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Abstract

Testing the out-of-sample return predictability is of great interest among academics. A wide

range of studies have shown the predictability of stock returns, but fail to test the statistical

significance of economic gains from the predictability. In this paper, we develop a new

statistical test for the directional accuracy of stock returns. Monte Carlo experiments reveal

that our bootstrap-based tests have more correct size and better power than the existing

tests. We use the forecast combinations and find that the stock return predictability is

statistically significant in terms of reduction of mean squared predictive error relative to the

benchmark of historical average forecasts. However, the results from our tests show that

the predictability is not economically significant. We conclude that there will be still a long

way to go for forecasting stock returns for market participants.
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1. Introduction

The out-of-sample predictability of financial returns has important implications for many

areas such as asset pricing and portfolio allocation. As an influential paper, Goyal and Welch

(2008) document that the financial or economic models cannot outperform the benchmark

of historical average model under the criterion of mean squared predictive error (MSPE). In

comparison with the statistical predictability, market investors are more concerned about the

profitability of making investment decisions using return forecasts. Therefore, the evaluation

of forecasting performance should stand at the view point of profit maximization rather than

loss function minimization, i.e., the economic predictability of stock returns.

Recently, quite a large number of studies propose the state-of-the-art methods to reveal

the return predictability from both statistical and economic perspectives. These methods

include the forecast combinations (Rapach, Strauss, and Zhou, 2010), time-varying param-

eter models (Dangl and Halling, 2012; Zhu and Zhu, 2013), diffusion index (Neely, Rapach,

Tu, and Zhou, 2014; Huang, Jiang, Tu, and Zhou, 2015), economic constraints (Campbell

and Thompson, 2008; Pettenuzzo, Timmermann, and Valkanov, 2014) and machine learning

approaches (Zhang, Zeng, Ma, and Shi, 2018). They evaluate the significance of statistical

predictability using the popular methods such as Clark and West (2007) and Diebold and

Mariano (1995) tests. However, existing studies do not show the significance of economic

predictability explicitly. This is important because the model of interest will be useless in

practice if its improvement of economic gains over the benchmark model is insignificant. In

this paper, we fill this gap by developing a new statistical test for the significance of the

excess profit.

Our test is actually an extension of Anatolyev and Gerko (2005) (AG thereafter) test.

The AG test is constructed relying on a trading strategy which issues a buy signal if a

forecast of next period return is positive and a sell signal otherwise. The average return

of this trading strategy is compared to the benchmark strategy that issues buy/sell signal

at random to test for the significance of return predictability. AG show that the power of

their excess profit test is higher than that of the directional accuracy test of Pesaran and
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Timmermann (1992) (PT thereafter).

In this paper, we improve upon both AG and PT tests by proposing bootstrapped meth-

ods to test for the return predictability. The first order validity of block bootstrap for mean

predictability under the serial dependence is demonstrated. Our methods display two ad-

vantages over AG and PT methods. First, we allow for dependence in financial asset returns

and their forecasts, while the statistics of AG and PT methods are strictly based on the

hypothesis of independent and identically distributed series. Therefore, our test is expected

to be less suffered from size distortion. Second, with the increase of sample size T , boot-

strapped distribution theoretically converges to the true distribution at the rate of T , faster

than the convergence rate of asymptotic distribution of PT. In this sense, bootstrapped s-

tatistics are expected to have better power property than the corresponding statistics based

on asymptotic distribution, especially when the sample size is small. This property is of

more importance for financial forecast evaluation because macroeconomic data we use is

often monthly or quarterly and the sample size is not large. Our simulating results further

confirm these two advantages of our test, the more corrected size and better power property

than the AG and PT tests.

Empirically, we also contribute to the literature by differentiating two major sources

affecting forecasting performance. The literature agrees that parameter instability (i.e.,

time-variation in coefficients) is one of the potential challenges and might influence many

of the forecasting results. For example, Dangl and Halling (2012) show that predictive

regressions with time-varying coefficients dominate regressions with constant coefficients in

predicting S&P 500 index returns. More studies also document that model uncertainty (i.e.,

the choice of predictors) is another major problem in forecasting returns. For example,

Avramov (2002) uses a Bayesian model averaging approach to deal with model uncertainty

and find significant predictability of stock returns. Rapach, Strauss, and Zhou (2010) show

that the combined forecasts of different models are significantly more accurate than the

historical average forecasts. Our empirical analysis aims to compare the effects of parameter

instability and model uncertainty on forecasting performances. This issue has not been

considered in the literature.
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To capture the parameter instability, we employ three types of predictive regressions

which differ depending on the time-variation in coefficients, constant coefficient (CC) model,

Markov regime switching (MRS) model and time-varying parameter (TVP) model. Four

forecast combination strategies are employed to handle the problem of model uncertainty.

A total of 12 economic and financial variables are employed to predict stock excess return

over the period from January 1967 through December 2012. We first use the popular out-

of-sample R2 (R2
OoS) to evaluate forecasting performance. This index measures the percent

reduction of MSPE of the model of interest relative to the historical average benchmark

(see, e.g., Campbell and Thompson, 2008). The Clark and West (2007) (CW) statistic is

applied to test for the null hypothesis that the MSPE of the model of interest is higher

than or equal to the MSPE of the benchmark model. Our statistical evaluation results

show that individual models cannot significantly beat the benchmark model. Models with

time-varying coefficients do not perform better than models with constant coefficients. The

combination strategies can generate forecasts with positive R2
OoS and CW test results also

indicate that the improvement of predictability is significant. This result suggests that model

uncertainty, rather than parameter instability plays the major role in affecting the return

forecasting performance in the statistical sense.

We further evaluate the economic significance of return predictability using the proposed

test. We find that most of macroeconomic variables cannot predict stock returns individually

in the economic sense. The only exceptions are that the buy/sell trading rules based on

forecasts from long-term government bond returns (LTR) and the difference between Moodys

BAA- and AAA-rated bond yields (DFY) can cause the significant profit when CC models,

not MRS or TVP models are used. The combined forecasts cannot provide significant profits.

Overall, we find little evidence about economically significant predictability of stock returns

and the unpredictability cannot be explained by parameter instability or model uncertainty.

Therefore, forecasting stock returns is still an unsolved problem from economic perspective.

