a constant competitive algorithm for the case
where the distribution is unknown a priori. The main idea of the algorithm is to approximate the
quantiles of the distribution by sampling.

Finally, in § 7, we show that our algorithms remain competitive in the case that at most two appli-
cants may be employed concurrently. We also extend our results to the case where the total number
of applicants is unknown. In contrast to this, we show that the best possible online algorithm
without concurrent employment has competitive ratio Θ(

√
n/ logn), even for uniform distributions.

To improve readability, we relegate the formal analysis of the underlying Markov chains to § 8.
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1.2. Related Work The interest in optimal stopping rules for sequentially observed random
experiments dates at least as far as to Cayley [5] who asked for the optimal stopping rule when
n tickets are drawn without replacement from a known pool of N tickets with different rewards.
See also Ferguson [9] for more historical notes on this problem. Cayley solved this problem by
backwards induction, an approach later formalized by Bellman [4]. Moser [26] studied Cayley’s
problem for the case that N is large and the N rewards are equal to the first N natural numbers. In
that case, the problem can be approximated by n draws from the uniform distribution and Moser
provided an approximation of the corresponding threshold values of the optimal stopping rule. For
similar results for other distributions, see Gilbert and Mosteller [12], Guttman [15] and Karlin [19].
In § 4.3, we will use the asymptotic behavior of the threshold due to Gilbert and Mosteller [12] to
obtain a lower bound for our problem.

Krengel, Sucheston, and Garling (cf. [23, 24]) studied optimal stopping rules for arbitrary
independent, non-negative, but not necessarily identical random variables. Their famous prophet
inequality asserts that the expected reward of a gambler who follows the optimal stopping rule
(that can still be found using backwards induction) is at least half the expected reward of a prophet
who knows all realizations beforehand and will stop the sequence at the highest realization. Samuel-
Cahn [30] showed that the same guarantee can be obtained by a simple stopping rule that uses
a single threshold rather than n different thresholds as the solution of the dynamic program. Hill
and Kertz [17] surveyed some variations of the problem.

More recently, Alaei [1] considered the setting where both the prophet and the gambler stop
k ∈ N times and receive the sum of their realizations as rewards and gave an algorithm with
competitive ratio 1− 1√

k+3
. For a more general setting in which the selection of both the gam-

bler and the prophet is restricted by a matroid constraint, Kleinberg and Weinberg [22] showed a
tight competitive ratio of 1/2. Dütting and Kleinberg [7] generalized this result further to poly-
matroid constraints. Göbel et al. [14] studied a prophet inequality setting where a solution is
feasible if it forms an independent set in an underlying network. They gave an online algorithm
that achieves a O(ρ2 logn)-approximation where ρ is a structural parameter of the network. Very
recently, Rubinstein [28] studied the problem for general downward-closed constraints. He gave a
O(logn log r)-approximation where r is the cardinality of the largest feasible set and showed that
no online algorithm can be better than a O(logn/ log logn)-approximation. For a generalization
towards non-linear valuations functions, see Rubinstein and Singla [29].

The recent interest in prophet inequalities is due to an interesting connection to mechanism
design problems that was first made by Hajiaghayi et al. [16]. They remarked that threshold
rules used to prove prophet inequalities correspond to thruthful online mechanisms with the same
approximation guarantee as the prophet inequality. Chawla et al. [6] noted that posted pricing
mechanisms for revenue maximization can be derived from prophet inequalities by using the frame-
work of virtual values due to Myerson [27]. As our algorithms operate on the basis of threshold
values as well they can also be turned into truthful mechanisms. However, the exact properties of
these mechanisms deserve further investigation.

Esfandiari et al. [8] considered the minimization version of the classical prophet inequality set-
ting. They showed that even for i.i.d. random variables, no stopping rule can achieve a constant
approximation to the cost of a prophet. This is in contrast to our results for the dynamic prophet
inequality setting as we obtain a constant factor approximation even without knowledge of the
distributions or n.

Further related are secretary problems (cf. Ferguson [9] for a review), and in particular secre-
tary problems where the values are drawn from i.i.d. distributions as considered by Bearden [3].
The main difference to our model is that in secretary problems the objective is to maximize the
probability of selecting the best outcome. Yet, our algorithm developed in § 6 for solving the case
of unknown distributions is reminiscent of the optimal stopping rules for secretary problems as it
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also employs a sampling phase in which the distribution is learned before hiring an applicant. Very
recently, Fiat et al. [10] studied a dynamic secretary problem where secretaries are hired over time.
In contrast to our work, they consider a maximization problem, and the contract duration is fixed.

2. Preliminaries For a natural number n ∈ N let [n] = {1, . . . , n}. We consider a sequence
x1 ∼X, x2 ∼X, . . . , xn ∼X of n i.i.d. random variables drawn from a probability distribution X.
Throughout this work, we assume that X is a continuous distribution with cumulative distribu-
tion F and probability density function f . Moreover, we assume that X assigns positive probability
to non-negative values only, i.e., F (0) = 0. In every time step i∈ [n] the cost xi of the i-th applicant
is revealed and we must decide the number of time steps ti the applicant is hired. The duration
of the employment ti is fixed irrevocably at time i; no extension or shortening of this duration
at any further point in time is possible. Hiring applicant i with realized cost xi for ti time steps
results in costs of xiti. The objective is to minimize the expected total cost of hired applicants
E[
∑

i∈[n] tixi] := Ex1∼X,...,xn∼X
[∑

i∈[n] tixi
]

subject to the constraint that at least one applicant is
employed at each point in time i∈ [n], i.e., maxj≤i{j+ tj} ≥ i+ 1 for all i∈ [n].

This is an online problem since, at time i, we only know about the realizations x1, . . . , xi up to
time i and have to base our decision about the hiring duration ti of the i-th applicant only on
this information and previous hiring decisions t1, . . . , ti−1. We are interested in obtaining online
algorithms that perform well compared to an omniscient prophet. Let Optn be the cost of an
optimal offline algorithm (i.e., a prophet) knowing the n realizations in advance and let Algn be the
cost of a solution of an online algorithm. Then the competitive ratio of the online algorithm Algn
is defined as limsupn∈NE [Algn]/E [Optn]. We call an algorithm competitive if its competitive
ratio is constant, and call it strictly competitive if even supn∈NE [Algn]/E [Optn] is constant.

We use well-known facts from higher order statistics of random variables to obtain the following.

Proposition 1. The expected total cost of an optimal offline algorithm is E [Optn] =∑
i∈[n]

∫∞
0

(
1−F (x)

)i
dx.

Proof. In every step, the optimal offline algorithm employs the applicant with the lowest cost
that has arrived so far. We have

E [Optn] =E
[∑

i∈[n]
minj∈[i]{xj}

]
=
∑
i∈[n]

E
[
minj∈[i]{xj}

]
=
∑
i∈[n]

∫ ∞
0

Pr
[
minj∈[i]{xj}>x

]
dx

=
∑
i∈[n]

∫ ∞
0

(
1−F (x)

)i
dx,

as claimed. �
Observe that Proposition 1 implies that, for every non-trivial probability distribution with non-

zero probability mass around 0, the expected optimal offline cost of step k approaches 0 for k→∞.
Consequently, any competitive online algorithm must also have a vanishing expected cost per step
(where the hiring cost is distributed evenly over the hiring period).

3. An Optimal Online Algorithm We begin by describing an optimal online algorithm
that uses dynamic programming. Let C(i, j) denote the expected overall cost if there are i time
steps remaining, and if the next j time steps are already covered by an existing contract. As a
boundary condition, we have that C(i, i) = 0 for all i, since in this case no further applicants need
to be hired.
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Suppose that C(i′, j′) has already been computed for all i′ < i and all j′ ≤ i′. First we describe
how to compute C(i,0). Suppose that we draw an applicant with cost x. Since there are no existing
contracts, we must hire this applicant for at least one time step, and we will obviously hire this
applicant for at most i time steps. If we hire the applicant for r time steps, our overall cost will be
rx+C(i− 1, r− 1). Thus, the optimal cost for an applicant costing x can be written as

min
1≤r≤i

{rx+C(i− 1, r− 1)} .

Therefore, we have

C(i,0) =

∫ ∞
0

min
1≤r≤i

{rx+C(i− 1, r− 1)} f(x) dx. (1)

Now we suppose that C(i, j) has been computed for j < i and describe how to compute C(i, j+ 1).
The analysis is similar as before, but in this case we have the additional option to reject an applicant
and wait one more time step. The cost of waiting one step is given by C(i− 1, j), so we get the
following expression

C(i, j+ 1) =

∫ ∞
0

min

{
C(i− 1, j), min

j+1<r≤i
{rx+C(i− 1, r− 1)}

}
f(x) dx. (2)

If C(i, j) has been computed for all i ≤ n and all j ≤ i, then there is a straightforward online
algorithm that achieves expected cost C(n,0). This algorithm simply waits for the cost x of each
applicant to be revealed, and then chooses the action that minimizes the expression in the above
equations.

3.1. Analysis The computational efficiency of this algorithm depends on the difficulty of
evaluating the integrals in Equations (1) and (2). For the simple case where the cost distributions
are uniform, the right hand side of both equations boil down to finding the piecewise minimum over
at most n linear functions, which can easily be computed. For other distributions, the algorithm
may be slower. It is worth noting that the algorithm cannot be applied in the case where the
distribution is unknown. For the case of a known distributions, we conclude the following.

Theorem 1. The dynamic program given by eqs. (1) and (2) yields an optimal online algo-
rithm.

Before we move on, we describe some shortcomings of this algorithm that we seek to address in
the remainder of this paper. The first issue of the algorithm is that, although it does provide an
optimal competitive ratio, it is unclear how to analyze the algorithm, and in particular we do not
know what competitive ratio the algorithm guarantees. Secondly, the algorithm is very complicated
to describe as it uses at least n2 different threshold values to decide the hiring duration of an
applicant, and these threshold values are specifically tailored to the distribution in question. In the
subsequent sections, we show that there exist algorithms with a constant competitive ratio, and
in doing so we prove that the competitive ratio of the optimal online algorithm is also constant.
Thirdly, the optimal online algorithm requires both the cost distribution and the total number
of time periods to be known ahead of time. In contrast, in the following we develop an online
algorithm with constant competitive ratio that still works even if neither information is known.

4. Uniformly Distributed Costs In this section, we give two algorithms with constant com-
petitive ratios in the case where applicants’ costs are distributed uniformly. By shifting/rescaling
we may assume without loss of generality that X =U [0,1], i.e., that the costs are distributed uni-
formly in the unit interval. Using Proposition 1, we obtain the following expression for the expected
cost of the offline optimum.

Lemma 1. E
[
Optn

]
=Hn+1− 1 for all n∈N, where Hn is the n-th harmonic number.

Proof. By Proposition 1, E
[
Optn

]
=
∑

i∈[n]

∫ 1

0
(1−x)i dx=

∑
i∈[n]

1
i+1

=Hn+1− 1. �
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Algorithm 1: A 8.122-competitive algorithm for uniformly distributed costs.

τ ← 1 ; // threshold cost

t← 1 ; // remaining time with current threshold

for i← 1, . . . , n do
t← t− 1;
if xi ≤ τ then

hire applicant i for 4/τ time steps;
if i+ 4/τ > n then

stop;
τ ← τ/2; t← 1/τ

else if t= 0 then
τ ← 2τ ; t← 1/τ ;

4.1. A First Competitive Algorithm We start with our first online algorithm for uniform
distributions (cf. Algorithm 1). The main idea of the algorithm is that whenever we hire an applicant
of cost x, we afterwards seek an applicant of cost x/2. The expected time until such an applicant
arrives is 2/x.

