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Abstract

The ability of pneumococcal conjugate vaccine (PCV) to decrease transmission by blocking the 

acquisition of colonization has been attributed to herd immunity. We describe the role of mucosal 

IgG to capsular polysaccharide (CPS) in mediating protection from carriage, translating our 

findings from a murine model to humans. We used a flow-cytometric assay to quantify antibody-

mediated agglutination demonstrating that hyperimmune sera generated against an unencapsulated 

mutant was poorly agglutinating. Passive immunization with this antiserum was ineffective to 

block acquisition of colonization compared to agglutinating antisera raised against the 

encapsulated parent strain. In the human challenge model samples were collected from PCV and 

control vaccinated adults. In PCV-vaccinated subjects IgG levels to CPS were increased in serum 

and nasal wash (NW). IgG to the inoculated strain CPS dropped in NW samples after inoculation 

suggesting its sequestration by colonizing pneumococci. In post-vaccination NW samples 

pneumococci were heavily agglutinated compared to pre-vaccination samples in subjects protected 

against carriage. Our results indicate that pneumococcal agglutination mediated by CPS specific 
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antibodies is a key mechanism of protection against acquisition of carriage. Capsule may be the 

only vaccine target that can elicit strong agglutinating antibody responses, leading to protection 

against carriage acquisition and generation of herd immunity.

INTRODUCTION

The human nasal mucosa forms the first line of defence against respiratory pathogens. Some 

of these pathogens such as Streptococcus pneumoniae (the pneumococcus) can 

asymptomatically colonise the upper respiratory tract (the carrier state). 1 Although most 

episodes of pneumococcal carriage do not result in disease, the organism may gain access to 

normally sterile sites in its human host from its niche on the mucosal surfaces of the upper 

airways. 2 Mucosal immune responses, therefore, play a critical role in the defence against 

pneumococcal infections as they dictate the outcome of host-pathogen interactions at the 

mucosa.

Murine models have demonstrated that once carriage is established the generation of 

mucosal antibodies is ineffective at clearing the organism. 3, 4 However, mucosal antibody, if 

present before stable colonization occurs, may block acquisition through its agglutinating 

activity, a mechanism dependent on its multi-valency and independent of Fc, complement 

and opsonophagocytosis. 5 The ability of agglutinating antibody to inhibit the establishment 

of mucosal colonization could be attributed to more efficient mucociliary clearance of larger 

particles and the requirement for a larger colonizing dose. Since pneumococci enzymatically 

inactivate the agglutinating activity of human IgA1, the most abundant form of 

immunoglobulin on the airway surface, the prevention of colonization requires sufficient 

mucosal levels of other subclasses such as IgG. 6 The ability of the pneumococcus to target 

and evade human-specific components of humoral immunity emphasizes the need to 

examine the mechanisms of mucosal protection in the natural host.

The serotype-specific success of the pneumococcal conjugate vaccine (PCV) in reducing 

rates of carriage of vaccine-type strains in immunized populations indicates that anti-

capsular antibodies reduce transmission by blocking the acquisition of colonization.7 PCV 

vaccination induces high levels of serum IgG that access the mucosal surface in vaccinated 

children, however, the exact mechanism by which this vaccine mediates mucosal protection 

has not been described. 8 We recently reported that PCV conferred a 78% reduction in 

carriage acquisition compared to a control group following inoculation of adults with live 

type 6B pneumococci in an experimental human pneumococcal carriage (EHPC) study. 9

In this report, we utilize a flow cytometric assay to quantify the agglutinating effect of anti-

pneumococcal antibodies. This assay allowed us to examine the role of pneumococcal 

surface antigens and demonstrate the importance of antibodies to its immunodominant 

antigen, capsular polysaccharide (CPS), in eliciting agglutinating IgG that protects from the 

acquisition of colonization. This assay was then used to investigate the role of mucosal 

antibodies to capsule antigens in mediating agglutination and protection against acquisition 

of pneumococcal carriage in the natural host in an EHPC study of PCV.
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RESULTS

A flow cytometric assay to quantify pneumococcal agglutination by antibody

To quantify bacterial agglutination, we developed and optimized a flow cytometric assay. 