The remainder of this paper is organized as follows: In Section 2, we propose the method-

ology of bootstrap-based tests for mean predictability and discuss the size and power prop-

erty of our tests. Section 3 gives an application of our tests. Section 4 concludes the paper.
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2. Setup and statistics of interest

According to Anatolyev and Gerko (2005)’s statement, the size of their statistics may

be distorted due to serial dependence and parameter uncertainty. In this section, we pro-

pose a modified statistic based on bootstrap. Bootstrap distribution converges to the true

distribution at the rate of T , which is higher than the asymptotic distribution (
√
T ). There-

fore, bootstrap statistics are more accurate than the asymptotic statistics theoretically. In

recent years, bootstrap methods have been widely used to modify test statistics. For ex-

ample, Corradi and Swanson (2006) use block bootstrap method to extend the CK test of

Andrews (1997) and the DGT test of Diebold et al. (1998) under dynamic misspecification

and parameter estimation error. Dovonon et al. (2013) propose a bootstrap statistic for high

frequency returns and show that the finite sample performance of the bootstrap is superior

to the existing statistics. Su and Qu (2015) adopt a wild bootstrap method to mimic the

distribution of the original statistics for testing spatial autoregressive models. We modify

the statistic of Anatolyev and Gerko (2005) using the bootstrap method, and expect that in-

ference based on bootstrap critical value is more accurate than that based on asymptotically

normal critical values.

Prior to constructing the bootstrap versions of the test statistics, it is worthwhile to recall

two statistics of our interest. To be readable, we adopt the same notations as Anatolyev

and Gerko (2005). Let yt denote the returns of financial assets such as stocks and foreign

currencies, and let ŷt be the forecasting value of yt, the null hypothesis is given as

H0 : E[yt|It−1] = c, (1)

where c means the constant variable, It denotes all available predictive information at time

t. Obviously, equation (1) implies that the past information set cannot help to improve the

accuracy of prediction for yt.

2.1. The excess profit test of Anatolyev and Gerko (2005)

Anatolyev and Gerko (2005) form their statistic based on a trading strategy. They

assume an investor goes long if the forecast ŷt is nonnegative and goes short otherwise.

5



Thus the return of the trading rule can be expressed as

rt = sign(ŷt)yt, (2)

where sign(w) = 1 when w ≥ 0 and sign(w) = −1 otherwise.

The idea of their statistics is as follows:

E[sign(ŷt)]E[yt] = E
[
sign(ŷt)E[yt]

]
H0= E

[
sign(ŷt)E[yt|It−1]

]
(3)

= E
[
E[sign(ŷt)yt|It−1]

]
= E[sign(ŷt)yt] = E[rt].

Under the null hypothesis, the average return of buy/sell trading rules formed by sign

of forecasts should statistically equal to a benchmark strategy that issues buy/sell signals

at random with probabilities corresponding to the proportion of “buys” and “sells” implied

ex post by trading strategy (Anatolyev and Gerko, 2005). To design a feasible test statistic,

we should estimate the expectation given above. Using the sample data, the right-hand side

(RHS) estimator can be easily calculated as

AT =
1

T

T∑
t=1

rt, (4)

and the left-hand side (LHS) estimator is

BT =
( 1

T

T∑
t=1

sign(ŷt)
)( 1

T

T∑
t=1

yt
)
. (5)

Under the null hypothesis, the variance of AT −BT is

V ar[AT −BT ] =
4(T − 1)

T 2
pŷ(1− pŷ)V ar[yt] (6)

where

pŷ = Pr(sign(ŷt) = 1). (7)

The estimator for (6) is

V̂AG =
4

T 2
p̂ŷ(1− p̂ŷ)

T∑
t=1

(yt − ȳ)2 (8)

6



and the estimator for (7) is

p̂ŷ =
1

2

(
1 +

1

T

T∑
t=1

sign(ŷt)
)
. (9)

According to Hausman (1978)’s suggestion, AG test statistics can be defined and can

has asymptotic normal distribution as

AG ≡ AT −BT√
V̂AG

d−→ N (0, 1). (10)

2.2. The directional accuracy test of Pesaran and Timmermann (1992)

Besides, we can use the Pesaran and Timmermann (1992)’s directional accuracy statistic

to test the null hypothesis (1). Firstly, we let Ã and B̃ be, respectively,

ÃT =
1

T

T∑
t=1

sign(ŷt)sign(yt), (11)

and

B̃T =
( 1

T

T∑
t=1

sign(ŷt)
)( 1

T

T∑
t=1

sign(yt)
)

(12)

Then, the PT statistic can be expressed similarly as

PT ≡ ÃT − B̃T√
V̂PT

d−→ N (0, 1), (13)

where

V̂PT =
16(T − 1)

T 2
p̂ŷ(1− p̂ŷ)p̂y(1− p̂y), (14)

and

p̂y =
1

2
(1 +

1

T

T∑
t=1

sign(yt)). (15)

2.3. Validity of the block bootstrap

From the simulation experiment of Anatolyev and Gerko (2005), we can see that both

statistics still have low power even as the sample size goes to 1000, and the size performance is

not clear at finite sample case (see Table 1 in AG paper for more details). These shortcomings

may be caused by the presence of serial dependence. Block bootstrap theory has been
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established and shown to be valid for serial dependence (e.g., Gonçalves and White, 2004;

Corradi and Swanson, 2006; Dovonon et al., 2013).

We use the bootstrap statistics AG∗ (PT ∗) defined below to obtain the critical values for

the original statistics AG (PT ), instead of their asymptotic critical values. The bootstrap

procedures can be implemented as follows.

1. Let wt = (ŷt, yt). Given a sample {w1, w2, · · · , wT}, draw the 1st block of length l from

the sample, {w∗s0+1, w
∗
s0+2, · · · , w∗s0+l}, where si means the (i+ 1)th draw on [0, 1, · · · , T − l]

with the independent and identical uniform distribution. Thus, each draw has the probability

of 1/(T − l + 1).

2. As the replacement, draw the 2nd block from the same sample to obtain {w∗s1+1, w
∗
s1+2,

· · · , w∗s1+l}.

3. Let T = bl. Until the bth block, we have a sample {w∗s0+1, · · · , w∗s1+1, · · · , w∗sb−1+1, · · · }

and calculate the AG∗ (PT ∗) statistics, denoted by AG∗(1) (PT ∗(1)).

4. Replicate steps 1-3 B times, we collect two sets, {AG∗(1), AG∗(2), · · · , AG∗(B)} and

{PT ∗(1), PT ∗(2), · · · , PT ∗(B)}. Then the bootstrapped p value is

p∗(τ) =
1

B

B∑
i=1

I(τ ∗(i) > τ)

where τ ∈ {AG,PT} and I(E) is an indicator function, which takes the value of one when

the condition E is satisfied and 0 otherwise.

