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Abstract: In diverse terrestrial cyanobacteria Far-Red Light Photoacclimation (FaRLiP) promotes
extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I
and PSII and the cores of phycobilisomes, and is accompanied by the concomitant
biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a
highly divergent paralog of psbA; heterologous expression of chlF from
Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in
Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies
reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the
heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged
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ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass
fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and
pheophytin a at a ratio of ~3–4:1, bound -carotene and zeaxanthin, and was inhibited in
vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence
of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF
produced a Chl a triplet that decayed with a lifetime (1/e) of ~817 µs and that could be
attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521
gene was expressed in a strain in which the psbD1 and psbD2 genes had been
deleted, significantly more Chl f was produced, and Chl f levels could be further
enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp.
PCC 7002 was inserted into trimeric PSI complexes.

Response to Reviewers: Comments by the editor, Bob Blankenship
I have two comments of my own that I also ask that you address in your revision. First,
chl d was discovered 75 years ago (!) not 20 as stated in the manuscript. The original
reference should be cited (Winston M. Manning and Harold H. Strain, 1943,
Chlorophyll d, a Green Pigment in Red Algae J. Biol. Chem. 1943, 151:1-19.). Second,
The EPR results are not really consistent with the signal arising from a Chl+ species,
as the g factor of 2.009 is much larger than the typical g factor of Chl+, which is
2.0025. This discrepancy needs to be resolved.

Response:
We are aware that Chl d was first discovered 75 years ago as the editor points out, and
that it was “rediscovered” in 1996. The text has been modified to reflect this point.

The sections on the transient optical and EPR analysis of ChlF have been modified
and Figures 6 and 7 have been replaced. During the two months this work was in
review, we performed additional optical and EPR analyses on several additional
preparations of ChlF. The results shown in the original Figure 6 using flash-induced
transient spectroscopy, were reproducible and the results prevoiusly shown were
typical. In the revised manuscript, Figure 6 includes the original data (left inset) from
the first submission, but with additional information now presented. We found that the
major recombination phase was associated with a Chl triplet, which did not saturate
(see inset at the right in new figure), but minor phases were still observed that had
somewhat variable amplitudes and time constants. We have replaced Figure 6 with a
new figure that shows the original data in an insert, a CONTIN decomposition of that
data as the main figure, and the ~800 µs, triplet portion of the signal that does not
saturate as a second insert, and we have modified the text and figure legend
appropriately. Further supporting our conclusion, we also have replaced Figure 7 with
a new EPR figure showing the characteristic spin-polarized spectrum of an intersystem
crossing Chl triplet. Figure 7 also shows that this preparation contains a tiny amount of
contaminating PSI (almost no signal at all), which was probably the source of the g ~ 2
signal in the original manuscript (that spectrum is now moot). We are continuing to
analyze ChlF preparations and hope to derive further information about the minor
kinetic phases in future studies. The simulations were done with Art van der Est, and
he has been added as a coauthor now on the manuscript.

Reviewer #1:

The manuscript is one of chlorophyll-f synthase works which the authors have been
reported since 2014.   It includes some interesting points including partial
characterization of the enzyme, but quantitative analysis of chlorophylls is ambiguous
in the present version (see below).   Therefore, I recommend this ms for the journal
after revision.

Major

1) page 15: Figure 1 shows that the relative content of Chl-f increases comparing with
Chl-a. Please clarify that Chl-a was produced in the same amount per cell for both the
7521 and 9212 mutants.

Response:
In most experiments, the data are normalized for equal numbers of cells, based on
OD750, but in some experiments, the Chl a contents were also normalized for the
elution profiles shown. These details have been added to the Materials and Methods
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and to the figure legends to be clear about which situation applies to the individual
experiments. In the case of Figure 1, the Chl a contents of the strains were very similar
and the elution profiles were normalized to reflect equal amounts of Chl a. When
comparing across figures, it is important to note that data have been compared on the
basis of equal cell numbers (especially for strains heterologously expressing chlF
genes).

The equations for calculating the concentrations of Chl a and Chl f in extracts have
been published by Li et al (2014) and a statement concerning this point has been
added to the manuscript and the reference is provided. This was an oversight on our
part, and we thank the reviewer for pointing this out. It is also possible to calculate the
contents of Chl a and Chl f directly from the published molar extinction coefficients for
these pigments (Li et al., 2012). Equations for calculating the amounts of Chl a and
Pheo a in PSII preparations, which are very similar to ChlF, have also been published
previously (Eijckelhoff and Dekker, 1997). This reference was also previously omitted
but has been added, and a statement about it has been added to the Methods. We
thank the reviewer for making the omission of these details apparent to us.

2) page 17: Fluorescence spectrum in Figure 3b is typical of chlorophyll species. The
band above 700 nm seems to be come from a standard sub-band of monomeric
chlorophyll pigments. Why do you expect it to any other specific species?

Response:
As previously reported in the text, all of our ChlF preparations contain a small amount
(usually 2-4%) of Chl f. Some of the emission at longer wavelengths is probably due to
the presence of this Chl f in our ChlF preparations.

3) page 17: How do you estimate the molar(?) ratio of Chl-a over carotenoids? Please
explain the details in Materials and Methods section.

Response:
Information has been added to the Materials and Methods to describe how carotenoid
contents were estimated and the molar extinction coefficients used. Also see response
to point 1 above.

4) page 18: How do you estimate the molar ratios of Chl-a over Chl-f and of Chl-a over
Pheo-a from the HPLC profiles? Do you prepare their calibration lines based on their
HPLC profiles? Please explain the details in Materials and Methods section.

Response:
One can compare the peak areas and calculate ratios based on molar extinction
coefficients that are published. This is a standard method. The molar extinction
coefficient for Chl f has been published by Li et al. 2012, which was cited in the paper.
Additional details on how to calculate pigment ratios in PSII preparations, which are
similar to ChlF, are described by Eijckelhoff and Dekker (1997). This reference was
added and described as noted above in the response to comment 1.

5) page 19: Figures 5 and S5 show the relative contents (see above). In the 7521
mutant, Chl-f was produced in a twice larger amount or Chl-a was produced in half an
amount. Please see 1).

Response:
The starter cells for the experiment shown in Figure 5 are grown under identical
conditions and then inoculated into fresh medium, and DCMU is added to some
cultures and incubation is continued. Because there is no PSII, DCMU does not affect
the growth of the tested cells, which are growing photoheterotrophically on glycerol.
Pigments were extracted from equal cell numbers (OD750), and the data were not
normalized in this case as Chl a contents could differ slightly. The final Chl a contents
of the strains were similar, especially for the experimental cells (but obviously not the
wild-type control), but the Chl f contents were not. Also see response to comment 1
above.

In Figure S5, equal amounts of cells were analyzed, but in the figure as presented, the
amount of Chl a in each has been normalized so as to be able to compare visually the
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differing amounts of Chl f more easily. This required only slight adjustment because the
Chl a contents of the cells were very similar

6) page 19: Can you measure on-line visible and mass spectra of Chl-f intermediates
in your HPLC machine? If so, please characterize these three species appeared in
Figures 5 and S5 at 16-17 min.

Response:
We do not have the ability to measure in-line mass spectra and absorbance spectra,
and it was not of interest to us to characterize these minor species that had the
absorbance spectra of Chl f and that almost certainly reflect differences in the
reduction level of the esterifying alcohol of Chl f. Those minor peaks have also been
observed in wild-type Chlorogloeopsis fritschii PCC 9212 cells grown in FRL (Ho and
Bryant, submitted). It is not uncommon to see differences in minor species with
different esterifying alcohols, and some phototrophs produce Chls esterified with many
different alcohol tails. This may indicate that either the chlorophyll synthase, or ChlF,
lacks specificity for these alcohol tails, depending upon the order of the reactions
during Chl f synthesis.  In any event, we considered this to be outside the main scope
of this study and did not believe it to be sufficiently important to pursue further at this
time.

7) page 20: Figure S6 shows the relative contents (see above). Please clarify the point
as mentioned above.

Response:
See response to comment 1.

8) page 22: How do you determine 3% and 8% Chl-f (over total Chl species?) in
trimeric PSI?

Response:
The amounts of Chl a and Chl f can be calculated from the equations given in Li et al.
(2014), and we know that Photosystem I has 96 total Chls per monomer. It is an
assumption for the moment that FRL-PSI complexes also have ~96 total Chls per
monomer, but considering the conservation of His residues in PsaA2 and PsaB2 as
well as the overall sequence identity of these polypeptides to those of
Thermosynechococcus elongatus, this seems to be a very safe assumption. We have
a cryo-EM model that is being refined that supports this assumption as well.

Minor
1) page 11, line 5: Please delete one space between "...propyl)" and "carbodiimide".
2) page 12, line 4: -> 2-(<i>N</i>-morpholino)ethanesulfonic acid
3) page 12, line 12: glycerol). -> glycerol.

Response:
All were corrected as suggested. We did not italicize “N” if that was what the reviewer
meant, as this is “N” as in “Nitrogen” and not “n” as in “normal-“

Reviewer #2: PRES-D-18-00191

Chlorophyll f (Chl f) has a formyl group at the 2-position, whereby it absorbs longer
wavelength than chlorophyll a, then cyanobacterial cells having Chl f are able to use
far-red light for photosynthetic growth. Bryant's research group recently reported
cyanobacterial adaptation to far-red light conditions (Far-Red Light Photoacclimation;
FaRLiP) in which extensive remodeling of photosystems accompanied with production
of Chl d and Chl f under near-infrared rich environments in the cyanobacterium
Chlorogloepsis fritscii PCC 9212 (Ho et al. 2016, Science 353, aaf9178). Furthermore,
they discovered that a gene chlF encoding Chl f synthase responsible for the
production of Chl f is a psbA paralog, which was confirmed by heterologous expression
of chlF in Synechococcus sp. PCC 7002 (S. 7002).

