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Abstract

Measuring (dis)similarity between ecosystem states is a key theme in ecology. Much of community and ecosystem

ecology is devoted to searching for patterns in ecosystem similarity from an external observer’s viewpoint, using

variables such as species abundances, measures of diversity and complexity. However, from the point of view

of organisms in the ecosystem, proportional population growth rates are the only relevant aspect of ecosystem

state, because natural selection acts on groups of organisms with different proportional population growth rates.

We therefore argue that two ecosystem states are equivalent if and only if, for each species they contain, the

proportional population growth rate does not differ between the states. Based on this result, we develop species-

level and aggregated summary measures of ecosystem state and discuss their ecological meaning. We illustrate our

approach using a long-term dataset on the plankton community from the Central European Lake Constance. We

show that the first three principal components of proportional population growth rates describe most of the variation

in ecosystem state in Lake Constance. We strongly recommend using proportional population growth rates and the

derived equivalence classes for comparative ecosystem studies. This opens up new perspectives on important existing

topics such as alternative stable ecosystem states, community assembly, and the processes generating regularities

in ecosystems.

Keywords: Hutchinson niche, ecosystem dynamics, ecosystem dissimilarity, proportional population growth rate,

per capita growth rate

1. Introduction1

In abstract terms, ecosystem ecology is about identifying deep similarities between superficially different ecosys-2

tems. For example, practical problems such as developing ecological indicators (Niemi and McDonald, 2004) rely on3

having an appropriate concept of the properties of ecosystems which make them similar or dissimilar. Widely-used4

properties include abundances (Ginzburg, 1983, p. 7), relative abundances (Legendre and Legendre, 2012, p. 328),5

diversity (Jost, 2006), complexity of energy flow pathways (Ulanowicz, 1986), and aspects of ecosystem functioning6

such as productivity and material cycling (Loreau, 2010, chapters 3 and 6). However, to an external observer of the7

ecosystem, there does not appear to be any objective way to determine which of these many properties are relevant,8
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or how much weight should be given to each. This is of practical importance, because multiple properties of an9

ecosystem may change in different ways. Without an objective way to select and weight these properties, different10

external observers (for example, government bodies with different priorities) may disagree on whether the integrity11

of an ecosystem has improved or deteriorated between two points in time (Andreasen et al., 2001).12

In contrast, for an organism in an ecosystem, the properties that matter, and how much weight should be given13

to each property, are determined entirely by the structure of the Hutchinson niche. An understanding of such14

structure is therefore essential to the ideas that follow. In order to see this, we first define proportional population15

growth rate to mean the rate of change of abundance per unit of abundance, for example per-capita population16

growth rate when abundance is measured in individuals, or mass-specific population growth rate when measured17

as biomass. We require that proportional population growth rate is measurement invariant (i.e. does not depend18

on the way in which abundance is measured: Cropp and Norbury, 2012). Hutchinson (1957) defined the niche of19

an organism as the set of states of the environment permitting a species to persist indefinitely. Later work makes20

it clear that by “persist indefinitely”, it was meant that the proportional population growth rate for the species21

was non-negative (Hutchinson, 1978, p. 194). Thus, the dependence of proportional population growth rate on22

environment is an essential concept in the definition of the Hutchinson niche. The initial view of niche space was23

essentially static, with a point in niche space representing the fixed values of (usually non-living) resources in an24

ecosystem. Maguire (1973) introduced both structure and dynamics into niche space. Structure was provided by25

level sets (contours, if niche space is two-dimensional) of equal proportional population growth rate, and dynamics26

by movement of ecosystems through niche space, driven either by external changes or as a consequence of population27

growth. Maguire explicitly stated that this view of niche space allows us to examine “the total environment of a28

species, a population, or an individual . . . through its ‘biological eyes’ ”, in other words as an organism within the29

ecosystem would see it, rather than as an external observer. Of course, organisms do not “see” population growth30

rate, so that the “biological eyes” of a species must be interpreted as the outcome of the process relating population31

growth rate to environment.32

Exponential growth of a population occurs when “nothing happens in the environment” (Ginzburg, 1986). In33

other words, exponential growth will occur if and only if the environmental influences on a population do not34

change (Turchin, 2003, chapter 2). Note that in general, other populations (and the focal population, in cases of35

interference competition) are included in the environment. This law of exponential growth is a basic principle of36

population dynamics in a universe without spontaneous generation (Turchin, 2003, p. 24), and can be derived using37

a simple Taylor polynomial argument (Hutchinson, 1978, pp. 1-3). However, it is worth thinking about what the38

absence of change in environmental influences means, with the aid of three cases:39

(i) it is obvious that if there has been no change in any aspect of the environment, then environmental influences40

have not changed, and exponential growth will occur;41

(ii) if an ecosystem moves through niche space from one level set to another (Maguire, 1973; Tilman, 1980, Figure42
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1, solid arrow), environmental influences are changing, proportional population growth rate is changing, and43

population growth is not exponential;44

(iii) if an ecosystem moves through niche space, but remains within a level set (Figure 1, dashed arrow), then45

although the environment is changing, environmental influences on the population do not change, proportional46

population growth rate does not change, and population growth is exponential.47

The first and third cases are unlikely to occur in nature, but are important conceptually. In particular, in the third48

case, “nothing happens” from the point of view of the organism, even though to an external observer, something49

is happening. In general, two ecosystem states which are superficially different can be equivalent from the point50

of view of a species if they are in the same level set in niche space and therefore lead to the same proportional51

population growth rate. It is necessary to know the structure of the Hutchinson niche in order to distinguish52

between the second and third cases. Thus, the most important aspect of this view of the Hutchinson niche is that53

the map from environment to proportional population growth rates tells us exactly what properties matter to the54

organism, and when two ecosystem states are equivalent.55
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Figure 1: Movement of an ecosystem through a two-dimensional niche space, with axes representing resources y1, y2. Any change in
position in this space represents a change in the environment. Grey lines: level sets of equal proportional population growth rate for
a single species. Solid arrow: movement of the type considered by Maguire (1973) and Tilman (1980), such that the ecosystem state
from the point of view of the organism changes. Dashed arrow: movement within a level set, such that the ecosystem state from the
point of view of the organism is unchanged.
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This natural definition of ecosystem state in terms of proportional population growth rates has some important56

