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Abstract- This paper studies a two-stage PV micro-inverter. Its prestage is a full-bridge DC-DC converter with an 

adaptive inductor whose inductance can be regulated by a controlled current source. The aim of the adaptive inductor is to 

realize current boundary continuous mode (BCM) operation with constant-frequency (CF) and decrease the current stress of 

the switches in the prestage converter. The structure and operational principle of the proposed adaptive inductor are 

introduced. The mathematical model has been established for achieving the proper inductance of the adaptive inductor for 

BCM operation and for verifying the operational condition of the core. The current stress of switches and power loss of the 

prestage converter with the adaptive inductor or the fixed inductor are analyzed. A hybrid control strategy, which includes 

the adaptive inductor regulating, discontinuous conduction mode (DCM) or BCM selection in different power range, is 

proposed according to the derived mathematical model. The experimental results are presented to verify the analysis. 

Index Terms- PV micro-inverter; adaptive inductor; fixed inductor; hybrid control scheme; current stress; DCM; 

BCM.  

I. INTRODUCTION 

Compared with the centralized and the string photovoltaic (PV) generation system [1]-[2], PV AC module has been paid 

more and more attention due to the following advantages: maximum of energy harvest, low cost of mass production, plug 
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and play operation, easier installation and expansion. The inverter used in AC module is called micro-inverter because of its 

low power, whose typical value is 100~300W[3]. However, the lower efficiency is the weakness of the micro-inverter 

compared with the centralized PV generation system, which reduces the competitiveness of the PV AC modules[4]. Thus, 

the efficiency increasing is an important research field to PV micro-inverter [3], [5]. 

According to the fact whether there is a transformer in the topology, there are two types of micro-inverters, the 

transformerless micro-inverter [6]- [8] and the galvanic isolated micro-inverter [9]. The output voltage of a single PV panel 

is generally about 25~36V at its maximum power point (MPP). Thus, a high step-up prestage DC–DC converter must be 

equipped to match the grid amplitude voltage in the transformerless micro-inverter, such as 155V (110V RMS) or 311V 

(220V RMS) [10]. However, the conventional boost or buck/boost cannot have good performance if they have so high 

step-up. In order to obtain high step-up and good performance, a coupled inductor with large turns-ratio and several power 

switches are usually employed to help power conversion. The cost and the complexity of this high step-up micro-inverter 

may not be less than that of the isolated ones. Moreover, some special control strategies or specific poststage DC–AC 

inverters must be employed to suppress the leakage current [11], which increases complexity of the transformerless 

micro-inverter. 

The commonly used isolated micro-inverter has two stages. The prestage DC–DC converter is usually based on the 

classical DC/DC converters or their improved topologies, such as flyback[12]-[15], interleaved flyback[16]-[17], 

forward[18], half-bridge[19], current-fed or voltage-fed push-pull[20]- [21], current-fed isolated dual-boost[22], various 

kinds of resonant full-bridge[23]-[25]. With the increasing of photoelectric transformation efficiency, the output power of a 

single PV panel becomes large. The maximum value is beyond 500W in [26]. However, the prevalent two-phase interleaved 

flyback micro-inverter cannot achieve high efficiency with such high power. High efficiency can be achieved by three or 

more phase interleaved flyback micro-inverter, which will greatly increase the complexity of the topology. Thus, 

micro-inverter based on resonant full-bridge has received a lot of attention in recent years due to easier soft-switching, high 



 

 

efficiency and larger rated power. However, the efficiency of the micro-inverter based on resonant full-bridge is low with 

light load because of the relatively complex circuit topology.  

Some mandatory efficiency standards, such as CEC efficiency and European efficiency [27]- [28], are a weighted value. 

The PV micro-inverter can obtain a high weighted efficiency only when it always has high efficiency in different solar 

irradiance and temperature. Many schemes have been proposed for higher weighted efficiency, such as time-sharing 

strategy for flyback unit in interleaved flyback micro-inverter[29]- [31], variable-frequency (VF) and constant peak current 

scheme[32], two topologies integrated into a single circuit scheme[33], current boundary continuous mode (BCM) with VF 

scheme in wide power range[34]-[37].  

An adaptive inductor can be used in resonant converter and dual active bridge (DAB) for achieving constant-frequency 

(CF) control or low circulating energy [38]. However, it hasn’t been adopted in micro-inverter in previous work to the best 

of author’s knowledge. In order to meet the power development tendency of a single PV panel, an adaptive inductor is in 

series with the primary winding of the transformer in full-bridge micro-inverter for achieving current BCM in wide power 

range with CF. On one hand, high efficiency can be achieved in heavy load due to characteristic of the full-bridge converter. 

