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A B S T R A C T

The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and
identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal
and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model.
Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the
reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys91 of peroxiredoxin-6 (PRDX6)
and Cys153 of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor
growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their CysRED/
CysOX ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys163, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) Cys247 and triose-phosphate isomerase (TPI) Cys255 likely by enhancement of NOS3 auto-
oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux
increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes
toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1
treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein
degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have
both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly
different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the
elements involved and the difficulty of forecasting metabolic responses to redox environmental changes.

1. Introduction

The importance of redox homeostasis for cancer cell survival in the
context of energy metabolism is well established [2,57,83]. Sensitive
cysteine residues on target proteins are at the center of regulatory
mechanisms, whose redox state are controlled by two major cellular
systems, the Thioredoxin (Trx)/Trx reductase (TrxR) and the Glutar-
edoxin (Grx)/glutathione (GSH) systems [30,8].

Nitric oxide (NO) plays important roles in signal transduction [52].
It is synthesized in cells by NO synthase (NOS) isoenzymes whose ex-
pression may be regulated as part of cellular responses to several sti-
muli [1]. NO has contradictory effects on tumor cells, either pro-
apoptotic or anti-apoptotic according to cell type, intracellular

concentration range and subcellular site of its generation [23,44]. Post-
translational redox modifications (redox PTM) of target sensitive pro-
teins and more specifically, S-nitrosation of sensitive cysteine residues
in those proteins, is the basis of NO activity in signaling pathways, al-
though other reversible oxidative modifications of cysteines are also to
be expected since high levels of NO are accompanied by increased le-
vels of reactive oxygen species (ROS) [85]. Reversible regulation of
redox PTMs is necessary for this process to have regulatory and biolo-
gical meaning. Intracellular levels of GSNO and S-nitrosated proteins
are controlled by GSNO reductase, alcohol dehydrogenase class-3 (ADH
III), which is a NADH-dependent enzyme that is conserved from bac-
teria to human and metabolizes GSNO to oxidized glutathione and NH3

[47]. GSNO reductase does not directly denitrosate SNO proteins, but as
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the GSNO pool is in equilibrium with protein thiols, reduction of GSNO
by the GSNO reductase indirectly results in protein denitrosation [47].

Trx has been shown to catalyze denitrosation in vitro and to affect
levels of cellular protein nitrosothiols. It has been shown to also cata-
lyze the direct denitrosation of proteins in vivo through the action of its
conserved active site dithiol, which in human Trx1 is Cys32 and Cys35
[4,5]. NOS3 (or eNOS) itself is a target of Trx leading to activation of
the enzyme as part of a regulatory mechanism of NOS3 by reversible
auto-S-nitrosation [15,4,64,67].

Mammalian Trx1 contains additional conserved Cys at positions 62,
69 and 73. Cys73 is particularly prone to S-nitrosation [26] and is
implicated in the specific and reversible transfer of a nitrosothiol be-
tween Trx1 and caspase 3 with the resulting inhibition of apoptosis
[60]. It has been shown that S-nitrosation of Cys73 is favored after
formation of a disulfide between Cys32-Cys35, that attenuates Trx1
disulfide reductase and denitrosase activities [86]. Depending on the
redox state of the cell, Trx1 catalyzes either trans-S-nitrosation or S-
denitrosation so that upon inhibition of disulfide reduction or S-deni-
trosation activity, Cys73-SNO-Trx1 could catalyze trans-S-nitrosation of
target proteins [26,86]. Thus, as a master regulator of redox signaling,
Trx1 would protect proteins via its reductase activity, but under highly
oxidative environments, the Cys32/Cys35 oxidized disulfide form ac-
cumulates, Cys73 becomes S-nitrosated and Trx1 offers an alternative
modality of protein regulation via transnitrosation [86].

Glutaredoxin is involved in post-translational modification of pro-
teins by S-glutathionylation with a role mainly as a deglutathionylase
[39,54,75]. Grx1 catalyzes reversible S-glutathionylation of protein
targets involved in Glycolysis, energy sensing, calcium homeostasis,
apoptosis and transcriptional regulation [59]. Grx1 has also been
shown to counteract the proapoptotic action of NO in tumor cell lines
[22,35] and to regulate NOS3 activity by glutathionylation [9], an
activity shared with Trx [78]. However, no direct evidence of Grx1 as
denitrosase has been reported so far.

The thiol-based mechanism of NO multiple actions and the roles of
Trx and Grx in the context of protein function regulation by reversible
redox changes at target cysteines justify the study of cells under ni-
trosative stress. Exogenous addition of NO donors is a widely used ex-
perimental approach to this end, but endogenously produced RNS
would better mimic a physiological situation. The levels of ROS and NO
increase to 140% in NOS3 overexpressing HepG2 cells relative to con-
trol cells [21], which makes them a good experimental model to study
the significance of Trx and Grx roles in the regulation of cellular phy-
siology under nitrosative and oxidative conditions.

The Thiol Redox Proteome refers to the set of mapped protein cy-
steines showing reversible redox changes under given conditions or in
response to stimuli [20]. Its detailed description may provide an in-
sightful snapshot of the set of thiol redox switches [19,38] in a cell
under given conditions. Several qualitative and quantitative proteomic
approaches have been devised to study the redox proteome
[24,27,32,43,46,50,53,55] and to define Trx target proteins either as
reductase or transnitrosase [46,6,87] or target proteins of Grx as de-
glutathionylase [54]. The identification and modulation by reversible
redox PTMs of key proteins that can control metabolic flow, would offer
promising therapeutic candidates for a number of disease states such as
cancer [80]. Moreover, redox signals work in tandem with other signals
to control different cellular processes.

One common characteristic to all types of cancers is reprogramming
of energy metabolism to generate ATP through intense glycolytic flux
from glucose to lactate even when oxygen is present, a phenomenon
known as “the Warburg effect”. Mitochondria remain functional and
part of the glucose consumed is diverted into biosynthetic pathways
upstream of pyruvate. Altered cell metabolism is a characteristic feature
of many cancers resulting in changes to metabolite concentrations and
eventually affecting cell signaling pathways and metabolic fluxes
[79,83]. There is a complex connection between metabolism and pro-
liferation with many checkpoints still to be discovered.

We have previously assessed the role of NOS-3 overexpression on
several metabolic checkpoints in HepG2 cells showing the prominence
of the oxidative branch of the Pentose Phosphate Pathway (oxPPP) to
direct the metabolic flux towards NADPH and the increase in Trx and
Grx, but at the same time a decrease in nucleotide biosynthesis and
proliferation [23]. Downregulation of Trx and Grx reduced cell pro-
liferation and increased caspase-8 and caspase-3.

Here we have applied a quantitative proteomic and metabolomic
approach to evaluate HepG2 cells under high levels of endogenous NO
and ROS by NOS3 overexpression and ≈ 80% down-regulation of Grx1
or Trx1 with specific siRNA. Proteins undergoing significant redox
changes have been identified, their sensitive cysteines have been
mapped and their “reduced Cys/oxidized Cys” ratios have been de-
termined. Known targets of redox PTMs have been confirmed and new
targets have been discovered, mostly metabolic enzymes. Glycolytic
metabolic flux, complex lipids and glutathione metabolism and protein
degradation, among other pathways, were affected by Trx1 or Grx1
silencing, concomitant with redox changes at specific cysteines in gly-
colytic enzymes.