consequences. For example, two ecosystems which have the same abundance of every species (and may therefore be57

viewed as equivalent by an external observer) may or may not be equivalent to the organisms involved. On the other58

hand, all internal equilibria of a deterministic system are equivalent. Thus alternative stable states with the same59

set of taxa present are invisible in evolutionary terms to the organisms involved. The definition also suggests some60

immediate questions. First, applying this definition across all species in an ecosystem leads to a high-dimensional61

state. Ecosystem properties visible to an external observer, such as diversity, are often summarized in a low-62

dimensional way, for example using diversity indices (Jost, 2006). Can the same be done for the natural measure63

of ecosystem state? Second, the relationship between the dynamics of an ecosystem (including all properties that64

an external observer could measure) and the dynamics of ecosystem states (as experienced by organisms) may have65

important consequences for attempts to explain patterns in ecosystem structure (Borrelli et al., 2015). Natural66

selection cannot distinguish between groups of organisms with the same proportional population growth rates. As67

a result, there will be variation among ecosystem states (visible to an external observer) on which natural selection68

cannot act. To what extent does this limit the role of natural selection as an explanation for ecosystem structure?69

In this paper, we aim to:70

(i) develop the ideas outlined above about equivalence of ecosystem states from the point of view of the organisms71

involved, in a more formal way;72

(ii) clarify the distinction between dynamics on equivalence classes of ecosystems (from the point of view of73

organisms) and dynamics as seen by an external observer;74

(iii) identify classes of ecosystems differing in the relationship between these two kinds of dynamics;75

(iv) develop measures of ecosystem dissimilarity and scalar measures of ecosystem state based on proportional76

population growth rates.77

These concepts can be applied either to compare ecosystem states in different locations, or ecosystem states at the78

same location at different times. We illustrate the use of summaries of ecosystem state from the point of view of79

organisms with data from a plankton system. We discuss the consequences of these ideas for comparative studies80

of ecosystems, and the mechanisms that may generate regularities at the ecosystem level.81

2. Equivalence from the point of view of organisms82

Definition 1. Let Ω be an amount of physical space, i.e. an area or volume in two- or three-dimensional physical83

space, respectively. Let x = (x1, x2, . . . , xn) be the abundances (e.g. numbers of individuals, if individuals are84

well-defined, or cover or biomass otherwise) of all the n species present in Ω (xi ∈ R>0, i = 1, . . . , n). Let y =85

(y1, y2, . . . , ym) be the values of all the physicochemical variables affecting any of these species (yi ∈ R, i = 1, . . . ,m).86

Then s = {Ω,x,y} is an ecosystem state.87
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Definition 1 is not greatly different from standard usage, but it is necessary to have a precise definition. The88

specification of Ω as an amount of physical space, irrespective of location, will allow us to make comparisons between89

different locations with the same set of species present, as well as between the same location at different times.90

Definition 2. Let S be the set of ecosystem states s ∈ S in which exactly the same set of n species are present, and91

let α be any function with domain and codomain S. Then S is an ecosystem, and α is an endomap of S (Lawvere92

and Schanuel, 2009, p. 15), describing ecosystem dynamics within S.93

Again, our definition of ecosystem is close to standard usage. In what follows, we assume for simplicity that94

dynamics operate in discrete time. Essentially the same arguments as those below can be made in continuous time,95

the only difference being that there must then be an endomap αt for each real number t, satisfying α0 = 1S (the96

identity in S) and αt+u = αt ◦αu, i.e. the composition αt following αu (Lawvere and Schanuel, 2009, p. 169). Note97

that the definition above does not require us to say anything about what kind of function α is. We later develop98

ideas about the consequences of different classes of endomaps for ecosystem dynamics (Section 4), and discuss a99

particular example (Equation 4), but at this stage, the theory remains general.100

Let ri : S → R be a function from the set S of ecosystem states to the real numbers R such that ri(s) is the101

contribution of endogenous processes (e.g. births and deaths) to the proportional growth rate of the ith species.102

In general, we assume that this may depend on both abundances x and physicochemical variables y, although we103

later give special cases in which it depends on only one of these. In a finite population, ri(s) is interpreted as the104

expected value over demographic stochasticity. There is no need to consider environmental stochasticity, because by105

definition, all the variables that affect ri are specified in the ecosystem state s. We do not require that the ecosystem106

state s is part of a closed system, but we do not include immigration and emigration in ri(s). This is consistent107

with the view that immigration and emigration should not be considered when determining the suitability of an108

environment for a species, which resolves some of the problems with connecting the definition of a niche to the109

distribution of a species (Drake and Richards, 2017). In what follows, for conciseness we sometimes simply refer to110

“proportional population growth rate”: unless otherwise specified, this refers only to the endogenous component of111

this growth rate.112

To the ith species, two ecosystem states s, s′ ∈ S are equivalent if and only if ri(s) = ri(s
′) (i.e. the contributions113

of endogenous processes to proportional population growth rate are equal). As argued above, when this condition114

is satisfied, the two ecosystem states lie in the same level set in niche space for the ith species, so that from the115

point of view of the species, “nothing happens” if we move from one to the other, even though the ecosystem states116

may appear different to an external observer. In other words, a unit of abundance of the ith species in ecosystem117

state s would neither benefit nor suffer in evolutionary terms if exchanged with a unit of abundance of the same118

species from ecosystem state s′. Let ∼i be the relation defined on the set of ecosystem states S by s ∼i s
′ if and119

only if ri(s) = ri(s
′). This is an equivalence relation because it is reflexive, symmetric and transitive (Halmos, 1974,120

p. 28). The elements of the quotient set S/∼i (the equivalence classes of ∼i in S) are the level sets in niche space121

for species i, provided that the abundance of any species having a direct effect on ri is included as a niche axis122
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(Maguire, 1973).123