If we set our hiring time equal to this expectation, we would leave a considerable probability
that we do not encounter any cheaper applicants before the hiring time runs out. Instead, we hire
the applicant for 4/x steps and iteratively relax our hiring threshold after a certain time.

More precisely, assume x= 1/2j for some integer j. We then hire the applicant for time

4

x
>

4

x
− 1 =

2

x
+

1

x
+

1

2x
+

1

4x
+ · · ·+ 1. (3)

This way, if we do not find an applicant of cost at most x/2 during the next 2/x time steps, we
continue seeking for an applicant with cost x for 1/x time steps, and so on. The geometric sum (3)
just leaves enough time until we eventually seek for an applicant with cost at most 1, who is surely
found.

To accommodate the fact that the costs of applicants are not powers of 2, in general, we maintain
a threshold cost τ that is a power of 2 and reduce the threshold, whenever a new applicant is hired,
see Algorithm 1 for a formal description. Finally, once an applicant is employed long enough to
cover all remaining time steps, we stop. Importantly, this allows us to bound the lowest possible
value of τ to be 2−dlogne+2.2 If an applicant is hired below this threshold, the hiring time is 4/τ ≥ n.

In other words, during the course of the algorithm the threshold cost τ can only take values of
the form 2−j for j ∈ {0, . . . , k− 1}, where k= dlog(n)e− 1. This allows us to describe the evolution
of τ with a Markov chain M with k + 1 states as follows. State k is the absorbing state that
corresponds to the event that we succeeded in hiring an applicant at cost at most the threshold
value 2−(k−1) = 2−dlogne+2. Each other state j ∈ {0, . . . , k − 1} corresponds to the event that the
threshold value reaches τ = τj := 2−j, see Figure 1 (a). Each transition of the Markov chain from
a state j to a state j − 1 corresponds to the failure of finding an applicant below the threshold
τj = 2−j for 1/τj = 2j time steps, resulting in a doubling of the threshold cost. Each transition of
the Markov chain from a state j to a state j+ 1 corresponds to the hiring of an applicant resulting
in the reduction of the threshold cost. We can therefore use the expected total number of state
transitions of the Markov chain when starting at state 0 to bound the number of hired applicants
overall.

2 Here and throughout, we denote the logarithm of n to base 2 by log(n) and the natural logarithm of n with ln(n).
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0 1 2 . . . k−1 k

1

(1− 1/2)2

1− (1− 1/2)2

(1− 1/4)4

1− (1− 1/4)4

(1− 1/8)8

(1− 1/2k−2)2k−2

(1− 1/2k−1)2k−1

1− (1− 1/2k−1)2k−1

(a) Original Markov chain M .

0 1 2 . . . k−1 k

1

1/e

1− 1/e

1/e

1− 1/e

1/e

1− 1/e

1/e

1− 1/e

(b) Markov chain M̂(p, k) with homogeneous transition probabilities p= 1− 1/e.

Figure 1. Markov chains M modeling the expected number of hired applicants of Algorithm 1. Nodes correspond
to states. State k= dlogne− 1 is absorbing.

Let pj denote the transition probability from state j to state j + 1; i.e., when in state j, the
Markov chain transitions to state j + 1 with probability pj and to state j − 1 with probability
1− pj. The probability that we fail to find an applicant with cost at most τ during 1/τ time steps
is bounded by

1− pj = (1− τ)1/τ ≤ 1

e
,

i.e., pj ≥ 1 − 1/e. We set p = 1 − 1/e and consider the Markov chain M̂(p, k) with homogeneous
transition probability p shown in Figure 1 (b). As we will show in the following lemma, the total
number of state transitions to reach state k in Markov chain M̂(p, k) provides an upper bound on
the total number of state transitions to reach state k in Markov chain M . The analysis of M̂(p, k)
then yields the following result.

Lemma 2. Starting in state 0 of Markov chain M with k = dlog(n)e − 1, the expected number
of state transitions is at most ek

e−2
.

Proof. Let k = dlogne − 1 and p = 1− 1/e, and consider the Markov chain M̂(p, k) shown in
Figure 1 (b). We first claim that the expected number of state transitions when starting in state 0
in Markov chain M is bounded from above by that in Markov chain M̂(p, k). To see this, consider
an arbitrary state j and consider the stochastic process that operates as M with the exception
that the first time state j is visited, transition probabilities are as in M̂(p, k). Since M̂(p, k) has
a higher probability to transition to a state with low index and the only absorbing state is k,
this does not decrease the expected number of state transitions to state j in M . Iterating this
argument, we derive that also the stochastic process where state j always transitions as in M̂(p, k)
has a higher number of state transitions to state j. Iterating this argument over all states proves
that the expected total number of state transitions in M is upper bounded by the expected total
number of state transitions in M̂(p, k).

In Lemma 14 in § 8.1, we show that the expected number of visits for each state in M̂(p, k) is
upper bounded by 1

2p−1
= e

e−2
. Since we start in state 0 and end after the first visit in state k, we

conclude that the total number of state transitions of Markov chain M̂(p, k) is bounded by( e

e− 2
− 1
)

+
k−1∑
i=1

e

e− 2
+ 1 =

ek

e− 2
.

This gives the claimed result. �
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We proceed to use Lemmas 1 and 2 to obtain a first constant competitive algorithm for uniform
costs.

Theorem 2. Algorithm 1 is strictly 8.122-competitive for uniform distributions.

Proof. Since τ decreases whenever an applicant is hired, we can bound the number of hired
applicants by the number of state transitions from a state j to state j+1 of the Markov chain. The
algorithm terminates at the latest when state k = dlog(n)e − 1 is reached. If it ever reaches that
point, it has hired at least k applicants and every further hiring is mirrored by a state transition
that decreases the current state. By using Lemma 2 and only counting the transitions that increase
the state index, we can bound the expected number of hired applicants by

ek
e−2
− k

2
+ k=

(
e

e− 2
+ 1

)
k

2
≤
(

e

e− 2
+ 1

)
logn

2
.

Whenever we hire an applicant below threshold τ the cost of the applicant is uniform in [0, τ ], so
the expected cost is τ/2. Since the hiring period is 4/τ we get that each hired applicant incurs an
expected total cost of 2. The threshold τ for the next candidate is independent of the exact cost
of the last hire. Therefore we can combine the expected cost per candidate with Lemma 1 and we
obtain

E [Algn]

E [Optn]
≤ lnn

Hn+1− 1
· 1

ln2

(
e

e− 2
+ 1

)
.

Using Lemma 3 proven below where γ ≈ 0.577 is the Euler-Mascheroni constant this implies

E [Algn]

E [Optn]
≤
(

1 +
20

29

(
5

6
− γ
))
· 1

ln2

(
e

e− 2
+ 1

)
< 8.122,

as claimed. �

Lemma 3. Let γ denote the Euler-Mascheroni constant. For any n∈N, lnn
Hn+1−1

≤ 1+ 20
29

(
5
6
− γ
)
.

Proof. First, note that

lnn

Hn+1− 1
≤ Hn− γ
Hn+1− 1

= 1 +
1− γ− 1

n+1

Hn+1− 1
.

It suffices to prove that

sup
n∈N

1− γ− 1
n+1

Hn+1− 1
= sup

n∈N,n≥2

1− γ− 1
n

Hn− 1
≤ 20

29

(
5

6
− γ
)
.

In order to do so, we show that there is a unique n′ ∈N≥2 with

1− γ− 1
n−1

Hn−1− 1
≤

1− γ− 1
n

Hn− 1
for all n∈N≥2, n≤ n′, and

1− γ− 1
n

Hn− 1
≥

1− γ− 1
n+1

Hn+1− 1
for all n∈N≥2, n≥ n′,

concluding that the supremum is attained at n′. Now we observe that

1− γ− 1
n

Hn− 1
−

1− γ− 1
n+1

Hn+1− 1
≥ 0 ⇔ (Hn+1− 1)

(
1− γ− 1

n

)
− (Hn− 1)

(
1− γ− 1

n+ 1

)
≥ 0
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and

(Hn+1− 1)

(
1− γ− 1

n

)
− (Hn− 1)

(
1− γ− 1

n+ 1

)
=

1

n+ 1

(
1− γ− 1

n

)
− 1

n
(Hn− 1) +

1

n+ 1
(Hn− 1)

=
1

n+ 1

(
1− γ− 1

n

)
− (Hn− 1)

1

n(n+ 1)
=

1

n(n+ 1)
(n(1− γ)−Hn) ,

which is greater or equal to 0 if and only if n≥ 6. We conclude that the supremum is attained at
n′ = 6. We finish the proof by observing

lnn

Hn+1− 1
≤ 1 +

1− γ− 1
n+1

Hn+1− 1
≤ 1 + sup

ñ∈N≥2

1− γ− 1
ñ

Hñ− 1
≤ 1 +

1− γ− 1
6

H6− 1
= 1 +

20

29

(
5

6
− γ
)
,

for all n∈N. �

4.2. Improving the Algorithm We proceed to improve the competitive ratio of our algo-
rithm as follows (cf. Algorithm 2). First, recall that, in Algorithm 1, we hired an applicant below
the current threshold of τj = 2−j for 4/τj time units with the rationale that

j+1∑
i=0

1

τi
=

j+1∑
i=0

2i = 2j+2− 1 =
4

τj
− 1<

4

τj
.

With this inequality, it is ensured that we can afford 1/τj+1 time steps to look for an applicant
below the threshold τj+1 and, in case we did not find a suitable applicant, additional 1/τj time
steps looking for an applicant below the threshold τj, and so on, until the threshold is raised to 1
and we find a suitable applicant with probability 1.

It turns out that it pays off to reduce both the hiring times and the time steps we spend looking
for an applicant below a given threshold uniformly by a factor of c := 3/4. That is, when hiring
an applicant below the threshold of τj, we hire only for 4c/τj = 3/τj time units. To compensate
for that we only look for an applicant below threshold τj for d c

τj
e= d 3

4τj
e time units. Note that for

τ ∈ {1/2,1} we round all times to the next integer. For j ≥ 3, we then obtain

j+1∑
i=0

⌈
3

4τj

⌉
=

⌈
3

4

⌉
+

⌈
3

2

⌉
+

j+1∑
i=2

3

4τj
= 1 + 2 + 3

j+1∑
i=2

2i−2 = 3 · 2j =
3

τj
.

Similarly, we may check for j = 0 that d3/4e+ d3/2e= 3 = 3/τ0, and for j = 1 that d3/4e+ d3/2e+
3 = 6 = 3/τ1. Thus, we may conclude that the above choices ensure that an applicant is under
contract at all times.

Second, instead of reducing the threshold once by factor 2 when we hire a new applicant, we
repeatedly halve the threshold for as long as it is still greater or equal to the actual cost of the
new applicant. This way, we can ensure that the cost for which a new applicant is hired is always
uniformly distributed in [τ,2τ) (or possibly [0,2τ) for the last hiring), where τ denotes the threshold
after the applicant is hired. Thus, the expected total cost of each applicant is 3τ

2
· 2c
τ

= 3c (or
possibly 2c for the last hiring).