The proposed versions of AG and PT statistics used in the 3rd of the bootstrap procedure

are given as follows:

AG∗ ≡ A∗T −B∗T − (AT −BT )√
V̂ ∗AG

, (16)

PT ∗ =
Ã∗T − B̃∗T − (ÃT − B̃T )√

V̂ ∗PT

, (17)

where notation (∗) denotes the corresponding bootstrap value. For example, A∗T =
∑T

t=1

sign(ŷ∗t )y∗t and ŷ∗t , y
∗
t are bootstrap samples. And the corresponding bootstrapped variances
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of these two statistics are given by,

V̂ ∗AG = V ar∗[A∗T −B∗T ] = V ar∗[A∗T ]− V ar∗[B∗T ]

=
4

T 2
p̂∗ŷ∗(1− p̂∗ŷ∗)

T∑
t=1

(y∗t − ȳ∗)2 (18)

V̂ ∗PT =
16(T − 1)

T 2
p̂∗ŷ∗(1− p̂∗ŷ∗)p̂∗y∗(1− p̂∗y∗) (19)

The following theorems show that our bootstrap method is valid.

Theorem 1. Under some regularity conditions and H0 holds, and let T = bl, such that

as T → ∞, l/T → 0. Then, supx∈R |P ∗(AG∗ ≤ x) − P (AG ≤ x)| p−→ 0, where P ∗ means

conditional probability given ω1, · · · , ωT .

Theorem 2. Under some regularity conditions and H0 holds, and let T = bl, such that

as T → ∞, l/T → 0. Then, supx∈R |P ∗(PT ∗ ≤ x) − P (PT ≤ x)| p−→ 0, where P ∗ means

conditional probability given ω1, · · · , ωT .

Remark: Our conditions are the same with Hausman (1978) since our statistics belong to

Hausman-type statistics, and is therefore omitted. As Paparoditis and Politis (2005) claim,

there exist two ways to construct a bootstrap test of the hypothesis by imposing the null

hypothesis or not. Imposing the null hypothesis will certainly cause the loss of power but

the statistics become simpler. Our simulating analysis will show that even in our case of

imposing the null hypothesis, the power is still much higher than the asymptotic statistics

of AG and PT.

2.4. Finite sample performance

In this subsection, we investigate the finite sample performance of our bootstrap statis-

tics. In detail, we check if the test statistics (10) and (13) have a reasonable size and good

power. This procedure is necessary because the test statistic may lead to a misleading in-

ference if the size or power has poor performance. For comparison, we simulate data using

the same models as Anatolyev and Gerko (2005) to examine the size and power. Constan-

t model and GARCH are used to evaluate size performance and AR and SETAR models
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are employed to assess power performance. The detailed model specifications are given as

follows:

Constant model:

yt = 0.001526 + εt,

εt
i.i.d∼ N (0, 0.000025) (20)

GARCH model:

yt = 0.002483 + εt

εt =
√
htηt

ht = 0.0000223 + 0.1773ε2t−1 + 0.7397ht−1 (21)

ηt
i.i.d∼ N (0, 1),

AR model:

yt = 0.1256yt−1 + εt

εt
i.i.d∼ N (0, 0.000249), (22)

SETAR model:

yt =

 0.000844 + 0.2453yt−1 + εt, if |yt−1| ≤ 0.1848

0.002679 + 0.0664yt−1 + εt, if |yt−1| < 0.1848

εt
i.i.d∼ N (0, 0.000245). (23)

To forecast the ŷt, we run the simple linear model with a constant term and the first

lag of yt as regressors, i.e., yt = α + βyt−1 + εt. Therefore, the optimal forecast ŷt =

α̂ + β̂yt−1. For each sample size T , we estimate the parameters using rolling window of

100 observations, then the predict sample size T − 100 is used to compute statistics. This

approach is also adopted by Anatolyev and Gerko (2005) and used quite intensively in

empirical work (Pesaran and Timmermann, 1995).

We apply the sample sizes 250, 500, 750 and 1000 in our simulation. To obtain the

block bootstrap critical value, we set the bootstrap resample B = 300 times. At each
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experiment, we repeat 1000 times and record the frequency that p value is smaller than the

given significant level.

Table 1 reports the empirical sizes of the original statistics (10), (13) at 1%, 5% and

10% significance levels under the constant model and GARCH model. We can see that both

the sizes of AG and PT statistics are distorted under the constant model at small sample

case. For example, when sample size is equal to 250 (T = 250), the sizes of AG and PT

statistics are 0.050 and 0.038 at 10% significance level, respectively. Notably, AG statistic

is over-rejected when GARCH process is used.

Insert Table 1 here

Tables 2-3 display the size performances of our statistics based on the block bootstrap

when constant model and GARCH model are employed to simulate series, respectively.

Following Fitzenberger (1998) and Corradi and Swanson (2006), the block length (l) is

chosen as 1, 5, 10 and 15. As expected, empirical significance levels are in general closer to

nominal levels even when the sample is 250, indicating that our proposed statistics are quit

more reliable for small sample sizes.

Insert Tables 2-3 here

Turning to the empirical power shown in the tables 4-6, the power increases when the

sample size become large, as expected. We find that the power of AG statistic is large than

that of PT statistic, and the percent increase of power is about 10%(see Table 4), which is

consistent with Anatolyev and Gerko (2005)’s result. When using block bootstrap method,

both AG∗ statistics and PT ∗ statistics appear to have higher power no matter what the

length (l) is used comparing with the corresponding results in table 4. Our bootstrap meth-

ods can improve about 10%-20% of the power (see Tables 5-6), suggesting that bootstrap

statistics have better finite sample performances.

Insert Tables 4-6 here
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3. Empirical application

3.1. Forecast methodology

For the application of our test, we turn to the problem of forecasting stock excess re-

turns, one of the hottest issues in the area of financial economics. In this section, we will

check the performances of stock trading rules constructed on a wide range of individual and

combined macroeconomic signals. In the literature, it has been well documented that the

benchmark of historical average forecasts is very difficult to be beaten (Goyal and Welch,

2008). Nevertheless, some recent studies still reveal the predictability by handling with t-

wo important problems in predictive regressions, parameter instability (Dangl and Halling,

2012) and model uncertainty (Avramov, 2002; Rapach et al., 2010). We try to find which

factor has greater impacts on forecasting performances. This topic has not been considered

in existing studies.

To investigate the effect of parameter instability, we employ three types of predictive

regressions which differ depending on the degree of parameter variation. The first is the

constant coefficient (CC) model which assumes that the predictive relationship does not

change over time. The specification of CC model is given by,

rt+1 = αi + βixi,t + εt+1, (24)

where rt+1 is the return on a stock market index in excess of the risk-free rate, xi,t is a

predictive variable of interest and εt+1 is a disturbance term.