2. Material and methods

2.1. Materials and reagents

All reagents were of analytical grade and were purchased from
Sigma, unless otherwise stated. HepG2 cell line used in this work was
obtained from ATCC LGC Standards Company (Teddington, UK). Cell
culture dishes and flasks were from TPP (Switzerland). Anti-Trx1 and
anti-Grx1 were obtained from rabbit in our laboratory. Antibodies
against PKM2, caspase-3, NOS-3 and β-actin were from Santa Cruz
Biotechnology, (Dallas, TX, USA). Antibodies against PRDX6 were from
Abcam (Cambridge, UK). ECL was from GE Healthcare (Wauwatosa,
Wisconsin, USA). siRNA for Grx1 and Trx1 were from GE Healthcare
Dharmacon (Wauwatosa, Wisconsin, USA). [14C-1]-Glucose, [14C-6]-
Glucose and [3H-3]-Glucose were from Perkin Elmer (USA).

2.2. Cell growth conditions

Cells were transfected with the pcDNA/4TO (5100 bp; Invitrogen,
Molecular Probes, Inc.) resulting in 4TO control cell line, as well as with
the same expression vector containing NOS3 cDNA sequence (3462 bp;
NCBI, ImaGenes, full length cDNA clone sequence BC063294) under the
control of the cytomegalovirus promoter resulting in 4TO-NOS cell line.
Cell lineages 4TO and 4TO-NOS were selected with zeocin (15mg/L;
Invitrogen) as was described by González et al. [21]. Cells were
maintained in EMEM Medium (Eagle Minimum Essential Medium), pH
7.4, supplemented with 10% fetal bovine serum, 2.2 g/L NaHCO3,
1mM sodium pyruvate, 100 U/L penicillin, 100 µg/mL streptomycin,
0.25 µg/mL amphotericin, and the corresponding selective zeocin an-
tibiotic in 5% CO2 atmosphere at 37 °C.

2.3. Silencing of Trx1 and Grx1

Human Grx1 and Trx1 were down-regulated in non-transfected
HepG2 cells (WT), 4TO and 4TO-NOS cells using specific siRNA in 6-
well plates (20,000 cells/cm2) according to the manufacturer's re-
commendations (Dharmacon, GE Healthcare Life Sciences). Grx and Trx
siRNA (25 nmol) were mixed with the transfection reagent
DharmaFECT 1, previously pre-incubated with culture medium (anti-
biotic/antimycotic and serum free), and incubated for 20min at room
temperature. Afterwards, the interference solutions were added to
cultured cells for 72 h in 2% culture medium in the absence of anti-
biotic/antimycotic solution [89]. Silencing of Trx 1 and Grx1 was al-
ways checked by Western blot and activity assay to confirm that their
levels were reduced by ≈ 80% [22].
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2.4. Sample preparation for redox proteomics

The experiments were routinely carried out at 100,000 cells/cm2

and the cells were washed with PBS. The methodological strategy is
summarized in Fig. 1 as described before [55]. Reversibly oxidized Cys
were labeled with “heavy” NEM in which 5 hydrogen atoms had been
substituted by deuterium atoms here named “d(5)NEM” and reduced
cysteines were blocked with “light” NEM, here named “d(0)NEM”. Cell
extracts were obtained with lysis solution (50mM ammonium bi-
carbonate, 50mM d(0)NEM, 0.5% CHAPS, 1mM PMSF); samples were
centrifuged at 15,000g for 5min at 4 °C, excess d(0)NEM was removed
using Zeba spin desalting columns (Thermo Scientific). 100 µg of pro-
tein were diluted up to 160 µl with 25mM ammonium bicarbonate,
incubated with denaturing reagent by addition of 10 µl of 1% w/v
RapiGest (Waters) in 25mM ammonium bicarbonate, incubated at
80 °C for 10min and vortexed. 10 µl of a 100mM solution of TCEP was
added followed by incubation at 60 °C for 10min to reduce the re-
versibly oxidized cysteines that were subsequently alkylated by adding
10 µl of 200mM d(5)NEM and incubated at room temperature for
30min. An aliquot was taken at this point to check the procedure by
SDS-PAGE.

Proteolytic digestion was performed by addition of 10 µl 12.5 ng/µl
of trypsin (Promega) in 25mM ammonium bicarbonate and incubated
at 37 °C temperature overnight. Protein digestion was stopped by

addition of 3 µl trifluoroacetic acid (1.5% final concentration). Digested
samples were dialyzed through detergent removal column (Pierce) to
eliminate any possible rest of CHAPS and dried in speedvac.

2.5. LC–MS/MS

Protein analyses were performed at the Proteomics Facility (SCAI)
at the University of Córdoba. Peptides were scanned and fragmented
with the LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific)
equipped with a nano-UHPLC Ultimate 3000 (Dionex-Thermo
Scientifics). Chromatography conditions were: mobile phase solution A:
0.1% formic acid in ultrapure water; mobile phase solution B: 80%
acetonitrile, 0.1% formic acid. A chromatography gradient was per-
formed in C18 nano-capillary column (Acclaim PepMap C18, 75 µm
internal diameter, 3 µm particle size, Dionex-Thermo Scientifics) as
follows: 5 min, 4% solution B; 60min, 4–35% solution B; 10min,
35–80% B; 10min, 80% B; 10min 4% B. The nano-electrospray voltage
was set to 1300 V and the capillary voltage to 50 V at 190 °C. The LTQ
Orbitrap XL was operated in parallel mode, allowing for the accurate
measurement of the precursor survey scan (400–1500m/z) in the
Orbitrap selection, a 30,000 full-width at half-maximum (FWHM) re-
solution at m/z 400 concurrent with the acquisition of top five CID
Data-Dependent MS/MS scans in the LIT for peptide sequence. Singly
charged ions were excluded. The normalized collision energies used
were 35% for CID. The maximum injection times for MS and MS/MS
were set to 500ms and 50ms, respectively. The precursor isolation
width was 3 amu and the exclusion mass width was set to 5 ppm.
Monoisotopic precursor selection was allowed and singly charged spe-
cies were excluded. The minimum intensity threshold for MS/MS was
500 counts for the linear ion trap and 1000 counts for the Orbitrap.
MS2 spectra were searched with SEQUEST engine against a database of
Uniprot_Human_Nov2014 (www.uniprot.org). Peptides were generated
from a tryptic digestion with up to one missed cleavage, including NEM
and (d5)NEM modification in Cys and methionine oxidation as dynamic
modifications. Statistical data were calculated with percolator tool
against decoy database using 1% FDR as threshold for significance.

2.6. Label-free MS protein quantification

The analysis of MS raw data of the two studies was performed using
the MaxQuant (v1.5.7.0) [12] and Perseus (v1.5.6.0) [82] software.
Three RAW data files per sample from 3 separate experiments were
analyzed. Proteins were identified by searching raw data against the
human UniprotKB/Swiss-Prot protein database (February 2018 ver-
sion). The modifications NEM and d(5)NEM and methionine oxidation
was set as variable modifications for the second study. Cleavage spe-
cificity was by trypsin, allowing for a maximum of two missed clea-
vages, a mass tolerance of 10 ppm for precursors and 0.01 Da for
fragment ions. The false discovery (FDR) cut-off for protein identifica-
tion was 1%. Enabling the “match between runs” option allowed for
identification transfer between samples. Similar proteins were grouped,
and only unique peptides were used for quantification. Identified from
reverse database or contaminants hits proteins were removed prior to
further analysis. Finally, the resultant list was analyzed according to the
instructions of the software developers [82]. The criteria for con-
sidering a differentially expressed protein were that it was identified
and quantified using at least two unique peptides; has a fold change of
at least 1.5 and had a P≤ 0.05 value.