Once we hire an applicant with a cost below 2−j, the threshold τ after hiring is at most 2−(j+1)

so that the applicant is hired for at least d2 c
τ
e ≥ 2j+2c time steps. This implies that we only need to

account for thresholds of the form τj = 2−j where j ∈ {0,1, . . . , dlog(n/c)e − 2}. We again capture
the behavior of the algorithm with a Markov chain (cf. Figure 2). To this end, states A0,A1, . . . ,Ak
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Algorithm 2: A 2.965-competitive algorithm for uniformly distributed costs.

τ ← 1 ; // threshold cost

t← 1 ; // time with threshold

for i← 1, . . . , n do
t← t− 1;
if xi ≤ τ then

while xi ≤ τ do
τ ← τ/2 ;

hire applicant i for d2c/τe time steps;
if i+ d2c/τe>n then

stop;
t←dc/τe

else if t= 0 then
τ ← 2τ ; t←dc/τe

and B0,B1, . . . ,Bk with k = dlog(n/c)e − 2 are introduced. We distinguish between the states Aj
that correspond to the algorithm looking for suitable applicants by comparing their cost with
τj = 2−j, and states Bj that correspond to the event that the cost of our current candidate is below
the threshold τj = 2−j. Each state Aj with j > 0 either transitions to Aj−1 with probability (1−pj),
when no applicant for the current threshold was found, or to Bj with probability pj. As for the
previous Markov chain, we have

(1− pj) = (1− τj)dc/τje ≤ e−c.

Similar to the previous section, we may consider the Markov chain with homogenous transition
probabilities p = 1 − e−c shown in Figure 2 (b) instead, since we are only interested in upper
bounding the number of hired applicants. Each state Bj with j < k transitions to Bj+1 or Aj+1

each with probability 1/2, since the cost x lies with equal probability in [τ,2τ) or [0, τ). State Bk
is the only absorbing state of the Markov chain. Our analysis of the Markov chain in § 8.2 yields
the following result.

Lemma 4. Starting in state A0 of Markov chain N , the expected number of transitions from
an A-state to a B-state is at most

h=
kp

3p− 1
− 4p(1− 2p)

(3p− 1)2
+

(
1− p
3p− 1

)2(
2(1− p)

1 + p

)k
(4)

where k= dlog(n/c)e− 2 and p= 1− e−c.

Let c = 3/4, k = dlog(n/c)e − 2, and p = 1− e−c. We again argue that we only overestimate
the expected visiting times when considering Markov chain N̂(p, k) instead of N . To see this, fix
a state Aj, j = 0, . . . , k and consider the stochastic process N ′ that follows Markov chain N , but,
the first time state Aj is visited, transitions according to the probabilities of N̂(p, k). As in all
stochastic processes we consider the expected number of visits of all states is decreasing in the
index of the starting state Aj, the expected number of visits of all states are not smaller in N ′

than in N . Iterating this argument, we conclude that the expected number of visits of all states in
N does not exceed those in N̂(p, k).

In Lemma 15 in § 8.2 we prove that the expected number of transitions from an A-state to a
B-state of N̂(p, k) is bounded from above by (4). �
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B0 B1 B2 . . . Bk−1 Bk

A0 A1 A2 . . . Ak−1 Ak

1

1
−

(1
−

1 /
2
)2

1
−

(1
−

1 /
4
)3

1
−

(1
−

2
−

k
+

1
)c

2
k
−

1

1
−

(1
−

2
−
k
)c

2
k

(1− 1/2)2 (1− 1/4)3 (1− 1/8)12
(1− 2−k+1)c2

k−1
(1− 2−k)c2

k

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

(a) Original Markov chain N .

B0 B1 B2 . . . Bk−1 Bk

A0 A1 A2 . . . Ak−1 Ak

1

1
−
e−

c

1
−
e−

c

1
−
e−

c

1
−
e−

c

e−c e−c e−c e−c e−c

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

(b) Markov chain N̂(p, k) with homogenous transition probabilities p= 1− e−c.

Figure 2. Markov chains modeling the expected number of hired applicants of Algorithm 2.

As every transition from an A-state to a B-state corresponds to the hiring of a candidate,
bounding these transitions allows us to bound E [Algn]. Together with the formula for E [Optn]
proven in Lemma 1 we obtain an improved competitive ratio. Numerically, the choice c= 3/4 yields
optimizes the competitive ratio yielding a strict competitive ratio of 2.965.

Theorem 3. For c= 3/4, Algorithm 2 is strictly 2.965-competitive for uniform distributions.

Proof. Whenever an applicant is hired, the Markov chain transitions from Aj to Bj for some
value j ∈ [k]. The algorithm terminates at the latest when state Bk is reached. We can thus bound
the number of hired applicants by the expression h of Lemma 4. Using Lemma 1 and the fact that
the expected cost incurred by each hired applicant is 3c (and 2c for the last hiring), we get

E [Algn]

E [Optn]
≤ 3hc− c
Hn+1− 1

≤ 2.965,

for c= 3/4 and all n. See Lemma 5 below for a proof of the last inequality. �

Lemma 5. Let c=3/4, p=1−e−c, k=dlog(n/c)e−2, and h= kp
3p−1
− 4p(1−2p)

(3p−1)2
+
(

1−p
3p−1

)2( 2(1−p)
1+p

)k
.

Then, 3hc−c
Hn+1−1

≤ 2.965 for all n.

Proof. Since the expression 3hc− c is constant as long as k = dlog(n/c)e − 2 = dlog(n/3)e is
constant, the ratio 3hc−c

Hn+1−1
is maximized for some n of the form n= 3 ·2`−1 + 1 with `∈N. See also

Figure 3 where the ratio is plotted as a function of n. The claim of the lemma is easily verified for
`= 1, . . . ,6. For `≥ 7, we obtain

h=
`p

3p− 1
− 4p(1− 2p)

(3p− 1)2
+

(
1− p
3p− 1

)2

·
(

2(1− p)
1 + p

)̀
≤ `p

3p− 1
− 4p(1− 2p)

(3p− 1)2
+

(
1− p
3p− 1

)2

·
(

2(1− p)
1 + p

)7

(5)
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<
`p

3p− 1
+

1

e
,

where for the first inequality we used that for p= 1−e−3/4 we have 2(1−p)/(1+p) = 2/(2e3/4−1)≈
0.618< 1 and for the second inequality we evaluated (5) for p= 1−e−3/4. For the Euler-Mascheroni
constant γ ≈ 0.577 we obtain

3hc− c
H3·2`−1+2− 1

<
9
4

(
`p

3p−1
+ 1

e

)
− 3

4

ln(3 · 2`−1 + 2)− (1− γ)

≤
9
4

(
`p

3p−1
+ 1

e

)
− 3

4

` ln(2) + ln(3)− ln(2)− (1− γ)
, (6)

where we used that the denominator is positive. Using that ln(3)− ln(2)− (1− γ)≈−0.017< 0,
elementary calculus shows that the expression in (6) is decreasing in `. Evaluating it for `= 7 we
obtain

3hc− c
H3·2`−1+2− 1

≤ 2.965,

as claimed. �

4.3. Analytical Lower Bound To obtain a lower bound on the competitive ratio of any
online algorithm, we study in this section a relaxation of the problem. The relaxation allows to
exploit an interesting connection to the classical stopping problem with uniformly distributed
random variables which is known under the name Cayley-Moser problem, see Moser [26], Gilbert
and Mosteller [12].

Theorem 4. Asymptotically, for a uniform distribution, no online algorithm has a competitive
ratio below 2.

Proof. Consider the relaxation where we are allowed to hire an applicant for any (not necessarily
contiguous) subset of all future time steps, while still having to decide on this set immediately
upon arrival of the applicant. Formally, upon arrival of applicant i with revealed cost xi ∼X, we
immediately decide to hire i for a set of time steps Ti ⊆ {k ∈N : k≥ i} which realizes cost of xi |Ti|.
The objective is again to minimize the expected total cost

Ex1∼X,...,xn∼X

[∑
i∈[n]

xi |Ti|
]

(7)

under the condition that j ∈
⋃
i∈[j] Ti for all j ∈ [n]. In this setting, there is obviously no advantage

of concurrent employment — once we hired an applicant for some time slot, there is no benefit of
hiring additional applicants for the same time slot. Let yij = 1 if j ∈ Ti and yij = 0. Then we can
rewrite (7) as

Ex1∼X,...,xn∼X

[∑
j∈[n]

∑
i∈[j]

xi yij

]
=
∑

j∈[n]
Ex1∼X,...,xj∼X

[∑
i∈[j]

xi yij

]
, (8)

where we used linearity of expectation. The objective of the relaxation then is to minimize (8)
under the condition that

∑
i∈[j] yij = 1 for all j ∈ [n]. Put differently, the decision whether to hire

an applicant for some time slot j is independent of the decision for other time slots. Thus, solving
the relaxation reduces to simultaneously solve a stopping problem for each time slot j. That is, we
need to hire exactly one of the first j applicants for this time slot, while applicants appear one by
one and we need to irrevocably hire or discard each applicant upon their arrival.
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Gilbert and Mosteller [12] showed that, in the maximization version of the single stopping prob-
lem with uniformly distributed values, the optimal stopping rule is a threshold rule parametrized
by t thresholds τ0, . . . , τt−1. The rule stops at a time step when there are i remaining (unobserved)
random variables and the realization is above τi. The threshold values follow the recursion τ0 = 0
and τi+1 = (1 + τ 2

i )/2 for all i ≥ 1. Gilbert and Mosteller showed that the value τt is also the
expected revenue for the stopping problem with t slots when following the optimal strategy. They
bounded the expected revenue for all t by

τt ≥ 1− 2

t+ ln(t+ 1) + 1.767
.

By symmetry of the uniform distribution, for the corresponding single stopping problem with
uniformly distributed costs and minimization objective, this immediately yields that the optimum
expected cost 1− τt is lower bounded by h(t) := 2

t+ln(t+1)+1.767
.

Since we need to solve a stopping problem for each time slot 1,2, . . . , n, and by linearity of
expectation, we get a lower bound on the expected cost of

∑n

t=1 h(t) for the relaxed problem.
On the other hand, by Lemma 1, for the offline optimum of our original problem, we have
Ex1∼U [0,1],...,xn∼U [0,1]

[
Optn

]
=
∑n

t=1 g(t) :=
∑n

t=1
1

1+t
. Since h(t) and g(t) are both monotonically

decreasing, we can estimate
∑n

t=1 h(t) ≥
∫ n+1

1
h(t)dt and

∑n

t=1 g(t) ≤
∫ n

0
g(t)dt. Also, since both

integrals tend to infinity for growing n, we can apply l’Hôpital’s rule and obtain

lim
n→∞

∑n

t=1 h(t)∑n

t=1 g(t)
≥ lim

n→∞

∫ n+1

1
h(t)dt∫ n

0
g(t)dt

= lim
n→∞

h(n+ 1)

g(n)
= lim

n→∞

2(n+ 1)

n+ 1 + log(n+ 2) + 1.767
= 2.

As
∑n

t=1 h(t) is the expected cost of an optimum online solution to the relaxed problem, it is a
lower bound on the expected cost of an optimum online solution to the original problem, and we
get the desired bound. �

A plot of the lower bound
∑n
t=1 h(t)

Hn+1−1
as a function of n, shown in Figure 3, reveals that the lower

bound converges very slowly. Even for n= 10,000, the lower bound is still below 9/5.
One may wonder whether this relaxation gives rise to a lower bound strictly larger than 2 for

distributions other than the uniform distribution. We proceed to show that this is not the case for a
large class of distributions. Formally, we show that the optimal online algorithm for the relaxation
where applicants can be hired for any subset of future time steps is asymptotically 2-competitive
for any continuous distribution that is in the domain of attraction of an extreme value distribution
and for which the optimum is unbounded as n grows. Note that these conditions are satisfied by
the uniform distribution and many other distributions such as, e.g., the exponential distribution.