The second type of predictive regression is time-varying parameter (TVP) model. In

this specification, the regression parameter is assumed to follow the process of random walk

without drift. Therefore, the predictive relationship implied by this model changes at each

point of time. Recently, Dangl and Halling (2012) show that TVP predictive regression

dominates the CC one in forecasting stock returns. The specification of a TVP model is

given by,

rt+1 = Xi,tθi,t + εt+1

θi,t = θi,t−1 + ηi,t (25)
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where Xi,t = [1, xi,t], θi,t = [αi,t, βi,t]
′ and ηi,t

i.i.d∼ N (0, Qi).

It may be argued that TVP specification over-estimates the change of predictive relation-

ship. For this consideration, we employ a Markov regime switching (MRS) model in which

the predictive relationship is allowed to change between different regimes. In this sense,

MRS regression can be considered as a midpoint between CC and TVP regressions. The

combination of MRS models is found to deliver consistent out-of-sample forecasting gains

relative to the historical average (Zhu and Zhu, 2013). The specification of an MRS model

is given by,

rt+1 = Xi,tθi,st + εt+1, st = 0, 1, (26)

where θi,st = [αi,st , βi,st ]
′, εt

i.i.d∼ N (0, Hst), and st = 0 or st = 1 represents one of the t-

wo regimes that follow a first-order Markov process with a constant transition probability

Pr(st = j|st−1 = i) = pij, i, j ∈ (0, 1). Under the MRS framework, we obtain the regime

dependent forecasts. The final forecast used is the weighted average of forecast in each of

the two regimes, where the weight equals to the transition probability. The parameter of

TVP and MRS models are obtained via the maximum likelihood estimation (MLE) method.

Following the majority of the literature, we generate out-of-sample forecasts of stock return

using a recursive (expanding) estimation window.

Although parameter instability can be well addressed, the predictive ability of an in-

dividual model is still rather unstable due to the problem of model uncertainty. Model

uncertainty recognizes that forecasters do not know which variables should enter the pre-

dictive regression and the inclusion of irrelevant predictive variable can cause overfitting, a

situation that in-sample performance is improved but out-of-sample performance becomes

worse. We follow Rapach et al. (2010) by combining forecasts from different individual

models to address model uncertainty.

We consider four standard forecast combination methods used in Rapach et al. (2010).

The first method is the mean forecast combination (MFC) which takes the simple equal-

weighted average of forecasts from individual models of interest. MFC is imposed over CC,

MRS and TVP models. We denote these methods by MFC-CC, MFC-MRS and MFC-TVP,
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respectively.

The second method is the trimmed mean combination (TMC) which uses the equal-

weighted average of forecasts of individual models after trimming the one with the worst

past performance (i.e., the highest mean squared predictive error). We denote the TMC for

CC, MRS and TVP forecasts by TMC-CC, TMC-MRS and TMC-TVP, respectively.

The last two methods refer to the discounted mean squared predictive error (DMSPE).

DMSPE uses the weighted average of individual forecasts and the weights of each model are

given by:

ωi,t =
φ−1i,t−1∑N
j=1 φ

−1
j,t−1

, (27)

where N is the number of individual models, φi,t =
∑t

j=1 δ
t−j(rt − r̂i,t)

2 and r̂i,t is the

forecast of model i. We follow Rapach et al. (2010) and Zhu and Zhu (2013) by using the

discounting factor δ = 1 and δ = 0.9 . We denote these DMSPE strategies for CC, MRS

and TVP models for DMSPE(δ)-CC, DMSPE(δ)-MRS, and DMSPE(δ)-TVP, respectively.

3.2. Forecast evaluation

We use two criteria to evaluate forecast accuracy. The first is the statistical measure,

the out-of-sample R-square (see, e.g., Campbell and Thompson, 2008; Rapach et al., 2010;

Neely et al., 2014). This measure computes percent reduction of mean squared predictive

error (MSPE) of the model of interest relative (MSPEmodel) to the MSPE of the benchmark

of historical average (MSPEbench), defined as:

R2
oos = 1− MSPEmodel

MSPEbench

, (28)

where MSPEi = 1
M

∑M
t=1(rt − r̂t,i)

2 , (i = model, bench); rt and r̂t are, respectively, the

true value and forecast of stock return. A positive R2
oos implies that the model forecasts

of interest display lower MSPE than the benchmark ones, implying the greater accuracy.

To examine whether the differences in forecasting accuracy of the two different models are

significant, we use the MSPE-adjusted statistic of Clark and West (2007) (CW). We can

obtain a p-value for a one-sided (upper-tail) test with the standard normal distribution.
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The null hypothesis of CW test is that the historical average MSPE is not greater than the

predictive model MSPE (corresponding to H0 : R2
oos ≤ 0 against HA : R2

oos > 0).

We also use our proposed profit test to find whether the trading rules based on return

forecasts can make significant profit. In existing studies, to evaluate the economic signif-

icance of return predictability, a utility function is pre-specified and return and volatility

forecasts are taken as the key inputs to pre-determine the optimal weights of stock index

in a portfolio during the next period that can maximize the investor utility. The return

forecast which can form the portfolio with greater performance is considered to have higher

economic significance. However, this methodology for evaluating return forecasts is sensitive

to the volatility forecasts and the choice of utility function. An advantage of our test is that

it relies on the return forecasts uniquely.

3.3. Data and variables

We use the monthly excess returns of the S&P 500 Index from January 1947 to December

2012 to conduct empirical analysis. The start of the sample is the same as that of Rapach

et al. (2010). We calculate the excess returns (or risk premium) as the aggregate returns

of the S&P 500 Index (including dividends) minus the short-term interest rate proxied by a

risk-free bill rate. The stock return and predictor data taken from the literature enable us

to compare results. We use 12 variables to predict stock returns. A representative study by

Goyal and Welch (2008)1 offers a detailed explanation of these predictors. For the sake of

brevity, we describe the following predictive variables briefly :

• Dividend yield (DY): the log of dividends minus the log of lagged stock prices (S&P

500 Index). The dividends used here are the 12-month moving sums of dividends paid

on the S&P 500 Index.

• Earning price ratio (EP): the log of earnings minus the log of stock prices. The earnings

used here are the 12-month moving sums on the S&P 500 Index.

1We particularly thank Amit Goyal for providing these data at his homepage ( http://www.hec .u-

nil.ch/agoyal/ ).
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• Dividend payout ratio (DP): the log of dividends minus the log of earnings.

