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We show that eigenvector centrality exhibits localization phenomena on networks that can be
easily partitioned by the removal of a vertex cut set, the most extreme example being networks
with a cut vertex. Three distinct types of localization are identified in these structures. One is
related to the well-established hub node localization phenomenon and the other two are introduced
and characterized here. We gain insights into these problems by deriving the relationship between
eigenvector centrality and Katz centrality. This leads to an interpretation of the principal eigenvector
as an approximation to more robust centrality measures which exist in the full span of an eigenbasis
of the adjacency matrix.

I. INTRODUCTION

Cataloging individual nodes and the connections be-
tween them forms the underlying data in many areas of
science and technology, such as the world-wide-web, so-
cial networks, biochemical pathways, transportation net-
works, and power grids [1][2][3]. This underlying concept
of a graph or network is the same across disciplines and it
is not surprising that the same issues emerge. A common
problem is how to identify which nodes are most signif-
icant. This is valuable if we wish to identify the most
important pages on the internet or the most influential
people from social network analysis or to target resources
at controlling an epidemic on a network of contacts.

Measures of node importance are often termed ‘cen-
trality’ [2][3][4]. Degree centrality is the most obvious
measure of the relative importance of nodes and refers
to how many nearest neighbors that any given node has.
In general, the structure of a network can be represented
by an adjacency matrix A such that element Aij = 1 if
node j is connected towards node i and Aij = 0, other-
wise. For an n by n adjacency matrix A representing an
undirected network, degree centrality is given by

d = A1, (1)

where 1 is the appropriate column vector of ones.
One of the main deficiencies of degree centrality is that

a simple tally of the number of neighbors does not ac-
count for whether those neighbors are themselves impor-
tant. Generally it is reasonable to suppose that nodes
with high centrality should confer a higher centrality onto
their neighbors than lower centrality nodes. A standard
method for resolving this problem is eigenvector central-
ity [5], which relates to the eigenvalue equation for A:

u =
1

µ
Au. (2)

Comparing with Eq. (1), the eigenvalue equation has the
required form; instead of summing over the number of
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neighboring nodes with equal weight, we have a weighted
sum where each neighbor contributes centrality in pro-
portion to its own centrality u. For this equation to have
a solution, it is of course required that µ is an eigenvalue
of A and that u is its corresponding eigenvector.

To avoid unnecessary complication, let us suppose that
A is strongly connected (irreducible) and let us also as-
sume that it is undirected. From the Perron-Frobenius
theorem, the principal eigenvalue of A has a correspond-
ing eigenvector in its eigenspace whose components are
all positive. Consequently, this is the solution of Eq. (2)
that is generally used to define eigenvector centrality.

To set the scene for what follows, we note that while
positive values are likely to be a desirable attribute for
a centrality measure and we should also expect that the
principal eigenvector contains more information than any
of the other eigenvectors, this is not a sufficient reason
to neglect the other eigenvectors. Essential ranking in-
formation could also exist in the direction of some of
the other eigenvectors and so we are not able to guaran-
tee that eigenvector centrality will always give a sensible
ranking of node importance.

Indeed, problems with eigenvector centrality known as
localization have been observed whereby the centrality is
localized on just a few nodes in the network. This is par-
ticularly apparent when networks have highly connected
hub nodes [6][7][8][9][10], but also occurs when networks
have high modularity [11]. Here we develop a more de-
tailed understanding of localization phenomena in sce-
narios where networks are easily partitionable. We use
the term localization here to refer to any unreasonable
focusing of centrality on parts of the network.