On the other hand, current BCM operation cause low current stress and high efficiency in wide power range. 

II. PV MICRO-INVERTER BASED ON FULL-BRIDGE WITH ADAPTIVE INDUCTOR 

Fig. 1 shows the proposed topology for PV micro-inverter. It includes a prestage full-bridge DC-DC converter (PFDDC) 

and a poststage DC-AC inverter (PDAI). PFDDC includes a high-frequency inverter formed by S1-S4, an adaptive inductor 

L in series with the primary winding of the transformer, the high-frequency transformer, a double-voltage-rectifier formed 

by D1-D2 and C1-C2. The inductance value of the adaptive inductor can be regulated according to the output power of the 

PV panel for achieving BCM with CF. The operational principle of the adaptive inductor will be discussed in Section III. 

PDAI is a full-bridge topology modulated by double-frequency unipolar sinusoidal pulse width strategy and it isn’t the 

emphasis of this paper. We focus on the study of PFDDC and its control strategy. 
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Fig. 1. The proposed topology for PV micro-inverter with adaptive inductor. 

The inductance of the adaptive inductor can always be operated in a proper value to guarantee BCM operation within 

wide power range. Synthetically, the proposed PFDDC with the adaptive inductor for PV micro-inverter has the following 

characteristics: 

1. The adaptive inductor is in series with the transformer and all of switches and diodes are clamped by the filter 

capacitance with large capacitance. So, there is almost no voltage spike across the rectifier diodes. However, in the 

conventional full-bridge converter (CFBC), there is voltage spike across rectifier diodes, which results from the 

resonant process between the leakage inductor, junction capacitor of rectifier diode during the commutation. 

2. Compared with the flyback and forward converter, it is easier to achieve high efficiency with high power. 

3. There is no energy circulating in PFDDC because there is no feedback current in the input current--that is, the current 

iPV is always greater than or equal to zero. 

4. All of switches and diodes can achieve soft switching through proper modulation. 

5. The adaptive inductor can guarantee the current BCM operation and the lowest current stress within wide power 

range. 

Based on the symbols and signal polarities described in Fig. 1, the theoretical waveforms of PFDDC in BCM are shown 

in Fig. 2. The intervals in Fig. 2 describe the various operational steps of PFDDC during a switching cycle. The operation of 

the converter is repetitive in a switching cycle. Setting the duty cycle is 
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Where, Ts is the switching cycle of the converter.  

tuGS1 uGS3

t

t

t

t0 t2 t2at1

uGS4 uGS2

uAB

iL

uCDirec1 irec2

t4 t5 t6 t7 t8
t

iPV

uAB

iL

irec1

irec2
uCD

uGS1
uGS3

uGS2
uGS4

t3 t6a

 

Fig. 2. Theoretical waveforms and switching time of PFDDC. Note that uGS1 - uGS4 represent drive signal of the corresponding switches, uAB is the output 

voltage across point A and point B, iL is the adaptive inductor current, uCD is the output voltage across point C and point D, irec1 and irec2 are the current 

through rectifier diode D1 and D2 respectively, iPV is input current of PFDDC. 

One complete switching cycle can be divided into eight steps. The former four steps are detailedly explained as follows. 

The operation condition of the later four steps is symmetrical with the former four steps. Fig. 3 gives the commutation step 

diagrams during half a switching cycle. Note that the parasitic capacitors of switches S1-S4 are considered in Fig. 3. 

Step 1: (t0-t1, Fig. 3 (a)): The switch S4 is turned on and the voltage uAB is changing from zero to UPV at t0. The current iL 

begins to increase from zero and rectifier diode D1 is ON. The voltage relationship between t0 to t1 is as follows: 
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Where, uS1-uS4 are the voltage across S1-S4, uL is the voltage across the adaptive inductor L, uD1 and uD2 are the voltage 

across the rectifier diode D1 and D2 respectively. According to the voltage relationship in (2), the current expressions are as 

follows: 
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Step 2: (t1-t2, Fig. 3 (b)): At t1, S1 is turned off. The junction capacitance of S1 and S3, together with the adaptive 

inductor L begin to resonate, which makes voltage across S1 (uS1) increasing from zero and voltage across S3 (uS3) 

decreasing from the input voltage UPV. So, S1 can achieve zero voltage turn-off. In the secondary side of transformer, the 

operation condition keeps same with Step 1. The time interval of this step is very short. At t2, the voltage of each element is 

as follows: 
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Step 3: (t2-t3, Fig. 3 (c) and Fig. 3(d)): At t2, body diode of S3 begins to conduct. The voltage of each element in this step 

is same with the time t2 shown in Eq. (4) and the current expression is as follows: 
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At t2a, S3 is turned on with ZVS and the operating condition of the converter is the same as that of before t2a. At t3, the 

current iL is falling to zero. According to the volt-second balance of the adaptive inductance L, the duration of this step 

(0.5ΔDTs) can be obtained.  
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Step 4: (t3-t4, Fig. 3 (e)): At t3, the current iL is falling to zero and S4 is turned off at this time. So, S4 can obtain ZCS off. 