This manuscript by Shen et al. is a first report describing further characterization of Chl
f synthase. The authors found that more Chl f production was observed by
heterologous expression of chlF from Fischerella thermalis PCC 7521 than that from C.
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fritscii PCC 9212 in Synechococcus sp. PCC 7002. They purified ChlF7521 from S.
7002 and found that it is a homodimer that binds Chl a, Pheo, and carotenoids similar
to the PSII core heterodimer (D1/D2). They found that DCMU inhibits significantly the
Chl f production activity by in-vivo system of S. 7002, and. They also applied a flash
photolysis technique to see the light-induced oxidation of Chl a and formation of Chl a
radical in the purified ChlF sample. Finally, they showed that Chl f produced by ChlF
was incorporated into PSI in S. 7002. These results are all new findings and really
worth publishing in Photosynthesis Research as initial characterization of ChlF.
However, this reviewer suggests following issues should be addressed:

1) Since important missing data on ChlF in their previous paper is reconstitution of Chl
f formation activity with purified ChlF, this reviewer had read this manuscript while
expecting initial biochemical characterization of ChlF through such in-vitro assay.
However, all experimental data were based on in-vivo assay except for absorption
spectra and pigment composition of purified ChlF samples. Until this reviewer reached
the description of "we have been unable to identify appropriate conditions for study of
this reaction in vitro" in Discussion, this reviewer had felt wondering why the authors
did not perform a clear in-vitro assay of ChlF while they purified ChlF. This reviewer
would like to advise the authors to mention this situation just after Figs 3 and 4 in the
Results section.

Response:
Considering that the initial amount of heterologous expression was very low, some
individuals expressed doubt that we had in demonstrated heterologous expression at
all (although no one has ever reported Chl f synthesis in any cyanobacterial strain
unable to grow in far-red light). So, a first objective to was greatly increase the
expression of the chlF gene, which we report here. This allowed us for the first time to
purify the enzyme, something others are attempting to do apparently as well. We have
attempted to assay the enzyme, but to date, we have not been able to find conditions
under which Chlide a or Chl a are converted to Chlide f or Chl f. Given that any
statement concerning this would be a negative result, we believe that the appropriate
place for this statement is in the Discussion, and we have not added any statement to
the Results for this reason. Further, it is not really clear where one would add this
negative result given that we do not describe the failed conditions, etc. that have not
been described in the Materials and Methods. For now, we can certainly say that ChlF
is the chlorophyll f synthase, that no other PSII subunits copurify with it in our hands
under the conditions described here, and that neither PsbD nor PSII activity is required
for its activity. These results already exclude many possibilities, and hopefully
improved purification and assay conditions will lead to the detection of enzymatic
activity soon. It took decades to isolate active preparations of purified PSII, so we
suppose that we have some time to work this out.

2) The authors appear to be considering the light-induced oxidation in ChlF would be
an integral part of the reaction of Chl f formation. However, there is still no
experimental evidence for it. If no Chl f was formed after the flash induced kinetics
experiment, this result should be regarded as indicating the common features in light-
induced oxidation of Chl a to D1 rather than a partial reaction of Chl f formation.

Response:
The reviewer’s comment is incorrect. We reported already in 2016 in Ho et al. that the
synthesis of Chl f requires light and that Chl f synthesis does not occur in the dark. We
extend that result here by showing that Chl f synthesis is sensitive to DCMU. We are
confident that light is required for the reaction, even if we do not yet have an in vitro
assay that demonstrates this.

3) p. 17, last sentence: The authors mentioned that a very small amount of Chl f was
detected in the pigments extracted from purified ChlF. Amount of Chl f in purified ChlF
is important. The level of Chl f amount should be mentioned. Estimated ratio of Chl
f:Chl a was about 0.1 or 0.01 or much less?

Response:
This information was already in the manuscript on pages 17-18, where it states that
there are 25 to 29 Chl a molecules per Chl f in our preparations. Assuming that there
are 6 to 8 Chl a per ChlF homodimer, as in the core of PSII, this would mean that there

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



is much less than one molecule of Chl f per ChlF homodimer.

4) p. 32, Ho M-Y, Soulier T, Canniffe DP, Shen G, Bryant DA (2017) Light regulation of
pigment and photosystem biosynthesis in cyanobacteria. Curr Opin Plant Biol 37:24-
33. (Title was wrong!)

Response:
The authors thank the reviewer for catching this obvious error.

5) p. 39, Fig. 3: A scale is needed for the absorbance on the vertical axis. Why are
these spectra not so smooth?

Response:
The absorbance and fluorescence values are normalized and are only relative with
arbitrary values. The absolute values have little or no significance. We have added a
statement to that effect in the figure legend, and we replaced the figure with one with
numbers, but those numbers are really meaningless. The new figure shows an
absorbance spectrum taken at higher protein concentration and includes a somewhat
smoother emission spectrum as well.

6) Supplementary Fig. S3: Panel b is CBB stain rather than SDS-PAGE analysis.

Response:
Both panels are SDS-PAGE analyses—panel A used immunodetection after blotting
and panel B shows polypeptides after staining the gel with Coomassie. The figure
legend has been rewritten to clarify this.

7) Supplementary Fig. S3: lanes 2 purified ChlF7521 with EDC crosslinking (not
without)

Response:
Corrected. The authors thank the reviewer for catching this cut-and-paste error.

8) Supplementary Fig. S4: Wavelength "697" in the figure is not consistent with the
legend (The emission peak at 695 nm …).

Response:
Actually, the figure showed 694 nm and the legend stated 695 nm. In any event, the
legend has been corrected to read 694 nm as shown on the figure.

9) Supplementary Fig. S5: This appears rough estimation of Chl f formation under
different light quality. However, the expression level of ChlF should be confirmed to be
the same in these experiments.

Response:
While the authors appreciate the point the reviewer is making, we are not able to
answer this comment fully because we have no reagents at this time that can detect
ChlF reliably in membranes or whole cells. The cells analyzed had very similar total Chl
a contents under these different conditions, but the reviewer is correct that we do not
know if the amount of ChlF is the same in these cells. We have added additional
information in the Methods and the figure legend about how these analyses were
performed and that the samples were normalized to equal Chl a contents.

What we actually state is that the accumulation of Chl f varies, which implies that
synthesis and degradation rates might be different in the cells grown under different
conditions—and that the amount of the ChlF enzyme could also be different. Chl f
might by more efficiently synthesized under some light conditions than others, or it
might be more stable under some conditions than others (that seems to be true
especially for high intensity white light, under which conditions Chl f contents are
always the lowest). The point is that it varies, and this variation that is substantial can
be used to manipulate the amount of Chl f that is available and can be assembled into
PSI and PSII complexes in Synechococcus 7002. We have taken advantage of this to
obtain PSI that has up to 4 Chl f molecules per PSI monomer. In a separate study, we
have shown that those Chl f molecules are functional in Synechococcus 7002 PSI
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(Kurashov et al., in review).

Additional Information:

Question Response
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Abstract 

In diverse terrestrial cyanobacteria Far-Red Light Photoacclimation (FaRLiP) promotes extensive 

remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores 

of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d 

and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous 

expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production 

of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies 

reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the 

heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was 

purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted 

from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~3–4:1, 

bound -carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-

dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF 

forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime 

(1/e) of ~817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. 

When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been 

deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by 

specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted 

into trimeric PSI complexes.  
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Introduction 

Because light is their primary energy source for growth, cyanobacteria have evolved complex 

adaptations and photoacclimation mechanisms that can adjust their photosynthetic apparatus in 

response to specific light conditions (for reviews, see Chen 2014; Gan and Bryant 2015; Ho et al. 

2017c). For example, complementary chromatic acclimation is a well-studied process through 

which cyanobacteria modify their light-harvesting antenna complexes, specifically the peripheral 

rods of phycobilisomes, to absorb incident radiation more effectively (Montgomery 2016). The 

light available to terrestrial cyanobacteria is often strongly filtered by chlorophyll (Chl) a because 

of shading by plants or because of the association of these organisms with soil crusts, dense 

blooms, and benthic or mat communities. These and other environments can become highly 

enriched in far-red (FRL;  = 700 to 800 nm) and near-infrared light. Expanding the wavelength 

range for oxygenic photosynthesis up to 800 nm would allow cyanobacteria access to about 33% 

more photons than organisms that are only able to use visible light (400 to 700 nm) (Chen and 

Blankenship 2011).  

Far-Red Light Photoacclimation (FaRLiP) is a recently discovered light acclimation 

response that occurs when some terrestrial cyanobacteria grow in light wavelengths >700 nm (Gan 

et al. 2014). Extensive remodeling of their photosynthetic apparatus occurs, and this includes the 

biosynthesis of new pigments (Chl f and Chl d) and the assembly of modified photosystem I (PSI), 

photosystem II (PSII) and phycobilisome (PBS) core complexes (Chen et al. 2012; Gan et al. 2014, 

2015; Gan and Bryant 2015; Ho et al. 2017a, b; Li et al. 2016). During FaRLiP, a highly conserved 

cluster of twenty genes, which encode FRL-specific core subunits of PSII, PSI and PBS, are 

specifically expressed (Gan et al. 2014; Zhao et al. 2015; Ho et al. 2017b). The FaRLiP gene 
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cluster also encodes three regulatory proteins, RfpA, RfpB, and RfpC (Gan et al. 2014; Zhao et al. 