2.7. Targeted analysis of differentially labeled Cys residues

The method devised has been described before [55]. Briefly, Cys-
containing peptides detected with identical amino acid sequences and
both d(0) and d(5) NEM modifications independently with a confident
individual peptide ion score were considered redox peptides. Redox
peptides detected from Proteome Discoverer analyses of RAW files were

Fig. 1. Proteomics experimental strategy. The procedure follows the already
classical three-step approach. In this case, the thiol blocking agent was NEM,
the cysteine reductant was TCEP and the newly formed thiols were labeled with
“heavy” d(5)-NEM in which 5 hydrogen atoms had been substituted by deu-
terium atoms. LC-MS/MS data were analyzed for global protein changes with
MaxQuant software for “label-free” quantitation [12]. Redox protein changes
were analyzed from the set of Cys-peptides identified by targeted quantification
using Skyline [48] and calculating the “light”(reduced)/“heavy”(oxidized) Cys
ratio. See M&M section for a detailed description.
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selected for targeted analysis using m/z data and retention times with
the open software Skyline [48]. Targeted analysis applying m/z, re-
tention times, and fragmentation spectra for peptide selection allowed
the calculation of the reduced/oxidized ratio (or d(0)/d(5) NEM) of the
Cys residues using the individual parent ion intensities. The individual
reduced/oxidized ratio for redox Cys peptides in each sample was used
to calculate an average ratio of reduced/oxidized calculated for the
specific Cys residues.

2.8. Metabolomic analysis

Metabolomic analyses were performed at Metabolon, NC USA and
the samples were prepared following the specific guidelines. Global
biochemical profiles were determined in 2×106 HepG2 cells collected
from different treatment groups (wild type, 4TO and 4TO-NOS cells
treated with specific siRNA for Trx and Grx or with non-target siRNA).
Each experiment was done four times and the dry cell pellets were
immediately frozen in liquid nitrogen and stored at −80 °C until
shipment. Samples were prepared using the automated MicroLab
STAR® system from Hamilton Company. To remove protein, dissociate
small molecules bound to protein or trapped in the precipitated protein
matrix, and to recover chemically diverse metabolites, proteins were
precipitated with methanol under vigorous shaking for 2min (Glen
Mills GenoGrinder 2000) followed by centrifugation. The resulting ex-
tract was divided into five fractions: two for analysis by two separate
reverse phase (RP)/UPLC-MS/MS methods with positive ion mode
electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with
negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with
negative ion mode ESI, and one sample was reserved for backup. Raw
data was extracted, peak-identified and QC processed using Metabolon's
hardware and software. Peaks were quantified using area-under-the-
curve and normalized.

2.9. Biotin switch technique

All operations were performed in darkness and following the pro-
tocol described by Martínez-Ruiz et al. [51] with some modifications.
Treated cells were resuspended in lysis buffer (50mM Tris-HCl, pH 7.4,
300mM NaCl, 5 mM EDTA, 0.1 mM neocuproine, 1% Triton X-100,
1mM PMSF, 1 µg/mL aprotinin and 2 µg/mL leupeptin) and incubated
on ice for 15min. Samples were centrifuged at 10,000g, 4 °C for 15min
and supernatants were collected. Extracts were adjusted to 1.0mg/mL
of protein and were blocked with 4 volumes of blocking buffer (225mM
HEPES, pH 7.2, 0.9mM EDTA, 90 µM neocuproine, 2.5% SDS and
50mM NEM) at 37 °C for 30min with stirring. After blocking, samples
were precipitated with cold acetone and pellets were resuspended in
HENS buffer (250mM HEPES, pH 7.2, 1 mM EDTA, 0.1 mM neocu-
proine, 1% SDS) with 100mM ascorbate and 1mM biotin-HPDP and
incubated for 1 h at room temperature. Finally, samples were passed
through Zeba spin desalting columns (Thermo Scientific Pierce) to
eliminate ascorbate and biotinylated proteins were detected by western
blot with “anti-biotin”. In addition, the biotinylated proteins were
captured with neutravidin-agarose (Pierce) and recovered using
100mM ß-mercaptoethanol for subsequent Western blot analysis of
specific target proteins.

2.10. Rate of glycolysis and Pentose Phosphate Pathway (PPP)

These were measured following the protocol described by Requejo-
Aguilar et al. [68] with some modifications. The resuspended cells
(1.5×105 cells) were incubated in “Elliot” buffer (122mM NaCl,
11 mM Na2HPO4, 0.4 mM KH2PO2, 1.2 mM SO4Mg, 3.1 mM KCl,
1.3 mM CaCl2, pH7.4) in the presence of 5 μCi of D-[3-3H]glucose,(0.5
μCi mL−1of D-[1–14C]glucose or 1 μCi mL−1 of [6–14C]glucose and
5mM D-glucose in sealed vials. The glycolytic flux was measured by
assaying the rate of 3H2O production from [3-3H]glucose, and the PPP

flux as the difference between [1–14C]glucose and [6–14C]glucose in-
corporated into 14CO2. Glucose concentrations in Elliot buffer were
measured by enzymatic analysis spectrophotometrically.

2.11. Measurement of enzymatic activities, lactate and protein

All glycolytic enzymatic activities were measured in fresh cell ly-
sates obtained in the absence of reducing agents. Cell lysates were
prepared with lysis buffer containing 50mM HEPES pH 7.2, 2 mM
EDTA, 100mM NaCl, 1% Triton X-100, 1mM PMSF. Commercial pre-
parations of pure enzymes were used to calibrate the assays and to
determine the linear dependence activity range. Pyruvate kinase (PK)
and triose phosphate isomerase (TPI) activities were measured ac-
cording to the method described by Fielek and Mohrenweiser [16]
without DTT in the assay mixture. Glyceraldehyde-3-phosphate dehy-
drogenase (G3PDH) activity was measured as an increase in absorption
at 340 nm resulting from reduction of NAD+ at 25 °C. The reaction
mixture contained 130mM Tris-HCl, pH 8.0, 0.25mM NAD+, and
5mM DL-glyceraldehyde-3-phosphate. Three technical replicates were
routinely done for each independent experiment. Lactate concentration
in the culture medium after 72 h of treatment with the siRNA Grx1 or
siRNA Trx1 was determined by an enzymatic colorimetric assay
(505 nm) using the kit Labkit (Chemelex, S.A). Protein concentration
was determined by the Bradford method (Bio-Rad) using BSA as stan-
dard.

2.12. SDS-PAGE and Western blotting

SDS-PAGE was performed with homogeneous 10% non-reducing
gels for detection of biotinylated proteins and 12% Criterium XT
Precast Gel (Bio-Rad) for detection of specific proteins (Trx1, PRDX6,
PKM2, caspase-3, NOS3). After electrophoresis, proteins were trans-
ferred to a nitrocellulose membrane with a semi-dry electrophoretic
transfer system (Bio-Rad). The membranes were incubated overnight at
4 °C with the corresponding dilutions of primary antibodies: 1:4000
against biotin, 1:1000 against PRDX6, 1:500 against PKM2, caspase-3
and NOS3, 1:500 against Trx1 and Grx1. Then washed and incubated
with the corresponding secondary antibodies conjugated to peroxidase
(anti-rabbit, anti-goat or anti-mouse) used at 1:8000 dilution and the
chemiluminescent signal was induced by ECL reagent (Thermo-Fisher).
Ponceau staining was used as cell protein-loading control and actin was
used as reference for quantitative densitometric normalization.