The rectifier diode D1 is off at zero current. Thus, the reverse recovery loss of D1 is very small. There is almost no current 



 

 

in the circuit in this step and the duration of this step is very short.  

At t4, S2 is turned on, the later four steps begin and the working condition is symmetrical with the former four steps. It is 

unnecessary to go into details here. 
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Fig. 3. Commutation step diagrams during half a switching cycle of PFDDC: (a) Step 1: Current path between t0-t1, (b) Step2: Current path between t1-t2, (c) 

Step 3: Current path between t2-t2a, (d) Step 3: Current path between t2a-t3, (e) Step 4: Current path between t3-t4. 

III. THE OPERATIONAL PRINCIPLE OF THE ADAPTIVE INDUCTOR 

The adaptive inductor was built as the structure shown in Fig. 4(a) and its photo is shown in Fig. 4(b), as explained in 

[39]-[40].  
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Fig. 4. Developed adaptive inductor. (a) Schematic diagram. (b) Photograph. 

The adaptive inductor L is wound around the core center leg (CCL) whereas the symmetrical bias windings Lb1 and Lb2 

are wound around the core two side arms (CTSA). A bias current Icon, which results from a voltage-controlled current source 

(VCCS), flows through the bias windings Lb1 and Lb2. The magnetomotive forces (MMF) produced by bias windings Lb1 

and Lb2 are Fb1 and Fb2, respectively. MMF Fbij (i=1,2;j=1,2) shown in Fig. 4(a) are the subcomponents of Fb1 and Fb2. The 

relationship of MMFs produced by bias windings Lb1 and Lb2 are 
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Thus, MMFs Fb11 and Fb21 flowing through CCL offset each other and MMF in CCL determines inductance of the 

adaptive inductor L. The effect of MMF Fb1 and Fb12 (or Fb2 and Fb21) with the same direction cause core saturation in CTSA, 

which can change the effective permeability of CTSA. The effective permeability of CTSA is decreasing with the increasing 

of the bias current Icon and it is equal to 60-70 times of μ0 (Permeability in a vacuum) with enough bias current Icon
[39]

. At last, 

the inductance value of the adaptive inductor can be regulated by the bias current Icon.  

We can divide the core into four parts and the variables of each part are all shown in Fig. 5.  
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Fig. 5  the magnetic path sections of variable inductor. 

With consideration of the leakage inductor Lk, the inductance of the adaptive inductor can be expressed as
[39]
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Where, 
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maximum inductance to the minimum inductance. Its asymptotic value expression can be derived according to the fact that 
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The maximum inductance of the adaptive can be achieved through the basic equation of an inductor without consideration 

of the bias windings. 
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The turns of main winding n3 is  
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Where Vrms is the RMS value of the voltage across the adaptive inductor. Equations (9) and (10) can now be used to obtain an 

estimate of the core volume needed: 
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According to the parameter of a single PV panel, an approximate fitting line about PV voltage versus output power in a 

certain temperature is  

55 1630   (30,36)PV PVP U U       (13) 

The duty cycle in BCM can be determined in terms of (6) in Section II. So, 



 

 

2

DC
BCM

PV

U
D

nU
         (14) 

The mean value of the input current iPV can be calculated through geometry relationship in Fig. 2. 
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If the output power of the converter is P, the inductance value of the adaptive inductor for BCM must equal to  
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Fig. 6 shows the LBCM curves varying with different turns ratio of the transformer. It can be seen that LBCM decreases with 

the increasing of the output power.  
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Fig. 6.  LBCM curves versus the input power with different turns ratio n. 

According to Fig. 6, the needed minimum inductance is 3.3μH. Equation (9) suggests that a large inductance varying 

range should be required. That is, the air gap (lg) should be made as small as possible, which may result in saturation of the 

core. This dictates the use of a rather large air gap to keep the magnetic flux density swing (ΔBm) small so as to control core 

losses. Thus, we determine the value of max min/ 5L L  . With the consideration of characteristic of the adaptive inductor, we 

select Lmin=2.5μH and Lmax=12.5μH. According to the parameters requirement, we selected EE33 (l1=l2=0.052m, l3=0.024m, 

A1=A2=6.1e-5m
2
, A3=1.22e-5m

2
) core with material PC40 whose air gap length is 0.3mm. Moreover, the bias windings was 

implemented by using Nb1 = Nb2 = 120 turns with a 0.15mm diameter wire.  