Theorem 5. Let X be a distribution that is in the domain of attraction of some extreme value
distribution and such that limn→∞E[Optn] =∞. Then, for n large enough there is a 2-competitive
algorithm for the relaxation where applicants can be hired for any subset of future time steps.

Proof. As argued in the proof of Theorem 4, the relaxation can be solved optimally by solving
a separate stopping problem for each time step. Asymptotically, the worst-case competitive ratio
of this optimal online algorithm is given by

sup
X∈X

lim
n→∞

{ ∑n

i=1 τi∑n

i=1 Ex1,...,xi∼X [min{x1, . . . , xi}]

}
, (9)

where X is the class of all continuous probability distributions on R≥0 and τi is the expected
cost of the single stopping problem where i values are drawn from X when following the optimal
stopping strategy. By the backwards induction principle, the values τi follow the recursion τ0 =∞
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and τi+1 = Ex∼X [min{x, τi}] and the optimal strategy is to stop at realization x when i draws are
remaining and x≤ τi.

In order to prove an upper bound on (9), we need bounds on the relative behavior of the threshold
values τi and the expected minima of i independent draws. In order to utilize known results from
the stopping literature, we first transform (9) into an equivalent maximization problem. To this
end, let X̌ be the class of all continuous probability distributions on R≤0. We then reformulate (9)
as

sup
X̌∈X̌

lim
n→∞

{ ∑n

i=1 τ̌i∑n

i=1 Ex1,...,xi∼X̌ [max{x1, . . . , xi}]

}
, (10)

where τ̌i are the optimal thresholds of the maximization version of the stopping problem with
values drawn from X̌, i.e., τ̌0 = −∞ and τ̌i+1 = Ex̌∼X̌ [max{x̌, τ̌i}]. The equivalence between (9)
and (10) follows from the fact that a sequence (X1, n1), (X2, n2), . . . converges to the supremum
in (9) if and only if the sequence (−X1, n1), (−X2, n2), . . . converges to the supremum in (10). Here,
we denote by −X the distribution of −x where x∼X.

In the following, we fix an arbitrary distribution X̌ ∈ X̌ satisfying the assumptions of the theorem
and use the shorthand notation m̌i =Ex1,...,xi∼X̌ [max{x1, . . . , xi}]. With this notation, the theorem
can be proven by showing that limn→∞

∑n

i=1 τ̌i/
∑n

i=1 m̌i ≤ 2. To this end, we recall a result from
Kennedy and Kertz [21] who showed that the asymptotic behavior of the sequence (τ̌n)n∈N depends
on the domain of attraction of X̌ to the classical three classes of extreme value distributions.
Specifically, Kennedy and Kertz assume that the underlying distribution X̌ lies in the domain of
attraction of some limit distribution G, i.e., there exist sequences of constants (an)n∈N and (bn)n∈N
with an > 0 such that an(max{x̌1, . . . , x̌n}− bn) converges in distribution to some non-degenerate
function G as n→∞. In this case, we say that X̌ is in the domain of attraction of G and write
X̌ ∈ D(G). The Fisher-Tippett-Gnedenko-Theorem [11, 13] states that under these conditions G
must be one of the following types of extreme-value distributions

GI(x) = exp(−e−x) for x∈R,

Gα
II(x) =

{
0, if x< 0

exp(−x−α), else
,

Gα
III(x) =

{
exp(−(−x)α), if x< 0

1, else
.

Necessary and sufficient conditions for X ∈ D(G), G ∈ {GI} ∪ {Gα
II : α > 1} ∪ {Gα

III : α > 0} were
given by Leadbetter et al. [25]. To state these conditions formally, we first introduce the notion of
regular variation due to Karamata [18]. Formally, a function f : R→R>0 is called regularly varying
at infinity with index α∈R≥0 if limt→∞

f(tx)

f(t)
= xα for all x> 0. It is further called regularly varying

at x0 ∈R if the function x 7→ f(x0− 1
x
) is regularly varying at infinity.

Let F̌ be the cumulative distribution of X̌ and let ω= sup{x : F̌ (x)< 1}. The conditions given by
Leabbetter et al. imply that X̌ ∈D(Gα

II) if and only if ω=∞ and 1− F̌ (x) is regularly varying at
infinity with index −α. Further, X̌ ∈D(Gα

III) if and only if ω <∞ and 1− F̌ (x) is regularly varying
at ω with index −α. The conditions for X̌ ∈ D(GI) are more involved to state and immaterial
for our further analysis. Leadbetter and et. further show that when the distributions lie in the
domains of attraction of the respective extreme value distributions, the sequences of constants can
be chosen as follows:

an = 1
g(γn)

and bn = γn if X̌ ∈D(GI),
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an = 1
γn

and bn = 0 if X̌ ∈D(Gα
II),

an = 1
ω−γn and bn = ω if X̌ ∈D(Gα

III),

where γn = inf{x : F̌ (x)≥ 1− 1
n
} and g(t) =

∫ ω
t 1−F̌ (s) ds

1−F̌ (t)
.

We note that since we are only interested in distributions X̌ on R≤0, we need not consider the case
X̌ ∈D(Gα

II) for the following arguments. Moreover, it is easy to see that among the distributions
X̌ ∈D(Gα

III) the supremum in (10) is attained by a sequence with ω= 0.
Kennedy and Kertz [21, Theorem 1.2] established that

lim
n→∞

an(τ̌n− bn) = lim
n→∞

τ̌n− γn
g(γn)

= 0 if X̌ ∈D(GI), (11a)

lim
n→∞

an(τ̌n− bn) = lim
n→∞

τ̌n−ω
ω− γn

=−
(

1 +
1

α

)1/α

if X̌ ∈D(Gα
III), α > 0. (11b)

Kennedy and Kertz further state that

lim
n→∞

an(m̌n− bn) = lim
n→∞

m̌n− γn
g(γn)

= γ if X̌ ∈D(GI), (12a)

lim
n→∞

an(m̌n− bn) = lim
n→∞

m̌n−ω
ω− γn

=−Γ

(
1 +

1

α

)
if X̌ ∈D(Gα

III), α > 0, (12b)

where γ ≈ 0.5772 is the Euler-Mascheroni constant and Γ denotes the gamma function. Combining
(11a) with (12a) as well as (11b) with (12b) we obtain

lim
n→∞

τ̌n
m̌n

= lim
n→∞

τ̌n−γn
g(γn)

+ γn
g(γn)

m̌n−γn
g(γn)

+ γn
g(γn)

= 1 if X̌ ∈D(GI), (13a)

lim
n→∞

τ̌n
m̌n

=
(1 + 1

α
)1/α

Γ(1 + 1
α

)
if X̌ ∈D(Gα

III), α > 0, ω= 0, (13b)

where for (13a) we used that g(γn)→ 0 as n→∞. Results very similar to (13) are also reported by
Kennedy and Kertz [21, Theorem 1.3]. Their theorem statement, however, has a small inaccuracy
regarding the case ω= 0, which is the most interesting for us, so we chose to give the results again.

To finish the proof, suppose we have a distribution X̌ ∈
⋃
α>0D(Gα

III) ∪ D(GI) such that
limn→∞Optn =

∑∞
n=1−m̌n =∞. Then, (13a) and (13b) imply that

∑∞
n=1 τ̌n =−∞ as well. By the

Stolz-Cesàro-Theorem [2], we then obtain

lim
n→∞

∑n

i=1 τ̌i∑n

i=1 m̌i

= lim
n→∞

τ̌n
m̌n

=

{
1 if X̌ ∈D(GI)
(1+ 1

α )1/α

Γ(1+ 1
α )

if X̌ ∈D(Gα
III).

So to obtain a lower bound, we are interested in solving

sup
X̌∈D(GαIII )

ω=0

{
(1 + 1

α
)1/α

Γ(1 + 1
α

)
:
∞∑
i=n

m̌n =−∞

}
. (14)

To solve (14), recall that for a distribution on R≤0 with ω = 0, it holds that X̌ ∈ D(Gα
III) if and

only if ω <∞ and 1− F̌ (x) is regularly varying at 0, i.e.,

lim
t→∞

1− F̌ (0− 1
tx

)

1− F̌ (0− 1
t
)

= x−α (15)
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(b) n= 1, . . . ,10,000

Figure 3. Competitive ratio of our algorithm (orange), and the optimal online algorithm (blue) for uniformly dis-
tributed cost. The lower bound via the Gilbert-Mosteller problem is shown in green.

for all x> 0. Since limn→∞ γn = 0 and γn < 0, we can replace t=−1/γn and x=−γn. Because for
a regular varying function the convergence in (15) is uniform in x, we know that for every ε > 0
there is N0 ∈N, such that, for all n≥N0 and some εn ∈ (−ε, ε), we have

εn =
1− F̌ (−1)

1− F̌ (γn)
− (−γn)−α = n

(
1− F̌ (−1)

)
− (−γn)−α,

where we used that F̌ is continuous and thus F (γn) = 1− 1/n. We obtain

γn =−
(
n
(
1− F̌ (−1)

)
− εn

)−1/α

.

As a consequence,
∑∞

n=1 γn =−∞ if and only if α≥ 1. Next recall that

lim
n→∞

m̌n

γn
= Γ

(
1 +

1

α

)
,

implying that
∑∞

n=1 m̌n =−∞ if and only if
∑∞

n=1 γ̌n =−∞. We obtain

sup
X̌∈D(GαIII )

ω=0

{
(1 + 1

α
)1/α

Γ(1 + 1
α

)
:
∞∑
i=n

m̌n =−∞

}
= sup

α>0

{
(1 + 1

α
)1/α

Γ(1 + 1
α

)
: α≥ 1

}

=
2

Γ(2)
= 2,

which yields the claimed result. �
Note that the bound of 2 on the competitiveness of the optimal online algorithm obtained in

Theorem 5 is tight, as we showed in Theorem 4 that, for the uniform distribution, the optimal
online algorithm is not better than 2-competitive.

4.4. Computational Lower Bound In this section, we give a computational lower bound
based on an optimal online algorithm for uniformly distributed costs. This gives a slightly higher
lower bound than the analytical bound above. We implemented the optimal online algorithm
presented in § 3 in exact arithmetic, using rounding to prevent numbers from getting too large.
The algorithm achieves a competitive ratio of 2.148 for an instance with 10,000 time steps, see
Figure 3. We describe the details on the computational lower bound in the following paragraphs.

For the uniform distribution, we know from Lemma 1 that the optimal offline algorithm has
expected cost Hn+1− 1. On the other hand, the entry C(n,0) in the dynamic programming table
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Algorithm 3: A 6.052 competitive algorithm for arbitrary distributions.

q← 1 ; // threshold quantile index

τ ← δq ; // threshold cost

t← 1 ; // time with threshold

for i← 1, . . . , n do
t← t− 1 ;
if xi ≤ τ then

while xi ≤ τ do
q← q/2; τ ← δq ;

if i+ 2/q>n then
hire applicant i until time n ;
stop ;

hire applicant i for 2/q time steps ;
t← 1/q ;

else if t= 0 then
q← 2q; τ ← δq; t← 1/q ;

of the optimal online algorithm gives the optimal cost for an instance with n days. Therefore, for
every n> 0 the ratio C(n,0)

Hn+1−1
provides a lower bound on the best strict competitive ratio achievable

by any online algorithm.
We implemented the optimal online algorithm for the uniform case, and computed the expression

above for increasing values of n. In order to obtain a conclusive proof, one needs to implement
the algorithm in exact rational arithmetic. However, in doing so, we found that the size of the
numerators and denominators grow very quickly in n, and already for n= 22 both the numerator
and the denominator have over a million digits. This makes it computationally intractable to
compute C(n,0)

Hn+1−1
for large n.