2.13. Statistics

Where appropriate, results are expressed as mean ± SEM of at least
three independent experiments. Data were compared using ANOVA
with the least significant difference test post hoc multiple comparison
analysis. The threshold for statistically significant differences was set at
p≤ 0.05. In the case of Global and Redox Proteome, data were ana-
lyzed using Student's T-test comparing control vs siRNA treatment. The
threshold for this statistically significant differences was set at q≤ 0.05
according to the method of Storey [77] using the R-package. In the case
of the metabolomic analysis following normalization to Bradford pro-
tein concentration and log transformation a mixed model ANOVA was
used to identify biochemicals that differed significantly between ex-
perimental groups; statistical significance was set at p≤ 0.05.

3. Results and discussion

Overexpression of NOS3 in HepG2 cells caused a ≈ 25% increase in
ROS, NO and NOS activity compared with the same cells transformed
with the empty vector [21] and constituted a physiological model for
endogenously oxidative/nitrosative stressed cells to study the role of
Trx1 and Grx1. Treatment with Trx1 or Grx1 specific siRNA down-
regulated the levels and activities of either redoxin by ≈ 80% (Ref.
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Fig. 5 in [22]). These cells were collected and lysed under conditions
that allowed blocking of reduced protein thiols with “light” d(0)NEM
followed by reduction of reversibly oxidized Cys and labelling with
“heavy” d(5)NEM (Fig. 1). Samples were prepared and analyzed by a
proteomics LC-MS/MS approach allowing for global “label-free” quan-
titation and for targeted analysis of differentially labeled Cys-peptides
[55,71].

3.1. Global proteome

Quantitative differences between the proteomes of WT, 4TO and
4TO-NOS, treated or not with siRNA-Trx1 and siRNA-Grx1, were de-
termined by “label-free” analysis. The significant differential proteomes
were determined from roughly 600 unique proteins identified in each
study. Only 14 proteins varied significantly between 4TO-NOS and 4TO
HepG2 cells and a smaller number changed upon either siRNA treat-
ment in 4TO or 4TO-NOS cells, as shown in Suppl. File 1.

Overexpression of NOS3 and down-regulation of Trx1 or Grx1 in
HepG2 cells has marked phenotypical consequences like slow-down of
proliferation and apoptosis exacerbation as previously reported [22].
To investigate whether these phenotypical changes might have been
triggered by redox postranslational modification of key proteins, we
analyzed the redox proteome.

3.2. Redox proteome

Trx1 and Grx1 main action is to reverse oxidative changes in protein
thiols, not only those involved in regulatory postranslational mod-
ifications of metabolic and signaling proteins, but also those associated
with thiol-dependent ROS scavenging enzymes, like peroxiredoxins.
Any change in the levels of either redoxin should have consequences on
the redox state of sensitive proteins which could reveal detailed
knowledge on their functions. Silencing with specific siRNA provides a
gentler experimental approach to mimic physiological down-regulation
events compared to a full knockout, although detection of the expected
subtle changes in molecular indicators requires precise analytical
methods to study the redox proteome.

3.2.1. NOS3 overexpression alters the Redox Proteome
The levels of ROS and NO had been measured in 4TO-NOS cells by

standard general methods (DCFH2-DA fluorescence and colorimetric
nitrite determination, respectively) showing an increase of 40% in the
cells overexpressing NOS3 [21]. Now, the Cysred/Cysox ratio was de-
termined for every Cys peptide identified/quantified in WT (234/168
peptides), 4TO (411/328 peptides) and 4TO-NOS (366/289 peptides)
HepG2 cells. Overlapping of Cys-peptides between samples was
65–68% for identified peptides and 71–77% for quantified peptides
(Suppl. Fig. 2). The majority of quantified peptides were in the Cys-SH
state with Cysred/Cysox ratios ranging from nearly 40 to around 2.
Ninety-four Cys-peptides underwent significant changes in their Cysred/
Cysox ratios when the cells overexpressed NOS3 compared to cells
transfected with empty vector (Fig. 2; Suppl. File 2). Changes were
predominantly oxidative, but 13 proteins were ≥ 1.5 fold reduced in
the oxidative/nitrosative environment of NOS3 overexpressing cells.
Their reductive change could be direct or indirect consequence of the
observed marked induction of Trx1 and Grx1 [22], but other pertur-
bations in metabolic and signaling pathways induced by NOS3 over-
expression could also be responsible.

The presence of acidic residues around the modified cysteine in
these redox target proteins is particularly apparent (Fig. 2B). 77% (10/
13) of the proteins showing an increase in their reduced/oxidized Cys
ratio had at least one Glu or Asp between positions + 2 and −2, cen-
tered on the target cysteine, whereas this percentage was lower (46%;
16/35) for the proteins undergoing an oxidative change. The accumu-
lated content of Asp and Glu in the average protein from the UniProtKB
TrEMBL is 11.65%, therefore, the frequency of at least one acidic

residue at these positions is markedly higher than expected at random
and could be related to the sensitivity of these Cys residues to ni-
trosative stress induced redox changes.

Taken together, these changes show that NOS3 overexpression ex-
erts oxidative pressure on a number of protein cysteine residues with
potential regulatory effects mainly at the level of Glycolysis/gluco-
neogenesis, protein synthesis and folding, endoplasmic reticulum pro-
cesses, and cell death and survival (Fig. 2C). To check whether Trx1 or
Grx1 are involved in this redox disturbance, both redoxins were down-
regulated with specific siRNA and the redox state of individual Cys
residues was measured again.

3.2.2. Specific protein cysteines underwent oxidative and reductive changes
upon Trx1 or Grx1 silencing depending on NOS3 overexpression

Silencing of Trx1 or Grx1 to ≈ 20% their normal levels in WT and
NOS3-overexpressing HepG2 cells did result in significant redox
changes of specific protein cysteines, compared with their respective
controls. We had previously reported that the activities of both redoxins
decreased to the same extent as Trx1 and Grx1 protein levels in their
respective siRNA treated cells, excluding the induction of other active
isoforms [22]. Moreover, analysis of the differential proteome of these
cells in the present study did not show compensatory induction of
isoforms.

A selection of target proteins with ≥ 1.5 or ≤ 0.67 fold redox
changes is presented in Fig. 3A. Three groups can be distinguished in
this table. i) Proteins in the upper part of the table showed sensitive
cysteines which underwent an oxidative shift in WT cells, but a re-
ductive shift in NOS3 overexpressing cells, upon silencing of either
redoxin. ii) A second group in the middle part of the table shows cy-
steines that were more oxidized only in 4TO-NOS cells upon either
redoxin silencing. iii) Finally, a third group was only sensitive towards
Trx1 silencing almost exclusively in NOS3-overexpressing cells. Six
proteins: Cofilin-1, 40 S ribosomal protein S5 and isoforms Gamma,
Theta/delta and Beta/alpha of the 14–3-3 family of proteins, showed
high sensitivity to both redoxins but their redox changes, though con-
spicuous, did not display clear trends and have been omitted.

These changes could be the consequence of direct interaction of
either redoxin with the target proteins or could be due to indirect ef-
fects. They were almost exclusively oxidative in WT cells as one would
expect from the canonical antioxidant functions of Grx1 and Trx1.
However, in NOS3 overexpressing cells, the effect of silencing the re-
doxins, especially Trx1, also resulted in reductive changes in several
protein cysteines. The reason for this apparently contradictory result
could rely on the fact that NOS3 itself is sensitive to redox modification
and can be activated by Trx1 and Grx1 through denitrosation and de-
glutathionylation [4,78]. Hence, decreasing the levels of these redoxins
by specific siRNA should result in higher levels of redox modified NOS3,
lower NOS3 activity and lower protein S-nitrosation levels followed by
higher reduced/oxidized ratio of sensitive cysteines in target proteins.
We had previously determined the level of Tyr nitration, a good in-
dication of the degree of nitrosative/oxidative stress, in siRNA-Trx1 and
siRNA-Grx1 treated WT and NOS3 overexpressing HepG2 cells [22].
Nitro-tyrosine levels were markedly higher in WT HepG2 cells but de-
creased to 50% in NOS3 overexpressing HepG2 cells which is a further
evidence of NOS3 inactivation upon Trx1 and Grx1 down-regulation.