2015; Ho et al. 2017a,c). RfpA encodes a knot-less red/FRL-dependent phytochrome that acts as 

a sensor histidine kinase; RfpC is a CheY-like phosphate shuttle, and RfpB is transcriptional 

activator/response regulator with two CheY input domains (Zhao et al. 2015; Ho et al. 2017a,b,c). 

Because cyanobacteria that can perform FaRLiP can grow in light environments highly enriched 

in FRL, these primarily terrestrial cyanobacteria gain a strong selective advantage over organisms 

that are unable to do so (Gan and Bryant 2015).  

Chl a is the major photosynthetic pigment in most cyanobacteria, but when FaRLiP strains 

are grown in FRL, Chl f and Chl d are also synthesized (Gan et al. 2014, 2015; Airs et al. 2014). 

These two FRL-absorbing Chls are thought to play important roles in the assembly and function 

of the PSII and PSI complexes produced in FaRLiP strains growing in FRL. Chls d and f participate 

in light harvesting but may also play roles in electron transfer (Gan et al. 2014; Ho et al. 2016, 

Nürnburg et al. 2018). A mutant that is unable to synthesize Chl f is incapable of growth in FRL 

(Ho et al. 2016). Chl d was first discovered more than 75 years ago (Manning and Strain, 1943) 

and was “rediscovered” in Acaryochloris marina in 1996 (Miyashita et al., 1996, 2014; Kashiyama 

et al. 2008; Chen at al. 2010; Chen 2014; Allakhverdiev et al. 2016). However, the enzyme(s) 

required to convert the 3-vinyl group of Chl a into the 3-formyl group of Chl d is unknown (Schliep 

et al. 2010; Loughlin et al. 2014; Yoneda et al. 2016). Chl f was discovered more recently by 

analyzing the pigments of a cyanobacterium derived from stromatolites (Chen et al. 2010; Chen 

2014). Chl f synthase was shown to be encoded by the chlF gene through reverse genetics and 

heterologous gene expression. ChlF is a distant paralog of PsbA, the D1 protein of PSII, and thus 

the psbA4 gene was renamed chlF (Ho et al. 2016). Chl f synthesis was shown to be light-

dependent, and thus ChlF was proposed to function as a photo-oxidoreductase that oxidizes the 2-
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methyl group of Chl a (or chlorophyllide (Chlide) a) into the 2-formyl group of Chl f (Ho et al. 

2016). Labeling studies have suggested that the oxygen atom of the 2-formyl group of Chl f is 

derived from dioxygen (Gary et al. 2017).  

Establishment of gene expression systems based on multicopy plasmids, the identification 

of neutral sites in the chromosome, and strong and regulatable promoters (Xu et al. 2011; Pérez et 

al. 2016) have made Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) an ideal model 

cyanobacterium for functional genomics and other applications in synthetic biology. 

Synechococcus 7002 does not naturally synthesize Chl f and is unable to grow in FRL (Gan et al. 

2014), so it is a useful platform for studying Chl f synthesis and the effects of this long-wavelength-

absorbing Chl on photosynthetic complexes. We previously showed that small amounts of Chl f 

can be synthesized when the chlF gene from the FaRLiP strain, Chlorogloeopsis fritschii PCC 

9212 (hereafter C. fritschii 9212), is heterologously expressed in Synechococcus 7002 (Ho et al. 

2016). The chlF gene is found in all cyanobacterial strains capable of FaRLiP and to date is always 

located in the FaRLiP gene cluster (Ho et al. 2016). When cyanobacterial strains capable of 

FaRLiP are grown in FRL, differences have been noted in their cellular contents of Chl d and Chl 

f; furthermore, associated differences in the absorption and fluorescence emission spectra of the 

corresponding cells were also noted (Gan et al. 2014, 2015; Ho et al. 2017a,b,c). These 

observations suggested that the cellular contents of Chls d and f might vary, and that the amounts 

and/or activities of ChlF might differ substantially among FaRLiP strains (Gan et al. 2015, Zhao 

et al. 2015; Ho et al. 2017b). Thus, we concluded that it could be interesting to test whether another 

Chl f synthase might exhibit better activity when heterologously produced in Synechococcus 7002.  

Chl f synthase (ChlF) belongs to a highly divergent, “super-rogue” clade of the PsbA 

superfamily (Murray 2012; Cardona et al. 2015; Ho et al. 2016). As shown in sequence alignment 
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comparisons, ChlF is distinguished from other PsbA-like (D1) subunits of PSII reaction centers 

both in the N-terminal and especially the C-terminal regions of the protein. ChlF lacks residues 

essential for binding the water-oxidizing Mn4Ca1O5 cluster (Ho et al. 2016). However, ChlF is 

predicted to bind Chl a and pheophytin (Pheo) a like PsbA (Murray 2012; Cardona et al. 2015). 

Purification and characterization of ChlF could verify these predictions and provide new insights 

into the structure and function of ChlF in the light-driven Chl f synthesis reaction. In PSII reaction 

centers, D1 (PsbA) and D2 (PsbD) form the heterodimeric core and bind the essential cofactors 

for electron transport in PSII (Ferreira et al. 2004; Umena et al. 2011; Shen 2015; Barber 2017). 

Heterologous expression of chlF in a null mutant lacking PsbD1 and PsbD2 should confirm 

whether ChlF requires PsbD or PSII for activity.  

In this study we report the purification and initial characterization of Chl f synthase, which 

was obtained through heterologous expression of chlF gene from two different cyanobacterial 

strains capable of FaRLiP, C. fritschii 9212 and Fischerella thermalis PCC 7521 (hereafter F. 

thermalis 7521). Expression of [His]10-tagged chlF allowed Chl f synthase to be purified by 

immobilized metal-chelate affinity chromatography and studied biochemically. The substantially 

enhanced synthesis of Chl f in a strain lacking PsbD (D2) demonstrates that the Chl f synthase 

activity of ChlF7521 is not dependent on any interaction with PsbD or on PSII activity. The synthesis 

of Chl f could also be enhanced by specific growth light conditions for Synechococcus 7002, and 

interestingly, we show that some Chl f was incorporated into PSI complexes of this strain that 

cannot perform FaRLiP.  
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Materials and Methods 

Strains and growth conditions  

The wild-type strain of Synechococcus sp. PCC 7002 (Rippka et al. 1979) and strains for modified 

heterologous expression of the chlF gene were grown in liquid A+ medium under standard 

conditions at 38°C; cultures were sparged with 1% (v/v) CO2 in air as previously described 

(Ludwig and Bryant 2011). Synechococcus 7002 strains in which the psbD1 and psbD2 genes have 

been deleted are light sensitive and were grown under low-irradiance conditions (~10 µmol 

photons m–2 s–1). The A+ medium for these mutants lacking PSII activity was supplemented with 

20 mM glycerol, which served as the primary carbon and electron source for growth (Lambert and 

Stevens 1986). For all genetically modified strains, antibiotics were added as required at the 

following concentrations: gentamycin (50 μg ml–1); spectinomycin (100 μg ml–1); and kanamycin 

(100 μg ml–1). Cultures of F. thermalis 7521 and C. fritschii 9212 were grown in B-HEPES 

medium (Dubbs et al. 1991), a modified BG11 medium which is buffered at pH 8 with 4.6 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), as described previously (Gan et al. 

2015). 

Cool white fluorescent lights provided an irradiance of 250 µmol photons m–2 s–1 for 

standard white-light (WL) or ~10 µmol photons m–2 s–1 for low-light (LL) growth conditions. 

Different light intensities were achieved either by varying the number of fluorescent tubes or by 

using neutral density filters. Green light (GL; 11 µmol photons m–1 s–1) and red light (RL; 18 µmol 

photons m–1 s–1) were provided with green (GamColor_660) and red (GamColor_250) light-

transmitting filters from Parlights, Inc (Frederick, MA, USA), as described (Gan et al., 2014, 

2015). For growth of liquid cultures under far-red light (FRL) conditions, FRL (25-30 µmol photos 

m–2 s–1) was provided with 720-nm LED light panels (L720-06AU) (Marubeni, Santa Clara, CA, 
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USA) or a combination of green- and red-light-transmitting filters, as described previously (Gan 

et al. 2014, 2015; Ho et al. 2017a).  

 

Construction of Synechococcus 7002 strains for heterologous expression of chlF genes 

DNA fragments encoding the chlF genes from C. fritschii 9212 and F. thermalis 7521 were 

amplified by polymerase chain reaction (PCR) using Phusion DNA polymerase (New England 

Biolabs, Ipswich, MA). The resulting amplicons were digested with NdeI and BamHI, and the 

products were cloned into the pAQ1Ex-PcpcBA (Table 1) shuttle vector as previously described (Xu 

et al. 2011; Ho et al. 2016). This resulted in the addition of the coding sequence for the production 

of an N-terminal [His]10-tag to ChlF. After verification by DNA sequencing, the resulting plasmid 

vectors, pAQ1Ex::chlF9212 and pAQ1Ex::chlF7521 (Table 1) were transformed into cells of the 

Synechococcus 7002 to generate strains expressing the chlF gene from C. fritschii 9212 or F. 

thermalis 7521, respectively. Synechococcus 7002 was transformed as previously described 

(Frigaard et al. 2004). 