After a brief incubation of pneumococci with type-specific antibody, there was a dose-

dependent increase in the shift in forward scatter (FSC) (Fig. 1A). At higher concentrations, 

there was also an increase in side scatter (SSC). Samples were then analysed under similar 

conditions using an Amnis Imaging Flow Cytometer to visualize the individual events 

detected by the laser. The change in particle size, as detected by shift in FSC, and 

complexity, as detected by shift in SSC, correlated with a progressive bridging of particles to 

form longer chains (threading reaction) by antibody. 10 As the concentration of antibody was 

increased further these formed into aggregates of increasing size. Furthermore, divalent 

F(ab’)2 fragments generated from this antibody5 caused a similar shift in FSC and 

corresponding visual agglutination of bacteria, unlike an equivalent concentration of 

monovalent Fab fragments (Fig. 1B). Together these data confirm that flow cytometry is a 

sensitive method to detect and quantify bacterial agglutination by antibody.

Capsule is the major agglutinating antigen and leads to enhanced protection

Using this flow cytometric assay for agglutination, we examined which pneumococcal 

surface antigens could generate agglutinating antibodies. We raised hyperimmune rabbit 

anti-sera against whole-cell heat-killed P1121, a type 23F isolate (P2109, encapsulated 

strain), and a genetically-modified mutant of P1121 lacking the capsular antigen 

(unencapsulated strain). Immunisation with these strains led to a robust antibody response, 

and the ELISA IgG titers to whole bacteria were not significantly different whether 

antiserum was raised against the encapsulated or unencapsulated strain (Fig. 2A). As 

expected, only antiserum raised to the encapsulated strain contained antibody recognising 

purified type 23 CPS by ELISA (Fig. 2B). Using these rabbit antisera, we then compared 

agglutination using the flow cytometric assay and found that only antiserum raised against 

the encapsulated strain was able to agglutinate the wild-type encapsulated bacteria (Fig. 2C). 

In contrast, the antiserum raised against the isogenic strain lacking the capsular antigen 

showed minimal agglutination of either the encapsulated or the unencapsulated strains. This 

suggests that while the array of non-capsular antigens underlying the capsule is able to 

induce a strong immune response, antibody to these antigens is relatively poorly 

agglutinating. Therefore, capsular antigens may be the only antigens that can efficiently 

promote agglutination. To confirm the requirement for the capsular antigen in agglutination, 

isogenic strains in which the capsule-type was genetically switched were compared using 

the flow cytometric assay. Pneumococcal agglutination required type-specific antibody 

regardless of genetic background (Fig. 2D). There did not appear to be a significant 

contribution of other constituents determined by genetic background to agglutination. The 

agglutinating ability of antibodies has been shown to protect from the acquisition of 

colonization. 5 We used a murine model of colonization to compare the antisera raised to the 

isogenic encapsulated and unencapsulated strains. After intranasal challenge with strain 

P1121, mice that had been passively immunized with antisera against the encapsulated strain 

were more protected from colonization compared to mice immunized with the antisera 
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against its unencapsulated mutant (Fig. 2E). This confirmed that the agglutinating ability of 

anti-capsular antibody is important for limiting colonization acquisition.

Anti-PS IgG-mediated protection against experimental carriage in PCV vaccinated subjects

To investigate whether anti-capsular antibody generated through vaccination with PCV 

could mediate protection against carriage acquisition through agglutination, we studied 

samples from the PCV/EHPC study in which PCV vaccinated subjects had 78% protection 

against carriage acquisition with 6B strain.9 IgG levels to the vaccine-included CPS 6B and 

23F were measured at Pre-V, Post-V and 21 days after pneumococcal inoculation in sera 

samples as well as at day 2 after inoculation in nasal wash (NW) samples (Supplementary 

Fig. 1).

As expected, PCV-vaccinated subjects had increased IgG levels to both capsule-types in 

serum Post-V compared to Pre-V levels (Fig. 3). Only 5 out of 48 subjects vaccinated with 

PCV became colonized following pneumococcal inoculation (carriage+). In carriage+ 

subjects, only a modest 2.6-fold increase in levels of IgG to 6B CPS was observed in serum 

following vaccination, considerably less than the 8.4-fold increase observed in subjects 

protected from carriage (carriage−) (Fig. 3A). A similar pattern was observed in NW 

samples (Fig. 3C). Interestingly, amongst carriage+ subjects, only one volunteer had 

increased IgG levels in NW Post-V. Pneumococcus was recovered from the nasopharynx of 

this volunteer at a very low density and at only one time point.

While IgG levels remained unaltered following pneumococcal inoculation in sera (Fig 3A 

and 3B), levels of IgG to the CPS of inoculated 6B strain significantly dropped in NW 2 

days after inoculation compared to levels prior to inoculation (Fig. 3C). No decrease was 

observed in levels of IgG to 23F CPS following pneumococcal inoculation with the 6B strain 

(Fig. 3D). These data suggest that capsule-specific antibody is sequestered in the nasal 

lumen following pneumococcal inoculation that could play a role in protection against 

carriage acquisition.