• Stock return volatility (SVOL): the sum of squared daily stock returns on the S&P

500 Index in each month.

• Book-to-market ratio (BM): the ratio of book value to market value for the Dow Jones

Industrial Average.

• Net equity expansion (NTIS): the ratio of 12-month moving sums of net issues by New

York Stock Exchange (NYSE) listed stocks to the total market capitalization of NYSE

stocks.

• Treasury bill rate (TBL): the interest rate on a three-month Treasury bill (secondary

market).

• Long-term yield (LTY): long-term government bond yield.

• Long-term return (LTR): long-term government bond returns.

• Default yield spread (DFY): the difference between Moodys BAA- and AAA-rated

bond yields.

• Default return spread (DFR): the difference between long-term corporate and govern-

ment bond returns.

• Inflation rate (INFL): the inflation rate calculated from the Consumer Price Index for

all urban consumers. As the inflation rate information is reported with a delay, we

follow the literature and use one-month lagged inflation rates (e.g., Dangl and Halling,

2012; Rapach et al., 2010; Neely et al., 2014)

Based on the dataset used by Goyal and Welch (2008) and Neely et al. (2014), we exclude

the DP variable because it is almost perfectly correlated with DY. We do not use the term

spread to avoid the problem of collinearity, as it is the difference between ITY and TBL.
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3.4. Forecasting results

Table 7 reports the forecasting results of individual models in which only a predictive

variable is included based on the criterion of R2
oos. We can see that almost none of the

individual variables can significantly beat the benchmark of historical average, evidenced by

the negative values of R2
oos. The only two exceptions are that DY and SVOL forecasts are

slightly more accurate than historical average forecasts, with the R2
oos of 0.033 and 0.078

percent, respectively. This result is generally consistent with the finding in the main stream

literature that a single model is difficult to outperform the historical average benchmark

(Goyal and Welch, 2008). More importantly, the R2
oos values of forecasts of MRS and TVP

models do not higher than the simple CC models. This result is contrary to the finding in the

paper by Dangl and Halling (2012) who point out that predictive models with time-varying

coefficients dominate models with constant coefficients. The reason is that Dangl and Halling

(2012) use a combination of several TVP models with various degrees of parameter variation,

while we use single predictive models only. It is likely that the predictive relationships change

at different extents during different periods of time. The combined strategy in Dangl and

Halling (2012) paper actually accounts for both parameter instability and model uncertainty.

Our evidence suggests that parameter instability is not the main source about the inferior

forecasting performances of individual models.

Insert Table 7 here

Turning to the performances of forecast combinations reported in Table 8, we can see

that each combination over CC or MRS models results in significantly more accurate fore-

casts than the historical average forecasts, with the R2
oos values of 0.7-1 percent. The R2

oos

values of combination strategies are also higher than all individual models, suggesting the

benefit of improvement of predictive ability. Consistently, combinations over MRS and TVP

models do not perform better than combinations over CC models in forecasting stock re-

turns. Therefore, the return predictability is available by addressing the problem of model

uncertainty, rather than parameter instability.

Insert Table 8 here
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We have found predictability of stock returns in the statistical sense using forecast com-

binations. To examine whether the predictability is economically significant, we consider

a trading rule determined by the sign of forecasts of excess returns. Specifically, the in-

vestor holds a long (short) position of stock index if the predicted stock return is positive

(negative) (see Anatolyev and Gerko, 2005). We use our bootstrap based AG method to

test the significance of the returns of this trading strategy2. The null hypothesis is that

the average return resulting from use of the trading strategy is lower than or equal to the

average return of a benchmark strategy that issues buy/sell signals at random with proba-

bilities corresponding to the proportion of “buys” and “sells” implied ex post by the trading

strategy. Table 9 shows the average annualized returns of buy/sell strategy based on the

sign of return forecasts from individual models. We also report p-values via 1000 block

bootstraps and use the block lengths of 5 and 15. Generally speaking, the average returns

of buy/sell strategy depend heavily on the use of predictive variable. Most of individual

models cannot generate significant profit with only a few exceptions. In detail, LTR and

DFR forecasts can on average result in annualized returns of 670 and 500 bps when CC spec-

ifications are employed, respectively. The obtained returns are also significant according to

the bootstrapped p-values of AG test. Consistently, predictive models with time variation

in coefficients cannot perform better than models with constant coefficients.

Insert Table 9 here

Table 10 reports the annualized returns of trading rules formed by combined forecasts,

as well as bootstrapped p-values. Unlike the forecasting performances in the statistical

sense, we cannot find any combination strategy yielding significant returns by looking at

the p-values. The combination strategy does not necessarily perform better than individual

models under the economic evaluation. Therefore, although we have deal with the problems

of model uncertainty and parameter instability carefully, we do not obtain economically

significant predictability of stock returns. None of these two factors can explain the failure

2We do not use the PT test because its power is demonstrated to be lower than AG test.
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in finding return predictability. In this economic sense, forecasting stock returns will be still

a long way to go.

Insert Table 10 here

4. Conclusions

Testing for the predictability of financial asset returns has been of great interest for

academicians. In this paper, we give the first order validity of the block bootstrap for

predictability under the serial dependence. We construct new bootstrap tests for mean

predictability based on a simple buy/sell trading strategy. Two test statistics are considered;

one is based on excess profit test of AG, and the other is in the spirit of direction accuracy test

of PT. The simulating results show that our bootstrapped method displays more correct size

and higher power than the asymptotic AG and PT statistics, especially for smaller sample

size.

Our tests are also applied to examine the stock return predictability. We use 12 macroeco-

nomic variables to predict excess stock return of S&P 500 index. CC, MRS and TVP models

are employed to deal with the problem of parameter instability. Four forecast combinations

are used to account for the effect of model uncertainty. We find significant predictability

in terms of MSPE using combination strategies. Model uncertainty plays the major role in

affecting forecasting performances in the statistical sense. However, when using our test for

the significance of profit, we find little evidence of return predictability. Parameter instabil-

ity or model uncertainty cannot explain the unpredictability of returns in economic sense.

Revealing stock return predictability is still a difficult task for academicians.
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Table 1: Empirical proportion of rejections (size).