Definition 3. Let r be the function124

r : S → Rn

s 7→ (r1(s), . . . , rn(s)),

which maps ecosystem states to n-tuples of real numbers representing contributions of endogenous processes to125

proportional population growth rates of all species. Because the set of such n-tuples is important, it is worth giving126

it a symbol (R) and a name: the growth space of the ecosystem (Spencer, 2015), with the value of the function127

r(s) being a point in growth space. We henceforth call this a growth state to differentiate this term from the (more128

generally defined) ecosystem state. Let ∼ be the relation on the set of ecosystem states S defined by r (i.e. s ∼ s′129

means that r(s) = r(s′)). Again, this is reflexive, transitive and symmetric, so it is an equivalence relation. Then130

we say that ecosystem states s, s′ ∈ S are equivalent (from the point of view of every species) if and only if s ∼ s′.131

In other words, two ecosystem states are equivalent if and only if for each species, the endogenous component of132

proportional population growth rate does not differ between them.133

The elements of the quotient set S/∼ are the intersections of the quotient sets S/∼1, . . . , S/∼n, i.e. S/∼ =134

S/ (∩ni=1∼i). In biological terms, these are the intersections of a given set of level sets for each species in niche135

space. Note that some of these intersections may be empty. Studying intersections of sets in niche space has been136

productive in the past. For example, Hutchinson (1957) focused on intersections of the sets ri ≥ 0 (the niche of a137

species, where it has non-negative proportional population growth rate), and Tilman (1980) focused on intersections138

of the level sets ri = 0 (the boundary of the niche), in order to study the potential for coexistence. However, the139

intersections of other level sets are also biologically important, a point we return to in the discussion.140

We do not assume that either the endomap α (Definition 2: the function describing ecosystem dynamics) or141

the function r from ecosystem states to proportional population growth rates of all species (Definition 3) has any142

particular form. In general, the equations describing ecosystem dynamics are unknown. For example, the Lotka-143

Volterra equations can usefully be thought of as a second-order Taylor polynomial approximation to some more144

complicated system (Hutchinson, 1978, p. 117), but there are few situations in which one would believe that these145

are the true equations. It is possible to constrain the form of the functions ri that describe endogenous contributions146

to proportional population growth rate based on a few axioms (Cropp and Norbury, 2015). Although we do not147

follow this up here, it may lead to a deeper understanding of the range of possible dynamics on equivalence classes.148

We also do not assume that specifying the function r from ecosystem states to proportional population growth149

rates is sufficient to specify the ecosystem’s endomap α. Although endogenous dynamics are important, immigration150

and emigration of organisms, and external factors influencing environmental conditions, must also be specified in151

order to know the future state of an ecosystem. Closed ecosystems have received more theoretical attention, but152

ecosystems with input and output of of nutrients and organisms can have qualitatively different dynamics (Loreau153

and Holt, 2004).154

3. Ecosystems as objects in the category of sets with endomaps155

A category can be thought of as a set of objects A,B,C, . . . and a set of arrows f, g, h, . . ., such that:156

1. Each arrow f has some object A as its domain (source) and some object B as its codomain (target);157
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2. There is an identity, consisting of an arrow 1A for each object A with domain and codomain A;158

3. Any pair of arrows f, g such that the codomain of f is the domain of g can be composed to form a composite159

arrow g ◦ f from the domain of f to the codomain of g;160

4. Composition is associative, i.e. h ◦ (g ◦ f) = (h ◦ g) ◦ f ;161

5. Composition satisfies the unit laws, that for arrows f with codomain B, and g with domain B, 1B ◦ f = f162

and g ◦ 1B = g;163

(Lawvere and Schanuel, 2009, p. 21).164

For example, a set of ecosystem states S with an endomap α describing ecosystem dynamics is an object in the165

category of sets with endomaps (Lawvere and Schanuel, 2009, p. 136). An arrow f in this category from a set X166

with endomap γ to a set Y with endomap δ must preserve the structure of the endomap, in the sense that it must167

satisfy168

f ◦ γ = δ ◦ f. (1)

Intuitively, this means that we can either follow dynamics on X and then map the result to Y , or map to Y169

and then follow the corresponding dynamics of the result on Y . Thus the dynamical structure on X defined by the170

endomap γ is preserved in the structure on Y defined by the endomap δ.171

4. Classes of ecosystem dynamics172

Dynamics on a set of ecosystem states S (visible to an external observer) induce dynamics in growth space R (as173

experienced by organisms in the ecosystem). We want to know whether these dynamics have the same structure,174

in the sense of Equation 1. We need to specify an endomap β on R: the natural choice is described in Appendix175

A. Next, we construct a function φ : S → S such that s ∼ s′ ⇐⇒ φ(s) = φ(s′). Then we can show (Appendix A)176

that dynamics on the set of equivalence classes preserves the structure in ecosystem dynamics if and only if177

φ(s) = φ(s′) =⇒ (φ ◦ α)(s) = (φ ◦ α)(s′) for all s, s′ ∈ S. (2)

This means simply that the endomap α describing ecosystem dynamics on the set of ecosystem states S must not178

separate members of equivalence classes.179

It is useful to distinguish three classes of ecosystem dynamics, based on whether and how Condition 2 is satisfied:180

(a) Condition 2 holds because φ ◦α = φ, so r is a map in the category of sets with endomaps. Some of the possible181

ways this could occur are:182

(i) If α = 1S , then φ ◦ α = φ, and Condition 2 holds. This is the trivial case in which ecosystems never183

change.184
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(ii) Note that φ is idempotent (i.e. φ ◦ φ = φ), since (φ ◦ φ)(s) = φ(s∗) = s∗ = φ(s), for any s ∈ S. Hence185

α = φ also satisfies Condition 2, and is not equal to 1S , provided that at least one equivalence class has186

more than one member. There is no obvious biological example of this case.187

(iii) If resource levels change over time, but in such a way that r (the vector of endogenous contributions to188

proportional population growth rates for each species) remains constant (as in Figure 1, dashed arrow),189

then α 6= 1S , but φ ◦ α = φ. This could in principle be achieved in a controlled laboratory system, but190

does not appear likely in nature.191

(iv) Finally and most importantly, consider an infinite well-mixed space Ω, and a set of species interacting192

only through resource depletion and production of waste products. The proportional growth rate of each193

species depends on physicochemical variables y, but not on abundances x (so that, for example, there is194

no interference competition or predation), and will not in general be zero. Thus in a closed system, we195

expect abundances x to change over time, so α 6= 1S . Furthermore, because Ω is infinite and well-mixed,196

y does not change over time, so proportional growth rates do not change over time and the abundance of197

each species grows or declines exponentially. Thus in this case, ecosystem states change, while remaining198

in the same equivalence class, and Condition 2 is satisfied. This Malthusian situation is an important199

starting point for theory, analogous to the role of a body with no forces acting on it in physics (Ginzburg,200