We initially consider networks with a cut vertex
(Sec. II) since the main results can be fully explored in
this simpler scenario (Sec. III). We then show how this
extends to the general case of networks partitioned by an
arbitrary vertex cut set (Sec. IV) and define three types
of localization (Sec. V). In Sec. VI we provide an inter-
pretation of eigenvector centrality as an approximation to
more robust centrality measures such as Katz centrality.
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II. EIGENVECTOR CENTRALITY FOR
NETWORKS WITH A CUT VERTEX

We first define a network which is partitionable by
the removal of a single vertex. Consider a network with
adjacency matrix A and a cut vertex such that its re-
moval results in m disconnected components (or parti-
tions) with adjacency matrices Pi of order pi by pi for
i ∈ {1, 2, . . . ,m}. The adjacency matrix A has the form

A =


P1 0p1×p2

· · · 0p1×pm
b1

0p2×p1
P2 · · · 0p2×pm

b2

...
...

. . .
...

...
0pm×p1

0pm×p2
· · · Pm bm

bT
1 bT

2 · · · bT
m 0

 . (3)

Here, the notation 0pi×pj
denotes the pi by pj zero ma-

trix and the column vector bi of length pi describes con-
nections from the cut vertex to partition Pi. Since A is
strongly connected and undirected, it follows that each
partition Pi is also strongly connected.

The form of eigenvector centrality for this network can
be obtained from the eigenvalue equation (see also Mar-
tin et al. [9] which effectively considered m = 1). Sup-
pose that the principal eigenvalue of A is µ and that the
corresponding eigenvector is

u =


x1

x2

...
xm

v

 (4)

where xi are column vectors of length pi and v is a scalar.
Substituting this and Eq. (3) into Eq. (2) gives

Pixi + vbi = µxi

for i ∈ {1, 2, . . . ,m}. Solving this for xi gives

xi =
v

µ

(
I − 1

µ
Pi

)−1
bi,

where I is the appropriately sized identity matrix. By
substituting these values into Eq. (4) we obtain

u ∝


M1b1

M2b2

...
Mmbm

µ

 , (5)

where

Mi =

(
I − 1

µ
Pi

)−1
. (6)

To investigate this further, it is valuable to develop a
leading eigenvector approximation to Eq. (5). Since A is

undirected, we can assume an orthonormal eigenbasis for
each of the Pi given by the vectors w1

i ,w
2
i , . . . ,w

pi

i with
corresponding eigenvalues λ1i , λ

2
i , . . . , λ

pi

i . We can write
the vector bi in the corresponding basis:

bi = g1iw
1
i + g2iw

2
i + · · ·+ gpi

i wpi

i

with coordinates given by the projection of bi onto the
relevant basis vectors: gji = bi ·wj

i for j ∈ {1, 2, . . . , pi}.
Additionally, decomposing the inverse matrix Eq. (6) as
a power series in Pi/µ,

Mi = I +
Pi

µ
+
P 2
i

µ2
+ . . . ,

now lets us write

Mibi = (I +
Pi

µ
+
P 2
i

µ2
+ . . . )(g1iw

1
i + g2iw

2
i + · · ·+ gpi

i wpi

i )

= g1iw
1
i + g2iw

2
i + · · ·+ gpi

i wpi

i

+g1i
λ1i
µ
w1

i + g2i
λ2i
µ
w2

i + · · ·+ gpi

i

λpi

i

µ
wpi

i

+g1i
(λ1i )2

µ2
w1

i + g2i
(λ2i )2

µ2
w2

i + · · ·+ gpi

i

(λpi

i )2

µ2
wpi

i

+ . . .

=
g1iw

1
i

1− λ1i /µ
+

g2iw
2
i

1− λ2i /µ
+ · · ·+ gpi

i wpi

i

1− λpi

i /µ
. (7)

It is worth clarifying that since A is irreducible and Pi is
a subgraph of A, µ is larger in modulus than the eigen-
values of Pi ([12], pp. 83-84).