T AG stat PT stat

1% level 5% level 10% level 1% level 5% level 10% level

DGP: Constant model

250 0.007 0.027 0.050 0.002 0.012 0.038

500 0.010 0.039 0.079 0.003 0.025 0.060

750 0.007 0.044 0.084 0.003 0.025 0.070

1000 0.013 0.057 0.119 0.008 0.048 0.098

DGP: GARCH model

250 0.023 0.083 0.144 0.006 0.034 0.082

500 0.023 0.088 0.139 0.013 0.053 0.100

750 0.024 0.088 0.141 0.009 0.054 0.095

1000 0.019 0.076 0.127 0.008 0.054 0.113

Notes: The table shows the size of AG statistics (10) and PT statistics (13) based on asymptotic critical

value, respectively. The data are generated from constant model (20) and GARCH model (21). All

results are based on 1000 Monte Carlo simulation.
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Table 2: Empirical proportion of rejections (size)

T AG∗ stat PT∗ stat

1% level 5% level 10% level 1% level 5% level 10% level

l = 1

250 0.005 0.030 0.093 0.003 0.023 0.075

500 0.005 0.040 0.115 0.003 0.027 0.078

750 0.009 0.047 0.108 0.005 0.033 0.076

1000 0.010 0.045 0.089 0.007 0.041 0.079

l = 5

250 0.006 0.034 0.102 0.008 0.031 0.088

500 0.003 0.037 0.105 0.006 0.039 0.092

750 0.008 0.055 0.095 0.009 0.036 0.082

1000 0.009 0.046 0.099 0.008 0.042 0.087

l = 10

250 0.005 0.039 0.101 0.007 0.031 0.072

500 0.007 0.041 0.096 0.004 0.030 0.071

750 0.008 0.043 0.106 0.008 0.040 0.077

1000 0.008 0.052 0.111 0.012 0.045 0.096

l = 15

250 0.017 0.056 0.119 0.011 0.047 0.087

500 0.005 0.041 0.110 0.009 0.035 0.080

750 0.009 0.050 0.111 0.008 0.029 0.076

1000 0.008 0.041 0.107 0.007 0.026 0.082

Notes: The table shows the size of AG∗ statistics (16) and PT ∗ statistics (17) based

on bootstrap critical value, respectively. The data are generated from constant model

(20). All results are based on 1000 Monte Carlo simulation and B = 300 bootstrap

replications.
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Table 3: Empirical proportion of rejections (size).

T AG∗ stat PT∗ stat

1% level 5% level 10% level 1% level 5% level 10% level

l = 1

250 0.009 0.038 0.080 0.004 0.037 0.078

500 0.013 0.039 0.072 0.007 0.034 0.071

750 0.008 0.036 0.082 0.006 0.050 0.104

1000 0.008 0.034 0.080 0.014 0.046 0.085

l = 5

250 0.009 0.051 0.103 0.011 0.049 0.097

500 0.007 0.036 0.071 0.005 0.040 0.080

750 0.007 0.036 0.081 0.011 0.043 0.097

1000 0.007 0.032 0.069 0.003 0.042 0.096

l = 10

250 0.012 0.046 0.081 0.013 0.046 0.084

500 0.014 0.046 0.081 0.022 0.048 0.091

750 0.009 0.038 0.088 0.008 0.054 0.113

1000 0.008 0.044 0.095 0.010 0.055 0.095

l = 15

250 0.019 0.052 0.110 0.020 0.051 0.100

500 0.009 0.038 0.074 0.012 0.047 0.099

750 0.008 0.043 0.093 0.014 0.049 0.092

1000 0.003 0.039 0.071 0.014 0.039 0.088

Notes: The table shows the size of AG∗ statistics (16) and PT ∗ statistics (17) based

on bootstrap critical value, respectively. The data are generated from GARCH model

(21). All results are based on 1000 Monte Carlo simulation and B = 300 bootstrap

replications.
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Table 4: Empirical proportion of rejections (power).

T AG stat PT stat

1% level 5% level 10% level 1% level 5% level 10% level

DGP: AR model

250 0.024 0.093 0.177 0.015 0.071 0.134

500 0.102 0.206 0.303 0.049 0.161 0.235

750 0.151 0.314 0.417 0.099 0.215 0.299

1000 0.212 0.398 0.520 0.116 0.293 0.389

DGP: SETAR model

250 0.036 0.118 0.186 0.027 0.089 0.161

500 0.074 0.195 0.295 0.048 0.144 0.218

750 0.171 0.337 0.413 0.099 0.242 0.332

1000 0.220 0.377 0.480 0.126 0.283 0.383

Notes: The table shows the power of AG statistics (10) and PT statistics (13) based on asymptotic

critical value, respectively. The data are generated from AR model (22) and SETAR model (23). All

results are based on 1000 Monte Carlo simulation.
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Table 5: Empirical proportion of rejections (power).

T AG∗ stat PT∗ stat

1% level 5% level 10% level 1% level 5% level 10% level

l = 1

250 0.061 0.145 0.240 0.043 0.118 0.188

500 0.118 0.298 0.424 0.097 0.227 0.336

750 0.213 0.416 0.547 0.151 0.320 0.442

1000 0.269 0.495 0.604 0.193 0.377 0.513

l = 5

250 0.083 0.180 0.261 0.055 0.148 0.213

500 0.134 0.319 0.420 0.101 0.247 0.349

750 0.205 0.401 0.541 0.129 0.312 0.450

1000 0.272 0.528 0.663 0.187 0.398 0.513

l = 10

250 0.079 0.183 0.244 0.057 0.156 0.226

500 0.136 0.307 0.438 0.107 0.245 0.352

750 0.210 0.422 0.556 0.150 0.317 0.439

1000 0.276 0.503 0.632 0.180 0.397 0.524

l = 15

250 0.105 0.200 0.270 0.073 0.164 0.236

500 0.139 0.300 0.395 0.101 0.233 0.338

750 0.214 0.399 0.521 0.153 0.321 0.448

1000 0.292 0.519 0.656 0.203 0.400 0.514

Notes: The table shows the power of AG∗ statistics (16) and PT ∗ statistics (17) based on

bootstrap critical value, respectively. The data are generated from AR model (22). All

results are based on 1000 Monte Carlo simulation and B = 300 bootstrap replications.
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Table 6: Empirical proportion of rejections (power).