To address this, we adopted a rounding scheme: after computing C(i, j) for some i and j, we
rounded the number down to another rational with a smaller numerator and denominator, and
then stored the rounded number in the dynamic programming table. Since we only ever round
down, the resulting costs computed by the algorithm must always be cheaper than the expected
cost of the optimal online algorithm. Therefore, the computed value of C(n,0)

Hn+1−1
is still a lower bound

on the strict competitive ratio that can be achieved.
Ultimately, we found that for n= 10,000 the competitive ratio can be no better than 2.148. The

following remark summarizes the results.
Remark 1. For a uniform distribution, no online algorithm has strict competitive ratio

below 2.148.

5. Arbitrary Distributions In this section, we generalize Algorithm 2 for the choice of
c = 1 to an arbitrary distribution X (cf. Algorithm 3). Whenever we halve our threshold in the
course of Algorithm 2, we essentially halve the probability mass of X below the threshold (i.e.,
the probability that a drawn value lies below τ). To achieve the same effect with respect to an
arbitrary distribution X, we consider quantiles δq of X, defined by the property that Pr [x≤ δq] = q
for continuous distributions3. Algorithm 3 changes the threshold by halving and doubling q and
using τ = δq, which results in the same behavior as Algorithm 2 when X is uniform. Therefore
we can in principle analyze the algorithm for general distributions using a Markov chain similar
to that in § 4.2. Specifically, the Markov chain again governs the evolution of the value q = 2−j,

3 In general, we need to define δq more carefully via Pr [x≤ δq]≥ q and Pr [x≥ δq]≥ 1− q.
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Figure 4. Markov chain N ′ modeling the expected number of hired applicants of Algorithm 3.

j = 0,1,2, . . . and the corresponding threshold value τ = δq in the course of Algorithm 3. After
finding an applicant with a cost xi below the threshold value τ , the value of q is halved until
δq < xi ≤ δq−1. Since the applicant is then hired for 2/q time steps where q is the value after
the halving, we conclude that when hiring an applicant below the threshold of δq it is hired for
4/q time units. As the process stops at the latest when 4/q ≥ n, the Markov chain N ′ has states
A0,A1, . . . ,Ak and B0,B1, . . . ,Bk with k= dlogne− 2, see Figure 4.

Again, we start in state A0, Bk is the absorbing state, and states Aj,Bj correspond to states of
the algorithm where τ = δ2−j . The transition probability from any state Aj to state Bj is bounded
from below by p = 1− 1/e, since the probability of not finding any applicant of cost at most δq
within 1/q steps is

1−Pr[x> δq]
1/q = 1− (1−Pr[x≤ δq])1/q ≥ 1− (1− q)1/q ≥ 1− 1/e.

The analysis of the algorithm for arbitrary distributions, however, turns out to be more intricate
than for the uniform case for two main reasons. First, for uniform distributions it was sufficient
to count the total number of transitions from an A-state to a B-state as any such transition
corresponds to the hiring of a candidate with a total cost of 2. On the other hand, for general
distributions we need to bound the number of transitions from state Bj to state Aj+1 for each j
individually, as the resulting costs may differ among the different values of j. The following lemma
provides a bound independent of j.

Lemma 6. Starting in state A0 of Markov chain N ′, for each j ∈ {0, . . . , k − 1} the expected
number of transitions from Bj to Aj+1 is at most p

3p−1
, where p= 1− 1/e.

Proof. With the same arguments as in the proof of Lemma 4, we obtain an upper bound on
the expected number of transitions from Bj to Aj+1 by considering the Markov chain N̂(p, k) with
homogenous transition probability p = 1− 1/e and k = dlogne − 2. For the latter Markov chain,
Lemma 16 proven in § 8.2 establishes the result. �

The second main issue when analyzing the competitive ratio of the algorithm is the lack of a
concrete value for Optn for general distributions. Thus, we need the following lemma that expresses
E
[
Optn] as a sum over conditional expectations of the form E

[
x | δ2−(r+1) <x≤ δ2−r

]
.

Lemma 7. Let n∈N, k=dlogne−2 and η := 5
2
− 55

6e2
≈ 1.259. Then, we have

E
[
Optn

]
≥

k−1∑
r=0

2r−1E
[
x
∣∣ δ2−(r+1) <x≤ δ2−r

]
+ η2k−1E

[
x
∣∣x≤ δ2−k

]
.

Proof. By linearity of expectation E
[
Optn

]
=
∑

i∈[n] E
[
min{x1, . . . , xi}

]
where for i ∈ [n] the

random variables x1, . . . , xi are drawn independently from X. To prove the claim we proceed
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to express for fixed i ∈ [n] the expectation E[min{x1, . . . , xi}] in terms of E
[
x
∣∣x ≤ δ2−k

]
and

E[x | δ2−(r+1) <x≤ δ2−r ] with r ∈ {0, . . . , k− 1}. To this end, for i∈ [n] and r ∈ {0, . . . , k− 1} let

Ei,r,=1 =
[∣∣{x1, . . . , xi}∩ (δ2−(r+1) , δ2−r ]

∣∣= 1 and
∣∣{x1, . . . , xi}∩ (δ2−(r+1) , δ1]

∣∣= i
]

be the stochastic event that the minimum of the i draws x1 ∼ X, . . . , xi ∼ X is in the interval
(δ2−(r+1) , δ2−r ] and none of the other i− 1 draws is in that interval. Additionally, let

Ei,k,=1 =
[∣∣{x1, . . . , xi}∩ [0, δ2−k ]

∣∣= 1
]
.

Further, for r ∈ {0, . . . , k− 1}, let

Ei,r,>1 =
[∣∣{x1, . . . , xi}∩ (δ2−(r+1) , δ2−r ]

∣∣> 1 and
∣∣{x1, . . . , xi}∩ (δ2−(r+1) , δ1]

∣∣= i
]

be the stochastic event that the minimum of the i draws is in the interval (δ2−(r+1) , δ2−r ] and at
least one of the other i− 1 draws is in that interval. Similarly, let

Ei,k,>1 =
[∣∣{x1, . . . , xi}∩ [0, δ2−k ]

∣∣> 1
]
.

For fixed i the events Ei,r,=1 and Ei,r,>1 for r ∈ {0, . . . , k} are clearly disjoint. Since
∑k

r=0(Pr[Ei,r,=1]+
Pr[Ei,r,>1]) = 1, by the law of total expectation, we have

E
[
min{x1, . . . , xi}

]
=

k∑
r=0

(
E
[
min{x1, . . . , xi}

∣∣Ei,r,=1

]
Pr
[
Ei,r,=1

]
+E

[
min{x1, . . . , xi}

∣∣Ei,r,>1

]
Pr
[
Ei,r,>1

])
.

We observe that E
[
min{x1, . . . , xi}

∣∣Ei,r,=1

]
= E

[
x
∣∣ δ2−(r+1) < x ≤ δ2−r

]
for all r ∈ {0, . . . , k −

1} and, similarly, E
[
min{x1 . . . , xi}

∣∣Ei,k,=1

]
= E

[
x
∣∣x ≤ δ2−k

]
. In addition, we have

E
[
min{x1, . . . , xi}

∣∣Ei,r,>1

]
≥ δ2−(r+1) ≥ E

[
x
∣∣ δ2−(r+2) < x ≤ δ2−(r+1)

]
for all r ∈ {0, . . . , k − 1}. We

then obtain

E
[
min{x1, . . . , xi}

]
≥E

[
x
∣∣ δ2−1 <x≤ δ1

]
Pr
[
Ei,0,=1

]
+

k−1∑
r=1

E
[
x
∣∣ δ2−(r+1) <x≤ δ2−r

](
Pr
[
Ei,r,=1

]
+Pr

[
Ei,r−1,>1

])
+E

[
x
∣∣x≤ δ2−k

]
(Pr

[
Ei,k,=1

]
+Pr

[
Ei,k−1,>1

]
),

and hence

E
[
Optn

]
≥E

[
x
∣∣ δ2−1 <x≤ δ1

] n∑
i=1

Pr
[
Ei,0,=1

]
+

k−1∑
r=1

(
E
[
x
∣∣ δ2−(r+1) <x≤ δ2−r

] n∑
i=1

(
Pr
[
Ei,r,=1

]
+Pr

[
Ei,r−1,>1

]))

+E
[
x
∣∣x≤ δ2−k

] n∑
i=1

(
Pr
[
Ei,k,=1

]
+Pr

[
Ei,k−1,>1

])
.
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The probability that a single draw falls in the range (δ2−(r+1) , δ2−r ] and i− 1 draws are larger than
δ2−r is 2−(r+1)(1− 2−r)i−1. Since there are i possibilities which of the draws falls in this range, we
have

Pr
[
Ei,r,=1

]
=


0 if r= 0 and i > 1

1/2 if r= 0 and i= 1

i2−(r+1)(1− 2−r)i−1 if r ∈ {1, . . . , k− 1}
i2−r(1− 2−r)i−1 if r= k.

Similarly, for r ∈ {1, . . . , k}, we have

Pr
[
Ei,r−1,>1

]
= (1− 2−r)i− (1− 2−(r−1))i−Pr

[
Ei,r−1,=1

]
= (1− 2−r)i− (1− 2−(r−1))i− i2−r(1− 2−(r−1))i−1.

We then obtain

E[Optn
]
≥E

[
x
∣∣ δ2−1 <x≤ δ1

]
· 2−1

+
k−1∑
r=1

E
[
x
∣∣ δ2−(r+1) <x≤ δ2−r

]
·α(r,n)

+E
[
x
∣∣x≤ δ2−k

]
·α(k,n)

with

α(r,n) =
n∑
i=1

(
Pr
[
Ei,r,=1

]
+Pr

[
Ei,r−1,>1

])
. (16)

It remains to show that α(r,n)≥ 2r−1 for 1≤ r < k and α(k,n)≥ η2k−1. We have

α(r,n) =
n∑
i=1

(
Pr
[
Ei,r,=1

]
+Pr

[
Ei,r−1,>1

])
(17)

=


∑n

i=1

(
i2−r(1− 2−r)i−1 + (1− 2−r)i− (1− 2−(r−1))i− i2−r(1− 2−(r−1))i−1

)
if r= k∑n

i=1

(
i2−(r+1)(1− 2−r)i−1 + (1− 2−r)i− (1− 2−(r−1))i− i2−r(1− 2−(r−1))i−1

)
else .

To prove the lemma, we proceed to show that infn∈N infr∈{0,...,dlogne−3}
α(r,n)

2r−1 ≥ 1 and

infn∈N
α(dlogne−2,n)

2dlogne−3 ≥ η. Differentiating the well-known formula for the geometric sum
∑n

i=1 a
i =

a−an+1

1−a , we obtain
∑n

i=1 ia
i−1 = nan+1−(n+1)an+1

(1−a)2
. We use both formulas to simplify all partial sums.