 

 

In order to satisfy the maximum output power, we select the turns of the adaptive winding n3=5. So, the maximum 

inductance of the adaptive inductor is 12.75μH (the actual measured value is 12.4μH) and its inductance curves versus the 

bias current Icon is shown in Fig. 7.  
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Fig. 7.  Inductance curves versus the bias current Icon. 

It should be noted that the adaptive inductor in [38] is adopted in a resonant converter for achieving soft switching with CF. 

In this paper, the inductance of the adaptive inductor is regulated in terms of the output power for BCM operation and low 

current stress with CF. The aims of the adopted adaptive inductor in the two converters are different. It can be seen that the 

maximum inductance of the adaptive inductor cannot meet the requirement for BCM operation when the power is less than 

a certain value, which is called the threshold power Pthr. So, there are two control schemes for PFDDC of the PV 

micro-inverter, as shown in Fig. 8. When the power is greater than Pthr, the current iL is in BCM through regulating the 

inductance of the adaptive inductor in its operational range shown in Fig. 6. When the power is less than P thr, one scheme 

adopts DCM operation through adjusting duty cycle with maximum inductance of the adaptive inductor. The other scheme 

adopts BCM operation through adjusting switching frequency also with maximum inductance. This paper adopts Scheme 1 

as the final control scheme for easy implementation. 
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Fig. 8.  Two different schemes for PFDDC. 



 

 

The adaptive inductor is at its maximum inductance 12.4μH and the current iL is operated in DCM when the power is less 

than Pthr. The duty cycle in DCM can be achieved in terms of (15) and (16). So,  
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The core operational condition must be verified. The expected peak value of the flux density for the AC component can 

be calculated as follows: 
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Where, iLmax is the maximum current of the current iL and it can be calculated using the duty cycle expression in (14). The 

curves of Bmax versus the output power can be achieved from (19), as shown in Fig. 9. It can be seen that the most power 

range is in BCM zone and the turns ratio (n) can affect the maximum flux density. The larger the turns ratio n is, the bigger 

the maximum flux density is, which is proportional to the core loss of the transformer. Thus, we expect a smaller turns ratio 

n from the point of decreasing the core loss. However, the determination of n also needs consideration of other factors, such 

as conduction loss of switches, etc. We will discuss it in Section V. 
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Fig. 9.  Curves of Bmax versus the output power. 

IV. THE CONTROL STRATEGY FOR PFDDC WITH ADAPTIVE INDUCTOR 

The vast majority of the power range is in BCM zone and a fraction of the power range is in DCM zone according to Fig. 

9. Therefore, the two operational modes must be distinguished in control strategy. The control strategy diagram for PFDDC 



 

 

of PV micro-inverter is shown in Fig. 10(a). It is composed of MPPT module, the PV voltage UPV closed-loop, adaptive 

inductor regulating controller, DCM controller, BCM controller and the mode selector. The control strategy for the poststage 

SPWM inverter with LCL filter is the same as literature [41] and it won’t be discussed here. 
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Fig. 10.  Control strategy of PFDDC with the adaptive inductor in the PV micro-inverter. 

A. control strategy for BCM with adaptive inductor 

The duty cycle in BCM is only related to the ratio of the voltage UDC over the voltage UPV and it has nothing to do with 

the power P dealt by the converter in terms of (14). So, we can regulate the proper inductance of the adaptive inductor 

according to (17).  

The adopted duty cycle in BCM DBCM1 includes two components. One is DBCM determined by (10) and the other one Da 

results from the adaptive current closed-loop regulator for lower loss in the process of switching. So, DBCM1=DBCM +Da. In 

Fig. 2, if the current iL at t3 is zero, the voltage across S4 uS4 is equal to zero and the voltage across S2 uS2 is equal to UPV 

before S2 is turned on at t4. Thus, the energy stored in parasitic capacitor of S2 (or an external capacitor is paralleled with 

the switch) will waste at t4 and the electromagnetic interference will happen. In order to remove this power loss, the current 

iL at t3 (or t7) is detected as iL_fs in Fig. 11 and setting its reference IL* is greater (or less) than and near zero. The smaller IL* 

doesn’t affect the RMS value of iL much. The waveforms are shown in Fig. 11(a) by adopting the adaptive current 

closed-loop. It can be seen that the uS2 and uS4 are always equal zero at its turn-on time if the detecting point x (y) of iL is 



 

 

greater (less) than zero. Thus, there is no energy loss in S2 and S4 when they are turned on. Fig. 11(b) shows simulation 

waveforms of PFDDC after adopting the adaptive current closed-loop and its IL*=2A. 
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Fig. 11.  The waveforms of PFDDC after adopting the adaptive current closed-loop: (a). theoretical waveforms, (b). Simulink waveforms. 