Carriage boosts pre-existing levels of IgG to CPS of inoculated strain

We have previously shown that exposure to pneumococci following intranasal inoculation 

boosted pre-existing levels of CPS IgG to 6B CPS in serum only for subjects who developed 

carriage.11 In this study we confirmed this observation in a larger group of participants and 

further observed that levels are also increased in NW following carriage (Fig. 3E and 3G). 

As expected, we observed no increase in levels of IgG to both capsular-types in the control 

group following vaccination with the Hep-A vaccine (Fig. 3 E-H) and no alteration in levels 

of IgG to the 23F CPS following inoculation with the 6B strain (Fig. 3F and 3H).

Correlation between levels of IgG to 6B CPS in serum and nasal wash samples

There was a positive correlation between levels of IgG to 6B CPS in serum and NW in PCV 

vaccinated subjects (Fig. 4), which indicates that systemic antibodies elicited by vaccination 

transudate to the nasal lumen. A similar correlation was observed between levels of systemic 

and nasal IgG in carriage+ subjects 21 days following carriage (Supplementary Fig. 2).
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IgG mediates bacterial agglutination in the nasal mucosa in PCV vaccinated subjects

We then examined whether IgG present in NW from PCV vaccinated subjects could promote 

bacterial agglutination. Using concentrated NW samples incubated with the 6B strain, we 

observed increased pneumococcal agglutination in Post-V samples compared to Pre-V 

samples (19.4 ±15.1 vs 12.4 ± 7.8). This increased antibody-mediated agglutination was 

observed only in volunteers protected from carriage acquisition (carriage−) (Fig. 5A). Levels 

of IgG to 6B CPS correlated with levels of agglutination observed in NW from carriage− 

(Fig. 5B; closed circles) but not carriage+ subjects (Fig. 5B; open circles).

We also examined agglutination capacity of IgG present in NW from Hep-A vaccinated 

control subjects prior to pneumococcal inoculation, to investigate whether agglutination 

capacity of naturally acquired IgG was associated with protection against carriage 

acquisition. No difference was observed between carriage− and carriage+ groups (Fig. 6A) 

and agglutination levels were low in both groups, which could be due to the low levels of 

IgG to 6B CPS present in these samples (Fig. 3G). No correlation was observed between 

IgG to 6B CPS present in NW and agglutination levels in either carriage− or carriage+ 

groups (Fig. 6B and 6C).

DISCUSSION

Our study provides insight into the mechanisms of mucosal defence against pathogens and 

how humoral immunity generated through vaccination contributes to protection. We 

demonstrate that the ability of antibody to block the establishment of colonization in the 

human host, the first step in pathogenesis of disease caused by S. pneumoniae, correlates 

with its agglutinating activity. 1, 12 Our focus was on IgG because it is generated in high 

concentrations in response to systemic immunization and has been shown to be sufficient to 

promote agglutination on the mucosal surface.5 We have measured both IgA1 and IgA2 in 

NW samples pre- and post-inoculation with pneumococcus and IgA1 was the dominant IgA 

subclass in the nasal mucosa (data not shown). Secretory antibodies are unlikely to be 

sufficient factor in agglutination due to the activity of pneumococcal IgA1 protease and the 

moderated increase of S-IgM levels post-vaccination.13, 14

This study required a sensitive method to quantify agglutination. Through use of technology 

that simultaneously provides images of individual events detected during flow cytometric 

analysis, we confirmed that flow characteristics were a sensitive and specific measure of the 

magnitude of antibody-induced agglutination. By comparing hyperimmune sera generated to 

isogenic strains differing only in expression of CPS amount and type, we showed that type-

specific antibody to CPS was necessary for agglutination. Data from the EHPC study with 

parenterally-administered PCV confirmed that anti-CPS IgG is protective from colonization 

and is sufficient to generate mucosal agglutinating activity. This observation provided 

mechanistic understanding of the effectiveness of CPS-based immunity in reducing rates of 

mucosal infection and conferring herd immunity in the population15. This same mechanism 

may be applicable to vaccines using the CPSs of other encapsulated pathogens that also 

impact mucosal colonization.16, 17 In our study using whole pneumococci, only antibody to 

CPS was agglutinating. Yet, it remains possible that a sufficient amount of antibody to 

another pneumococcal target or combination of targets could elicit agglutinating antibody. It 
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also remains possible, however, that CPS is the only pneumococcal target that may elicit 

agglutination by specific antibodies. CPS is a highly abundant surface antigen and capable 

of inducing high levels of immunoglobulin, particularly when conjugated to an 

immunogenic protein carrier. Additionally, CPS variably shields underlying surface antigens 

from recognition by antibody. However, even when equivalent amounts of antibody to whole 

pneumococci were compared, only sera containing antibody to type-specific CPS elicited 

detectable agglutination. Thus, the amount of bound antibody does not appear to be the only 

factor contributing to agglutination.