For a binary event E , we denote by χE the indicator variable for event E , i.e., χE = 1 if E is true,
and χE = 0, otherwise. For r ∈ {1, . . . , k}, we then obtain

α(r,n) = (1 +χr=k)2
r−1
[
n(1− 2−r)n+1− (n+ 1)(1− 2−r)n + 1

]
+ 2r

[
1− 2−r− (1− 2−r)n+1

]
− 2r−1

[
1− 2−(r−1)− (1− 2−(r−1))n+1

]
− 2r−2

[
n(1− 2−(r−1))n+1− (n+ 1)(1− 2−(r−1))n + 1

]
= 2r−1

[
(1 +χr=k)

(
n(1− 2−r)n+1− (n+ 1)(1− 2−r)n + 1

)
+ 2− 2−(r−1)− 2(1− 2−r)n+1

− 1 + 2−(r−1) + (1− 2−(r−1))n+1− n
2

(1− 2−(r−1))n+1 +
n+ 1

2
(1− 2−(r−1))n− 1

2

]
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= 2r−1

[
3

2
+χr=k + (1− 2−r)n

(
n(1 +χr=k)(1− 2−r)− (n+ 1)(1 +χr=k)− 2(1− 2−r)

)

+ (1− 2−(r−1))n
(

(1− 2−(r−1))− n
2

(1− 2−(r−1)) +
n+ 1

2

)]

= 2r−1

[
3

2
+χr=k + (1− 2−r)n(2−(r−1)−n2−r(1 +χr=k)− 3−χr=k)

+ (1− 2−(r−1))n
(

3

2
+n2−r− 2−(r−1)

)]
= 2r−1

[
3

2
+χr=k +

(
(1− 2−r)n− (1− 2−(r−1))n

)(
2−(r−1)−n2−r− 3

2

)
−
(

3

2
+χr=k(1 +n2−r)

)
(1− 2−r)n

]
.

As the probabilities are non-negative, α(r,n) =
∑n

i=1(Pr[Ei,r,=1] +Pr[Ei,r−1,>1]) is non-decreasing
in n for all r ∈ {1, . . . , k}. We proceed to show that α(r,n) ≥ 2r−1 for all r ∈ {0, . . . , k − 1} =
{0, . . . , dlogne− 3}. Since r,n are integral, r≤ dlogne− 3 implies n≥ 2r+2 + 1. Using monotonicity
of α(r,n) and substituting t := 2r, we have

infn∈N infr∈{1,...,dlogne−3}
α(r,n)

2r−1

= infr∈N infn∈{2r+2+1,...}
α(r,n)

2r−1

= infr∈N
α(r,2r+2 + 1)

2r−1

= infr∈N

{
3

2
+

(
(1− 2−r)2r+2+1− (1− 2−(r−1))2r+2+1

)(
2−(r−1)− (2r+2 + 1)2−r− 3

2

)
− 3

2
(1− 2−r)2r+2+1

}

≥ inft∈N

{
3

2
+

((
1− 1

t

)4t+1

−
(

1− 2

t

)4t+1
)(

2

t
− 4− 1

t
− 3

2

)
− 3

2

(
1− 1

t

)4t+1
}

= inft∈N

{
3

2
+

((
1− 1

t

)4t+1

−
(

1− 2

t

)4t+1
)(

1

t
− 11

2

)
− 3

2

(
1− 1

t

)4t+1
}
.

The first order Taylor approximation of the function f(x) = x4t+1 at x= 1− 1/t gives f(1− 2/t) =
(1− 2/t)4t+1 = (1− 1/t)4t+1− 4t+1

t
(1− 1/t)4t +R2, with R2 ≥ 0 as f is convex. This implies

infn∈N infr∈{1,...,dlogne−2}
α(r,n)

2r−1

≥ inft∈N

{
3

2
− 4t+ 1

t

(
11

2
− 1

t

)(
1− 1

t

)4t

− 3

2

(
1− 1

t

)(
1− 1

t

)4t
}

= inft∈N

{
3

2
−
(

47

2
− 1

t2

)(
1− 1

t

)4t
}
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≥ inft∈N

{
3

2
− 47

2

(
1− 1

t

)4t
}
.

As the latter expression is decreasing in t, we have

infn∈N infr∈{1,...,dlogne−3}
α(r,n)

2r−1
≥ lim

t→∞

{
3

2
− 47

2
(1− 1

t
)4t

}
=

3

2
− 47

2e4
≈ 1.069> 1.

It remains to show that α(k,n)

2k−1 ≥ η. For r= k= dlogne− 2, we have

α(k,n) = 2k−1

[
5

2
+

(
(1− 2−k)n− (1− 2−(k−1))n

)(
2−(k−1)−n2−k− 3

2

)
−
(

5

2
+n2−k

)
(1− 2−k)n

]
.

Again, as α(r,n) is non-decreasing in n, this value is minimal for n= 2k+1 + 1. Substituting t= 2k,
we obtain

inf
n∈N

α(dlogne− 2, n)

2dlogne−3

= inf
k∈N

α(k,2k+1 + 1)

2k−1

= inf
k∈N

{
5

2
+

(
(1− 2−k)2k+1+1− (1− 2−(k−1))2k+1+1

)(
2−(k−1)− (2k+1 + 1)2−k− 3

2

)

−
(

5

2
+ (2k+1 + 1)2−k

)
(1− 2−k)2k+1+1

}

≥ inf
t∈N
t≥2

{
5

2
+

((
1− 1

t

)2t+1

−
(

1− 2

t

)2t+1
)(

2

t
− 2− 1

t
− 3

2

)
−
(

5

2
+ 2 +

1

t

)(
1− 1

t

)2t+1
}

= inf
t∈N
t≥2

{
5

2
+

((
1− 1

t

)2t+1

−
(

1− 2

t

)2t+1
)(

1

t
− 7

2

)
−
(

9

2
+

1

t

)(
1− 1

t

)2t+1
}
.

By second-order Taylor approximation of the function f(x) = x2t+1 at x= (1− 1/t), we obtain

f(1− 2

t
) =

(
1− 2

t

)2t+1

=

(
1− 1

t

)2t+1

− 2t+ 1

t

(
1− 1

t

)2t

+
2t(2t+ 1)

2t2

(
1− 1

t

)2t−1

− 2t(2t+ 1)(2t− 1)

6t3

(
1− 1

t

)2t−2

+R4,

where the remainder is R4 ≥ 0, as the fourth derivative is non-negative. (This can easily be seen
when expressing the remainder in Lagrange form.) We then obtain

inf
n∈N

α(dlogne− 2, n)

2dlogne−3

≥ inf
t∈N
t≥2

{
5

2
+

(
2t+ 1

t

(
1− 1

t

)2t

− 2t+ 1

t

(
1− 1

t

)2t−1

+
(2t+ 1)(2t− 1)

3t2

(
1− 1

t

)2t−2
)(

1

t
− 7

2

)

−
(

9

2
+

1

t

)(
1− 1

t

)2t+1
}
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= inf
t∈N
t≥2

{
5

2
+

(
1− 1

t

)2t
((

2t+ 1

t
− 2t+ 1

t− 1
+

(2t+ 1)(2t− 1)

3(t− 1)2

)(
1

t
− 7

2

)
−
(

9

2
+

1

t

)(
1− 1

t

))}

= inf
t∈N
t≥2

{
5

2
− 55t4− 125t3 + 89t2 + 8t− 12

6t2(t− 1)2

(
1− 1

t

)2t
}
.

It is straightforward to check that (1−1/t)2t and 55t4−125t3+89t2+8t−12
6t2(t−1)2

are increasing in t. This implies

inf
k∈N

α(k,2k+1 + 1)

2k−1
= lim

t→∞

{
5

2
− 55t4− 125t3 + 89t2 + 8t− 12

6t2(t− 1)2

(
1− 1

t

)2t
}

=
5

2
− 55

6e2
≈ 1.259,

which finishes the proof. �
Combining Lemmas 6 and 7, we obtain the main result of this section.

Theorem 6. Algorithm 3 is 6.052-competitive for arbitrary distributions.

Proof. For n ≤ 4, Algorithm 3 hires the first applicant for the whole time which gives 4-
approximation. For the following arguments, assume that n≥ 5, and let k= dlogne− 2≥ 1.

Algorithm 3 hires an applicant, whenever the Markov chain transitions from a state Bj to Aj+1

and hires the final applicant when it reaches state Bk. By Lemma 6 for each j, the expected number
of transitions from state Bj to Aj+1 is at most p

3p−1
where p= 1− 1/e. Each applicant who is hired

while transitioning from Bj to Aj+1 is hired for 2j+2 time units, and its expected cost value is
E [x | δ2−(j+1) ≤ x≤ δ2−j ]. The final applicant hired when state Bk is reached is hired for at most n
time units and has expected cost with value E[x |x≤ δ2−k ].

Since the number of visits to a state and the cost for hiring an applicant in the state are
stochastically independent, we obtain

E [Algn]≤ p

3p− 1

k−1∑
j=0

(
2j+2E

[
x
∣∣ δ2−(j+1) <x≤ δ2−j

])
+nE[x |x≤ δ2−k ]

=
1− 1/e

2− 3/e

k−1∑
j=0

(
2j+2E

[
x
∣∣ δ2−(j+1) <x≤ δ2−j

])
+nE[x |x≤ δ2−k ]

≤ 8e− 8

2e− 3
E[Optn] +n

(
1− e− 1

2e− 3
η

)
E
[
x
∣∣x≤ δ2−k

]
, (18)

where we used Lemma 7 and where η = 5
2
− 55

6e2
. Further, recall that E[Optn] =∑n

i=1 E[min{x1, . . . , xi}]. For i∈ [n], we have

E
[
min{x1, . . . , xi}

]
≥E

[
x
∣∣x≤ δ2−k

]
Pr
[
|{x1, . . . , xi}∩ [0, δ2−k ]| ≤ 1

]
≥E

[
x
∣∣x≤ δ2−k

]
Pr
[∣∣{x1, . . . , xi}∩ [0, δ4/n]

∣∣≤ 1
]

=E
[
x
∣∣x≤ δ2−k

](
Pr
[∣∣{x1, . . . , xi}∩ [0, δ4/n]

∣∣= 0
]

+Pr
[∣∣{x1, . . . , xi}∩ [0, δ4/n]

∣∣= 1
])

=E
[
x
∣∣x≤ δ2−k

]((
1− 4

n

)i
+

4i

n

(
1− 4

n

)i−1
)
,
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which implies (for n≥ 5)

E
[
Optn]≥E

[
x
∣∣x≤ δ2−k

] n∑
i=1

((
1− 4

n

)i
+

4i

n

(
1− 4

n

)i−1
)

=E
[
x
∣∣x≤ δ2−k

](n
2

(
1− 3

(
1− 4

n

)n)
+

(
1− 4

n

)n
− 1

)

≥E
[
x
∣∣x≤ δ2−k

](n
2

(
1− 3

e4

)
+

(
1− 4

n

)n
− 1

)
. (19)

Combining (19) with (18) and using n≥ 5, we obtain

E[Algn]≤ 8e− 8

2e− 3
E[Optn] +

1− e−1
2e−3

( 5
2
− 55

6e2
)

1
2

(
1− 3

e4

)
+
(
1− 4

n

)n− 1
n

E[Optn]

≤
(

8e− 8

2e− 3
+

1− e−1
2e−3

( 5
2
− 55

6e2
)

1
2

(
1− 3

e4

)
+
(
1− 4

5

)5− 1
5

)
E[Optn]≤ 6.052 ·E[Optn]

as claimed. �

6. Unknown Distributions In this section, we again consider an arbitrary distribution X
with distribution function F . In contrast to before, we assume that X is unknown to us. In partic-
ular, we do not have access to the quantiles of X. We first give a bound for the cost of the offline
optimum that does not rely on quantiles. In the following, we let E [x] :=Ex∼X

[
x
]
.