To construct a Synechococcus 7002 strain lacking psbD1 and psbD2, two plasmids were 

constructed from pUC19 to allow independent inactivation of the psbD1 and psbD2 genes. The 

psbD1::aadA construct was made by amplifying and cloning the flanking sequences of the psbD1 

gene with a DNA fragment encoding aadA, which confers resistance to spectinomycin, replacing 

the psbD1 coding sequence (Table 1) (Frigaard et al. 2004). Transformation of Synechococcus 

7002 with the psbD1::aadA plasmid resulted in a Synechococcus 7002 psbD1::aadA mutant. 

The psbD2::aphAII construct was generated by amplifying the flanking sequences of the psbD2 

gene and replacing the psbD2 coding sequences with a DNA fragment encoding aphAII, which 

confers resistance to kanamycin (Frigaard et al. 2004). Transformation of Synechococcus 7002 
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psbD1::aadA mutant cells with the psbD2::aphAII plasmid resulted in a spectinomycin- and 

kanamycin-resistant Synechococcus 7002 strain lacking psbD1 and psbD2 and devoid of PSII 

activity (Table 1). Segregation of the psbD1 psbD2 transformants was achieved by restreaking 

colonies on A+ agar plates supplemented with 20 mM glycerol and additions of 100 µg 

spectinomycin ml–1 and 100 µg kanamycin ml–1. Full segregation of the Synechococcus 7002 

mutants lacking psbD1 and/or psbD2 was verified by PCR analysis, and the absence of functional 

PSII was further verified by the fact that the resultant mutant could not grow photoautotrophically, 

was sensitive to high light, and had an altered fluorescence emission spectrum at 77K (see Results). 

To obtain a strain devoid of PSII activity and PsbD that expressed the chlF7521 gene, Synechococcus 

7002 psbD1psbD2 mutant cells were transformed with the pAQ1Ex::chlF7521 expression vector 

(Table 1). 

 

Generation of ChlF variants by site-directed substitution mutagenesis 

To construct variant ChlF9212 proteins with site-specifically mutated residues, the chlF9212 gene 

was first cloned into plasmid pUC19. A pair of partially complementary mutagenic primers were 

designed to change the codon for the specific amino acid residue substitution. PCR amplification 

was carried out using Q5 Hot-Start High Fidelity DNA polymerase (New England Biolabs, 

Ipswich, MA). After PCR, the amplified DNA was added directly to a unique Kinase-Ligase-DpnI 

(KLD) enzyme mix (New England Biolabs, Ipswich, MA) for rapid circularization and removal 

of the unmodified plasmid template. Following transformation into E. coli and colony screening, 

plasmid DNA was isolated for DNA sequencing to verify that the chlF9212 gene was only mutated 

as intended. The mutated chlF9212 gene was subcloned into the pAQ1Ex-PcpcBA shuttle vector, 
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which was transformed into Synechococcus 7002 for heterologous expression as described 

previously (Table 1; Xu et al. 2011; Ho et al. 2016) 

 

Purification of heterologously expressed ChlF by immobilized metal-chelate affinity 

chromatography  

Heterologously produced ChlF7521 was purified from WT and psbD1psbD2 mutant cells of 

Synechococcus 7002 that harbored plasmid pAQ1Ex::chlF7521 (Table 1). Cells were harvested by 

centrifugation and were resuspended in cell resuspension buffer (50 mM HEPES, pH 7.4, 10 mM 

CaCl2, and 10 mM MgCl2). Cells were lysed by three passages through a chilled French pressure 

cell operated at 138 MPa. After centrifugation at 6,900  g to remove unbroken cells and large cell 

debris, total membranes were pelleted by ultracentrifugation (126,000  g) and resuspended in 

membrane buffer A (50 mM HEPES, pH 7.4, 300 mM NaCl, 20 mM imidazole). Membranes were 

diluted to 0.4 mg Chl ml–1 in membrane buffer and were solubilized by addition of n-dodecyl--

D-maltoside (DM) to a final concentration of 1% (w/v) at 4 °C. Solubilized membranes were 

separated from insoluble debris by centrifugation (24,000  g for 20 min). Prior to immobilized 

metal-chelate affinity chromatography (IMAC), solubilized membranes were diluted with five 

volumes of the membrane buffer A, and the resulting solution was loaded onto a column that was 

packed with high density Ni-nitrilotriacetic acid (NTA) agarose resin (Gold Biotechnology, St. 

Louis, MO) and equilibrated with the binding buffer B (50 mM HEPES, pH 7.4, 300 mM NaCl, 

20 mM imidazole, 0.1% (w/v) DM). The column was washed with two column volumes of binding 

buffer and three column volumes with wash buffer (50 mM HEPES, pH 7.4, 300 mM NaCl, 50 

mM imidazole, 0.1% (w/v) DM). The [His]10-ChlF protein was subsequently eluted with elution 

buffer (50 mM HEPES, pH 7.4, 300 mM NaCl, 250 mM imidazole, 0.1% (w/v) DM). The solution 
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containing ChlF was dialyzed against sample buffer (50 mM HEPES, pH 7.4, 5 mM CaCl2, 5 mM 

MgCl2, 0.05% (w/v) DM, 5% (w/v) glycerol), concentrated by using Millipore Centriprep 30K 

Centrifugal Filter Devices (EMD Millipore, Darmstadt, Germany), and stored at –80 °C until 

required.  

 

Cross-linking, gel electrophoresis and immunoblotting  

The method for protein crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC) has been described previously (Li et al. 2006). Methods for polyacrylamide 

gel electrophoresis (PAGE) in the presence of sodium dodecylsulfate (SDS) and immunoblotting 

have been described (Shen et al. 2002). For immunoblotting, proteins were transferred 

electrophoretically onto 0.2-µm nitrocellulose membranes using a semi-dry transfer cell (BioRad, 

Hercules, CA, USA). Immunodetection of the [His]10-ChlF was achieved using rabbit antibodies 

to a [His]6 epitope, which were conjugated to horseradish peroxidase (Rockland, Limerick, PA, 

USA). Immunolabelled proteins were detected using Pierce enhanced chemiluminescence 

reagents (Thermo Fisher Scientific, Waltham, MA, USA).  

In-solution trypsin digestion and LC-MS-MS protein identification 

In-solution digestion of proteins with trypsin and subsequent LC-MS-MS analyses were performed 

at the PARC Mass Spectrometer Facility at Washington University in St. Louis. The raw data from 

the LC-MS-MS analysis was directly loaded into PEAKS (v 7.0, Bioinformatics Solution Inc., 

Waterloo, ON, Canada) to perform database searches against the total proteome of Synechococcus 

7002, to which the ChlF sequence from F. thermalis 7521 had specifically been added.  

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Chlorophyll f Synthase 

 
12 

Isolation of trimeric PSI complexes 

PSI complexes were purified from Synechococcus 7002 wild type (WT) and from the WT and 

psbD1psbD2 mutant cells harboring plasmid pAQ1Ex::chlF7521 by following procedures 

described previously (Shen et al. 2002, 2016). Cells were harvested and resuspended in MES 

buffer (50 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 6.5, 10 mM CaCl2 and 10 mM 

MgCl2). Membranes from these strains were isolated and solubilized as described above. 

Solubilized membranes were loaded onto 5 to 20% (w/v) sucrose gradients containing 0.1% DM 

and were centrifuged for about 18 h at 108,000  g. Green-colored fractions containing trimeric 

PSI complexes were collected from the lowest regions of the sucrose gradients, dialyzed against 

MES buffer and concentrated using the Millipore Centriprep 100K Centrifugal Filter Devices 

(EMD Millipore, Darmstadt, Germany). The concentrated PSI complexes were purified further by 

ultracentrifugation on similar sucrose gradients lacking added DM. Purified PSI complexes were 

resuspended in MES buffer containing 0.05% (w/v) DM and 5% (w/v) glycerol.  

Pigment extraction and HPLC analysis 

Pigments were extracted from cells, purified ChlF protein preparations and PSI complexes by 

sonication in the dark with acetone/methanol (7:2, v/v). To extract pigments from cells of 

Synehcococcus 7002 strains, cells were harvested from liquid cultures by centrifugation, washed 

once in 50 mM HEPES buffer, pH 7.2, and resuspended in the same buffer. Cells equivalent to 1.0 

ml with an OD750 = 2.0 were pelleted and extracted with sonication in acetone/methanol (7:2 (v/v), 

250 µl). The pigment extracts were filtered using Whatman 0.2-µm polytetrafluoroethylene 

syringe filters (GE Healthcare Life Sciences, Boston, MA, USA) and an aliquot (100 µl) of the 

extract solution was analyzed by reversed-phase high-performance liquid chromatography (RP-

HPLC) on an Agilent 1100 HPLC system with a Model G1315B diode-array detector (Agilent 
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Technologies, Santa Clara, CA) equipped with an analytical Discovery C18 column (4.6 mm  25 

cm) (Supelco, Sigma-Aldrich, St. Louis, MO), following the solvent methods described previously 

(Gan et al. 2014, 2015). An alternative HPLC analysis method was sometimes used and has been 

described previously (Ortega-Ramos et al. 2018). Pigment extracts were filtered and buffered by 

addition of 0.1 volume of 1.0 M ammonium acetate before injection onto the HPLC column. 

Solvents A and B were 64:16:20 (v/v/v) methanol/acetone/H2O and 80:20 (v/v) methanol/acetone, 

respectively. To detect species of Chl a, d, and f as well as carotenoids, the absorbance spectra of 

all eluted compounds were collected between 350 and 900 nm at 0.5-s intervals. The HPLC data 

were processed using Agilent ChemStation software (revision B.02.01-SR1 6100 series). 