B. control strategy in DCM with adaptive inductor 

The duty cycle in DCM is not only related to the voltage UDC and UPV, but also related to the power P. The advantage in 

DCM is the simple control because the inductance of the adaptive inductor is always in its maximum value. The 

voltage-controlled current source Icon is always equal to zero. 

In the conventional control strategy, the output signal of the PV voltage closed-loop is as the reference value of the 

current loop. The output signal of the PV voltage closed-loop is the power reference value in this paper. The duty cycle can 

be obtained according to the mathematical model in Section III, which can improve the dynamic performance of the 

converter. There may be some errors between the reference P* and the actual power P. However, it cannot affect the 

operation of the converter because the PV voltage closed-loop can always output a proper reference power to guarantee the 

power balance of the PV-side and the grid-side.  

V. COMPARISON WITH DIFFERENT SCHEMES 

A. Circuit Configuration Comparison with other PV micro-inverter 

The circuit configuration of the full-bridge PV micro-inverter shown in Fig. 1 is actually a little more complex than the 

conventional micro-inverter based on a single flyback converter. However, its efficiency is higher. Moreover, its 

configuration is even simple compared with to other PV micro-inverters listed in Table I. The contents of comparison 

include the number and the peak voltage of switches and diodes, clamping circuit, spike voltage, feedback current, 



 

 

switching frequency and reported maximum efficiency.  

TABLE I 

PERFORMANCE COMPARISON OF DIFFERENT MICRO-INVERTER 

Micro-inverter 

Prestage converter 
Poststage 

inverter Clamping 

circuit 

Spike 

due to 

leakage 

inductor 

Feedback 

current 

Switching 

frequency 

Reported 

maximum 

efficiency Peak voltage 
Peak 

voltage 

Micro-inverter 

based on a single 

flyback in [12] 

SW (1) DFly (1) S1- S4 (4) RCD 

snubber 
Medium No Constant 90% 

2 /PV GU U n  2PV GnU U  2 GU  

Interleaved flyback 

micro-inverter in 

[31] 

S1- S2 (2) D1- D2 (2) S3- S6 (4) 
No Large No Constant 94.1% 

2 /PV GU U n  2PV GnU U  2 GU  

Interleaved flyback 

micro-inverters 

with active 

clamping circuit in 

[35] 

S1- S2 (2) D1- D2 (2) S3- S6 (4) 
2 switches 

2 

capacitors 

Small No Variable 95.8% 

2 /PV GU U n  2PV GnU U  2 GU  

micro-inverter 

based on 

current-fed 

push-pull 

converter in [26] 

S1- S2 (2) D1- D2 (2) S3- S6 (4) 

No Large No Constant 93.8% 
/DCU n  DCU  DCU  

micro-inverter 

based on 

current-fed 

push-pull 

converter with 

resonant unit in 

[21] 

S1- S2 (2) D1- D2 (2) S3- S6 (4) 

No Large No Variable 96.5% 
/DCU n  DCU  DCU  

micro-inverter 

based on 

Boost-Half-Bridge 

in [19] 

S1- S2 (2) D1- D2 (2) S3- S6 (4) 

No Medium small Constant 98.1% 
1 2C CU U  DCU  DCU  

micro-inverter 

based on 

full-Bridge 

cycloconverter in 

[25] 

S1- S4 (4) -- S5- S12(8) 
2 switches 

2 inductors 

4 diodes 

Small No Constant 96% 
PVU  -- DCU  

micro-inverter in 

this paper 

S1- S4 (4) D1- D2 (2) S5- S8 (4) 
No 

Almost 

no 
No Constant 93.6% 

PVU  DCU  DCU  

The number of switches and diodes in the proposed micro-inverter is ten and it is not the largest one. The 

micro-inverter based on the full-Bridge cycloconverter in [25] has twelve switches. The other micro-inverters have fewer 

switches and diodes compared with the proposed one. However, they are all sustained spike voltage caused by the leakage 

inductor of the transformer except for the boost-half-bridge micro-inverter in [19]. Thus, clamping circuit is employed to 

suppress this spike voltage, which results in increasing of switches number. There is feedback current in the 

boost-half-bridge micro-inverter and there is no feedback current in the other micro-inverters, including the proposed 

micro-inverter. It can be seen that each performance of the proposed micro-inverter is better than others from the factors 

listed in Tab. I. 



 

 

According to the given efficiency in the corresponding literature, the maximum efficiency of the proposed converter is 

not the highest one. The efficiency of a converter is not only related to the topology itself but also related to many factors, 

such as device selection, manufacturing process of the inductor and transformer, etc.  