1986). In the real world, a similar situation can be realized in a chemostat in which the ecosystem is open201

and proportional population growth rates are constant but not necessarily zero, while abundances in the202

system do not change.203

(b) Condition 2 holds even though φ ◦ α 6= φ. In other words, ecosystem states change equivalence class over time,204

but these dynamics keep members of the same equivalence class together, so that the function r describing en-205

dogenous contributions to proportional population growth rates is a map in the category of sets with endomaps.206

There are several possible examples.207

(i) Suppose that the function r describing endogenous contributions to proportional population growth rates208

depends on the ecosystem state s only as a one-one function of a single physicochemical variable y, and that209

changes in abundances x do not affect y. Then each equivalence class of S contains ecosystem states with210

a single value of y, but potentially differing in x. Changes in y will lead to dynamics among equivalence211

classes, but the members of an equivalence class will stay together. In idealized stream or soil ecosystems,212

y could represent detritus, and x detritivores with pure donor-controlled dynamics (Pimm, 1982, p. 136),213

with change over time caused by variation in input and output of the resource. Alternatively, y could214

be an environmental variable whose effects dominate all other variables, with change over time caused by215

extrinsic environmental variability.216

(ii) Suppose that proportional population growth rates in a closed system depend only on abundances x217
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through the relative abundances ρ = (
∑n

i=1 xi)
−1

x, and not on physicochemical variables y. Then all218

ecosystem states with abundances of the form cρ, for fixed ρ, will be in an equivalence class, and will be219

mapped to the same new equivalence class by the function α describing ecosystem dynamics (Appendix B).220

Ecosystems of this kind have purely frequency-dependent dynamics, implicitly assumed in models based221

only on relative abundances (the term “frequency dependence”, which is well established in the ecological222

literature, means only that dynamics depend on relative abundances). Arditi and Ginzburg (2012, section223

6.1) argue that this kind of scaling invariance may be a desirable property. Frequency dependence is224

certainly possible (e.g. Hutchinson, 1978, pp. 134-135), and is sometimes likely to be important. For225

example, if space is limiting, and all the available space is always filled, frequency dependence may be the226

dominant way in which abundances affect proportional population growth rates.227

(c) In most cases, Condition 2 will not be satisfied, and so r (the endogenous contributions to proportional popu-228

lation growth rate) will not be a map in the category of sets with endomaps. For example, consider a closed229

ecosystem containing a single species of phytoplankton with abundance x, whose proportional population growth230

rate (1/x)(dx/dt) depends on the concentrations of nitrogen (N) and phosphorus (P ), which are used during231

growth but not recycled. This is another case in which endogenous contributions to proportional population232

growth rates depend only on physicochemical variables y. A simple model for such an ecosystem, from Maguire233

(1973), is234

dx

dt
= x

(
rmax −

√
a(N −N∗)2 + b(P − P∗)2

)
,

dN

dt
= −cdx

dt
,

dP

dt
= −ddx

dt
,

(3)

where rmax is the maximum possible proportional population growth rate, attained at optimum concentrations235

N∗, P ∗ of nitrogen and phosphorus respectively, parameters a and b determine how quickly proportional popu-236

lation growth rate declines as nitrogen and phosphorus concentrations, respectively, are moved away from the237

optimum, and c, d are quantities of nitrogen and phosphorus needed to produce a unit of biomass, respectively.238

The space Ω is not explicitly defined, but s = {Ω, x,N, P} is an ecosystem state. Consider the endomap α239

describing ecosystem dynamics defined by240

α : S → S,

{Ω, x0, N0, P0} 7→ {Ω, x(1), N(1), P (1)},
(4)

where x0, N0, P0 are initial values, and x(1), N(1), P (1) are solutions of Equation 3 after one unit of time.241

Applying this map to some of the ecosystem states in the equivalence class {s ∈ S : r(s) = 1} (Figure 2, bold242

black line) gives sets of ecosystem states (Figure 2, black lines: each line corresponds to a different value of x0)243

which cut contours of proportional population growth rate (Figure 2, grey lines) and thus separate equivalence244

classes.245
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Figure 2: An ecosystem model in which the map α describing ecosystem dynamics does not preserve equivalence classes. The x- and
y-axes are concentrations of nitrogen (N) and phosphorus (P ) in arbitrary units, and define a two-dimensional niche space. Grey lines
are contours of constant proportional population growth rate r (level sets in niche space). The bold black line is the contour r = 1.
Thin black lines are some of the values to which the contour r = 1 is mapped after one unit of time by Equation 3 (each line represents
a different initial abundance x0, between 0 to 5). Solutions obtained numerically. Parameter values: rmax = 10, N∗ = 20, P ∗ = 0.2, a =
1, b = 1 × 104, c = 6, d = 0.12.
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5. Ecosystem dissimilarity and summaries of growth state246

It is unlikely that two real ecosystem states will ever be exactly equivalent. In empirical work, it may therefore247

be useful to measure how far two ecosystem states are from being equivalent. This is analogous to the common248

approach of measuring dissimilarity between ecosystems (Legendre and Legendre, 2012, chapter 7), but from the249

point of view of the organisms involved. What properties should be possessed by a measure of how far from250

equivalence two ecosystem states s1, s2 are? Let d(s1, s2) be such a measure. Convention suggests that we should251

have d(s1, s2) ≥ 0 for all s1, s2 ∈ S. It will usually be sensible to require that d(s1, s2) = 0 if and only if r(s1) = r(s2)252

(i.e. the two ecosystem states are equivalent). There is in general no reason to privilege one ecosystem state over253

another, so it is natural to require that d(s1, s2) = d(s2, s1). A measure with all these properties is a semimetric254

(Legendre and Legendre, 2012, p. 295). There are many measures with these properties, of which the most obvious255

is Euclidean distance, which also satisfies the triangle inequality, and is therefore a metric (Sutherland, 2009, p.256