3.2.3. Redoxins-sensitive cysteines show specific sequence motifs
Defining sequence signatures around redox sensitive cysteines

would help predict and find redox regulated target proteins. A search
for short linear motifs in the sequences around the redox modified Cys's
shown in Fig. 3A using the motif-x algorithm [10] produced three motifs
with high enrichment score among the input set of proteins compared
with the background occurrence in the whole human proteome
(Fig. 3B). There is a Lys at position +1 or +4 in motifs 1 and 2 re-
spectively and a threonine at + 4 in motif 3. It is well known that
nucleophilic reactivity of Cys's is dependent on ionization to thiolate
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favored by low pKa. Computational and experimental results indicate
that the surrounding charged side chains can contribute, but do not
primarily control, the thiolate pKa in the Trx superfamily and other
proteins with reactive Cys [69,70]. However, a search for denitrosation
sites in proteins found two potential motifs with lysine at + 6 and + 7
[87] and a structural analysis of cysteine S-nitrosation sites found lysine
at position +3 and threonine at + 5 with moderate frequency [49].
The presence of a lysine residue near the target Cys is also common to
human proteins S-nitrosation motifs [42]. A study that combined se-
quence, structure, and electrostatic approaches predicted that Thr, its
hydroxyl group, and hydrogen-bonding capabilities play an important
role in Cys deprotonation and reactivity [70]. Hence, our results with
Lys or Thr upstream of Cys fit in with the current structural landscape of
redox sensitive Cys's, where some signatures have been put forward but
evidences for a strong consensus sequence motif has not yet been
achieved.

Two proteins were specifically sensitive to Grx1 silencing, PGAM-
1(Cys153) and PRDX6(Cys91). Alignment of both Cys-peptides showed a
striking conservation score around the affected Cys stressing their as-
signment as Grx1 targets (Fig. 3C). These Cys's are positioned in a coil
in the protein structure with 3.78% and 4.00% solvent accessibility,
respectively, and are enriched in acidic residues around the central

cysteine. They fit in the Homo sapiens HC05 group glutathionylation
motif as catalogued at dbGSH (http://csb.cse.yzu.edu.tw/dbGSH).
PRDX6 is 1-Cys peroxiredoxin with prominent features as it depends on
GSH and GST-Pi for peroxidase activity and also has phospholipase A2
(PLA2) activity, which plays a role for activation of NADPH oxidase 1
and 2 (NOX1, NOX2) [17,41]. The Grx-dependent redox modified Cys
at position 91 is not the canonical catalytic (“peroxidatic”) cysteine that
lies at position 47 of PRDX6. Cys91 has not been given attention so far
and has been routinely substituted by Ser in the recombinant protein,
supposedly to avoid unwanted thiol oxidation and “shuffling” and to
facilitate handling. Further experiments have been undertaken to find
out whether the Grx-specific redox sensitivity of PRDX6 Cys91 plays a
role on any of the protein functions.

3.2.4. Part of the observed cysteine redox changes were due to direct S-
nitrosation

As determined previously [21], NOS3 overexpression not only in-
creases the levels of NO but those of other ROS as well, so reversible
oxidation of Cys residues could be due to S-nitrosation or other types of
oxidative modifications induced by ROS. To ascertain whether S-ni-
trosation was actually taking place, we have carried out the Biotin
Switch Technique (BST). We have limited this analysis to siRNA-Trx1

Fig. 2. NOS3 over expression alters the Reduced/Oxidized ratio of specific Cys on target proteins. A) The UniProt ID of the protein is shown in the vertical axis
and the relative change in the Cysred/Cysox ratio in 4TO_NOS cells is indicated in the horizontal axis as fold change relative to the ratio in control 4TO cells
transformed with the empty vector. Proteins are ordered according to their statistical q score (Storey & Tibshirani) from 0.0000516 (top) to 0.0497383 (bottom).
Proteins with negative values were more oxidized after NOS3 overexpression; those with positive values (IDs in italic) were more reduced. Two proteins showed
reductive changes higher than fivefold as indicated. P10599, square boxed with thick line, is Trx1(C73); ID of enzymes of Glycolysis and its branching pathways are
highlighted with grey squares and ribosomal proteins are square boxed with thin line. B) sequence context around the cysteine residue of 13 peptides whose reduced/
oxidized ratio increased ≥ 1.5 on NOS3 overexpression, showing the presence of acidic residues (white letters highlighted in black) close to the affected cysteine
(grey shadowed). Protein names and Cys mapping are detailed in sheet “NOS3 Vo” of the Excel file shown in Suppl Fig. 2. C) Systems Biology analysis of the whole set
of redox modified proteins using Ingenuity Pathway Analysis (Qiagen) and DAVID [Huang et al. Nature Protoc. 2009;4(1):44–57]. The five most significant terms from
each analysis are shown with p values ranging from 9.18E−19 to 9.75E−04.
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treated cells, since Trx1 is well-known to display denitrosase activity.
Analysis of total biotinylated proteins by Western blotting showed

clear differences between control and NOS3 overexpressing HepG2 cells
as expected. When we compared Trx1 silenced cells with their control,
no significant differences were detected at the level of total protein, but
interestingly clear differences were found in band patterns indicating
changes in S-nitrosated Cys's at the level of individual proteins: some
proteins increased while others decreased upon Trx1 silencing
(Fig. 4A). These results are in agreement with the finding that several
proteins underwent a significant reductive shift on their key Cys's
(Fig. 3).

To test individual proteins, PRDX6, PKM2, caspase-3, NOS3 and
Trx1 were chosen to analyze their nitrosation state on Trx1 silencing by
the BST as shown in Fig. 4B and C. All five proteins were captured with
the BST, indicating that they are targets of S-nitrosation. Despite the
high variability of the technique, a clear trend was observed in 4TO-
NOS cells showing higher amounts of S-nitrosated PRDX6 and PKM in
Trx1-silenced cells than in control cells. This trend was also observed in
4TO and in normal HepG2 cells (not shown). PRDX6 and PKM are likely
substrates of Trx1 denitrosase activity, although the involved cysteines
cannot be mapped with this technique and we cannot tell whether the
S-nitrosated Cys are Cys91 or Cys47 in PRDX6 and Cys358 or another Cys

in PKM. The peptide containing peroxidatic Cys47 of PRDX6 was not
detected in any of our samples. We have previous experience on the
difficulty of detecting this tryptic peptide [65], but it was detected
using different technical tools in another study where Cys47 was actu-
ally more oxidized in sciatic nerve of old compared to young mice [56].
Since we have found that the “extra” Cys91 of PRDX6 is not sensitive to
Trx1 but to Grx1 silencing (Fig. 3), which has no denitrosase activity, it
is tempting to conclude that Cys47 might be target of S-nitrosation in a
Trx1-dependent manner while Cys91 might be a Grx1-dependent target
of glutathionylation. A preliminary mass spectrometric analysis of re-
combinant PRDX6 showed that both Cys47 and Cys91 are liable to
spontaneous reversible glutahionylation (Suppl. Fig. 1). These data
open the door to interesting insights into PRDX6 molecular properties
and functions.