To keep the notation simple, let us denote the lead-
ing eigenvector of partition Pi by wi and its associated
eigenvalue by λi. We can now make a leading eigenvector
approximation ũ to capture the main characteristics of
Eq. (5) in most circumstances:

ũ ∝


w1(b1 ·w1)/(µ− λ1)
w2(b2 ·w2)/(µ− λ2)

...
wm(bm ·wm)/(µ− λm)

1

 . (8)

III. LOCALIZATION IN NETWORKS WITH A
CUT VERTEX

We can gain insights into the limitations of eigenvector
centrality from Eq. (5) as well as from its approximation
Eq. (8). We will do this by making a detailed analysis of
some numerical evaluations of eigenvector centrality that
exhibit localization. First we can place the known results
on hub node localization into the current context.

Consider a class of network described by Eq. (3) with
a cut vertex that results in m partitions. Suppose
that its spectral radius µ(n) scales with size such that
limn→∞ λi(n)/µ(n) = 0 where λi(n) is the spectral ra-
dius of partition Pi. It then follows from Eqs. (5) and (6)
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that the the eigenvector centrality of the nodes in Pi

tends toward bi and becomes uninformative. In some
cases this can be problematic for centrality; the m = 1
case corresponds to hub node localization where an un-
reasonable focusing of centrality on the hub node and
its immediate neighbors can occur. This has been ob-
served on several networks [6][7][8][10] and established as
a phase transition on a class of undirected random graphs
[9].

The form of Eq. (5) results in other types of localiza-
tion and these are the main focus of this work. In par-
ticular, notice that the eigenvector centrality of nodes in
subgraph Pi is directly dependent on the nodes, defined
by bi, that the cut vertex connects to. This suggests
that there could be a large nonlocal impact on the entire
subgraph of the choice of connecting nodes.

To explore this in detail it is valuable to make a com-
parison of the average centrality in two specific partitions;
we shall consider P1 and P2. From the approximation
of eigenvector centrality Eq. (8), the ratio of the aver-
age centrality in subgraph P1 to the average centrality in
subgraph P2 is approximated by

ρ =
p2(1 ·w1)

p1(1 ·w2)

(b1 ·w1)

(b2 ·w2)

(µ− λ2)

(µ− λ1)
. (9)

The first factor can be shown to be bounded between√
p2/p1 and p2/

√
p1 by making use of the bounds ‖x‖2 ≤

‖x‖1 ≤
√
p‖x‖2 provided by the l2-norm on the l1-norm

for a vector x of dimension p. For subgraphs of similar
size and type, its value is typically close to 1.

We now identify two types of localization, one associ-
ated with the second factor and one associated with the
third factor in Eq. (9). To investigate the second factor,
it is informative to consider the situation where the two
partitions P1 and P2 are isomorphic so that w1 = w2,
p1 = p2 and λ1 = λ2 and so we are left with just the
second factor: ρ = (b1 · w1)/(b2 · w1). In addition to
describing the ratio between the average centralities of
the partitions, in this particular case it also gives the ra-
tio between corresponding nodes. An example of such a
network is shown in Fig. 1 where the classic karate club
network of Zachary [13] has been duplicated and then
linked by an additional connecting node of degree two
(the cut vertex). The only difference between the dupli-
cated subgraphs is that the cut vertex connects to node 2
in the left subgraph and to node 13 in the right subgraph.

Identifying the left subgraph with P1 and the right
subgraph with P2, we obtain ρ = 3.157, rounded to four
significant figures. Here, ρ reduces to the ratio of the
eigenvector centrality of node 2 to the eigenvector cen-
trality of node 13 when computed on the original (single)
karate club network. When computing the thirty-four in-
dividual ratios of the eigenvector centrality of node i in
the left subgraph to the eigenvector centrality of node i
in the right subgraph for i ∈ {1, 2, . . . , 34}, we find that,
when excluding corresponding pairs of nodes 2 and 13,
this has mean 3.157 rounded to four significant figures
with standard deviation 0.015. Corresponding nodes 2

FIG. 1. The classic karate club network [13] is duplicated.
Node 2 in the left network is connected to node 13 in the net-
work on the right via an additional node (CV) which is a cut
vertex. The size of the nodes increases with their eigenvector
centrality and the color from white through to green is also
changing with increasing eigenvector centrality.

differ in eigenvector centrality by the ratio 3.236 and cor-
responding nodes 13 differ by the ratio 2.502 reflecting
differences due to the connection of these nodes to the
cut vertex which would be described by including the
other terms in Eq. (7). The small node-specific variation
described by the standard deviation also relates to the
contributions from the other terms in Eq. (7) which are
neglected in Eq. (9). These terms are small because the
values µ = 6.738 and λ1 = λ2 = 6.726 cause the terms
with the largest eigenvalue to be far more significant.