Using an experimental model of human pneumococcal carriage, we previously demonstrated 

that PCV is highly protective against 6B pneumococcal carriage acquisition, conferring a 

78% reduction in carriage acquisition.9 We now document that in protected adults, PCV 

induced high levels of IgG to 6B CPS at the nasal mucosa. Nasal washes collected post PCV 

vaccination had increased pneumococcal agglutination capacity compared to nasal wash 

samples collected before vaccination. Agglutination levels correlated with levels of IgG to 

6B CPS. Interestingly, while levels of IgG to 23F CPS were unaltered in nasal wash after 

inoculation, levels of IgG to 6B CPS were reduced – this suggests that antibodies to 6B CPS 

were sequestered onto the bacterial surface in the nasal lumen following inoculation. Thus, 

the immunogenicity of PCV is sufficient to generate levels of IgG that reach the mucosal 

surface in amounts that bind to and agglutinate pneumococci when the host is exposed to the 

pathogen. Optimal protection may require the presence of agglutinating levels of antibody at 

the time of first exposure on the mucosal surface potentially explaining why the vaccine may 

prevent new carriage events but does not impact pre-existing colonization. It remains 

unknown whether humoral immunity generated by natural carriage generates protective 

agglutinating antibody that affects subsequent type-specific exposure to the organism. In 

previous EHPC studies we have shown that pneumococcal carriage protects healthy adults 

against subsequent carriage following re-exposure to the homologous strain11 but not against 

acquisition of a heterologous strain type.18 More recently we have shown that high baseline 

levels of circulating memory B-cells secreting IgG to CPS, but not to protein antigens, were 

associated with protection against carriage acquisition in unvaccinated adults.18 Taken 

together our findings suggest that anti-capsular IgG-mediated agglutination is a key 

mechanism of protection against pneumococcal carriage acquisition, in particular in subjects 

with high antibody titers, such as those vaccinated with PCV.

Our findings have several implications for vaccine development. Current anti-pneumococcal 

vaccines are limited by a serotype-specific approach and the diversity of pneumococcal 

types. Most of the effectiveness of pneumococcal vaccines, however, results from their 

ability to reduce transmission by decreasing rates of colonization in the population.15 Thus, 

for any novel vaccine containing more conserved target(s) to be as effective it would need to 

similarly impact carriage, and our study suggests that this would require the generation of 

agglutinating antibody on the mucosal surface of the upper airways.
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MATERIALS AND METHODS

Pneumococcal strains

The strains used in this study include BHN418 (type 6B, used for human experimental 

carriage studies19, P1121 (type 23F, isolated from the nasopharynx in a human experimental 

carriage study20 , P2109 (P1121Δcps)20 intermediate mutant in creating 2140), P1542 (type 

4 isolate, 21, 22, P1690 (P1542 background with type 23F capsule23, P2140 (P1121 

background with type 4 capsule.23 A GFP-expressing version of P1121 was used to 

differentiate bacteria from calibration beads in experiments with the Amnis ImageStreamX 

Imaging Flow Cytometer. All strains were grown in tryptic soy broth at 37°C, and were 

passaged intranasally in mice prior to preparation of frozen stocks, with exception of the 6B 

strain which were grown in Vegetone broth (for human inoculation) at 37°C 5% CO2 until 

early log phase and frozen.

Pneumococcal Conjugate Vaccine Experimental Human Pneumococcal Carriage (PCV/ 
EHPC) study

The PCV/EHPC study was conducted in 2012 and detailed methods for recruitment, 

nasopharyngeal pneumococcal inoculation and carriage detection as well as study design 

and study outcomes have been previously described.9 Ethical approval was obtained from 

the National Health Service (NHS) Research Ethics Committee (REC) (12/NW/0873). This 

study was co-sponsored by the Royal Liverpool and Broadgreen University Hospitals Trust 

and the Liverpool School of Tropical Medicine.