Absorption and fluorescence spectroscopy and pigment content determination 

Absorption spectra were measured using a Cary 14 spectrophotometer that was modernized for 

computerized operation, data collection and analysis by On-Line Instrument Systems, Inc. (Bogart, 

GA, USA). Fluorescence emission spectra were measured at 77K using an SLM Model 8000C 

spectrofluorometer modernized for computerized, solid-state operation by On-line Instrument 

Systems Inc., (Bogart, GA USA) as described (Shen et al. 2008). For measuring the fluorescence 

emission from Chl-protein complexes, the excitation wavelength was 440 nm, which selectively 

excites Chls.  

Pigments were quantified by absorption spectroscopy. Equations based on published 

molecular extinction coefficients (Li et al. 2012) for calculating Chl a and Chl f concentrations can 

be found in Li et al. (2014). Chl a and Chl f concentrations were also sometimes determined from 

absorption spectra of extracts from the Qy absorption band of Chl a at 665 nm and of Chl f at 707 

nm by using the molar extinction coefficients in methanol for Chl a (70.54 mM−1 cm−1; 

Lichtenthaler 1987) and Chl f (71.11 mM−1 cm−1; Li et al. 2012). The Chl a, Pheo a, and carotenoid 
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contents of ChlF preparations were calculated as described previously (Eijckelhoff and Dekker 

1997). The concentrations of -carotene (and zeaxanthin) were determined from absorbance 

spectra using the extinction coefficient 120.84 mM–1 cm–1 at 480 nm. The concentration of 

pheophytin a was determined from absorbance spectra using its extinction coefficient at 412 nm 

of 112.57 mM–1 cm–1.  

Flash-induced transient absorption spectroscopy 

Transient absorbance changes at 830 nm were measured at room temperature with a laboratory-

built, dual-beam spectrometer described earlier (Vassiliev et al. 1997; Hays et al. 1998) with the 

following modifications. A 100 mW, 830-nm laser diode (Crystalaser, model number DL830-100-

O, Reno, NV) was split into a measuring and reference beam using a 70:30 beam splitter and 

collimators (F240FC-780, Thor Labs, Newton, NJ). After passing through the sample, the beams 

were directed to a balanced amplified photodetector (PDB460A, Thor Labs, Newton, NJ) with 

lenses and fiber optic cables (M74L01, Thor Labs, Newton, NJ). Each collimating lens had an 

830-nm interference filter (FL830-10, Thor Labs, Newton, NJ) in front of it, and the sample arm 

collimator had an additional 532-nm notch filter (NF533-17, Thor Labs, Newton, NJ) to remove 

stray actinic light from the pump laser. The amplified differential signal was processed with a 1-

GHz bandwidth, 8-bit, 2 GS/s, PCI card analog-to-digital converter (NI-5154, National 

Instruments, Austin, TX). A 532-nm, frequency-doubled Nd:YAG laser (Minilite II, Continuum, 

San Jose, CA) with a 7-ns nominal pulse-width was used as the actinic light source. The flash 

power was 34 mJ, and the frequency of the flashes was 0.1 Hz (1 flash per 10 sec). The light 

intensity study was carried out using assorted optical filters with 3.2%, 11.2%, 34.6%, 52% and 

70% transmittance. The 78-mW point was measured using a Quanta-Ray DCR-11 (Spectra-

Physics, Santa-Clara, CA) laser at its highest power.  
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Purified ChlF protein was diluted to 20 µg Chl ml–1 in 50 mM HEPES, pH 7.4, containing 

10 mM sodium ascorbate, 4 µM 2,6-dichlorophenolindophenol (DCPIP) and 0.02% (w/v) DM. 

The data were plotted in Igor Pro (Wavemetrics, Lake Oswego, OR) and decomposed using the 

CONTIN algorithm as described for PSI in (Kurashov et al., 2018). The data were refitted on the 

experimental plot using a multi-exponential fit algorithm with kinetic inputs from CONTIN. 

 

Transient X-band EPR spectroscopy 

Transient EPR measurements were performed using a modified Bruker E300 EPR spectrometer at 

X-band and 90 K as described in detail in (Ferlez et al., 2016). The spectrum was extracted from 

the time/field/amplitude data set by calculating the average EPR signal at each field point in a 1 

µs time window starting 1 µs following the laser flash. The data were plotted and analyzed using 

Igor Pro (Wavemetrics, Lake Oswego, OR). 
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Results 

Chl f production in Synechococcus 7002 

The cyanobacterium Synechococcus 7002 does not naturally synthesize Chl f, so it is an excellent 

platform to test the heterologous expression of chlF genes. A previous study showed that 

heterologous expression of the chlF gene from C. fritschii 9212 led to a low level of Chl f synthesis 

in Synechococcus 7002 cells (Ho et al. 2016; also see Fig. 1). To verify the function of ChlF, and 

to determine whether expression of an alternative chlF gene might lead to enhanced Chl f synthesis 

in Synechococcus 7002, the chlF gene from the thermophilic cyanobacterium F. thermalis 7521 

was expressed from the strong PcpcBA promoter from Synechocystis sp. PCC 6803 (Xu et al. 2011; 

Zhou et al. 2014). As shown in Fig. 1, a strain expressing the chlF7521gene accumulated about 10-

fold more Chl f than a strain expressing the chlF9212 gene. This result establishes that the chlF gene 

is an essential component of Chl f synthase and also suggests that the ChlF7521 protein level and/or 

enzyme activity might be considerably higher than those in a strain producing ChlF9212. Based 

upon the assumption that the increased Chl f levels in Synechococcus 7002 would be positively 

correlated with the amounts (and activity) of ChlF in cells, growth conditions, primarily light 

intensity and color were varied to identify optimal conditions for Chl f synthesis in Synechococcus 

7002. Further testing showed that the highest Chl f levels accumulated in cells that were grown at 

low light intensities (<50 µmol photons m–1 s–1; data not shown).   

 

Affinity purification of ChlF7521  

Total membranes isolated from the WT strain of Synechococcus 7002 harboring plasmid pAQ1-

Ex-PcpcBA::chlF7521 were solubilized with 1% (w/v) DM, and the resulting solution was 

fractionated by IMAC. Different concentrations of imidazole and washing volumes were tested to 
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achieve the highest purity of [His]10-ChlF7521. As shown in Fig. 2a, purified [His]10-ChlF7521 had 

an apparent mass of ~44 kDa upon SDS-PAGE, which is consistent with its predicted mass of 44.2 

kDa. Immunoblotting with rabbit antibodies raised against a [His]6-tag epitope confirmed that the 

purified protein also carried a poly-[His]-tag as expected (Fig. 2b). 

To confirm the identity of purified ChlF and to investigate whether any specific protein(s) 

copurified with [His]10-ChlF, two independently purified preparations of ChlF were subjected to 

in-solution digestion with trypsin and subsequent LC-MS-MS analysis of the resulting tryptic 

peptides. As shown in Fig. S1 a total of six ChlF7521 peptides were identified by LC-MS-MS 

analysis for the two preparations, and two of those peptides were identified in both analyses. It 

should be noted that two peptides, including the C-terminal peptide, were derived from the C-

terminal region of ChlF7521. These analyses show that, unlike the PsbA (D1) protein of PSII (Nixon 

et al. 1992), ChlF7521 probably does not require activation by proteolytic processing at the C-

terminus. Several other contaminating Synechococcus 7002 proteins that co-purified with ChlF7521 

were identified, but they mostly had very low scores because only 1 to 3 peptides were identified 

(data not shown). For example, the highly abundant, Chl-binding PsaA and PsaB subunits of PSI 

were detected as contaminants, but in spite of their very large sizes, only one or three unique 

peptides were identified these proteins. PsbB (CP47) of PSII was the only other Chl-binding 

protein detected, although only a single peptide was identified in spite of the large size of this 

protein (507 aa; 55.8 kDa). Notably, the core subunits of PSII, including PsbA (D1) and PsbD 

(D2), were not detected in highly purified preparations of ChlF7521. Correspondingly, ChlF was 

never detected by tryptic-peptide mass fingerprinting of highly purified PSII complexes from of 

Synechococcus 7335 and C. fritschii 9212 (M.-Y. Ho and D. A. Bryant, in preparation). The results 

show that ChlF7521 does not form stable complexes with other proteins of the Synechococcus 7002 
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photosynthetic apparatus and that it is not a subunit of FRL-PSII in Synechococcus 7335 and C. 

fritschii 9212. 

 

Pigment content of ChlF7521 

Purified ChlF7521 was pale yellow-green in color (Fig. 3a), which suggested that this protein might 

bind Chl and carotenoids. The absorbance spectrum of the protein, with maxima at 437 nm and 

674 nm and a shoulder at 490 nm, was consistent with that of a Chl a-binding protein. The 

fluorescence emission spectrum at 77K (Fig. 3b) was asymmetric with a peak centered at ~680 

nm. The fluorescence emission between 700-750 nm after excitation of Chl at 440 nm suggested 

that some minor amounts of far-red-absorbing Chl molecules might be present in purified ChlF7521 

(see below).  

Pigments were extracted from preparations of ChlF7521 and subjected to analysis by 

reversed-phase HPLC. As shown for a typical preparation in Fig. 4, ChlF7521 contains both Chl a 

and Pheo a; the latter was identified by its elution time as well as its characteristic absorption 

spectrum (Fig. 4, inset). As shown in Fig. S2, two carotenoids were detected in purified ChlF7521. 