For most applications we would expect a useful central-
ity measure to provide more or less the same centrality
values to the corresponding nodes in the two subgraphs
except for some deviation near to the connecting nodes.
However, a network-wide impact of the choice of connect-
ing nodes is observed whereby the centralities in the left
subgraph are significantly more than those in the right
subgraph. By changing the choice of connecting nodes,
a nonlocal network-wide impact on every node occurs as
the value of the ratio ρ changes.

When subgraphs P1 and P2 are different, there are
contributions from all factors in Eq. (9). The last fac-
tor depends on the principal eigenvalues of subgraphs P1

and P2. We should expect some dependence, but this
term can be very sensitive to whether λ1 or λ2 is clos-
est to µ, and consequently ρ can be very large or small
because of this. Additionally, as in the previous exam-
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FIG. 2. A network formed by connecting two different fifty-
node Erdős-Rényi random graphs together with a cut vertex.
The bottom graph has average degree 5.84 and the top has
average degree 6.32. The cut vertex connects to five nodes in
the bottom subgraph and to three nodes in the top subgraph.
The size of nodes increases with their eigenvector centrality
and their color also changes from white through to green.

ple, we also have dependence on the second factor de-
scribing the nonlocal impact of the choice of connecting
nodes. Figure 2 illustrates two different Erdős-Rényi ran-
dom graphs of the same order and similar density joined
together. Here most of the centrality is in the top-right
subgraph, demonstrating localization behavior. The av-
erage eigenvector centrality of nodes in the upper sub-
graph is found to be 7.301 times greater than those in
the lower subgraph. This is captured by Eq. (9) which
gives ρ = 7.312. The first factor in Eq. (9) has value
1.024. The second has value 0.3917 which partly reflects
the fact that the lower graph has five connections and
the upper one has three, leading to a higher amount of
the eigenvector centrality of the lower subgraph being di-
rectly connected to the cut vertex than the eigenvector
centrality of the upper one. The third factor is 18.23 il-
lustrating sensitivity to the principal eigenvalues which
have values µ = 7.190, λ1 = 7.171 and λ2 = 6.856 and
highlighting another cause of localization.

Since the form of the approximation Eq. (9) reduces to
just the second factor for the network in Fig. 1, we con-
clude that increasing the number of links between the cut
vertex and left subgraph will cause the centrality of nodes
in P1 to increases with respect to their counterparts in
P2. The effect of doing this is illustrated in Fig. 3(a) for
both the actual ratio and the approximation Eq. (9).

In the general case where P1 and P2 are not isomorphic,

FIG. 3. (a) For the network in Fig. 1, the right subgraph
remains connected via node 13 whereas the left subgraph is
increasingly connected to the cut vertex, starting with node
1, and then nodes 1 and 2, continuing until all 34 nodes are
connected. The impact on the ratio of the average eigenvec-
tor centrality (blue circles) as well as on the approximation ρ
(red crosses) is shown. (b) For the network in Fig. 2, the con-
nectivity of the lower subgraph to the cut vertex remains as
before, but the connectivity to the upper subgraph increases
by sequentially connecting a new node chosen uniformly at
random from the remaining unconnected nodes, except that
the first three nodes are chosen to be the same as in Fig. 2.
The ratio of the average eigenvector centrality (blue circles)
and the approximation ρ (red crosses) is shown as well as the
contributions of the second (black solid line) and third (black
dashed line) factors in Eq. (9).

increasing the number of links to P1 from the cut vertex
will still cause the second factor in Eq. (9) to increase.
However, the value of µ will also increase ([12], pp. 69-70)
which brings in a changing contribution from the third
factor in (9). As µ increases, this factor will decrease
if λ1 > λ2 and will approach 1 from above, otherwise,
aside from the equality case, it increases and approaches
1 from below. In the former case, it is therefore possible
that ρ will initially decrease with increasing links, prior
to it increasing again. This is illustrated in Fig. 3(b) by
adding connections to the upper subgraph in Fig. 2.