Lemma 8. For arbitrary distributions X, E [Optn]≥E [x] +
∑blognc

i=1 2i−1
∫∞

0
(1−F (x))2i dx.

Proof. Since the left hand side of the inequality to prove is increasing in n while the right hand
side only increases when n is a power of 2, we may assume without loss of generality that n is a
power of 2. By Proposition 1, we have E [Optn] =

∑
i∈[n]

∫∞
0

(1−F (x))i dx. Using that (1−F (x))i

is decreasing with i, we split the sum into the ranges (n/2, n], (n/4, n/2], (n/8, n/4], . . . and bound each
part by the last term in the corresponding range, i.e.,

E [Optn] =E [x] +
∑n

i=2

∫ ∞
0

(1−F (x))i dx

≥E [x] +
n

2

∫ ∞
0

(1−F (x))n dx+
n

4

∫ ∞
0

(1−F (x))n/2 dx+ · · ·+
∫ ∞

0

(1−F (x))2 dx

=E [x] +
∑logn

i=1

n

2i

∫ ∞
0

(1−F (x))n/2
i−1

dx

=E [x] +
∑logn

i=1
2logn−i

∫ ∞
0

(1−F (x))2logn−i+1

dx

=E [x] +
∑logn−1

i=0
2i
∫ ∞

0

(1−F (x))2i+1

dx

=E [x] +
∑logn

i=1
2i−1

∫ ∞
0

(1−F (x))2i dx,

as claimed. �
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Algorithm 4: A 48-competitive algorithm for unknown distributions.

τ ←∞ ; // threshold cost

tsample← 0 ; // remaining time until threshold is fixed

twait← 1 ; // remaining time once threshold is fixed

j← 0 ; // state of the algorithm

for i← 1, . . . , n do
if tsample > 0 then

τ ←min{τ,xi};
tsample← tsample− 1;

else if twait > 0 then
twait← twait− 1;
if xi ≤ τ then

hire applicant i for (1 +λ)2j+2 time steps;
if i+ (1 +λ)2j+2 >n then

stop;
j← j+ 1; τ ←∞; tsample← 2j − 1; twait← λtsample;

else
j← j− 1; τ ←∞; tsample← 2j − 1; twait← λtsample;

0 1 2 . . . k−1 k

1

1/λ+1

λ/λ+1

1/λ+1

λ/λ+1

1/λ+1

λ/λ+1

1/λ+1

1/λ+1

Figure 5. Markov chain M(p, k) with p= λ/(λ+ 1).

We now describe our algorithm for unknown distributions (cf. Algorithm 4). Without knowledge
of the quantiles of X, we have no good way to directly adjust the cost threshold τ . Instead, for
some integral value λ > 1 to be fixed later, we devote a 1/λ+1 fraction of the time spent in each
state j to sample X in order to estimate a suitable value for τ and then wait for an appropriate
candidate to appear. Specifically, in state j we sample for 2j − 1 time units and then observe the
applicants for another λ(2j − 1) time units. Thus, the maximum number of time units spent in
state j is t̄j = (1 + λ)(2j − 1). When observing the applicants we hire any candidate whose cost
does not exceed the minimum cost while sampling. The hiring time is tj = (1 +λ)2j+2 time units.
Since

j+1∑
i=0

t̄i = (1 +λ)

j+1∑
i=0

(2i− 1) = (1 +λ)(2j+2− j− 3)≤ tj

we are guaranteed to hire a new applicant (or terminate the algorithm) during the hiring time.
The maximum value of j that can be reached during the execution of the algorithm is bounded

by the fact that (1 +λ)2j+2 ≤ n, i.e., j ≤ dlog n
1+λ
e− 2.

Again, we introduce a Markov chain that has one state for each possible value of j and an
absorbing state k, see Figure 5. The probability that we do not hire an applicant in state j with
0< j < k equals the probability that the smallest cost observed while sampling is lower than the
smallest cost observed while waiting. Since twait = λtsample, we have a hiring probability of p= λ/λ+1.
With this probability, the Markov chain transitions to state j+ 1, otherwise to state j− 1.
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As the Markov chain already has homogenous transition probabilities equal to p = λ/(λ+ 1),
Lemma 14 directly implies the following result.

Lemma 9. The expected number of visits to each state j of the Markov chain is at most 1
2p−1

.

Combining Lemma 8 and Lemma 9 yields the main result of this section.

Theorem 7. For λ= 3, Algorithm 4 is strictly 48-competitive for unknown distributions.

Proof. Using Lemma 9 with p= λ
λ+1

, we conclude that the algorithm visits each state at most
1

2p−1
= λ+1

λ−1
times in expectation. In state j with 0< j < k with probability p= λ

λ+1
an applicant

is hired for (1 + λ)2j+2 units of time. The cost of the applicant is determined by drawing 2j − 1
numbers to determine a minimum τ , and then continuing to draw until we find the first cost smaller
than τ . We can bound the expected cost of the applicant by the expected cost when drawing 2j

numbers and taking the minimum, i.e.,

E [x |x≤ τ ]≤Exi∼X [mini∈{1,...,2j}{xi}] =

∫ ∞
0

(1−F (x))2j dx.

The algorithm stops at the latest when an applicant is hired in state k− 1 = dlog n
λ+1
e − 2 as the

applicant is hired for at least n time steps. Since the number of visits to a state, the probability of
hiring in a state, and the expected cost when hiring are independent, we obtain

E [Algn]≤ λ(λ+ 1)

λ− 1

k∑
j=0

(
2j+2

∫ ∞
0

(1−F (x))2j dx

)
.

Together with Lemma 8 and k− 1≤ blognc− 2, this yields

E [Algn]

E [Optn]
≤

4E [x] (λ+1)2

λ−1
+
∑k−1

j=1

(
λ(λ+1)

λ−1
2j+2

∫∞
0

(1−F (x))2j dx
)

E [x] +
∑blognc

j=1 2j−1
∫∞

0
(1−F (x))2j dx

≤max

{
4E [x] (λ+1)2

λ−1

E [x]
,

∑k−1

j=1

(
λ(λ+1)

λ−1
2j+2

∫∞
0

(1−F (x))2j dx
)∑blognc

j=1 2j−1
∫∞

0
(1−F (x))2j dx

}

≤max

{
4

(λ+ 1)2

λ− 1
,8
λ(λ+ 1)

λ− 1

}
≤ 48,

as claimed. �

7. Sequential Employment We now turn our attention to the number of applicants that
are concurrently under employment. We show that there is no constant competitive algorithm for
the problem that the covering constraint for the required number of employed candidates is fulfilled
with equality in every step.

We can easily adapt the algorithms in the previous sections to be competitive in a setting where
not more than two applicants may be employed during any period of time.

Lemma 10. We can adapt each of the above algorithms to employ not more than two applicants
concurrently and ensure them to only lose a factor of at most 2 in their competitive ratio.

Proof. We double the hiring times of the algorithms and stay idle during the first half of the
hiring period, i.e., we discard all applicants encountered during that period. This doubling causes
a loss of a factor not larger than 2. Further, it has the effect that after waiting for half of the hiring
time, effectively, the remaining hiring time is as before. This in turn implies that the employment
period of any previously hired applicant runs out while staying idle for a new applicant. This is
because the hiring time of a new applicant was defined to be larger than the remaining hiring time
of the previous one, and thus only ever two applicants are employed concurrently. �



Disser et al.: Hiring Secretaries over Time
28

Algorithm 5: An optimal online algorithm for sequential employment.

for i← 1, . . . , n do

if xi < τn−i =
En−i
n−i then

hire applicant i for remaining time n− i+ 1;
stop;

else
hire applicant i for one unit of time;

Lemma 10 allows us to generalize our algorithms for input sequences of unknown length. Without
knowledge of n, we cannot stop our algorithm once an applicant is hired for more than the remaining
time. However, if no more than two applicants are employed concurrently, it is guaranteed that we
never employ more than a single additional applicant.

Corollary 1. Algorithms 1–4 can be adapted to be competitive even when n is not known.

The question remains, whether we can stay competitive when only a single applicant may be
employed at a time. We refer to this setting as the setting of sequential employment. In the remain-
ing part of this section, we show that the competitive ratio is Ω(

√
n/ logn) for any online algorithm.

In order to do so, we give an optimal online algorithm for the sequential employment for any
distribution and show that the competitive ratio is in the order of Θ(

√
n/ logn) for the special

case of X = U [0,1]. This implies that, in contrast to Algorithms 1–4, there is no constant com-
petitive algorithm for arbitrary distributions. Note that the offline optimum only uses sequential
employment.

Let En denote the expected cost of the best online algorithm for n applicants under sequen-
tial employment. We give an optimal online algorithm (cf. Algorithm 5) based on the values
E1,E2, . . . ,En−1. Since a single applicant needs to be employed at any time, the only decision of
the algorithm regards the respective hiring times. Interestingly, our algorithm hires all but the last
applicant only for a single unit of time.

Before we prove this result, we need the following technical lemma.

Lemma 11. The function G(τ) :=Pr [x≥ τ ] (τ −E [x |x≥ τ ]) is non-decreasing.

Proof. We rewrite G(τ) = τPr [x≥ τ ]−
∫∞
τ
xf(x) dx where f is the density of X. Then, for

τ ′ > τ , we have

G(τ ′)−G(τ) = τ ′Pr [x≥ τ ′]− τPr [x≥ τ ] +

∫ τ ′

τ

xf(x) dx

≥ τ ′
∫ ∞
τ ′

f(x) dx− τ
∫ ∞
τ

f(x) dx+ τ

∫ τ ′

τ

f(x) dx

≥ 0,

which concludes the proof. �
We are now in position to prove that Algorithm 5 is optimal.

Theorem 8. Algorithm 5 is an optimal online algorithm for sequential employment.

Proof. Let τi :=Ei/i be the threshold employed by Algorithm 5 when i applicants remain. For
technical reasons, let τ0 be any constant greater than τ1. We prove the theorem by induction on n,
additionally showing that τn ≤ τn−1. For n= 1, the algorithm is obviously optimal and τ1 ≤ τ0 by



Disser et al.: Hiring Secretaries over Time
29

definition. Consider the first applicant of cost x1. With E0 := 0, the expected cost of the optimal

online algorithm follows the recursion

min
t∈{1,...,n}

{x1t+En−t}. (20)

Consider the case x1 < τn−1 = En−1/(n − 1). We proceed to show that the minimum (20) is

attained for t= n. By induction, for all t∈ {1, . . . , n− 1}, we have x1 < τn−1 ≤ τt, and thus

nx1 = tx1 + (n− t)x1 < tx1 +En−t.

Now consider the case x1 ≥ τn−1. We need to show that the minimum (20) is attained for t= 1.

By induction, for all t∈ {2, . . . , n}, we have τn−1 ≤ τn−t, and thus

tx1 +En−t = x1 + (t− 1)x1 + (n− t)τn−t
≥ x1 + (t− 1)τn−1 + (n− t)τn−1

= x1 +En−1.