Redox sensitivity of PKM2 Cys358 has been reported before [2,53],
however the identity of its redox reversible modification was not de-
termined. Our data show higher S-nitrosation levels of PKM2 in Trx1
silenced cells in parallel with reversible oxidative modification of
Cys358 suggesting PKM2 as target of Trx1 denitrosase activity. On the
other hand, caspase-3, Trx1 and NOS3 itself, were S-nitrosated in NOS3
overexpressing cells, apparently to a lesser extent when Trx1 was si-
lenced (Fig. 3C).

Fig. 3. Changes in the reduced/oxidized ratio of specific Cys on target proteins upon Trx1 and Grx1 silencing. A) The UniProt ID and name of the protein, the
sequence of the Cys-peptide and the position of the Cys residue affected are shown together with the redox change observed expressed as fold change of the Cysred/
Cysox ratio relative to the non-silenced cells. Oxidative changes are colored red and reductive changes are green. Only proteins showing fold changes≥ 1.5 or≤ 0.66
are included. All the values are statistically significant according to their q value (Storey & Tibshirani). Cells colored yellow with a value of 1.00 represent non-
significant changes; ND, peptide not detected. B) Putative consensus sequences of Trx1 and Grx1 related sensitive Cys-peptides; the sequences of the peptides
showing significant redox changes upon Trx1 or Grx1 silencing in WT and NOS3-overexpressing HepG2 cells were subjected to Motif-X ([10]; http://motif-x.med.
harvard.edu) with the following parameters: central character “C”, width “13”, occurrences “20”, significance “0.0001”, background “ipi. HUMAN.fasta”; motif
scores for logos 1, 2 and 3 were 8.57, 6.30 and 4.86, respectively. C) Two Cys peptides specifically sensitive towards Grx1 but not Trx1 belonging to Phos-
phoglyceromutase-1(Cys153) and Peroxiredoxin-6(Cys91) were highly conserved as shown by pairwise alignment with a 17 residue window around the sensitive
Cys, matrix EBLOSUM62, gap penalty 2; a very high conservation score was found with 2 identities (11.8%) and 6 similarities (35.3%).

M. López-Grueso et al. Redox Biology 21 (2019) 101049

7

http://motif-x.med.harvard.edu
http://motif-x.med.harvard.edu


These results confirm that S-nitrosation contributes to redox
changes taking place on target Cys's in HepG2 cells depending on the
overexpression of NOS3 and affected by the prevailing levels of Trx1.

3.2.5. Proteins with redoxin-sensitive cysteines are abundant in Glycolysis
Clustering of redox sensitive proteins with DAVID [33,34] revealed

a significant enrichment in Glycolysis in either normal or NOS3 over-
expressing HepG2 cells for both redoxins, but with higher score for
Grx1 silencing. Enzymes belonging to Glycolysis or its branching
pathways affected by thiol redox changes upon Tx1 or Grx1 silencing or
upon overexpression of NOS3 are listed in Fig. 5A and are shown in
context schematically in Fig. 5B.

3.2.5.1. Glyceraldehyde-3-phosphate dehydrogenase. The peptide
containing Cys152/Cys156 of GAPDH was markedly more oxidized in

NOS3 overexpressing cells. Cys152 is part of the active site and its
oxidation renders the enzyme inactive [25,61]. We confirmed that
GAPDH activity decreased in NOS3 overexpressing HepG2 cells
(Fig. 5C). Silencing of Trx1 or Grx1 in normal HepG2 cells did result
in diminished levels of GAPDH activity as expected, but this loss
correlated with oxidation of another Cys residue, Cys247, and not with
the redox state of Cys152/156, that did not change (Fig. 5A). GAPDH
Cys247 was indeed more oxidized in Trx1 and Grx1 down-regulated WT
cells, but more reduced in NOS3 overexpressing cells when Trx1 was
silenced. Reversible S-thiolation of GAPDH was earlier reported [73]
and since then Cys247 or its equivalent has been mapped and found to
be S-glutathionylated, S-nitrosated and S-acetylated [24] even in plants
[3], as well as a predicted target of Trx trans-nitrosation [86].

It would seem that GAPDH-C247 is prone to oxidative modification
by nitrosation or glutathionylation under the prevailing redox cellular

Fig. 4. Protein S-nitrosation in HepG2 cells over expressing NOS3 and treated with specific siRNA-Trx1. A) NOS3 over expressing HepG2 cells, 4TO-NOS, and
control 4TO cells transformed with empty vector were silenced or not, for Trx1 and subject to BST; biotinylated proteins constituting the “S-nitrosome” were
separated on SDS-PAGE, transferred to Nitrocellulose membrane and revealed with avidin-peroxidase conjugate. Membranes stained with Ponceau reagent before
transfer are presented in the left panels to show the protein load. Arrows point to bands with increased or diminished intensity upon Trx1 silencing. B) and C)
biotinylated proteins from 4TO-NOS HepG2 cells were captured on avidin-agarose, eluted with ß-ME, subjected to Western blot and revealed with specific antibodies
to 5 selected proteins as indicated. The intensity of the bands was quantified by image analysis as described in M&M; relative abundances of each protein in the
fraction of biotinylated proteins compared to non-silenced control cells are shown, together with the number of replicas and the bars showing standard deviation;
trimmed images from membranes showing representative band patterns are included below each graph.
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environment in normal HepG2 cells and to its reversal by either Trx or
Grx, respectively. When this fragile equilibrium is displaced by down
regulation of either redoxin, the oxidative state of Cys247 increases.
However, as discussed in Section 2b, decreasing the levels of Trx1 by
specific siRNA in NOS3 overexpressing cells should result in higher
levels of redox modified NOS3, lower NOS3 activity and lower GAPDH-
C247 nitrosation levels. The levels of nitro-Tyr, an indication of ROS and
RNS, did actually decrease down to 50% on either redoxin silencing
[22]. This would explain the reductive shift in GAPDH-C247.

Besides its conventional metabolic role, a number of studies have
identified the participation of GAPDH in diverse cellular functions and
these oxidative changes not only affect its glycolytic function but also
stimulate the participation of GAPDH in cell death [11,25]. Our find-
ings point to Cys247 as a sensitive target of the antioxidant activity of
Trx1 and Grx1 in WT cells with consequences on its enzymatic activity.

The rational to explain the decrease in activity of GAPDH would be
that it is rewarding for the cells to slow down the glycolytic flux at this
point to facilitate upstream diversion of glucose catabolism toward the
Pentose Phosphate Pathway (PPP) and to increase NADPH production
in this prevalent oxidative environment. However, it has yet to be de-
monstrated whether inactivation of GAPDH is reflected directly in
slowing down of glycolytic flux. Actually, we have observed that in-
activation of GAPDH in siRNA-Trx1 treated cells is paralleled by an
increase in glycolytic flux (Fig. 5C). Alterations in glycolytic enzymes
can regulate autophagy e.g. the moonlighting behaviour of GAPDH
enables its direct interaction with mTOR [58] or translocate to the
nucleus and upregulate Atg12 [11], both mechanisms being related to
the activation of autophagic process. siTrx1 and siGrx1 increased

caspase-3 and TUNEL in 4TO and 4TO-NOS3 cells [22] and increased
the oxidative status of the heat shock 70 kDa protein 4 (HspA4) Cys270

(Fig. 3A), an interactor with HspA8 (heat shock cognate 71 protein),
which drives chaperone-mediated autophagy [13]. Redox changes at
target cysteines in GAPDH and HspA4 suggest that Trx1 and Grx1 sig-
naling promoted a shift from autophagic survival to apoptotic pathway.