Briefly, 96 healthy adults aged 18–50 years were enrolled with informed consent and 

randomised to receive a single dose of either PCV-13 (Prevnar, Pfizer) or Hep-A vaccine as a 

control group (Avaxim, Sanofi Pasteur MSD). 4-5 weeks following vaccination subjects 

were intra-nasally inoculated with live 6B pneumococcus (BHN418) (80,000 CFUs per 

nostril).24 Sera samples were collected before vaccination (Pre-V), after vaccination/prior to 

pneumococcal inoculation (Post-V) and 21 days after pneumococcal inoculation. Nasal wash 

(NW) samples were collected at the same time points and also at days 2, 7 and 14 following 

pneumococcal inoculation (Supplementary Fig 1).

Antibody level measurements

IgG levels to Capsular polysaccharides 6B and 23F were measured using the WHO 

standardised ELISA method, as previously described. 7, 25, 26 Whole-cell ELISA was 

performed, as previously described 21 with the following minor modifications; serum was 

diluted in doubling concentrations, and the standardized development time altered to 30 

mins. Antigen-specific antibodies were detected by goat anti-mouse IgG (1/4,000; heavy and 

light chains)-alkaline phosphatase (Sigma). Purified type 23 CPS (ATCC) was fixed to 

Immulon 1B plates at a final concentration of 5 μg/ml in saline at 4°C and used in an ELISA 

to quantify anti-capsular antibody in rabbit serum, as described previously.5

Hep-A specific IgG purification from human serum samples

Hep-A IgG was purified from 7 pooled sera samples taken from Hep-A-vaccinated subjects 

to be used as a negative control in agglutination assays. Protein specific IgG purification was 
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done in two-stages following the manufacturer's instructions and as previously published by 

our group. 27 First, total IgG was purifed by Sepharose protein G (GE Healthcare) and then 

anti-Hep-A IgG by CNBr activated Sepharose (300mg CNBr activated Sepharose gel 

coupled with 1mg Hep-A purified protein, Abcam ab49011). Dot blot and ELISA were 

performed to confirm anti-Hep-A IgG purification and concentration (data not shown).

Rabbit antisera

Fixed and heat-killed whole-cell bacteria were prepared as follows; P1121 and P2109 were 

grown at 37°C to mid-log-phase, fixed in 1% paraformaldehyde for 1 hour at room 

temperature, washed in PBS, incubated for 30 minutes at 65°C, and stored at 4°C.28 Antisera 

were generated in rabbits by Cocalico Biological (Reamstown, PA). 50 μg bacterial protein 

(approximately 2 × 108 CFU) was injected intravenously three times weekly for 16 weeks 

the point at which titers no longer increased, as previously described.29 Fab and F(ab’)2 

fragments were generated from type-specific rabbit IgG as previous described.5

Agglutination assay

Pneumococci were grown to mid-log-phase and stored at −80°C in glycerol. On the day of 

the experiment cells were thawed and washed with PBS. For agglutination assays with 

human NW samples 3 μl of 105 bacteria was incubated with 47 μl of concentrated NW 

supernatant (1ml of NW concentrated to 100 μl using vacuum concentrator RVC2-18) and 

samples were vortexed lightly. Antiserum to group 6 (Statens Serum Institute, Neufeld 

antisera to group 6) was used as a positive control and Anti-Hep-A purified human IgG was 

used as a negative control. Samples were incubated for 1.5h at 37°C, fixed with 

paraformaldehyde (PFA) and analysed on a BD LSR II Flow Cytometer (BD Biosciences, 

San Jose, CA, USA). Bacterial population was gated in the Forward scatter (FSC) and 

Sideward scatter (SSC) dot plot referring to cell size and granularity. PMT voltages and 

threshold were gated on negative control bacteria. Agglutination was quantified by 

calculating the proportion of the bacterial population with altered FSC and SSC and values 

were expressed as % of agglutination, as previously described. 30, 31 All samples were 

analysed in duplicate and 30,000 events were acquired using FacsDiva Software 6.1 (BD 

Biosciences, San Jose, CA, USA). Analysis was performed using FlowJo software version 

10.0 (Tree Star Inc, San Carlos, CA, USA).

Similar assays were performed for rabbit sera with minor modifications; several serum 

dilutions were tested, samples were incubated for 1hr at 37°C then analysed on a BD 

FACSCalibur Flow Cytometer. Agglutination was quantified as above for each serum 

dilution. Agglutination was confirmed by imaging events at 60× magnification on an Amnis 

Image StreamX Imaging Flow Cytometer equipped with INSPIRE software (Amnis, EMD 

Millipore). Image analysis was performed using IDEAS software (Amnis, EMD Millipore).