We discussed at the beginning of this section that as
µ gets large with respect to the leading eigenvalue of any
given subgraph Pi, the centrality of this subgraph ap-
proaches the uninformative distribution bi. However, in
the case of Fig. 3(b), we are far from this limit since the
principal eigenvalue only increases to µ = 11.39 when all
fifty nodes in the upper subgraph are connected, which
is less than twice the principal eigenvalue of either sub-
graph.

The original (single) karate club network also has a cut
vertex at node 1 and so for completeness we can consider
this. Removal of node 1 fragments the network into three
parts: nodes (5,6,7,11,17), node 12, and the remaining
27 nodes. We can determine eigenvector centrality by
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Eq. (5) with m = 3. Identifying partition P3 with node
12, we get M3b3 = 1. If we identify partition P1 with
nodes (5,6,7,11,17) and their internal connections and P2

with the larger partition, then the ratio of the average
eigenvector centrality of nodes in P1 to the average in
P2 is 0.4266. The value from Eq. (9) is ρ = 0.4612.
Here the first factor is 2.708, the second is 1.272 and the
third is 0.1339. There is nothing obviously problematic
with the value of this ratio, but its utility in defining the
relative importance of the nodes is questionable given our
previous observations.

IV. LOCALIZATION IN NETWORKS WITH A
VERTEX CUT SET

We can view the cut vertex as an extreme example
of a partitionable graph. This leads to the question of
whether the eigenvector centrality of networks which can
be partitioned by the removal of a small number of nodes
may also exhibit similar localization problems. This can
be addressed by generalizing our previous analysis to a
vertex cut set. Proceeding by analogy with the cut vertex
analysis, we consider an undirected strongly connected
network with adjacency matrix A such that the removal
of a set of q vertices results in m partitions with adja-
cency matrices Pi of order pi by pi for i ∈ {1, 2, . . . ,m}.
We suppose that the internal connections between the q
nodes in the vertex cut set are represented by the adja-
cency matrix Q. The matrix A then takes the form

A =


P1 0p1×p2

· · · 0p1×pm
B1

0p2×p1
P2 · · · 0p2×pm

B2

...
...

. . .
...

...
0pm×p1

0pm×p2
· · · Pm Bm

BT
1 BT

2 · · · BT
m Q

 ,

where Bi is a pi by q matrix denoting the connections
from Q to Pi. Using the form

u =


x1

x2

...
xm

v


to denote the eigenvector, where now v is a column vector
of length q and where xi is a column vector of length pi,
we obtain a generalization of Eq. (5):

u ∝


M1B1v
M2B2v

...
MmBmv

MQ

(∑m
i=1B

T
i xi

)

 , (10)

where the matrices Mi are given by Eq. (6) and where

MQ =

(
I − 1

µ
Q

)−1
.

This generalizes our previous analysis by replacing the
vector bi by the vector Biv, and by replacing the scalar µ
in the last element by a vector describing the eigenvector
centrality of the vertex cut set. The analysis leading to
Eq. (9) can be repeated leading to

ρ =
p2(1 ·w1)

p1(1 ·w2)

(B1v ·w1)

(B2v ·w2)

(µ− λ2)

(µ− λ1)
(11)

describing the ratio of the average eigenvector centralities
of the first and second partition. As in Eq. (9), λ1, w1

and λ2, w2 are the principal eigenvalues and eigenvectors
of partitions P1 and P2, respectively.