3.2.5.2. Phosphoglyceromutase-1. (PGAM1) Cys153 was more oxidized
in WT cells when Grx1 was down-regulated. PGAM1 is commonly
upregulated in human cancers and regulates anabolic biosynthesis by
controlling intracellular levels of 3-phosphoglycerate (3-PG) and 2-
phosphoglycerate (2-PG) to promote tumor growth [28]. Both 3-PG and
2-PG are allosteric regulators of glycolytic branching pathways: 3-PG
inhibits 6-phosphogluconate dehydrogenase (6PGD) of PPP, whereas 2-
PG activates phosphoglycerate dehydrogenase (PHGDH) of glycine and
serine synthesis pathway. It is worth noting that activation of PGAM1
by phosphorylation at Tyr26, common in human cancer cells, promotes
cell proliferation and tumor growth [29]. Cys153 is not close to the
active site but it has been noted that proteomes of Cys PTMs have
localized these modifications primarily in non-catalytic regions [24].
Moreover, Cys153 is in the same region of the protein as Tyr26 and
Lys100. It has been demonstrated that increased levels of ROS stimulate
PGAM Lys100 deacetylation and activity by promoting its interaction
with SIRT2 [88]; its modification by oxidation could equally affect its
activity or even the phosphorylation and acetylation state of Tyr26 and
Lys100 located nearby.

Cellular response to oxidative stress are mediated by the HIF-1α,
which is required for the upregulation of mRNAs encoding glucose

Fig. 5. Silencing Trx1 or Grx1 affects glycolytic enzymes redox state and activities and glycolytic flux. A) Enzymes of Glycolysis and related pathways
undergoing significant (q≤0.1) cysteine redox changes on NOS3 overexpression and upon Trx1 or Grx1 down-regulation have been selected. The precise cysteine
residues affected and the changes in the values of their reduced/oxidized cysteine ratios relative to the control (4TO-NOS vs 4TO; siRNA treated vs untreated) are
shown. The values for siRNA treated 4TO-NOS cells have been weighted by subtracting the changes observed in siRNA treated 4TO control cells; B) Glycolysis
centered metabolic network showing the main glycolytic stream and off-shooting pathways; the final destinations of metabolic fluxes are indicated with thick arrows;
the enzymes with redox altered cysteines and their residue position are highlighted. C) Enzymatic activities of triosephosphate isomerase, glyceraldehyde-3-phos-
phate dehydrogenase and pyruvate kinase, Glycolysis and Pentose Phosphate Pathway fluxes and lactate concentration in siRNA Trx1 and siRNAGrx1 treated
4TO_NOS and 4TO cells are shown relative to untreated 4TO control cells. Between 4 and 9 independent experiments were done for each parameter and a Student t-
test was calculated for statistical significance with values p≤ 0.001, 0.001 > p≤ 0.01 and 0.01 > p≤ 0.05 marked with *** , * * and * , respectively.
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transporters and glycolytic enzymes, with the notable exception of
PGAM [37], indicating a possible postranscriptional regulatory me-
chanism. Sensitivity of PGAM1 activity to thiol specific reagents was
initially reported for the rabbit enzyme [66], but to our knowledge, this
is the first time that a Grx1-dependent redox change is observed and
mapped to Cys153 suggesting a novel form of regulation that could
contribute to modulation of glycolytic flux for biosynthetic and anti-
oxidant purposes in response to the redox environment.

3.2.5.3. Pyruvate Kinase. PKM2 (P14618-1) behaves similarly: its
Cys358 is close to the allosteric activator fructose-1,6-bisphosphate
(FBP) binding site and is sensitive to oxidative stress [2,53]. It has
been shown that ROS-dependent inhibition of PKM2 is needed to
maintain the availability of glucose-6-phosphate (G-6-P) for flux into
the PPP and to sustain cell survival when endogenous ROS accumulate.
Regulation of PKM2 via oxidation of Cys358 is critical under these
conditions for optimal tumor growth [2]. Coherent with this, we show
here that NOS3 overexpression oxidizes Cys358 accompanied by a
significant decrease in activity (Fig. 5C). Cys358 is further oxidized
when Trx1 is down-regulated, but surprisingly, PKM activity is
significantly recovered to the same level as in siRNA-Trx1 treated
control cells (Fig. 5C). An increase in the PKM1/PKM2 isoenzyme ratio
induced by redox regulation of splicing events as reported in hepatoma
cells [84] would explain this result. These data demonstrate the
complexity of Trx1 involvement in maintaining the redox state of this
Cys358 and the activity of this critical enzyme.

3.2.5.4. Enolase. Cys119 of Alpha-enolase is sensitive to oxidative
conditions in NOS3 cells and is a target of Grx1 antioxidant activity
in WT cells (Fig. 5A). This cysteine was found to be reactive toward
mercury resin specific for Cys-SNO [24] and its glutathionylation in SH-
SY5Y neuroblastoma cells resulted in loss of enzymatic activity [36].
Further studies will confirm the regulatory role of this Grx1 dependent
redox change of α-Enolase Cys119.

3.2.5.5. Triose phosphate isomerase. TPI Cys255 was more reduced when
either Trx1 or Grx1 were silenced in NOS3 cells (Fig. 5A). TPI from
several organisms has been shown to be regulated by redox changes
involving glutathione at a cysteine equivalent to human Cys255. The
equivalent Cys in P. falciparum TPI, Cys217, is located at the interphase
of a complex formed between TPI and Trx [74], whereas A. thaliana TPI
is inactivated by glutathionylation at Cys218 in a manner reverted by
Grx [14]. Our results agree with these showing a significant decrease in
TPI activity when Grx1 is silenced in control cells. However, silencing
of either Trx1 or Grx1 in NOS3 overexpressing cells increased the
activity of TPI in parallel with reduction of Cys255, a likely consequence
of NOS3 inactivation, as already discussed above. It is tempting to
speculate that TPI Cys255 could act as a thiol redox switch to help divert
the glycolytic flow from DHAP towards lipid synthesis as part of a
metabolic response to changes in the redox environment [45].

Several enzymes from Glycolysis off-shooting pathways showed
significant redox changes: Lactate dehydrogenase A (LDHA) Cys293 and
6-phosphogluconate dehydrogenase (PGD) Cys170/171 were slightly
more oxidized in NOS3 cells; Glutamine-Fructose-6-phosphate amino-
transferase [isomerizing] 1 (GFAT) Cys434 was sensitive to both Trx1
and Grx1 down-regulation; and Transaldolase (TALDO) Cys250 was
markedly more reduced in NOS3 cells

Altogether, these data show widespread redox sensitivity of key
cysteines in glycolytic enzymes eventually affecting their activities. The
prominent role played by Trx1 and Grx1 on these thiol redox switches
could be meaningful as part of a pleiotropic redoxin reductive action as
a kind of “redox regulon” [20] to coordinate an integrated response to
ROS that would balance pyruvate and NADPH production and biosyn-
thetic flux diversion (Fig. 5B). However, the precise consequences of
these redoxin-dependent redox changes on metabolic fluxes cannot be
predicted from the changes of individual enzymatic activities [81].

Knowledge of Flux Control Coefficients of each enzyme would be ne-
cessary and the fluxes through glycolysis branched pathways should
also be taken into account. As a first approach we have measured gly-
colytic metabolic flux and metabolites levels, as described below.

3.3. Glycolytic flux and metabolite profiles were differentially affected by
Trx1 and Grx1 silencing

Glycolytic and Pentose Phosphate Pathway fluxes were determined
using radiolabelled glucose and measuring the formation of [3H]H2O
from [3-3H]glucose during the reaction catalysed by enolase and that of
[14C]CO2 from [1–14C]glucose by 6-phophogluconate dehydrogenase,
respectively. A metabolomic analysis was also undertaken. As shown in
Fig. 5C, Trx1 silencing had a stimulating effect on both pathways in
either NOS3 overexpressing cells and control cells, whereas Grx1 si-
lencing had the opposite effect in all cases. These effects could be a
reflection of the differential action of both redoxins on the redox state
of glycolytic enzymes (see Fig. 5A).