B. Comparison between VF_BCM and CF_BCM 

In order to achieve high efficiency, switching frequency in some micro-inverters is variable in Tab. I. If the inductance is 

fixed, the switching frequency must be variable for BCM operation (VF_BCM) and its value can be achieved from (16).  

2(2 )

8

PV DC PV BCM
S

nU U U D
f

nLP


        (20) 

Where, fs is the switching frequency of switches in PFDDC. Its curve varying with power is shown in Fig. 12 with the data 

in Section VI. The lower the output power is, the higher switching frequency it needed. High frequency operation may cause 

many adverse effects, such as higher drive loss and magnetic loss in the transformer and inductor, parasitic parameters and 

dead-time effect, etc. 
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Fig. 12.  Switching frequency versus output power under VF BCM. 

PFDDC can be operated in CF_BCM in wide power range with an adaptive inductor, as shown in Fig. 9. The price of the 

CF_BCM is that there is a little power loss in VCCS, whose typical value is from 0 to 0.65W according to Fig. 7. When the 

output power is low, the needed inductance should be large and the loss in VCCS is approximately zero. When the output 

power is at its rated value, the loss is 0.65W and it only accounts for 0.18% of the rated power. Moreover, the cost of the 

VCCS is low because the used elements in Fig. 4(a) are cheap.  



 

 

The RMS value of the current iL is same at different modes mentioned above and its value is shown in the following 

subsection. 

C. Comparison between DCM and CF_BCM 

The most convenient method for CF operation is regulating duty cycle to realize DCM. The RMS current through S1-S4 

is always equal to (1/ 2 ) times of the RMS value of current iL. So, we will analyze the value of iL. 

Current stress analysis with the adaptive inductor (CF_BCM) 

As shown in Figs. 7 and 9, the current iL is in BCM when the power is greater than Pthr and the current iL is in DCM when 

the power is less than Pthr. So, the RMS current value must be calculated in stages.  

The peak value of the current iL in BCM or DCM is  

_

(2 )

4

PV DC
L pk S

nU U
i DT

nL


         (21) 

According to the geometry relationship in Fig. 2, we can achieve the RMS value expression of iL in BCM and substitute 

(21) into it. Then  

_ _

3 4 3
  ( )

3 3
L BCM L pk thr

DC

nP
I i P P

U
          (22) 

It can be seen that the smaller turns ratio n is, the RMS value of iL is lower. The threshold power Pthr can be achieved 

from (17) when the adaptive inductance in its maximum value (Lmax=12.4μH in this paper). 

In DCM with the adaptive inductor, the duty cycle is shown in (17) and the duty cycle for current decreasing is  

(2 )
  PV DC

DCM

DC

nU U
D D

U
        (23) 

Similarly, the RMS value expression of iL in DCM with the adaptive inductor can be calculated. 
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       (24) 

Current stress analysis with a fixed inductor (DCM) 

In the conventional converter, such as dual active bridge (DAB), a fixed inductor is in series with the primary winding of 



 

 

the transformer. The inductance of the fixed inductor can be determined from (17) when P=Pmax. So 
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_ max
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32 (55 1630)

PV DC DC S

fix

PV PV

nU U U T
L

n U U





    (25) 

The current iL is in DCM in the whole power range if the fixed inductor is used in terms of (25). The RMS value 

expression of iL with the fixed inductor can be achieved  
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Where, 
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fix fix

DC

nU U
D D

U
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  .  

The current stress curves are achieved from (22), (24) and (26) with different turns ratio n, as shown in Fig. 13. With the 

same turns ratio, the current stress under the adaptive inductor is always less than that of under the fixed inductor. Thus, 

PFDDC with the adaptive inductor should be a better choice for decreasing the conduction loss of the switches and copper 

loss of the transformer. The current stress will rise with the increasing of turns ratio n. Theoretically, if n>(UDC/2UPV), a 

proper inductance can always be found to guarantee the maximum output power. The smaller turns ratio n it is, the lower 

inductance is. On one hand, there is leakage inductance of the transformer. On the other hand, the inductance range of the 

adaptive cannot reach too low. At last, we select n=7.5. 

n=7

Adaptive inductor

Fixed inductor

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18

20

P(W)

I L
(A

)

DCM zone

n=8

n=9

 

Fig. 13.  Comparison with current stress between adaptive inductor and fixed inductor with different turns ratio. 

D. Loss comparison between DCM, VF_BCM and CF_BCM operational modes 



 

 

The power loss mainly includes conduction loss Pcon, switching loss Psw, core loss Pcore, copper loss Pcu and dive loss Pdr 

in PFDDC. The conduction loss includes loss from four Mosfets and two diodes. 
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      (27) 

Where, Ron is the conduction resistance of the switches S1-S4, VF is voltage drop of the diode D1-D2 and ID is the mean 

value of the current of diodes D1-D2. 