T AG∗ stat PT∗ stat

1% level 5% level 10% level 1% level 5% level 10% level

l = 1

250 0.067 0.150 0.242 0.045 0.114 0.192

500 0.128 0.274 0.363 0.072 0.203 0.306

750 0.225 0.413 0.511 0.139 0.317 0.436

1000 0.284 0.494 0.629 0.178 0.384 0.512

l = 5

250 0.084 0.173 0.254 0.046 0.126 0.208

500 0.113 0.253 0.380 0.068 0.194 0.298

750 0.211 0.393 0.515 0.134 0.291 0.381

1000 0.276 0.484 0.623 0.189 0.371 0.480

l = 10

250 0.083 0.187 0.256 0.055 0.128 0.202

500 0.148 0.318 0.405 0.096 0.237 0.351

750 0.214 0.405 0.498 0.138 0.294 0.391

1000 0.296 0.525 0.656 0.212 0.422 0.551

l = 15

250 0.108 0.205 0.284 0.070 0.152 0.226

500 0.165 0.329 0.421 0.114 0.235 0.341

750 0.201 0.385 0.513 0.133 0.289 0.423

1000 0.268 0.455 0.583 0.175 0.369 0.492

Notes: The table shows the power of AG∗ statistics (16) and PT ∗ statistics (17) based

on bootstrap critical value, respectively. The data are generated from SETAR model

(23). All results are based on 1000 Monte Carlo simulation and B = 300 bootstrap

replications.
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Table 7: Forecasting performances of individual models evaluated by out-of-sample R-square.

CC MRS TVP

R2
oos p-value R2

oos p-value R2
oos p-value

DY 0.033 0.070 -0.421 0.135 -1.295 0.452

EP -0.424 0.342 -0.658 0.359 -2.825 0.613

DP -0.643 0.386 0.025 0.177 -2.486 0.456

SVOL 0.078 0.098 -0.093 0.057 -2.272 0.598

BM -1.130 0.792 -1.992 0.776 -4.036 0.691

NTIS -0.701 0.374 -0.453 0.283 -2.472 0.443

TBL -0.956 0.043 -1.451 0.032 -2.603 0.189

LTY -0.978 0.084 -1.517 0.087 -4.933 0.466

LTR -0.020 0.032 -3.051 0.329 -1.249 0.124

DFY -0.823 0.739 -0.643 0.379 -3.560 0.325

DFR -0.605 0.574 -1.433 0.594 -3.963 0.752

INFL -0.354 0.419 -0.434 0.466 -1.490 0.501

Notes: This table provides the R2
oos of stock return forecasts from individual models

which takes a macroeconomic variable as predictor. The values of R2
oos are calculated

as the percent reduction of mean squared predictive error (MSPE) of model of interest

relative to the MSPE of the benchmark model of historical average. p-values are for Clark

and West (2006) test for the null hypothesis that the MSPE of the model of interest is

higher than or equal to the benchmark model.
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Table 8: Forecasting performances of combination strategies evaluated by out-of-sample R-square.

CC MRS TVP

R2
oos p-value R2

oos p-value R2
oos p-value

MFC 0.821 0.005 0.745 0.088 -0.988 0.441

TMC 0.967 0.004 0.690 0.102 -0.904 0.423

DMSPE(1) 0.802 0.007 0.716 0.095 -1.014 0.450

DMSPE(0.9) 0.817 0.012 0.708 0.102 -1.026 0.443

Notes: This table provides the R2
oos of stock return forecasts from combination strategies

over 12 individual models. The values of R2
oos are calculated as the percent reduction of

mean squared predictive error (MSPE) of the combination strategy of interest relative

to the MSPE of the benchmark model of historical average. p-values are for Clark and

West (2006) test for the null hypothesis that the MSPE of the strategy of interest is

higher than or equal to the benchmark model.
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Table 9: Forecasting performances of individual models evaluated by economic value.

CC MRS TVP

return p-value p-value return p-value p-value return p-value p-value

l = 5 l = 15 l = 5 l = 15 l = 5 l = 15

DY 0.016 0.707 0.657 0.067 0.540 0.557 -2.840 0.963 0.947

EP 3.625 0.417 0.357 3.666 0.350 0.347 1.933 0.670 0.630

DP 2.198 0.617 0.630 3.089 0.413 0.510 2.710 0.393 0.377

SVOL 3.696 0.453 0.467 1.677 0.887 0.917 2.525 0.353 0.380

BM 3.930 0.500 0.500 4.148 0.377 0.400 -2.968 0.957 0.983

NTIS 3.266 0.933 0.957 2.621 0.873 0.930 2.894 0.273 0.287

TBL 2.862 0.250 0.230 2.624 0.257 0.243 4.230 0.157 0.137

LTY 3.108 0.153 0.147 2.088 0.277 0.270 1.709 0.473 0.447

LTR 6.710 0.023 0.003 5.018 0.097 0.080 2.459 0.383 0.387

DFY 3.558 0.910 0.930 2.709 0.657 0.797 0.263 0.710 0.710

DFR 5.017 0.062 0.050 3.347 0.483 0.497 1.332 0.697 0.703

INFL 3.684 0.357 0.367 3.909 0.320 0.323 0.410 0.807 0.833

Notes: This table reports the annualized average returns of the buy/sell trading rules

constructed based on the sign of return forecasts obtained from individual predictive

regressions. We use the newly bootstrapped version of AG statistic to test for the

null hypothesis of no return predictability. p-values are obtained based on 1000 block

bootstraps with the block lengths of 5 and 15 (l = 5, 15).
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Table 10: Forecasting performances of combination strategies evaluated by economic value.

CC MRS TVP

return p-value p-value return p-value p-value return p-value p-value

l = 5 l = 15 l = 5 l = 15 l = 5 l = 15

MFC 3.616 0.970 0.907 3.710 0.520 0.473 3.216 0.350 0.360

TMC 3.544 0.830 0.897 3.488 0.547 0.557 3.186 0.343 0.427

DMSPE(1) 3.616 0.973 0.943 3.710 0.467 0.397 3.145 0.410 0.370

DMSPE(0.9) 3.544 0.803 0.877 3.790 0.447 0.457 2.588 0.487 0.503

Notes: This table reports the annualized average returns of the buy/sell trading rules

constructed based on the sign of return forecasts obtained from combination strategies.

We use the newly bootstrapped version of AG statistic to test for the null hypothesis of

no return predictability. p-values are obtained based on 1000 block bootstraps with the

block lengths of 5 and 15 (l = 5, 15).
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Appendix A. Proof

This appendix gives some lemmas for the proof of 1 and 2.

Lemma 1. Draw independently each block on [0, 1, · · · , T − l] with probability 1/(T − l+ 1),

and let T = bl where b is the number of blocks, l denotes the length of each block, then

E∗[A∗T ] =
1

T

T∑
t=1

sign(ŷt)yt +Op∗(l/T ) (A.1)

E∗[B∗T ] =
( 1

T

T∑
t=1

sign(ŷt)
)( 1

T

T∑
t

yt
)

+Op∗(l/T ) (A.2)

E∗[Ã∗T ] =
1

T

T∑
t=1

sign(ŷt)sign(yt) +Op∗(l/T ) (A.3)

E∗[B̃∗T ] =
( 1

T

T∑
t=1

sign(ŷt)
)( 1

T

T∑
t=1

sign(yt)
)

+Op∗(l/T ) (A.4)

where E∗[·] means conditional expectation given ω1, · · · , ωT .