Based upon their elution times and absorbance properties, they were identified as -carotene and 

zeaxanthin (Graham and Bryant 2009). The ratio of Chl a: -carotene: zeaxanthin was 

approximately 8.3:0.5:0.4. A very small amount of Chl f was also detected in the pigments 

extracted from purified ChlF7521 (data not shown). Based on estimates from the peak areas for Chl 

f and Chl a in the HPLC profiles at 680 nm, ChlF7521 is estimated to bind 25 to 29 Chl a molecules 

per Chl f. This indicates that Chl f is probably not a stable component of the enzyme. The Pheo a 

content was estimated from the peak area at 408 nm in the HPLC elution profile. The estimated 
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ratio of Chl a: Pheo a was ~3 to 4 : 1, which was determined by averaging the results from several 

independent preparations of ChlF7521. 

 

Cross-linking of ChlF7521 

To determine whether the purified ChlF7521 forms oligomers, purified [His]10-ChlF was treated 

with the zero-length cross-linking reagent, EDC, and the cross-linked products were analyzed by 

SDS-PAGE and immunoblotting. As shown in Fig. S3a, prior to treatment with EDC, only a single 

polypeptide with a mass of about 44 kDa was detected for [His]10-ChlF by immunoblotting and 

Coomassie blue staining . This 44-kDa polypeptide was still detected after EDC treatment, but an 

additional species with an estimated mass of about 90 kDa was also observed both by Coomassie-

blue staining as well by immunoblotting (Fig. S3a, b). Based on this result, as-isolated ChlF7521 

apparently exists as homodimers in solution. 

 

Enhanced Chl f production in mutant cells lacking PsbD (D2) and PSII 

PsbA forms a heterodimer with PsbD that binds the essential electron transfer cofactors in PSII 

complexes (Shen 2017). To determine whether the PsbD (D2 protein) of PSII is required for the 

Chl f synthase activity of ChlF, a Synechococcus 7002 strain lacking PsbD was constructed. Like 

most other cyanobacteria, Synechococcus 7002 has two psbD genes, psbD1 and psbD2, that 

encode identical polypeptides (Gingrich et al. 1990). Deletion of the psbD1 and psbD2 genes 

resulted in a light-sensitive, △psbD1 △psbD2 mutant strain that was no longer able to grow 

photoautotrophically and that required the addition of glycerol to the growth medium (data not 

shown). As shown by the low-temperature fluorescence emission spectrum of this mutant at 77K, 

(Fig. S4), this strain could not correctly assemble and accumulate PSII core complexes. This is 
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reflected by the reduced fluorescence emission at 684 nm and the complete loss of the fluorescence 

emission band at 694 nm, both of which are characteristic of PSII in Synechococcus 7002 (Shen 

and Bryant 1995; Zhang et al. 2014). Note that the residual fluorescence emission at ~683 nm 

results from fluorescence emission from the terminal emitters, ApcD and ApcE, of phycobilisomes 

(Bryant 1991; Sidler 1994; Shen and Bryant 1995).  

To determine whether Chl f synthesis can occur in a strain that lacks PsbD and active PSII, 

the pAQ1Ex::PcpcBA::chlF7521 expression vector was transformed into the △psbD1 △psbD2 mutant 

strain of Synechococcus 7002. Pigments were extracted and analyzed by HPLC from cells of the 

resulting strain that had been grown under low intensity white light. As shown in Fig. 5, the 

absence of PsbD and PSII activity did not inhibit Chl f synthase activity; in fact, the mutant strain 

produced ~2-fold more Chl f than the equivalent WT strain expressing the chlF7521 gene (compare 

Figs. 1, 5 and S5).  

Previous studies had suggested that Chl f levels were lowest in cells grown at relatively 

high irradiance in white light (Ho et al. 2016). Thus, we tested whether different light colors and 

intensities might affect the synthesis and accumulation of Chl f (Fig. S5). Cells grown under low 

intensity white light had the lowest Chl f levels. Interestingly, a series of three minor peaks, which 

also had the absorption spectrum of Chl f, were noted at elution times shorter than that of Chl f 

esterified with phytol. We speculate that these peaks represent Chl f esterified with 

geranylgeraniol, dihydrogeranylgeraniol, tetrahydrogeranylgeraniol, respectively. Cells grown in 

red or green light had Chl f contents that were 2.1 to 2.4-fold higher than cells grown in low 

intensity white light. The highest Chl f content, which was ~3.1-fold higher than cells grown in 

low intensity white light, occurred in cells grown in FRL. Under optimal conditions, the Chl f 
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content of the Synechococcus 7002 cells was between 3 and 4% of the total Chl content. This 

corresponds to about 50% of the Chl f contents of FaRLiP strains grown in FRL.  

PsbA and PsbD of PSII each have binding sites for one plastoquinone molecule, and PSII 

activity is inhibited when 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is bound to the QB 

plastoquinone binding site on PsbA (Mattoo et al. 1981). To determine whether ChlF might use 

plastoquinone as an electron acceptor, the Chl f synthesis was compared in cells of the PsbD-less 

mutant strain of Synechococcus 7002 in the presence and absence of the plastoquinone analog, 

DCMU (DCMU does not inhibit the growth of these cells which do not have PSII activity). As 

shown in Fig. 5, the level of Chl f was much lower (~80% less) in the presence of 10 µM DCMU. 

This result suggests the Chl f synthase activity of ChlF7521 is sensitive to DCMU, which is 

consistent with the hypothesis that PQ acts as an electron acceptor during Chl f synthesis (Ho et 

al. 2016). 

 

Site-directed mutagenesis of the chlF gene 

As previously shown in amino-acid sequence comparisons of PsbA and ChlF (Murray 2012; 

Cardonna et al. 2015; Ho et al. 2016), ChlF has a conserved Tyr residue at position 183 that is 

equivalent to the redox-active TyrZ (Tyr171) of PsbA of PSII (Ho et al. 2016). To determine 

whether Tyr183 might play an important role in ChlF activity, this residue was replaced by Phe to 

produce a Y183F variant of ChlF9212. Unexpectedly, as shown in Fig. S6, the Synechococcus 7002 

strain producing the Y183F variant of ChlF9212 actually synthesizes about 2-fold more Chl f than 

the WT variant. This result indicates that, although Tyr183 is conserved in ChlF, it may not play 

an essential role in the photochemical activity of ChlF in Chl f synthesis.  
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Flash-induced absorbance changes in the near-IR 

To investigate whether light-induced photochemistry could be detected in purified ChlF7521, flash-

induced absorbance changes were recorded at 830 nm. Fig. 6 (inset, left) shows the experimental 

data for purified ChlF in the presence of 1 mM sodium ascorbate. The laser flash causes a rapid 

(faster than the resolution of our instrument) increase in absorbance followed by a slower 

multiexponential decay. A decomposition by the CONTIN algorithm (Fig. 6, main body) revealed 

five kinetic phases. The major kinetic phase has a lifetime of 817 s, and its contribution is 77% 

of total amplitude of the signal at an excitation intensity of 34 mW. A flash intensity vs. amplitude 

study (Fig. 6, inset, right) of this kinetic phase showed a linear increase up to the maximum power 

of the excitation laser. This behavior is characteristic of the decay of a chlorophyll excited triplet 

state rather than charge recombination, which should saturate at the laser powers available. The 

four minor components (Fig. 6, main body) have lifetimes (and amplitudes) of 28 s (6%), 11 ms 

(6%), 161 ms (7%) and 2.1 s (4%) at an excitation intensity of 34 mW. The origins of the four 

minor kinetic phases are unknown and are currently under further study.   

 

Transient X-band EPR spectroscopy of ChlF7512 

Because the behavior of the major kinetic phase detected optically suggests that it is due to 

chlorophyll excited triplet state, we measured the transient EPR spectrum of ChlF. The EPR 

spectra of triplet states are easily distinguished from radical pairs and the polarization pattern(s) 

generated by intersystem crossing (ISC) is(are) markedly different from that resulting from radical 

pair recombination (Thurnauer 1979).  Fig. 7 shows the transient EPR spectrum of ChlF at 90 K 

(black trace). The ~600 mT width of the spectrum and overall polarization pattern E/E/E/A/A/A 

(A = absorption, E = emission) indicates that the majority of the signal is derived from a triplet 
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state populated by intersystem crossing. The red trace is a simulation of the experimental spectrum 

using the zero-field splitting parameters D (2.71 x 10-2 cm-1) and E (3.3 x 10-3 cm-1) which are 

typical of Chl a (Thurnauer 1979). The simulated spectrum has been calculated as the sum of net 

and multiplet polarization from intersystem crossing (green and blue traces, respectively) and 

polarization generated from radical pair recombination (pink trace). As can be seen, the 

polarization pattern is dominated by the multiplet polarization generated by ISC with a weak net 

contribution as expected at high magnetic field. The small contribution from the polarization 

generated by radical pair recombination (Fig. 7, pink trace) might be due a small amount of PSI 

in the sample. However, the quality of the fit is not sufficient to accurately determine the size of 

this contribution. There are also weak features at the extremes of the experimental spectrum that 

are not fitted in the simulation and that are derived from a triplet species with a larger D-value, 

possibly Chl f or a carotenoid. Overall, the data indicate that the experimental spectrum is 

predomimantly from the triplet state of Chl a populated by ISC, which is consistent with the time-

resolved optical study (see above). 