All of the switches and diodes can achieve ZCS or ZVS. In stability state, the output power and the output voltage of the 

PV panel is constant. Thus, the inductance of the adaptive inductor is constant and the condition of ZVS operation is similar 

with that of the fixed inductor. In the dynamic process, the inductance of the adaptive inductor is in the stated range shown 

in Fig. 7 (3.3μH-12.4μH). The stored energy in the adaptive inductor cannot change abruptly. Thus, ZVS operation can also 

be realized. However, the energy stored in parasitic capacitor of S2 or S4 will waste if a proper scheme will not be used. So, 

we adopt the scheme in Fig. 10 to overcome this shortcoming. The scheme in Fig. 10 can only be used in VF_BCM and 

CF_BCM. As a result, the wasted energy only occurs in DCM scheme. 
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      (28) 

Where Coss is the equivalent capacitance of the parasitic capacitor of switch and the external paralleled capacitor. 

The core loss of the transformer and the inductor can be estimated in terms of Steinmetz equation [42]. 

core s peakP kf B          (29) 

Where, fs is the switching frequency, Bpeak is the peak magnetic flux density, k, α, β are the Steinmetz coefficient determined 

by the core material.  

The copper loss not only includes the loss from the windings of the transformer and the inductor, but also includes the 

loss from line resistance and its expression is 
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        (30) 

Where, Rx is lumped resistance of the transformer windings, inductor windings and circuit line referred to primary side. 

The drive loss is proportional to switching frequency because the energy loss in every on-off process is same. 

4 ( )dr s on offP f Q Q         (31) 

Where Qon and Qoff are the wasted energy in every turning-on process and the turning-off process of switches.  

The bar diagram of the loss with different output power is shown in Fig. 14 according to Eqs. (27)-(31). The loss under 

CF_BCM is the lowest in the whole output power range and it is approximately equal to the loss under VF_BCM at its rated 

output power. So, the weighted efficiency of the CF_BCM scheme in this paper is the highest among the three control 

schemes analyzed above. 
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Fig. 14.  Loss comparison with different operational modes. 

VI. EXPERIMENTAL VERIFICATION 

In order to verify feasibility of the proposed PFDDC with the adaptive inductor for PV micro-inverter, a 350W PV 

micro-inverter prototype was built. The parameters and elements model are shown in Table II. 

Fig. 15 shows operational waveforms of PFDDC in steady state with the adaptive inductor when the output power is 

350W. The waveforms of the voltage uAB, the current iL, and the drive voltage uGS4 and terminal voltage uS4of switch S4 in 



 

 

lagging leg is shown in Fig. 15 (a). The turn-on time and turn-off time always happen at iL=0 and the conduction interval 

coincides with the positive of iL. Thus, S4 achieves ZCS turn-on and turn-off. The other switch S2 in lagging leg has the 

same characteristic with the switch S4. The waveforms of the voltage uAB, the current iL, and the drive voltage uGS1 and 

terminal voltage uS1of switch S1 in the leading leg are shown in Fig. 15 (b) and Figs. 15 (c)-(d) are the zoomed waveforms 

of turn-on process and turn-off process of S1. It can be seen that the voltage has dropped to zero before turn-on time of S1. 

So, S1 achieves ZVS turn-on. The rising time of terminal voltage uS1 is 0.2μs after its driven voltage uGS1 becomes zero and 

this duration can absolutely guarantee its turn-off. Therefore, S1 also realizes ZVS turn-off. The other switch S3 in the 

leading leg has the same characteristic with the switch S1. 

TABLE II   

PARAMETERS AND ELEMENTS MODEL FOR MICRO-INVERTER PROTOTYPE 

Switching 

frequency 

Prestage DC/DC:40kHz 

Poststage DC/AC: 10kHz 

Grid voltage 220 2 sin(100 ) t  

PV panel 
Maximum power：350W 

Voltage in MPP：36V 

Switches 

S1-S4: IRFB4110 

D1-D2:C3D05060A 

S5-S8:C2M0080120D 

Filter capacitors 

Cin:200μF/50V 

C1, C2:470μF/250V 

Cf:10μF/250V 

Inductors 

L:3.3-12.4μH(adaptive inductor) 

L:3.3 μH(fixed inductor) 

L1:1mH  L2:0.5mH 

Transformer n=7.5 

ZCS 

on
ZCS 

off
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Fig. 15.  The waveforms of PFDDC with the adaptive inductor: (a) waveforms of uGS4, uS4,iL and uAB, (b) waveforms of uGS1, uS1,iL and uAB, (c) zoomed 

waveforms of turn-on process of S1, (d) zoomed waveforms of turn-off process of S1. 