The first factor is the same as for the single cut ver-
tex and the third factor remains unchanged in form and
so exhibits the same problems. The second factor is a
generalization of the second factor in Eq. (9). The main
difference is that it depends directly on the eigenvector
centrality of the vertex cut set, denoted by v, whereas
for a single cut vertex we were able to remove this as a
common factor. Here, Biv is a mapping of the centrality
v via the linking edges defined by Bi to Pi. Only the
nodes of Pi that connect directly to the vertex cut set
have non-zero entries in Biv and so this has the same
role as bi in Eq. (9). Similarly, the dot product of Biv
with the isolated eigenvector centrality wi of Pi denotes
how much centrality this overlaps with. As in the single
cut vertex case, if there are relatively few links between
Q and Pi, then the centrality of all nodes in Pi can be
very dependent on a small change in Bi yielding a poten-
tially large nonlocal impact. This is illustrated in Fig. 4,
which represents a modification of the double karate net-
work in Fig. 1 to a slightly larger vertex cut set of three
nodes which are chosen to connect to reasonably high
degree nodes in the left partition and low degree nodes
in the right partition. We see similar behavior to Fig. 1,
where this time the average ratio between correspond-
ing nodes in the left and right graphs (excluding nodes
2,13,25,31,33 which have direct connections to the vertex
cut set) is 5.921. This is well-accounted for by ρ = 5.934.

V. TYPES OF LOCALIZATION AND THE
NONBACKTRACKING ALGORITHM

Our analysis has identified three seemingly distinct
types of localization which we summarize below.

• Type 1: If a class of network scales with the
number of nodes n such that its principal eigen-
value is µ(n) and if one of the partitions Pi of a
vertex cut set has principal eigenvalue λi(n) and
if limn→∞ λi(n)/µ(n) = 0, then it follows from
Eqs. (10) and (6) that the proportion of eigenvector
centrality allocated to Pi vanishes except for those
nodes in the partition connected directly from the
vertex cut set. In some circumstances this leads to
an unreasonable focusing of centrality. We did not
explicitly show this type of localization here, but it
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FIG. 4. Modification of the double karate network in Fig. 1
to have a vertex cut set of three nodes {a,b,c}. The size of the
nodes increases with their eigenvector centrality and the color
from white through to green is also changing with increasing
eigenvector centrality.

has been demonstrated elsewhere (see the discus-
sion at the beginning of Sec. III).

• Type 2: The second factor in Eq. (11) describes a
nonlocal impact across the entire of a partition Pi

of the choice of nodes connecting it to the vertex cut
set. This is particularly apparent when the number
of edges connecting Pi to the vertex cut set is low
(e.g., Figs. 1 and 4).

• Type 3: If the principal eigenvalue of a partition is
close to the principal eigenvalue of the full network,
then the third factor of Eq. (11) shows how the cen-
trality of this subgraph can become unreasonably
high [e.g., Figs. 2 and 3(b)].

Type 1 localization that is caused by the presence
of high-centrality hub nodes has been qualitatively ex-
plained on undirected random graphs with a vanishingly
small density of short loops in terms of the eigenvalue
equation [9]. It emerges from the process where a high-
centrality hub node passes centrality to its neighbors, but
this is then reflected back to the hub via the bidirectional
links. This type of backtracking can be avoided by using
a modified ‘nonbacktracking’ version of eigenvector cen-
trality [9] based on the Hashimoto or nonbacktracking
matrix [14][15][16]. It is therefore of interest to determine
its efficacy on the other types of localization described
here.

If we apply the nonbacktracking variant of eigenvector
centrality to the network in Fig. 1, then we obtain a ra-
tio of corresponding nodes (excluding those immediately
connected to the cut vertex) of 1.0002 with standard de-
viation 0.0020 and so this problem seems to be resolved.
However, if we apply it to the network in Fig 4, we obtain
an average ratio of corresponding nodes (excluding those
immediately connected to the vertex cut set) of 1.2507
with standard deviation 0.0090 and so the ratio is re-
duced but the nonlocal influence remains. So it appears
that some but not all Type 2 problems can be resolved
by this method.