It remains to show τn ≤ τn−1. From the above, we have

En = nPr [x< τn−1]E [x |x< τn−1] +Pr [x≥ τn−1] (E [x |x≥ τn−1] +En−1).

Using

E [x] =Pr [x< τn−1]E [x |x< τn−1] +Pr [x≥ τn−1]E [x |x≥ τn−1] ,

this yields

τn = E [x] +
1

n
Pr [x≥ τn−1]

(
En−1− (n− 1)E [x |x≥ τn−1]

)
= E [x] +

n− 1

n
Pr [x≥ τn−1] (τn−1−E [x |x≥ τn−1]).

Using Lemma 11 (with τn−1 ≤ τn−2 by induction) and the fact that the second term is negative,

we obtain

τn ≤E [x] +
n− 2

n− 1
Pr [x≥ τn−1] (τn−1−E [x |x≥ τn−1])

≤E [x] +
n− 2

n− 1
Pr [x≥ τn−2] (τn−2−E [x |x≥ τn−2])

= τn−1,

which concludes the proof. �
We derive the optimal competitive ratio for the case where X =U [0,1].

Lemma 12. For X =U [0,1], we have

En =

{
1/2, forn= 1,

En−1 + 1/2− E2
n−1

2(n−1)
, forn> 1.
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Proof. The case n= 1 follows from E [x] = 1/2. For n > 1, we use the fact that Algorithm 5 is
optimal. We obtain

En = nPr [x< τn−1]E [x |x< τn−1] +Pr [x≥ τn−1] (E [x |x≥ τn−1] +En−1)

= nτn−1 ·
1

2
τn−1 + (1− τn−1)

(
1 + τn−1

2
+En−1

)
=
nτ 2

n−1

2
+

1

2
+En−1−

1

2
τ 2
n−1−En−1τn−1

=En−1 +
1

2
−

E2
n−1

2(n− 1)
,

which concludes the proof. �
With this, we can bound the expected cost of any online algorithm.

Lemma 13. For X = U [0,1], we have
√
n+ 1− 1≤En ≤

√
n.

Proof. For the sake of contradiction, assume that En >
√
n for some value of n. With Lemma 12,

we obtain

En+1 =En +
1

2
− E2

n

2n
<En +

1

2
− n

2n
=En,

which is a contradiction with En being non-decreasing.
Let h(n) :=

√
n+ 1− 1. It is easy to check that En ≥ h(n) for n< 7. For n≥ 7, we use induction

on n. To that end, assume En ≥ h(n) holds and consider En+1. Clearly, En+1 ≥ En. If En ≥√
n+ 1− 0.8, it thus suffices to show that h(n+ 1)− h(n)≤ 0.2. Since h is concave and n≥ 7, we

indeed have

h(n+ 1)−h(n)≤ h′(n) =
1

2
√
n+ 1

≤ 0.2.

Finally, let En <
√
n+ 1− 0.8. Using n≥ 7, we show that En grows faster than h(n):

En+1−En =
1

2
− E2

n

2n
≥ 1

2
− (
√
n+ 1− 0.8)2

2n
=

160
√
n+ 1− 164

200n

≥
√
n+ 1

2(n+ 1)
= h′(n)≥ h(n+ 1)−h(n),

which concludes the proof. �
Together with Lemma 1, we immediately get the following bound on the competitive ratio of

any online algorithm.

Theorem 9. The competitive ratio of the best online algorithm for sequential employment and
a uniform distribution X =U [0,1] is Θ(

√
n/ logn).

Observe that Theorem 9 implies that every sequential algorithm has a competitive ratio of
Ω(
√
n/ logn). This immediately disqualifies simple algorithms that never hire more than one appli-

cant at every point in time to be constant competitive for the problems considered in Section 4, 5
and 6.

8. Analysis of the Markov Chains In this section, we study the Markov chains that govern
the evolution of the threshold values of our algorithms.
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Figure 6. Markov chain used in § 4.1 and § 6. Nodes correspond to states.

8.1. Markov Chain M̂(p,k) We start with the simple Markov chain M̂(p, k) used in § 4.1
and § 6. The Markov chain has states 0, . . . , k and transition probabilities as shown in Figure 6.

In the following, we compute the expected number of visits to each state.

Lemma 14. Let p > 1/2 and k ∈ N. Starting in state 0, the expected number of visits to each
state j of the Markov chain M̂(p, k) is at most 1

2p−1
.

Proof. Let vj denote the expected number of visits to state j, when starting from state 0. We
derive that the values vj, j ∈ {0, . . . , k} satisfy the following equations

vk = 1, (21a)

vk = pvk−1, (21b)

vk−1 = pvk−2, (21c)

vj = (1− p)vj+1 + pvj−1 for all j ∈ {2, . . . , k− 2}, (21d)

v1 = v0 + (1− p)v2, (21e)

v0 = 1 + (1− p)v1, (21f)

where (21a) follows from the fact that k is the absorbing state, (21b) uses that state k is reached
only from state k − 1. Equation (21c) follows since state k − 1 can be reached from state k − 2
only. Equation (21d) follows from the fact, that we reach state j from j − 1 and j + 1 and leave
states j − 1 and j + 1 to j with a probability of p and 1− p, respectively. As state 0 is left with
probability 1 towards its successor, Equation (21e) holds as special case. Further, for state 0, we
obtain Equation (21f) since 0 is the starting state and can only be reached from state 1.

Note that (21a) and (21b) imply vk−1 = 1/p which by (21c) implies vk−2 = 1/p2. With these start
values (21d) uniquely defines a homogenous recurrence relation on v1, . . . , vk−1 with

vj =
1

p
vj+1−

1− p
p

vj+2 for all j ∈ {2, . . . , k− 2}.

Solving this recurrence by the method of characteristic equations yields that the characteristic
polynomial x2− 1

p
x+ 1−p

p
has roots 1

p
− 1 and 1 so that the explicit solution is

vj = λ1

(
1

p
− 1

)k−j−1

+λ2

for some parameters λ1, λ2 ∈R. Choosing λ1 and λ2 such that the equations vk−1 = 1/p and vk−2 =
1/p2 are satisfied gives

λ1 =
1

2p− 1

(
1− 1

p

)
, λ2 =

1

p
− 1

2p− 1

(
1− 1

p

)
.
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Figure 7. Markov chain N̂(p, k) with homogenous transition probability p and k+ 1 states used in § 4.2 and § 5.
Nodes correspond to states.

As a result, for j ∈ {1, . . . , k}, we obtain

vj =
1

2p− 1

(
1− 1

p

)(
1

p
− 1

)k−j−1

+
1

p
− 1

2p− 1

(
1− 1

p

)
=

1

2p− 1

[(
1

p
− 1

)
−
(

1

p
− 1

)k−j]
+

1

p
. (22)

Finally, v0 is defined via (21f). Observe that, together with (22), this satisfies (21e) as required.
It remains to show that vj ≤ 1

2p−1
for all j ∈ {0, . . . , k}. For j ∈ {1, . . . , k−1} we use Equation (22)

and the fact that p > 1/2 to obtain

vj =
1

2p− 1

[(
1

p
− 1

)
−
(

1

p
− 1

)k−j]
+

1

p

≤ 1

2p− 1

(
1

p
− 1

)
+

1

p

=
p

p (2p− 1)
=

1

2p− 1
.

For j = 0 we have by Equation (21f)

v0 = 1 + (1− p)v1 ≤ 1 +
1− p
2p− 1

=
p

2p− 1
≤ 1

2p− 1

which completes the proof. �

8.2. Markov Chain N̂(p,k) In this section, we study the Markov chain N̂(p, k) used in
§ 4.2 and § 5. The Markov chain has states Aj and Bj, for j ∈ {0, . . . , k} and transition probabilities
as shown in Figure 7.

We start to bound the expected number of transitions from an A-state to a B-state.

Lemma 15. Starting in state A0 of Markov chain N̂(p, k), the expected number of transitions
from an A-state to a B-state is at most

h=
kp

3p− 1
− 4p(1− 2p)

(3p− 1)2
+

(
1− p
3p− 1

)2(
2(1− p)

1 + p

)k
.

Proof. Let aj (respectively bj) denote the expected number of transitions from an A-state to a
B-state, when starting from state Aj (respectively Bj). We get

bk = 0, (23a)

bj =
1

2
bj+1 +

1

2
aj+1 for all j ∈ {0, . . . , k− 1}, (23b)

aj = p(bj + 1) + (1− p)aj−1 for all j ∈ {1, . . . , k}, (23c)

a0 = 1 + b0. (23d)
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Defining β = 2(1−p)
1+p

, for j ∈ {0, . . . , k}, it is straightforward to check that (23a), (23b) and (23c) are
fulfilled by

aj =
(k− j+ 2)p

3p− 1
−βj 2p(1− p)

(3p− 1)2
+βk

(1− p)2

(3p− 1)2
, and

bj =
(k− j)p
3p− 1

−βj (1− p)2

(3p− 1)2
+βk

(1− p)2

(3p− 1)2
.

It follows that the expected number of transitions from an A-state to a B-state when starting at
A0 is

a0 =
(k+ 2)p

3p− 1
− 2p(1− p)

(3p− 1)2
+βk

(1− p)2

(3p− 1)2
=

kp

3p− 1
− 4p(1− 2p)

(3p− 1)2
+

2k(1− p)k+2

(3p− 1)2(1 + p)k
,

which completes the proof. �

Lemma 16. Starting in state A0 of Markov chain N̂(p, k) for each j ∈ {0, . . . , k−1} the expected
number of transitions from Bj to Aj+1 is at most p

3p−1
.

Proof. As the expected number of such transitions is half the expected number of visits to
state Bj, it suffices to bound the latter quantity.

Suppose we are in state Bj. The probability of coming back to Bj equals the probability of
hitting Aj from Bj. Denote by ai(j), bi(j) the hitting probability of state Ai from Aj and Bj,
respectively. We have

bi(k) = 0, (24a)

bi(j) =
1

2
bi(j+ 1) +

1

2
ai(j+ 1) for all j ∈ {i, . . . , k− 1}, (24b)

ai(j) = pbi(j) + (1− p)ai(j− 1) for all j ∈ {i+ 1, . . . , k}, (24c)

ai(i) = 1 (24d)

Let β = 2(1−p)
p+1

< 1 (as p > 1/3). It is easy to check that for j ∈ {i, . . . , k}

ai(j)≤ βj−i

bi(j)≤
1− p
2p

βj−i,

gives an upper bound on the solution of (24) as these values satisfy equalities (24b), (24c), (24d),
and only overestimate (24a). We can interpret the visits to state Bj after the first visit as a
geometric random variable with success probability 1− bj(j). Thus, the expected number of visits
to Bj is given by

1 +
1− (1− bj(j))

1− bj(j)
=

1

1− bj(j)
≤ 1

1− 1−p
2p

=
2p

3p− 1
.

We conclude that the expected number of transitions from Bj to Aj+1 is at most p
3p−1

, proving the
claim. �

9. Conclusion We considered prophet inequalities with a covering constraint and a minimiza-
tion objective. We gave constant competitive algorithms for this type of problem and established
concurrent employment as a necessary feature of such algorithms.

We note that our results extend to slightly more general settings, where (a) we relax the covering
constraint by associating a penalty B <∞ with time steps where no contract is active, (b) multiple
applicants arrive in each time step, (c) applicants may be hired fractionally.

A crucial limitation of our model is the assumption that costs are distributed independently, and
it remains an interesting question how to address correlated costs.
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