Fig. 16 shows the control effect comparison between the adaptive inductor and the fixed inductor under conditions of 

350W, 200W, 100W and 30W, respectively. The given waveforms include uAB, iL, the secondary voltage of the transformer 

uCD, and the reverse voltage of the rectifier diode D2 uD2. From the waveforms with the adaptive inductor shown in Figs. 

16(a) - (d), the reverse recovery loss can be effectively decreased because the commutation form D1 to D2, or vice versa, 

always occurs at zero current. Moreover, the current iL is in BCM in wide power range, which can effectively decrease the 

current stress and improve the efficiency of the converter. The duty cycle is a larger value (comparison with the fixed 

inductor scheme shown in Fig.16(h)) even if the output power is 30W shown in Fig.16(d). This characteristic guarantee that 

the rising slope of iL is smaller and lower current stress. 

Figs. 16(e)-(h) show the waveforms with the fixed inductor and its inductance value is 12.4μH. The current iL is 

operated in DCM except for full load and its peak value is higher than that of the peak current under the adaptive inductor 

condition. 
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Fig. 16.  The waveforms of the PFDDC with the adaptive inductor and fixed inductor: (a) P=350W with the adaptive inductor, (b) P=200W with the 

adaptive inductor, (c) P=100W with the adaptive inductor, (d) P=30W with the adaptive inductor, (e) P=350W with the fixed inductor, (f) P=200W with 

the fixed inductor, (g) P=100W with the fixed inductor, (h) P=30W with the fixed inductor. 

Fig. 17 shows the waveforms of the micro-inverter when the PV power has a sudden change. The waveforms of the 

voltage uAB and the current iL are shown in Figs. 17(a) and (b) when the PV power has a sudden-decrease and 

sudden-increase, respectively. The DC bus voltage UDC cannot be changed much due to the large capacitance of C1-C2 when 

PV power has a sudden change. So, the inductance of the adaptive inductor should be adjusted and the duty cycle holds 

constant, which can guarantee the power balance in filter capacitor Cin. The waveforms of voltage UDC and the current iG are 



 

 

shown in Figs. 17(c) and (d) when the PV power has a sudden-decrease and sudden-increase, respectively. The amplitude of 

the grid current reference IG* is obtained from the DC bus voltage UDC closed-loop regulator according to the control 

scheme of the poststage DC/AC inverter in Fig. 10(b). The larger capacitance of DC bus filter capacitors C1 and C2 

determines the changing speed of the DC voltage UDC is slow. Thus, the amplitude of grid current iG increases or decreases 

gradually. At last, the dynamic process for DC bus voltage UDC regulator needs a long time, as shown in Figs. 17(c) and (d). 
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Fig. 17.  The dynamic waveforms of the micro-inverter: (a) the voltage uAB and the current iL with a suddenly-decreased PV power, (b) the voltage uAB 

and the current iL with a suddenly-increased PV power, (c) the voltage UDC and the grid current iG with a suddenly-decreased PV power, (d) the voltage 

UDC and the grid current iG with a suddenly-increased PV power. 

Fig. 18 shows the total efficiency curve of the PV micro-inverter, the sub-efficiency curve of PFDDC and the 

sub-efficiency curve of the postsage DC/AC inverter with the adaptive inductor or the fixed inductor. When the output 

power is near the full-load, the efficiency of the proposed scheme is a little lower than that of the conventionally fixed 

inductor because there is energy loss for driving magnetic bias windings. While the output power is lower than 300W, the 

efficiency of the proposed scheme is obviously higher than that of the fixed inductor scheme. 
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Fig. 18.  Efficiency curves of the micro-inverter with adaptive inductor and the fixed inductor. 

VII. CONCLUSION 

This paper proposes a PFDDC with an adaptive inductor for PV micro-inverter. The inductance of the adaptive 

inductor can be properly regulated according to the output power and the input and output voltage, which can guarantee that 

the current is in BCM in wide power range and the current stress of the switches can be deceased obviously. The inductance 

of the adaptive inductor has an operational range. So, the current is in DCM when the power is lower than the threshold 

value. A hybrid control strategy, which includes the adaptive inductor adjusting, DCM and BCM schemes in different 

power range, is proposed after synthesizing these characteristic. The current stress of switch in PFDDC with the adaptive 

inductor is less than that of switch in PFDDC with the fixed inductor. Thus, the efficiency is the highest one compared with 

the conditions of VF_BCM and the fixed indctor. The experimental results show that the correctness of the theoretical 

analysis. 
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