Passive immunization experiments

Passive immunization was performed, as described previously. 5 C57Bl/6J (Jackson 

Laboratories, Bar Harbor, ME) mice were housed in accordance with Institutional Animal 

Care and Use Committee protocols. 5-6 weeks old adult mice were immunized 

intraperitoneally (IP) with 200μl of hyperimmune rabbit anti-pneumococcal sera. Mice were 
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inoculated intranasally (IN) 4 hours post-immunization with 10μl containing approximately 

2 × 104 CFU P1121 in PBS. At 20 hours post pneumococcal inoculation, mice were 

euthanized, the trachea cannulated, and 200μl of PBS instilled and lavage fluid was collected 

from the nares for quantitative culture. Lavage fluid was vortexed vigorously prior to plating 

to ensure any bacterial aggregates were dissociated. We have previously used quantification 

by a DNA-based assay to confirm that agglutination was not confounding colony counting.5 

The limit of detection was 2 CFU/animal.

Statistics

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, Inc, La 

Jolla, CA). For comparison of murine data Mann-Whitney test was performed when two 

groups were compared and Kruskal-Wallis test with Dunn's post-test was performed when 

three or more groups were compared. Where appropriate, data were logarithmically 

transformed to obtain data with a normal distribution. Unpaired t tests were used to compare 

levels of purified CPS between groups. Multiple comparisons were made within carriage+ 

and carriage− groups using one-way ANOVA with Bonferroni post-test. Sera IgG levels 

correlated with mucosal IgG using Spearman's correlation, linear regression. Differences 

were considered significant at P≤0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors gratefully would like to thank all subjects who participated in this study as well as all staff of the 
Clinical Research Unit at the Royal Liverpool Hospital and the clinical staff of the Respiratory Infection Group at 
the Liverpool School of Tropical Medicine. We also thank Dr. Michael Betts, Jay Gardner and Dr. Morgan Reuter-
Moslow for guidance with the Amnis Image Stream. This work was funded by the Bill and Melinda Gates 
Foundation (OPP1117728), the Medical Research Council and FAPESP (MR/K01188X/1) grants awarded to 
D.M.F and S.B.G and NIH grants (AI038446 and AI105168) to J.N.W.

Authors acknowledge support from Wellcome Trust Multi-User Equipment Grant (104936/Z/14/Z)

REFERENCES

1. Bogaert D, De GR, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal 
disease. Lancet InfectDis. 2004; 4(3):144.

2. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical 
continuity of bacterial populations in the healthy human respiratory tract. American journal of 
respiratory and critical care medicine. 2011; 184(8):957–963. [PubMed: 21680950] 

3. McCool TL, Weiser JN. Limited role of antibody in clearance of Streptococcus pneumoniae in a 
murine model of colonization. InfectImmun. 2004; 72(10):5807.

4. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M. CD4+ T cells 
mediate antibody-independent acquired immunity to pneumococcal colonization. 
ProcNatlAcadSciUSA. 2005; 102(13):4848.

5. Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN. Antibody blocks acquisition of 
bacterial colonization through agglutination. Mucosal immunology. 2015; 8(1):176–185. [PubMed: 
24962092] 

Mitsi et al. Page 9

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Janoff EN, Rubins JB, Fasching C, Charboneau D, Rahkola JT, Plaut AG, et al. Pneumococcal IgA1 
protease subverts specific protection by human IgA1. Mucosal immunology. 2014; 7(2):249–256. 
[PubMed: 23820749] 

7. Goldblatt D, Plikaytis BD, Akkoyunlu M, Antonello J, Ashton L, Blake M, et al. Establishment of a 
new human pneumococcal standard reference serum, 007sp. Clin Vaccine Immunol. 2011; 18(10):
1728–1736. [PubMed: 21852547] 

8. Nurkka A, Ahman H, Korkeila M, Jantti V, Kayhty H, Eskola J. Serum and salivary anti-capsular 
antibodies in infants and children immunized with the heptavalent pneumococcal conjugate vaccine. 
The Pediatric infectious disease journal. 2001; 20(1):25–33. [PubMed: 11176563] 

9. Collins AM, Wright AD, Mitsi E, Gritzfeld JF, Hancock CA, Pennington SH, et al. First Human 
Challenge Testing of a Pneumococcal Vaccine - Double Blind Randomised Controlled Trial. 
American journal of respiratory and critical care medicine. 2015

10. Dalia AB, Weiser JN. Minimization of bacterial size allows for complement evasion and is 
overcome by the agglutinating effect of antibody. Cell host & microbe. 2011; 10(5):486–496. 
[PubMed: 22100164] 

11. Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AK, et al. Controlled human 
infection and rechallenge with Streptococcus pneumoniae reveals the protective efficacy of 
carriage in healthy adults. American journal of respiratory and critical care medicine. 2013; 
187(8):855–864. [PubMed: 23370916] 

12. Simell B, Auranen K, Kayhty H, Goldblatt D, Dagan R, O'Brien KL, et al. The fundamental link 
between pneumococcal carriage and disease. Expert review of vaccines. 2012; 11(7):841–855. 
[PubMed: 22913260] 

13. Lue C, Tarkowski A, Mestecky J. Systemic immunization with pneumococcal polysaccharide 
vaccine induces a predominant IgA2 response of peripheral blood lymphocytes and increases of 
both serum and secretory anti-pneumococcal antibodies. Journal of immunology. 1988; 140(11):
3793–3800.