39): this last property may not be necessary, but is at worst harmless, and is often useful. We will therefore work257

with Euclidean distance in what follows. It may be useful to think of this measure as describing dissimilarity in258

niche space, as well as in growth space.259

Given that the growth state r(s) of an ecosystem (the n-tuple of proportional population growth rates for all260

the species it contains at the time) is typically high-dimensional, it is natural to ask whether and how it can be261

summarized. Any function of r(s) is invariant under dynamics within an equivalence class, and might therefore be262

considered as a summary of growth state. In contrast, anything which is not a function of r(s) will separate measures263

of the same equivalence class, and is therefore not a summary of growth state. As a first example of something that264

is a valid summary of growth state, proportional population growth rates are likely to be unknown for most species265

in an ecosystem. In practice, it will be necessary to work with the m-tuple of proportional population growth rates266

that are known, where m < n. Since this is a function of r(s), it is a summary of growth state. It will often be the267

case that proportional population growth rates can be calculated for higher taxa or guilds, but not for individual268

species. Strictly speaking, such aggregation is only valid if the species being aggregated have identical proportional269

population growth rates at all times. This is unlikely to be exactly true, but may often be approximately true.270

Ordination (Legendre and Legendre, 2012, chapter 9) can be done from the point of view of organisms, rather than271

that of an external observer, given dissimilarities in growth space. An ordination based on points in growth space,272

rather than in abundance space, is a valid summary of growth state because it is a function of r(s) alone, and may273

be a useful low-dimensional approximation of growth state.274

Scalar summaries are also of interest. Under the view that proportional population growth rates represent the275

state of an ecosystem, scalar summaries of growth state will correspond to what are conventionally viewed as scalar276

summaries of change. However, many commonly-used measures of “rate of succession” such as Euclidean distances,277

Bray-Curtis distances and chi-square distances among relative abundances, reviewed in Spencer (2015, Appendix278

B), are not measures of growth state, because they can take more than one value for the same value of r(s), and279
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therefore split up equivalence classes. In contrast, the Living Planet Index (Loh et al., 2005) is a scalar summary280

of growth state, because it depends only on r(s). Two closely-related measures of growth state are size change and281

shape change (Spencer, 2015; Yuan et al., 2016). Size change is the mean of the elements of r(s), and shows whether282

a typical taxon or guild is increasing or decreasing in abundance. Shape change is the sample standard deviation of283

the elements of r(s) and shows the extent to which different taxa or guilds are changing in abundance in different284

ways. The rate of competitive exclusion for a pair of taxa or guilds i, j is defined as ri(s) − rj(s) (Pásztor et al.,285

2016, p. 122). It is easy to show that the square of shape change is proportional to the expected squared rate286

of competitive exclusion over all pairs of distinct taxa or guilds (Spencer, 2015, Appendix C), and is therefore a287

property of a typical pair.288

6. Example: Lake Constance plankton289

In this section, we summarize the seasonal patterns of growth state for the plankton community in Lake Con-290

stance. The theoretical concept of equivalent ecosystem states is applied to a real-world setting using empirical data291

on population growth rates from one particular ecosystem, changing its state throughout time. Boit and Gaedke292

(2014) describe the typical seasonal cycle of the plankton community in Lake Constance, using splines fitted to293

biomass of 20 planktonic guilds over a standardized year, averaged from 1987 to 1996. Plankton samples were taken294

weekly during the growing seasons (Apr-Nov) and approximately bi-weekly during the winter months. Rather than295

investigating the raw data in each year, we work here with a statistical model to cancel out most of the inter-annual296

variability caused by stochastic weather events. Averaging over several years extracts the overarching, general pat-297

terns from the empirical data set which then fulfils three requirements: 1.) it contains the same set of species over298

time, 2.) it consists of long-term, frequent observations spanning multiple generations, 3.) it reveals the internally299

driven dynamics of the food web. The last point is important because in Lake Constance, predator-prey interactions300

induce annually repeating changes in population abundances of several orders of magnitudes over a few weeks during301

the growing season (Boit and Gaedke 2014). This makes Lake Constance an especially well-suited case study for in-302

vestigating growth states largely independent from external (abiotic) forcing data. Proportional population growth303

rates ri(s) (in days−1) were estimated as differences in spline-interpolated natural log biomass between successive304

days (Figure 3). Hence, the spline interpolation represents hypothetical daily observations during a typical year in305

Lake Constance . Daily growth rates represent the relevant time-scale for investigating plankton dynamics in Lake306

Constance as the fastest eucaryotic organisms (unicellular algae) reproduce daily by division (Sommer, 1985) which307

sets the pace of life for their multicellular predators, e.g. daphnids with a generation time of about 1 week.308

The first three principal components of the proportional population growth rates r(s) describe 78 % of the309

variation in the seasonal cycle (Figure 4). The ordination suggests that the ecosystem in May, June and July is310

relatively distinct from the rest of the year, when proportional population growth rates are much closer to zero. May311

and June are the late spring and clear water phases, when the most extreme positive and negative proportional312

13



population growth rates occur (Figure 3, shaded areas) while the ecosystem undergoes a major reorganization313

from an early resource-driven to a more mature, resource-limited successional state (Boit and Gaedke, 2014). In314

particular, in the late spring phase (May), characterized by algal dominance (Boit and Gaedke, 2014), most of315

the algal guilds (Alg2, Alg3, Alg4, Alg5: Figure 3b, c, d, e), autotrophic picoplankton (APP: Figure 3f), and316

medium and large ciliates (Cil3, Cil4, Cil5: Figure 3k, l, m) have generally negative proportional population growth317

rates, while single-celled algae (Alg1: Figure 3a), rotifers (Asp, Rot1, Rot2, Rot3: Figure 3g, r, s, t), cladocerans318

and calanoid copepods (Dap: Figure 3o), and the cladocerans Leptodora and Bythotrephes (Lep: Figure 3q) have319

generally positive proportional population growth rates. In the clear water phase (June), characterized by temporary320

dominance of daphnids and a temporary inversion of the biomass pyramid (Boit and Gaedke, 2014), small coccal321

algae (Alg5, Figure 3e), autotrophic picoplankton (APP, Figure 3f) and large carnivorous rotifers (Asp, Figure 3g)322

have generally negative proportional population growth rates, while most of the algae (Alg2, Alg3, Alg4: Figure323