Firstly, we present the proof of (A.1).

E∗[A∗T ] = E∗[
1

T

T∑
t=1

sign(ŷ∗t )y∗t ]

= E∗[
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j)ysi+j]

= E∗[
1

l

l∑
j=1

sign(ŷs1+j)ys1+j] (A.5)

since si, i = 1, · · · , b are independent uniform, they are i.i.d. uniform. Thus (A.5) can be

rewritten as

1

l
(sign(ŷ1)y1 + sign(ŷ2)y2 + · · ·+ sign(ŷl)yl)P (s1 = 0)

+
1

l
(sign(ŷ2)y2 + sign(ŷ3)y3 + · · ·+ sign(ŷl+1)yl+1)P (s1 = 1)

+
... (A.6)

+
1

l
(sign(ŷbl−l+1)ybl−l+1 + sign(ŷbl−l+2)ybl−l+2 + · · ·+ sign(ŷbl)ybl)P (s1 = T − l),
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and P (s1 = 0) = P (s1 = 1) = · · · = P (s1 = T − l) = 1
T−l+1

.

Note that for l+ 1 ≤ t ≤ T − l we obtain l× sign(ŷt)yt summands, while we have only 1

sign(ŷt)yt and sign(ŷbl)ybl, 2 sign(ŷ2)y2 and sign(ŷbl−1)ybl−1 and so on. To sum up the terms

in (A.6)

1

T − l + 1

T−l∑
t=l+1

sign(ŷt)yt +Op∗(l/T ) (A.7)

=
1

T

T∑
t=1

sign(ŷt)yt +Op∗(l/T ) �

Similarly, we also show A.2-A.4 hold, and the proof is thus omitted.

Lemma 2. Under the null hypthesis H0 hold, then

|V ar∗[A∗T ]− V ar[AT ]| p∗−→ 0 (A.8)

|V ar∗[B∗T ]− V ar[BT ]| p∗−→ 0 (A.9)

|Cov∗[A∗T , B∗T ]− Cov[AT , BT ]| p∗−→ 0 (A.10)

|V ar∗[Ã∗T ]− V ar[ÃT ]| p∗−→ 0 (A.11)

|V ar∗[B̃∗T ]− V ar[B̃T ]| p∗−→ 0 (A.12)

|Cov∗[Ã∗T , B̃∗T ]− Cov[ÃT , B̃T ]| p∗−→ 0 (A.13)

where V ar∗[·] and Cov∗[·] are the conditional variance and covariance given ω1, · · · , ωT ,

respectively.

The proof of (A.8):

V ar∗[A∗T ] = V ar∗[
1

T

T∑
t=1

sign(ŷ∗t )y∗t ]

= E∗[(
1

T

T∑
t=1

sign(ŷ∗t )y∗t )2]− (E∗[
1

T

T∑
t=1

sign(ŷ∗t )y∗t ])2

= E∗[(
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j)ysi+j)
2]− (E∗[

1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j)ysi+j])
2

H0=
1

T
sign(ŷ)2y2 − 1

T
[sign(ŷ)]

2
y2 + op∗(1)

= V ar[AT ] + op∗(1). � (A.14)
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Thus, |V ar∗[A∗T ]− V ar[AT ]| p∗−→ 0 as desired.

V ar∗[B∗T ] = E∗[(
1

T

T∑
t=1

sign(ŷ∗t ))2(
1

T

T∑
t=1

y∗t )2]− (E∗[(
1

T

T∑
t=1

sign(ŷ∗t ))(
1

T

T∑
t=1

y∗t )])2

H0= E∗[(
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j))
2]E∗[(

1

bl

b∑
i=1

l∑
j=1

ysi+j)
2]

−(E∗[
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j)])
2(E∗[

1

bl

b∑
i=1

l∑
j=1

ysi+j])
2

= [
1

T
sign(ŷ)2 +

T − 1

T
sign(ŷ)

2
][

1

T
y2 +

T − 1

T
y2]− (sign(ŷ))2y2 + op∗(1)

= V ar[BT ] + op∗(1). � (A.15)

Therefore, |V ar∗[B∗T ]− V ar[BT ]| p∗−→ 0 as desired. And

Cov∗[A∗T , B
∗
T ] = E∗[(

1

T

T∑
t=1

sign(ŷ∗t )y∗t )(
1

T

T∑
t=1

sign(ŷ∗t ))(
1

T

T∑
t=1

y∗t )]

−E∗[( 1

T

T∑
t=1

sign(ŷ∗t )y∗t )]E∗[(
1

T

T∑
t=1

sign(ŷ∗t ))(
1

T

T∑
t=1

y∗t )]

= E∗[(
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j)ysi+j)(
1

bl

b∑
i=1

l∑
j=1

sign(ŷsi+j))(
1

bl

b∑
i=1

l∑
j=1

ysi+j)]

−E∗[( 1

bl
)

b∑
i=1

l∑
j=1

sign(ŷsi+j)ysi+j]E
∗[(

1

bl

b∑
i=1

l∑
j=1

sign(y)si+j)(
1

bl

b∑
i=1

l∑
j=1

ysi+j)]

H0= [
1

T
sign(ŷ)2 +

T − 1

T
sign(ŷ)

2
][

1

T
y2 +

T − 1

T
y2]− (sign(ŷ))2y2 + op∗(1)

= Cov[AT , BT ] + op∗(1). � (A.16)

Then, the proof of equation (A.10) is finished. Similarly, (A.11)-(A.13) can be proven and

is omitted here.

Corollary 1. Under the conditions of Lemma 2, then

|V̂ ∗AG − V̂AG|
p∗−→ 0 (A.17)

|V̂ ∗PT − V̂PT |
p∗−→ 0 (A.18)

where V̂ ∗AG and V̂ ∗PT are defined in (18) and (19), respectively.
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Finally, using the Lemma 1 and Corollary 1, we can construct the Hausman-type statis-

tics as

AG∗ ≡ A∗T −B∗T − (AT −BT )√
V̂ ∗AG

→ N (0, 1), (A.19)

PT ∗ =
Ã∗T − B̃∗T − (ÃT − B̃T )√

V̂ ∗PT

→ N (0, 1). � (A.20)

So, the proof of Theorem 1 and 2 is accomplished.
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