14. Petrunov B, Marinova S, Markova R, Nenkov P, Nikolaeva S, Nikolova M, et al. Cellular and 
humoral systemic and mucosal immune responses stimulated in volunteers by an oral polybacterial 
immunomodulator “Dentavax”. Int Immunopharmacol. 2006; 6(7):1181–1193. [PubMed: 
16714223] 

15. Klugman KP. Herd protection induced by pneumococcal conjugate vaccine. Lancet Glob Health. 
2014; 2(7):e365–366. [PubMed: 25103373] 

16. Fernandez J, Levine OS, Sanchez J, Balter S, LaClaire L, Feris J, et al. Prevention of Haemophilus 
influenzae type b colonization by vaccination: correlation with serum anti-capsular IgG 
concentration. The Journal of infectious diseases. 2000; 182(5):1553–1556. [PubMed: 11023481] 

17. Bijlsma MW, Brouwer MC, Spanjaard L, van de Beek D, van der Ende A. A decade of herd 
protection after introduction of meningococcal serogroup C conjugate vaccination. Clinical 
infectious diseases : an official publication of the Infectious Diseases Society of America. 2014; 
59(9):1216–1221. [PubMed: 25069869] 

18. Pennington SH PS, Mitsi E, Gritzfeld JF, Owugha JT, Masood Q, Gordon MA, Wright AD, Collins 
AM, Gordon SB, Ferreira DM. Polysaccharide-specific memory B-cells predict protection against 
experimental human pneumococcal carriage accepted. American Journal of Respiratory Care 
Medicine. 2016

19. Browall S, Norman M, Tangrot J, Galanis I, Sjostrom K, Dagerhamn J, et al. Intraclonal variations 
among Streptococcus pneumoniae isolates influence the likelihood of invasive disease in children. 
The Journal of infectious diseases. 2014; 209(3):377–388. [PubMed: 24009156] 

20. McCool TL, Cate TR, Moy G, Weiser JN. The immune response to pneumococcal proteins during 
experimental human carriage. JExpMed. 2002; 195(3):359.

21. Roche AM, King SJ, Weiser JN. Live attenuated Streptococcus pneumoniae strains induce 
serotype-independent mucosal and systemic protection in mice. Infection and immunity. 2007; 
75(5):2469–2475. [PubMed: 17339359] 

22. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, et al. Complete genome 
sequence of a virulent isolate of Streptococcus pneumoniae. Science. 2001; 293(5529):498–506. 
[PubMed: 11463916] 

Mitsi et al. Page 10

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



23. Lysenko ES, Lijek RS, Brown SP, Weiser JN. Within-host competition drives selection for the 
capsule virulence determinant of Streptococcus pneumoniae. Current biology : CB. 2010; 20(13):
1222–1226. [PubMed: 20619820] 

24. Gritzfeld JF, Wright AD, Collins AM, Pennington SH, Wright AK, Kadioglu A, et al. 
Experimental human pneumococcal carriage. Journal of visualized experiments : JoVE. 2013; (72)

25. Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AK, et al. Controlled Human 
Infection and Rechallenge with Streptococcus pneumoniae Reveals the Protective Efficacy of 
Carriage in Healthy Adults. American journal of respiratory and critical care medicine. 2013; 
187(8):855–864. [PubMed: 23370916] 

26. Wright AK, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo KC, et al. Human Nasal 
Challenge with Streptococcus pneumoniae Is Immunising in the Absence of Carriage. PLoS 
pathogens. 2012; 8(4):e1002622. [PubMed: 22496648] 

27. Glennie S, Gritzfeld JF, Pennington SH, Garner-Jones M, Coombes N, Hopkins MJ, et al. 
Modulation of nasopharyngeal innate defenses by viral coinfection predisposes individuals to 
experimental pneumococcal carriage. Mucosal immunology. 2016; 9(1):56–67. [PubMed: 
25921341] 

28. Austrian R, Bernheimer HP. Simultaneous production of two capsular polysaccharides by 
pneumococcus. I. Properties of a pneumococcus manifesting binary capsulation. J Exp Med. 1959; 
110:571–584. [PubMed: 13795198] 