3b, c, d), ciliates (Cil1, Cil2, Cil3, Cil5: Figure 3i, j, k, m) and the cladocerans Leptodora and Bythotrephes (Lep:324

Figure 3q) have generally positive proportional population growth rates.325
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Figure 3: Proportional population growth rates ri(s) (in days−1) for 20 planktonic guilds over the seasonal cycle in Lake Constance (data
from Boit and Gaedke, 2014). Proportional population growth rates were estimated from splines fitted to biomass over a standardized
year, averaged over 1987-1996. Guilds are (a) Alg1 (single-celled algae), (b) Alg2 (mostly large, single-celled algae or colonies), (c)
Alg3 (filamentous blue and green algae), (d) Alg4 (diatoms, colonies, filamentous/spiky algae), (e) Alg5 (small, coccal algae), (f) APP
(autotrophic picoplankton), (g) Asp (large carnivorous rotifers), (h) Bac (heterotrophic bacteria), (i) Cil1 (small bacterivorous ciliates),
(j) Cil2 (small bacterivorous/herbivorous ciliates), (k) Cil3 (medium-sized herbivorous ciliates, log2(mean body mass / pg carbon) = 12),
(l) Cil4 (medium-sized herbivorous ciliates, log2(mean body mass / pg carbon) = 13), (m) Cil5 (larger ciliates), (n) Cyc (cyclopoids), (o)
Dap (cladocerans and calanoid copepods), (p) HNF (heterotrophic nanoflagellates), (q) Lep (cladocerans Leptodora and Bythotrephes),
(r) Rot1 (small rotifers), (s) Rot2 (medium-sized rotifers), (t) Rot3 (large omnivorous rotifers). Vertical dashed lines separate phases
of plankton succession, from left to right: late winter; early spring; late spring (shaded); clear water (shaded); summer; autumn; early
winter. Horizontal dashed lines: zero population growth.
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Figure 4: The first three principal components of proportional population growth rates r(s) for 20 planktonic guilds over the seasonal
cycle in Lake Constance (data from Boit and Gaedke, 2014). Together, these three principal components explain 78 % of the variation
in r(s). Proportional population growth rates were estimated from splines fitted to biomass over a standardized year, averaged over
1987-1996. Open circles: days 37 and 210 of the year, on which both size change and shape change were very similar (see Figure 5).
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In Lake Constance, there are two annual peaks in size change, corresponding roughly to the spring and summer326

blooms, separated by a local minimum at the boundary between the late spring and clear water phases (Figure327

5(a), white line between shaded regions). This local minimum occurs because at the start of the clear water phase,328

most guilds have negative proportional population growth rates (Figure 3), due to dominance of daphnids (Boit329

and Gaedke, 2014, Figure 1b). In contrast, shape change is highest in the late spring and clear water phases (Figure330

5(b), shaded regions), because although the proportional population growth rates are low for many guilds, they331

vary substantially among guilds (Figure 3). Thus, shape change behaves very differently from Lewis’s measure of332

rate of succession (Lewis, 1978), which has a deep local minimum between the spring and autumn blooms (Boit333

and Gaedke, 2014, Figure 4B). Lewis’s measure, which is widely used by plankton ecologists, is not a function of334

r(s) alone (Spencer, 2015, Appendix B), and therefore is not a measure of growth state in the sense used here.335
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Figure 5: Size change (a) and shape change (b) for 20 planktonic guilds over the seasonal cycle in Lake Constance (data from Boit
and Gaedke, 2014). Proportional population growth rates were estimated from splines fitted to biomass over a standardized year,
averaged over 1987-1996. Dashed lines: days 37 and 210 of the year, on which both size change and shape change differed by less than
5 × 10−4 days−1 and the corresponding values of size and shape change. Shaded rectangles: the late spring (left) and clear water (right)
phases of the seasonal cycle.
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Although scalar summaries are appealing in their simplicity, two ecosystems with the same value of one or more336

of these functions may not be equivalent from the point of view of any species. For example, both size change and337

shape change in Lake Constance differ by less than 5× 10−4 days−1 between days 37 and 210 (Figure 5, dashed338

lines), and yet the ordination makes it clear that the growth state of the ecosystem is very different on these days339

(Figure 4, the open circles are far apart). In fact, 11 out of 20 guilds have proportional population growth rates340

with different signs between these days, and the Pearson correlation between proportional population growth rates341

on these dates is −0.33. To understand the differences in more detail, it is necessary to look at the proportional342

population growth rates for each guild (Figure 6). The mean and standard deviation are almost identical on both343

days (Figure 6, filled black circles and vertical lines), and the ranges are similar (Figure 6, symbols other than filled344

black circles). Nevertheless, the identities of the guilds with proportional population growth rates far from zero345

differ considerably between the two days, and no guild has exactly the same proportional population growth rate346

on both days (Figure 6, none of the coloured lines is horizontal). The guild with the lowest proportional population347

growth rate on day 37 is Alg3 (filamentous blue and green algae), which has the highest proportional population348

growth rate on day 210. The Lep guild (the cladocerans Leptodora and Bythotrephes) has the highest proportional349

population growth rate on day 37, but a proportional population growth rate slightly below the mean (Figure 6,350

right-hand filled circle) on day 210. The Cil1 guild (small ciliates) has the lowest proportional population growth351

rate on day 210, but a rate above the mean (Figure 6, left-hand filled circle) on day 37. In summary, even a valid352

scalar summary of the growth state of an ecosystem, such as size change or shape change, may not give a good353

picture of the state of the ecosystem as experienced by any particular species.354
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Figure 6: Proportional population growth rates for 20 planktonic guilds in Lake Constance on days 37 and 210 of the seasonal cycle,
when both size change and shape change differed by less than 5 × 10−4 days−1 (data from Boit and Gaedke, 2014). Filled black circles
are means for each date, and vertical bars are ± one standard deviation. Symbols other than filled black circles are proportional
population growth rates for each guild. Lines connect guilds on the two dates. The guilds with the highest and lowest proportional
population growth rates on each date are labelled: Lep is the cladocerans Leptodora and Bythotrephes, Alg3 is filamentous blue and
green algae, and Cil1 is small bacterivorous ciliates. Other guild abbreviations as in Figure 3. Proportional population growth rates
were estimated from splines fitted to biomass over a standardized year, averaged over 1987-1996.
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7. Discussion355