 

Insertion of Chl f molecules in PSI trimers of Synechococcus 7002 

Having improved the conditions for synthesis of Chl f dramatically in Synechococcus 7002, it was 

of interest to determine whether any of the Chl f was associated with PSI, the major Chl-binding 

complex in cyanobacterial cells (Fujita and Murakami 1987). Fig. 8a shows a comparison of the 

absorption spectra for trimeric PSI complexes isolated from Synechococcus 7002, the PsbD-less 

mutant of Synechococcus 7002 expressing chlF7521 and grown in FRL as described above, and 

trimeric PSI complexes isolated from F. thermalis 7521 cells grown in FRL. The absorption 

spectra of native PSI trimers isolated from cells heterologously expressing chlF7521 in the absence 
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of PsbD clearly show enhanced absorption beyond 700 nm, although the amplitude of that 

absorption is lower and does not extend as far towards 800 nm as observed  PSI complexes isolated 

from F. thermalis 7521 cells grown in FRL. The spectra of the acetone/methanol extracts as well 

as reversed-phase HPLC analysis of the three trimeric PSI complexes confirmed that these PSI 

complexes contained about 3% Chl f compared to the 8% found in FRL trimeric PSI from F. 

thermalis 7521 cells grown in FRL. Synechococcus 7002 PSI complexes normally have a 

fluorescence emission maximum at 714 nm at 77K (Fig. 8b), but the 77K emission maximum of 

complexes from cells expressing the chlF7521 gene occurred at 718 nm. Although this spectrum is 

detectably red-shifted, it is not as red-shifted as the emission spectrum of F. thermalis 7521 PSI 

complexes isolated from cells grown in FRL (Fig. 8b). These results show that the Chl f content 

of trimeric PSI complexes was similar to that of whole cells, but the spectroscopic properties of 

the complexes containing this amount of Chl f were quite different from complexes produced by a 

FaRLiP strain grown in FRL.  
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Discussion 

In cyanobacteria that perform FaRLiP, Chls f and d are essential components for the remodeling 

of PSI and PSII that is known to occur when cells are grown in FRL (Gan et al. 2014 15; Airs et 

al. 2014; Ho et al. 2016). Null mutants of chlF in C. fritschii 9212 and Synechococcus sp. PCC 

7335 lack Chl f synthase, are unable to synthesize Chl f, are unable to assemble FRL-PSI and FRL-

PSII, and thus, these mutants are severely impaired in their capacity to grow in FRL (Ho et al. 

2016). As reported previously and further confirmed in this study (Fig. 1), Synechococcus 7002 

can synthesize Chl f when the chlF genes from two FaRLiP strains, C. fritschii 9212 and F. 

thermalis 7521, are heterologously expressed. By expressing the chlF gene from F. thermalis 

7521, deleting psbD1 and psbD2 to inactivate PSII, and modifying the light conditions for growth 

for the resulting strain, we were able to increase the amount of Chl f synthesized in Synechococcus 

7002 cells by as much as ~70-fold by comparison to the original construct expressing chlF9212 (Ho 

et al. 2016). The results presented here show that ChlF is uniquely required for the synthesis of 

Chl f in Synechococcus 7002 cells.  

Similar to the oxidation of two water molecules to produce dioxygen by PSII, the oxidation 

of Chlide a or Chl a to form Chlide f or Chl f is a four-electron oxidation (Ho et al. 2016). Gary et 

al. (2017) have suggested that the oxygen atom of the 2-formyl group of Chl f is derived from 

dioxygen. However, this conclusion may disagree with the observation that light is required and 

the possibility that ChlF might predate the origin of PsbA and thereby PSII (Ho et al. 2016). In 

principle, four electrons might be extracted from the substrate molecule after absorption of four 

photons, and considering that ChlF is sensitive to DCMU, those electrons are probably transferred 

to plastoquinone. If all four electrons were extracted by photooxidation, then water could 

potentially provide the oxygen for formation of the formyl group. These observations might be 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Chlorophyll f Synthase 

 
26 

reconciled if both light and oxygen are somehow required for this reaction, but for now, the 

resolution of these issues will likely require the development of an in vitro assay for Chl f synthase 

activity. However, to date, we have been unable to identify appropriate conditions for the study of 

this reaction in vitro.   

With the exception of a PsbA paralog in Gloeobacter sp. with unknown function, ChlF 

sequences form the earliest diverging clade of the PsbA family, which presumably arose by a series 

of gene duplications followed by sequence divergence (Murray 2012; Cardona et al. 2015). The 

ChlF sequences differ substantially from those of PsbA throughout the entirety of the polypeptide, 

but specifically ChlF has an N-terminal extension, does not appear to be processed at the C-

terminus, and lacks all but one of the key C-terminal residues required to ligate the Mn4Ca1O5 

cluster that is essential for water oxidation by PSII (Murray 2012; Cardona et al. 2015; Ho et al. 

2016). Residues for binding Chl a, including P680, however, are conserved, as are the histidine 

ligands to the non-heme Fe atom (Murray 2012; Ho et al. 2016). As shown here and as predicted 

from its sequence, purified ChlF binds Chl a, Pheo a, and carotenoids. The observed properties of 

ChlF presumably reflect functional differences from those of PsbA (D1) in PSII (Murray 2012; 

Cardona et al. 2015; Ho et al. 2016). Moreover, it remains a possibility that ChlF is the progenitor 

of the PsbA subunits of PSII that can bind Mn4Ca1O5 clusters (Ho et al. 2016). Except for the 

unusual protein of unknown function in Gloeobacter sp. noted above, only the gene duplication 

that gave rise to PsbD led to sequences that are more divergent from PsbA than ChlF (Murray 

2012; Cardona et al. 2015). Interestingly, unlike the heterodimeric PsbA/PsbD cores of PSII and 

the PufL/PufM cores of bacterial reaction centers, ChlF forms homodimers, which may represent 

an ancestral state compared to more complex type-2 reaction centers. From an evolutionary 

perspective, the formation of heterodimeric proteins from homodimeric ancestors must be driven 
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by evolutionary forces related to specific differences in biological functions, which can select for 

and optimize the propensities to dimerize as well as the dynamics of protein-protein interface 

interactions (Jones and Thornton, 1996). 

To determine whether ChlF might interact with PsbD (D2) or other components of PSII, a 

PsbD-less strain of Synechococcus 7002 was constructed by deleting the psbD1 and psbD2 genes. 

Consistent with previous reports concerning the mutagenesis of the psbD genes in Synechococystis 

sp. PCC 6803 (Yu and Vermaas 1990), deletion of the psbD1 and psbD2 genes in Synechococcus 

7002 resulted in the loss of PSII activity. However, when the chlF7521 gene was expressed in this 

strain lacking PsbD and PSII activity, Chl f production still occurred (Fig. 5). Notably, even higher 

levels of Chl f accumulated in this strain compared to those when this gene was expressed in cells 

of WT Synechococcus 7002 (Figs. 1 and 5). The obvious conclusions from these findings are that 

Chl f synthesis is neither dependent upon the presence of PsbD (D2) nor upon the presence of PSII 

activity or intact PSII in cells. One possible reason for the apparently enhanced ChlF activity could 

be that more substrate, either Chl a or Chlide a, is available for modification by Chl f synthase 

when PSII cannot be correctly assembled. This hypothesis led us to test whether Chl f synthesis 

might also be enhanced in an ycf4 mutant that is impaired in PSI assembly (Boudreau et al. 1997; 

G. Shen and D. Bryant, unpublished results). However, when chlF7521 was expressed in an ycf4 

mutant of Synechococcus 7002, the Chl f levels were similar to those produced in WT cells (data 

not shown). This result shows that defective PSI assembly neither positively nor negatively affects 

ChlF activity in Synechococcus 7002. 

As noted above, the His ligands for Chl a molecules P680 and ChlZ are conserved in ChlF, 

as are the His ligands to the non-heme iron atom and most residues for the QB-binding site, all of 

which are key functional elements of PsbA (see the multiple sequence alignment of ChlF (PsbA4) 
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proteins and PsbA (D1) proteins in Fig. S2 of Ho et al. 2016). Flash photolysis of ChlF produced 

a relatively long-lived Chl a triplet that could be observed by both optical spectroscopy and EPR 

(Figs. 6 and 7). The sensitivity of Chl f synthesis to the PSII inhibitor DCMU strongly suggests 

that Chl f binds plastoquinone as an electron acceptor in vivo (Fig. 5). However, when the 

equivalent of the TyrZ in PSII (Tyr residue 183) was mutated to Phe, Synechococcus 7002 cells 

expressing the Y183F variant protein actually accumulated about 1.9-fold more Chl f compared to 

cells expressing WT ChlF9212. This result indicates that ChlF is likely to have substantially 

different electron transfer reactions and mechanism in comparison to the reactions associated with 

PsbA in PSII.  

Because of the mechanistic details for activation of transcription of the FaRLiP gene cluster 

during acclimation to FRL, cyanobacteria that perform FaRLiP can only synthesize Chl f when 

cells are grown in FRL (Gan et al. 2014, 2015; Zhao et al. 2015; Ho et al. 2016, 2017a). However, 

when the chlF gene is heterologous expressed in Synechococcus 7002, the chlF gene is not subject 

to regulation by RfpABC and thus Chl f synthase activity can occur in white light. Thus, it was of 

some interest to determine whether ChlF activity might be influenced by light quality in the 

heterologous system. When cells lacking PsbD and PSII and expressing chlF7521 were grown under 

LL, RL, GL, or FRL conditions, Chl f levels were lowest in LL, intermediate in RL or GL, and 

highest in cells grown in FRL. The Synechococcus 7002 cells grown in FRL accumulated less Chl 

a than cells grown under the other light conditions, but individual cultures in which Chl f 

represented 3 to 4 % of the total Chl were usually obtained. These Chl f levels are only about half 

those achieved by cyanobacterial cells undergoing FaRLiP. Additional studies will explore 

whether Chl f levels of this magnitude can positively affect growth of Synechococcus 7002 in FRL.  
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If introduced into crop plants, the capacity to synthesize FRL-absorbing Chls such as Chl 

d and/or Chl f might expand the light wavelength range that could be used to support oxygenic 

photosynthesis (Chen and Blankenship 2011; Chen 2014; Gan et al. 2014). Considering this idea, 

it was of interest to determine whether the Chl f that was synthesized in Synechococcus 7002 was 

actually associated with PSI complexes in the cells. PSI, which naturally binds 96 Chl a molecules 

per monomer in Thermosynechococcus vulcanus (Jordan et al. 2001) and presumably similar 

numbers in other cyanobacteria, contained Chl f at about the same proportion as measured for the 

total Chl content of the cells. This suggests that most of the Chl f that was produced was actually 

associated with PSI complexes in the PsbD-less and PSII-less cells expressing the chlF7521 gene. 