For the network in Fig. 2, the average nonbacktracking
centralities in the upper graph are 5.725 times bigger on
average than those in the lower graph. This suggests
that the localization problems associated with the third
factor in Eq. (9) remain. To understand these results in
more detail, it would be valuable to determine whether
an expression similar to Eq. (10) could be derived for the
nonbacktracking algorithm.

VI. AN INTERPRETATION OF EIGENVECTOR
CENTRALITY

We have shown that eigenvector centrality can be un-
reliable due to three different types of localization. How-
ever, other eigenvector-related centrality measures such
as Katz centrality [17] and PageRank [18] are much more
robust and do not exhibit the same problems.

We conclude by arguing that eigenvector centrality can
be viewed as an approximation to more robust centrali-
ties in the full span of the eigenvectors of the adjacency
matrix. In particular, we shall argue this by considering
the relationship between Katz centrality and eigenvector
centrality.

Katz centrality is defined for a general adjacency ma-
trix A by

x = M1, (12)

where

M = (I − aA)
−1

and where a is a parameter that we are free to choose
within the range 0 < a < 1/µ [17][19].

The matrix M can be written as a power series in aA:

M = I + aA+ a2A2 + . . . . (13)

The element sij of matrix Ar for r ∈ {1, 2, . . . } is the
number of paths of length r between node j and node
i. In the original interpretation of this series by Katz,
it is supposed that the influence of node j on node i
via a path between them reduces by the length of this
path according to ar where a is the ‘attenuation’ on each
link, so that shorter paths contribute more. According to
Katz, the interpretation of element Mij of matrix M is
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the influence that node j has on node i due to all possible
paths between j and i. By performing the sum over j in
Eq. (12), we determine the total influence of all nodes on
node i.

Following similar arguments to the derivation of
Eq. (7), Katz centrality can be written in terms of an
eigenbasis {u1,u2, . . . ,un} (with corresponding eigenval-
ues µ1, µ2, . . . , µn) of A:

x =
f1u1

1− aµ1
+

f2u2

1− aµ2
+ · · ·+ fnun

1− aµn
,

where fi are the coordinates of vector 1 in this basis. We
can assume that µ1 is the principal eigenvalue of A.

Katz centrality is therefore a vector in the full span
of an eigenbasis of A. The level of contribution of each
eigenvector depends on the parameter a. As the param-
eter gets close to 1/µ1 from below, the first term domi-
nates and, after appropriate normalization, we obtain the
convergence of eigenvector and Katz centrality [20][21].
As a result, the same localization problems emerge. How-
ever, when we approach the eigenvector centrality limit,
each term in the sum Eq. (13) makes a similar contribu-
tion to the centrality and the contributions of the later
terms converge to each other in size. With endlessly re-
peated cycles and infinite path lengths, the original pro-
cess that Katz envisaged [17] loses its meaning.

For lower values of a, the attenuation automatically
reduces the impact of large paths. At the same time, we
gain contributions from the other eigenvectors and so in
this sense, Katz centrality can be viewed as a mechanism
for assimilating information from all of the eigenvectors of
A where a is a tuning parameter to determine the relative
magnitude of those contributions. Motivated by this, one
useful way of defining the attenuation is a = 1/(µ1 +µ2)
where µ2 is the second-largest positive eigenvalue, if it
exists. This is bounded by 0.5/µ1 < a < 1/µ1 which is
consistent with the value a = 0.85/µ1 used in the related
PageRank algorithm [18].

In conclusion, eigenvector centrality can be viewed as
the leading contribution to more robust measures in the
span of the eigenvectors such as Katz centrality, based on
underpinning systems with a clear centrality interpreta-
tion [17][19]. Indeed, we have already argued that there
is no sufficient reason why the principal eigenvector of the
adjacency matrix should be a reliable centrality measure.
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