We argued above that two ecosystem states are equivalent if and only if for each species, the proportional356

population growth rate does not differ between the states. Much of community and ecosystem ecology is devoted357

to searching for patterns in variables such as species abundances or relative abundances, measures of diversity and358

measures of complexity. However, we showed that except in special circumstances, the dynamics of an ecosystem359

as experienced by the organisms in it (in terms of proportional population growth rates) will not be the same as360

the dynamics seen by an external observer who focuses on some other property. A consequence of our argument is361

that many of the traditional activities of community and ecosystem ecology will not lead to a deeper understanding362

of how organisms experience ecosystems. Instead, it may be more productive to search for patterns in proportional363

population growth rates. This change in approach comes with new challenges, such as finding appropriate ways to364

understand patterns in large numbers of proportional population growth rates. It also opens up new perspectives365

on important existing topics such as alternative stable states, the development of ecosystems over time, and the366

processes generating regularities in ecosystems.367

A natural consequence of the arguments developed here is that proportional population growth rates should368

occupy a more central position in community and ecosystem ecology, just as they are currently at the heart369

of population ecology (Pásztor et al., 2016, p. 5). One challenge is that estimating proportional population370

growth rates is more difficult than estimating abundances. In order to estimate proportional population growth371

rates, abundance estimates must be obtained at a minimum of two time points. However, this difficulty is not372

insurmountable. Furthermore, we propose to do more than just replace snapshots of abundance with monitoring373

changes over time. By using proportional population growth rates as measures of ecosystem state, properties other374

than abundances (for example, rates of nutrient cycling) are implicitly considered, to the extent that they are375

important to organisms, through their effects on proportional population growth rates. Another challenge is that376

communities and ecosystems usually contain large numbers of species, and it can be difficult to understand and377

summarize the resulting high-dimensional patterns in proportional population growth rates. We showed that an378

ordination based on principal components of proportional population growth rates (Figure 4) was able to describe379

most of the variation in growth state in Lake Constance. We also showed in Section 5 that it was possible to380

construct valid scalar summaries of the growth state of Lake Constance (size change and shape change: Figure 5).381

However, two dates with almost identical size change and shape change in fact had very different growth states,382

because the identities of the guilds with proportional population growth rates far from zero were different (Figure383

6). The dynamics of the two summary indices reveal the pattern of community reorganization during the clear water384

phase at one glance, complementing the population-level perspective. Overall, the example from Lake Constance385

suggests that more thought is needed about the ecological meaning of summaries of growth state. For example, size386

change and shape change tell us about properties of typical taxa or guilds, and of typical pairs of taxa or guilds,387

respectively. However, they do not tell us about properties of particular taxa or guilds. The same is true of the388
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closely-related Living Planet Index (Loh et al., 2005), an important statistic in global conservation biology. The389

change from particular to aggregate properties demands a justification which is currently lacking, in the same way390

that studying biodiversity per se (an aggregate property) rather than the particular species in an ecosystem (each391

contributing to the aggregate property) demands a justification (Maier, 2012, pp. 75-76).392

Our approach can be used to generalize the idea of alternative stable states to that of alternative equivalent393

states. Identifying alternative stable states is a challenging problem (Petraitis, 2013). However, if these states394

contain the same set of species, they are all equivalent to the organisms involved. Their distinctive feature is395

that the equivalence class in which all species have zero proportional population growth rate consists of more than396

one disjoint subset. More generally, when proportional population growth rates depend on multiple interacting397

resources, each with a finite optimum value (Tilman, 1980), it is easy to arrange equivalence classes for two or398

more species consisting of disjoint subsets, in which proportional population growth rates are not all zero. We call399

these alternative equivalent states. Such states may look very different in terms of abundances and physicochemical400

variables. Since it is easy to construct these geometrically, we suggest that they will be common in nature.401

A key theme in ecosystem ecology has been to identify regularities in ecosystem development (e.g. Odum, 1969).402

A visual representation of patterns in growth space for a particular ecosystem (e.g. Figure 4) is purely exploratory.403

Nevertheless, there is the potential to identify general patterns of dynamics in growth space, based on the axiomatic404

approach to population dynamics advocated by Lotka (1956, pp. 57-66), Hutchinson (1978, pp. 1-5), and Cropp405

and Norbury (2012, 2015), among others. However, the structural difference between dynamics of equivalence406

classes of ecosystem states and the dynamics of ecosystems has an important bearing on the kinds of regularities407

that a given mechanism can generate. For example, an influential, if controversial, idea in ecosystem ecology is that408

ecosystems are shaped by natural selection on the ability to capture energy (Lotka, 1922). Lotka’s argument relies409

on the assumption that increased energy capture increases proportional population growth rate, and can therefore410

be subject to natural selection. Lotka proposed that such selection on energy capture leads to maximization of411

biomass and energy flow at the ecosystem level. However, unpredictable external events may generate variation412

within equivalence classes, which is invisible to natural selection. Thus, natural selection cannot lead to regularities413

by eliminating such variation over time. We argued above that equivalence classes may be disjoint, containing414

ecosystems with quite different physicochemical properties. If there are regularities at the ecosystem level, either415

they must be at the level of equivalence classes, or they must be generated by some mechanism other than natural416

selection. Stability selection is one such mechanism (Borrelli et al., 2015). Stability selection acts “without ‘seeing’417

the local environment” (Damuth and Ginzburg, 2018), or in other words, it does not act via proportional population418

growth rates. It is therefore unlinked from the equivalence classes of an ecosystem, and may have the potential to419

generate regularities even within equivalence classes.420

In conclusion, we distinguish between the view of ecosystems taken by an external observer, with the ability to421

study whatever they like, and an organism in an ecosystem, for whom proportional population growth rates are the422
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only relevant aspect of ecosystem state. This distinction leads to major differences in the approach that should be423

taken to comparative studies of ecosystems: ecologists should focus on patterns in proportional population growth424

rates, rather than patterns in other properties of ecosystems. Scalar summaries of these patterns such as size425

change and shape change are already available, but can sometimes conceal important differences among ecosystem426

states. The idea of alternative stable states can be generalized to equivalent ecosystem states with very different427

physicochemical properties. Finally, since natural selection acts only on proportional population growth rates,428

regularities in other aspects of ecosystem structure may not be explicable by natural selection.429
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Appendix A. Can dynamics on R have the same structure as dynamics on S?493