These Chl f molecules extended the FRL absorption of the PSI complexes slightly into the far-red 

region and caused the low-temperature fluorescence emission of the complexes to be slightly red-

shifted compared to WT PSI complexes containing only Chl a (Fig. 8). However, compared to PSI 

complexes isolated from F. thermalis 7521 cells grown in FRL, which contain about 8% Chl f, 

neither the absorption nor the fluorescence emission of the Synechococcus 7002 PSI complexes 

was red-shifted to such a great extent. Future studies will be directed towards ascertaining whether 

the Chl f molecules inserted into heterologous PSI complexes are functional in energy transfer and 

whether they affect the trapping efficiency of PSI complexes for PSI activity and cell growth in 

Synechococcus 7002. 
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Figures 

 

 

Fig. 1 Heterologous expression of chlF7521 leads to higher amounts of Chl f in Synechococcus 7002 

than from chlF9212. Based on OD750, equal numbers of cells, which had very similar Chl a contents, 

were used for the analysis. The elution profile at 705 nm for reversed-phase HPLC analysis of 

pigments extracted from cells of Synechococcus sp. PCC 7002 wild-type strain (black line) and 

strains Ex::chlF9212 (blue line) and Ex::chlF7521 (red line) that express the chlF genes from FaRLiP 

strains C. fritschii 9212 and F. thermalis 7521, respectively. The elution positions of Chl f (40.5 

min) and Chl a (45 min) are indicated. For additional details, see text.  

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Chlorophyll f Synthase 

 
41 

 

 

Fig. 2 Purification and verification of ChlF7521. a SDS-PAGE analysis of Synechococcus 7002 

membranes and purified ChlF7521; the gel was stained with Coomassie blue. Lane 1, protein 

molecular mass markers; lane 2, thylakoid membranes isolated from wild-type Synechococcus 

7002; 3, thylakoid membranes of strain Ex::chlF7521; and lane 4, purified [His]10-tagged ChlF7521. 

b Immunoblotting detection of [His]10-tagged ChlF7521 from four independent preparations 

produced by IMAC. Lane 1, ChlF_prep #1; lane 2; ChlF_prep #2; lane 3 ChlF_prep #3; and lane 

4, ChlF_prep #4. A polypeptide of ~44 kDa was detected in all four preparations. 
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Fig. 3 ChlF7521 is a Chl-binding protein. a Appearance of as-purified ChlF7521; the protein solution 

is yellowish-green in color. b Absorption spectrum (dark green line) and low-temperature (77 K) 

fluorescence emission spectrum (red line) of purified ChlF. The excitation wavelength was 440 

nm. The spectra were normalized at 674 nm/680 nm as shown, and thus the absorbance and 

fluorescence values are relative units.  
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Fig. 4 Pigment content of purified ChlF7521. Reversed-phase HPLC elution profiles of a pigment 

extract from purified ChlF7521 monitored at 665 nm (green line) and 408 nm (brown line). The 

insert shows the in-line absorption spectra of Chl a eluting at 20.1 min (green line) and Pheo a 

eluting at 31.1 min (brown line). The minor peaks at about 15.5 and 32 min are zeaxanthin and -

carotene, respectively (also see Fig. S2), and the minor peak at about 18.5 minutes is Chl f. For 

additional details, see text.  
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Fig. 5 DCMU inhibits the production of Chl f in Synechococcus 7002. Reversed-phase HPLC 

elution profiles at 705 nm are shown in the figure to assess Chl f production in the Synechococcus 

7002 △psbD1 △psbD2 mutant strain (PsbD-less) expressing chlF7521. Based on OD750, pigments 

were extracted from equal numbers of cells of the PsbD-less (△psbD1 △psbD2) double mutant strain 

of Synechococcus 7002 (control; black line); the Synechococcus 7002 △psbD1 △psbD2 Ex::chlF7521 

strain (red line); and the Synechococcus 7002 △psbD1 △psbD2 Ex::chlF7521 strain treated with 10 

µM DCMU (blue line). DCMU addition inhibited the production of Chl f but had little or no effect 

on the synthesis of Chl a because the cells were growing photoheterotrophically under these 

conditions. Note that the PsbD-less mutant produces much more Chl f than is produced by 

expression of chlF7521 gene in wild-type cells of Synechococcus 7002 (compare the relative Chl f 

and Chl a peak areas with those in Fig. 1).  
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Fig. 6 Transient absorbance kinetics measured at 830 nm of purified ChlF7521 following a laser 

flash. The main plot is the CONTIN decomposition of the experimental data (shown in blue points 

in the inset on the left) showing a major exponential decay component (817 µs) and four minor 

exponential decay components (28 µs, 11 ms, 161 ms, and 2.1 s). The solid red lines in the inset, 

left represent the resolved kinetic components from the CONTIN decomposition superimposed on 

the experimental data. The upper panel shows the residuals, i.e. the difference between the 

experimental points and the fitted curves. The inset on the right shows the signal amplitude at the 

laser powers depicted. 
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Fig. 7. Transient EPR spectrum of ChlF7521 at 90 K in the presence of 10 mM sodium ascorbate. 

The black trace is the experimental data (128 averages; microwave power, 17 µW); the red trace 

is a fit of the experimental spectrum calculated with D = 2.71  10-2 cm-1 and E = 3.3  10-3 cm-1. 

The fitted spectrum is the sum of the blue, green and pink spectra. The blue trace is the multiplet 

polarization generated by ISC calculated as described in (Kandrashkin et al 2006) with || = 1.1 

and  = 0.40, which corresponds to px:py:pz =0.18:0:0.82.  The green trace is the net polarization 

generated by ISC and the pink trace is the polarization generated by radical pair recombination.  
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Fig. 8. Heterologously produced Chl f binds to Synechococcus 7002 PSI complexes. Absorption 

spectra (a) and fluorescence emission spectra at 77 K (b) of isolated PSI complexes from wild-

type Synecococcus 7002 (solid black line), strain Ex::chlF7521 (solid red line), F. thermalis 7521 

cells grown in WL (dotted black line) and F. thermalis 7521 cells grown in FRL (dotted red line). 

The excitation wavelength was 440 nm. Note the increased absorption between 700 and 750 nm 

for PSI complexes from strain Ex::chlF7521and their red-shifted emission, which is not as extreme 

as for the Chl f in the FRL-PSI complexes from F. thermalis 7521.  
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Table 1. List of plasmid constructs and cyanobacterial strains used in study. 
Plasmid constructs Characteristics Reference 

   

pAQ1Ex-PcpcBA pAQ1-based expression vector; GmR Xu et al. 2011 

pAQ1Ex::chlF9212 chlF9212 gene inserted in pAQ1Ex-PcpcBA; GmR Ho et al. 2016 

pAQ1Ex::chlF7521 chlF7521gene inserted in pAQ1Ex-PcpcBA ; GmR This study 

pAQ1Ex::chlF9212(Y183F) Tyr183 to Phe mutant of chlF9212 gene inserted in 

pAQ1Ex-PcpcBA ; GmR 

This study 

△psbD1::aadA pUC19 with psbD1 region of Synechococcus 7002 

genome and psbD1 replaced by aadA; SpR 

This study 

Gingrich et al. 1990 

△psbD2::aphAII pUC19 with psbD2 region of Synechococcus 7002 

genome and psbD2 replaced by aphAII; KmR 

This study 

Gingrich et al. 1990 

   

Cyanobacterial Strains   

   

Synechococcus sp. PCC 7002 Non-FaRLiP strain; model cyanobacterium Rippka et al. 1979 

Fischerella thermalis PCC 7521 FaRLiP strain Rippka et al. 1979 

Chlorogloeopsis fritschii PCC 9212 FaRLiP strain Gan et al. 2015 

   

Strains of Synechococcus sp. PCC 7002   

   

Ex::chlF9212 Synechococcus 7002, pAQ1Ex::chlF9212; GmR Ho et al. 2016 

Ex::chlF7521 Synechococcus 7002, pAQ1Ex::chlF7521; GmR This study 

Ex::chlF9212 (Y183F) Synechococcus 7002, pAQ1Ex::chlF9212 (Y183F); 

GmR 

This study 

Synechococcus 7002 △psbD1 △psbD2 

(PsbD-less) 

△psbD1::aadA △psbD2::aphAII; KmR, SpR 
Mutant lacking PsbD; PSII-less 

This study 

Synechococcus 7002 △psbD1 △psbD2, 

Ex::chlF7521 

Overexpression of chlF7521 in mutant lacking PsbD 

(△psbD1 △psbD2); KmR, SpR, GmR 

This study 
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