3.3.1. Grx1 silencing slows down Glycolysis and stimulates lipogenesis
The relationships between cysteine redox state, enzymatic activities

and metabolic fluxes are not straightforward, the metabolic profiles in
siRNA-Grx1 treated cells were coherent with lower glycolytic flux
showing increased levels of extracellular and intracellular glucose
(Fig. 6A). Sedoheptulose-7-phosphate (Su7P) accumulated in WT and
NOS3 overexpressing HepG2 cells treated with siRNA-Grx1 (Fig. 6B).
This was accompanied by increased levels of several polyols including
arabitol, xylitol, ribitol, mannitol and sorbitol, indicative of transaldo-
lase (TALDO) malfunctioning [76], and decreased levels of ribose.
These metabolic changes indicate slowing down of glucose processing
through the non-oxidative part of PPP as a consequence of Grx1 silen-
cing. Redox changes detected in TALDO-Cys250, 6-phosphogluconate
dehydrogenase (PGD) Cys170/171 and TPI-Cys255 could be involved in
the underlying regulatory mechanisms.

Another effect of Grx1 silencing was an increase in 3-phosphogly-
cerate (3PG) and lower levels of pyruvate (Fig. 6C) coincident with
PGAM-Cys153 oxidation and likely deviation of 3PG toward serine
pathway. Moreover, unchanged or increased levels of citrate and lower
levels of α-ketoglutarate and fumarate (Fig. 6D), might indicate slowing
down of Krebs cycle but deviation of citrate to fatty acid biosynthesis.
Accordingly, elevated levels of acyl-carnitine (Fig. 6H) and de novo
synthesis of phospholipids, was evidenced in siRNA-Grx1 treated cells,
represented by high levels of phosphatidylcholine and the family of 2-
arachidonoyl phospholipids with the exception of phosphatidylserine
(Figs. 6L and 6N). The increase in 2-arachidonoyl phospholipids runs
parallel with oxidation of PRDX6 Cys91 and it is worth noting the
specificity of cytosolic Ca2+-independent PLA2 activity for sn-2-ara-
chidonic acid glycerophospholipids [63], a precursor of eicosanoids,
which represent a class of lipid mediators. Moreover, arachidonic acid
has been shown to mediate the known proliferative action of PRDX6
[72]. These changes speak of active membrane remodeling and/or lipid
signaling events in Grx1 down-regulated cells.

Levels of several intermediary metabolites of purine pathway were
markedly elevated in Grx1 silenced cells with the exception of IMP but
including S-adenosylmethionine (SAM) (Fig. 6G). Elevated levels of
SAM should indicate intensification of the methionine/folate pathway
connected to glutathione synthesis and supplier of NADPH as an al-
ternative to PPP (Fig. 5B). The synthesis of glutathione was actually
exacerbated as indicated by increased levels of gamma-glutamylcys-
teine and cysteinylglycine (Fig. 6F).

3.3.2. Trx1 silencing induces membrane remodeling
There were similarities and differences between the effects of Grx1

and Trx1 silencing in metabolites’ levels. Increased glutathione meta-
bolism (Fig. 6F) and a marked decrease in 3-hydroxy-3-methylglutarate
(Fig. 6M) of mevalonate pathway are among the coincidences, but the
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levels of gamma-glutamylaminoacids is higher in siRNA-Grx1 (see
Suppl. File 3) and siRNA-Trx1 did not affect Su7P and glucose levels
(Fig. 6B). Trx silencing elicited trending and significant increases in
dipeptides (see Suppl. File 3) that may reflect increased proteasome-
mediated elimination of oxidized proteins in the setting of oxidative
stress. Increases in protein degradation could suggest Keap1-Nrf2 sig-
naling and increased autophagy. Notably, many of these changes were
not observed in NOS3 overexpressing 4TO_NOS cells.

Trx1 silencing also showed signs of lipid remodeling but differed
from Grx1 in promoting a trend of increasing sphingomyelins and
ceramides (Figs. 6I and 6J). Ceramide is involved in apoptotic processes
and in the formation of membrane raft redox signaling platforms
(MRRSP) that participate in the assembly and activation of NOX com-
plexes [62]. These changes are consistent with the pro-apoptotic effect
of Trx and Grx silencing in these cells as we had already reported [22].
The sensitivity of sphingomyelinases to redox changes is a key to the

cross-talk between sphingolipids and redox signaling through the reg-
ulation of NADPH oxidase, mitochondrial integrity, NOS, and anti-
oxidant enzymes [7]. The trend of sphingomyelins’ pool increase on
Trx1 silencing could have an influence on mitochondrial lipid compo-
sition and integrity. However, cardiolipin, a typical and prominently
functional mitochondrial phospholipid, was not detected. Hence, in-
volvement of mitochondria cannot be excluded and is worth of further
attention.

4. Conclusions

In the cell there is a delicate balance between effective redox sig-
naling mechanisms and potentially damaging oxidative damage.
Oxidative/nitrosative induced PTMs are critical for the accumulation of
redox modified proteins, induction of autophagy, and further cellular
apoptosis in unsolved pathophysiological intracellular responses while

Fig. 6. Metabolites concentrations in normal and NOS3 overexpressing HepG2 under Trx1 and Grx1 down-regulation. A metabolomics analysis was per-
formed in normal (WT), 4TO and 4TO_NOS cells treated with siRNA-Trx1, siRNA-Grx1 or control siRNA-nonTarget as described in Materials & Methods. A selection
of metabolites representing the most conspicuous changing trends when cells are treated with siRNA-Trx1 or siRNA-Grx1 is shown. The results presented in this
figure are part of a larger metabolic study. Extracellular glucose concentration was determined in culture media by a standard method independently of the
metabolomic analysis.
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redox signaling through the transient oxidation/reduction of key Cys
residues in regulatory proteins plays a role in many of the hallmarks of
cancer [31].

The data presented herein show that Trx and/or Grx are involved in
redox modifications of targeted cysteines of several glycolytic enzymes
affecting their activity, although changes in the activity of one single
enzyme cannot be extrapolated to equivalent changes in overall meta-
bolic flux. These changes are part of a widespread adaptive mechanism
aimed at redistributing metabolic fluxes between Glycolysis and its off-
shooting pathways to respond to subtle changes in the cellular redox
environment. Trx and Grx share a number of protein Cys redox targets
but down regulation of either redoxin has markedly different metabolic
outcomes: silencing of Trx1 stimulates glycolytic flux while silencing of
Grx1 decelerates it.

Besides its canonical antioxidant action, Trx1 also contributes to
oxidative modifications of protein thiols, likely by activation of NOS3,
reflecting the delicate sensitivity of redox equilibrium to changes in any
of the elements involved and the difficulty of forecasting metabolic
responses to redox environmental changes.

A correlation can be put forward between the reversible oxidation of
Cys91 of PRDX6 upon Grx1 silencing that is accompanied by a sig-
nificative increase of sn-2-arachidonoyl containing phospholipids and
Cys91 sensitivity to glutathionylation, considering the well-known de-
glutathionylase activity of Grx.

To our knowledge, this is the first demonstration of a role for Grx1
and Trx1 in the crosstalk between lipids metabolism and redox sig-
naling. Further and deeper insights into the underlying mechanisms, i.e.
possible involvement of PRDX6 and Nrf2 signaling [40], CD95 ligand or
TNFα induced activation of sphingomyelinases and ceramide induced
MRRSP activation of NOX [18], etc., are expected to be discovered with
ongoing focused experiments.
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