To determine whether dynamics on R (as experienced by organisms in the ecosystem) can have the same structure494

as dynamics on S (visible to an external observer), we must first specify an endomap β on R that describes these495

dynamics. A natural choice for β is a map taking r(s) to (r◦α)(s) (the outcome of dynamics on ecosystems, mapped496

to R), if such a map exists. Thus, suppose that z ∈ r(S). To get from z = r(s) to β(z) = (r ◦α)(s), we have to first497

go back to S, then apply α and finally go from the result of this to R. The function r is not in general one-one, so498

it will not in general have a retraction r̃ that undoes it in the sense that r̃ ◦ r = 1S (Lawvere and Schanuel, 2009,499

p. 53). However, we can construct the function500

r′ : r(S)→ S

z 7→ s∗,

where s∗ is an arbitrary representative of the set {s ∈ S : r(s) = z}. Then if the function r ◦ α ◦ r′ exists, it is the501

natural choice for β on r(S). For elements of R outside the image set of S under r, we can define β in an arbitrary502

way, say β = 1R.503

It is clear that we will not always be able to construct β in this way. In fact, if we cannot, then there is no504

endomap on R such that r is a structure-preserving map from S to R.505

Theorem 1. The map r : S → R can be a structure-preserving map if and only if the endomap α on S satisfies506

the condition that507

s ∼ s′ =⇒ α(s) ∼ α(s′) ∀s, s′ ∈ S. (A.1)

508

Proof. First, we show that if Condition A.1 holds, then the endomap β on R is structure-preserving. If the condition509

holds, then by the definition of ∼, s ∼ s′ =⇒ (r ◦ α)(s) = (r ◦ α)(s′). Then510

β : R→ R

z 7→

{
(r ◦ α)(s) if z ∈ r(S),

z otherwise

(A.2)

is a valid endomap on R (because it has domain and codomain R, and associates a single element of its codomain511

with each element of its domain). It also satisfies r ◦ α = β ◦ r, and is therefore structure-preserving.512

Now, we show that if Condition A.1 does not hold, then there cannot be any endomap on R such that r is513

structure-preserving. Suppose that there exist s, s′ ∈ S such that s ∼ s′, but α(s) 6∼ α(s′). Then by the definition514

of ∼, r(s) = r(s′), but (r ◦ α)(s) 6= (r ◦ α)(s′). There cannot be any function γ that maps r(s) = r(s′) to both515

(r ◦ α)(s) and (r ◦ α)(s′) 6= (r ◦ α)(s) when these elements are distinct, and hence it is not possible to satisfy516

r ◦ α = γ ◦ r.517

We have shown that if Condition A.1 holds, then there is a natural choice of endomap β such that r is a518

structure-preserving map from S to R, and that if it does not hold, then there can be no such map.519

Theorem 1 makes intuitive sense. Condition A.1 says that for dynamics on the set of equivalence classes to520

preserve the structure in ecosystem dynamics, the ecosystem dynamics must not separate equivalence classes. For521

example, in Figure A.1a, the structure of α can be preserved by r, for the natural choice of the endomap β on R522

described in Appendix A, because α keeps members of equivalence classes together. In contrast, in Figure A.1b,523
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the structure of α cannot be preserved by r because s and s′ are in the same equivalence class but are mapped by524

α to different equivalence classes. Condition A.1 is somewhat analogous to the condition under which a function of525

a Markov chain will be Markovian (Burke and Rosenblatt, 1958).526

To find examples of endomaps α satisfying Condition A.1, we first construct a function φ : S → S such that527

s ∼ s′ ⇐⇒ φ(s) = φ(s′).528

Lemma 1. Let φ be the function529

φ : S → S

s 7→ s∗ such that s ∼ s∗,

i.e. s∗ is any fixed representative of the equivalence class of s on S. Then s ∼ s′ ⇐⇒ φ(s) = φ(s′).530

Proof. If s ∼ s′, then φ(s) = φ(s′) = s∗. Conversely, if s 6∼ s′, then φ(s) = s∗, but φ(s′) 6= s∗, since an equivalence531

relation on S partitions S (Halmos, 1974, p. 28), so that s∗ cannot be equivalent to both s and s′.532

We can now rewrite Condition A.1 as533

φ(s) = φ(s′) =⇒ (φ ◦ α)(s) = (φ ◦ α)(s′) ∀s, s′ ∈ S. (A.3)

This is simply an alternative way of saying that the endomap α on S must not separate members of equivalence534

classes.535
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Figure A.1: Examples of endomaps α on a set of ecosystem states S for which r is (a) or is not (b) a map in the category of sets with
endomaps. In each case, the horizontal divisions in S represent equivalence classes, with all points in a class mapped by r to the same
point in growth space R.
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Appendix B. Frequency-dependent dynamics536

Suppose that proportional population growth rates in a closed system depend only on x through the relative537

abundances ρ = (
∑n

i=1 xi)
−1

x. Let ψ be a function from Sn−1×R≥0 (where the simplex Sn−1 contains the relative538

abundances, and R≥0 contains a time difference) to Rn. Then for some time interval ∆t, ecosystem dynamics α are539

given by540

α : S → S,

(Ω,x,y) 7→ (Ω,x�ψ(ρ,∆t),y),

where � denotes the elementwise (Hadamard) product. Hence for any given set of relative abundances ρ, all541

ecosystems with abundances of the form cρ for some positive number c map to ecosystems with abundances of the542

form cx�ψ(ρ,∆t). Also, for each species i,543

ri(s) = lim
∆t→0

ψi(ρ,∆t)− 1

∆t
,

which depends on x only through ρ. Thus all ecosystems with abundances of the form cρ, for fixed ρ, will be in an544

equivalence class, and will be mapped to the same new equivalence class by α.545
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