29. Schiffman G, Bornstein DL, Austrian R. Capsulation of pneumococcus with soluble cell wall-like 
polysaccharide. II. Nonidentity of cell wall and soluble cell wall-like polysaccharides derived from 
the same and from different pneumococcal strains. J Exp Med. 1971; 134(3 Pt 1):600–617. 
[PubMed: 15776564] 

30. Habets MN, van Salm S, van der Gaast- de Jongh CA, Diavatopoulos DA, de Jonge MI. A novel 
flow cytometry-based assay for the quantification of antibody-dependent pneumococcal 
agglutination. Submitted to PLoS One. 

31. Yitzhaki S, Barnea A, Keysary A, Zahavy E. New approach for serological testing for leptospirosis 
by using detection of leptospira agglutination by flow cytometry light scatter analysis. Journal of 
clinical microbiology. 2004; 42(4):1680–1685. [PubMed: 15071025] 

Mitsi et al. Page 11

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mitsi et al. Page 12

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. Flow cytometric assay to quantify agglutination
(A) Representative dot plots from BD FACS Calibur with FSC v SSC of P1121 with 

increasing concentrations of type-specific rabbit anti-pneumococcal serum (corresponding to 

a total IgG concentration of 0, ~2.5, ~25, and ~250 micrograms/ml). Bacterial cells were 

gated to remove small debris particles. Percent agglutination is calculated by the sum of 

events in Q1, Q2 and Q3. Representative images are shown from Amnis ImageStreamX 

Imaging flow cytometer corresponding to the conditions shown above. (B) Representative 

dot plots and images from P1121 incubated with either Fab or F(ab’)2 fragments of type-

specific rabbit anti-pneumococcal IgG at 50μg/ml.
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FIGURE 2. Capsule is the major agglutinating antigen and leads to enhanced protection
(A) ELISA geometric mean titer (GMT) of rabbit antisera raised to isogenic capsular 

polysaccharide (cps) +/− strains, binding to encapsulated (P1121) or unencapsulated 

(P1121Δcps) whole cell pneumococci. Mean +/− SD, n = 2-4 per condition. (B) ELISA 

GMT of rabbit sera raised to cps+/−strains binding to type 23 purified CPS. Mean +/− SD, n 

= 3. (C) Flow cytometric agglutination assay comparing the titers at which a 3-fold increase 

in percent agglutination of pneumococci is observed with rabbit antisera raised to cps+/− 

strains. Mean +/− SD, n = 3-4 per condition. (D) Flow cytometry agglutination assay 

comparing the titers at which a 3-fold increase in percent agglutination for strains in which 

the capsule genes and type were switched is observed with rabbit antisera raised to 

encapsulated P1121 (type 23F). Mean +/− SD, n = 4-5 per condition. The baseline percent 

agglutination was calculated for each individual experiment and ranged from only 2-10%. 

(E) Passive protection experiment in mice immunized IP with rabbit serum raised to cps+/− 

strains. Four hours later, mice were given an intranasal dose of P1121 and colonization 

measured at 20 hours post-inoculation. Mean +/− SEM. Kruskal-Wallis test with Dunn's 

post-test was performed for (A), (C) and (D). Unpaired T test was performed for (B), and 

Mann-Whitney test was performed for (E). ns, non-significant, **P<0.01, and ****P<0.001
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FIGURE 3. Drop in type specific IgG levels to CPS in nasal wash following pneumococcal 
inoculation
(A, C, E, G) IgG levels to 6B CPS (B, D, F, H) and IgG levels to 23F CPS. Levels were 

measured in serum and nasal wash samples in (A-D) PCV vaccinated subjects and (E-H) 

control group using WHO standardised ELISA. Each dot represents IgG levels from a 

subject expressed in ng/ml. Levels were measured from carriage− (closed dots) and carriage

+ (open dots) subjects at the time-points indicated on the X-axis. Data are presented as GMC 

and 95% CI. Results were analysed using oneway ANOVA test and Bonferroni's multiple 

comparison tests. ***p<0.0001, **p<0.005, *p<0.01
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FIGURE 4. Sera IgG levels correlate with mucosal IgG following PCV vaccination
Correlation between IgG levels to 6B CPS measured in sera and nasal wash samples 

collected post PCV vaccination (Post-V) in carriage− (closed dots) and carriage+ (open 

dots) subjects. Spearman r= 0.59 and p<0.0001.
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FIGURE 5. Increased nasal antibody-mediated pneumococcal agglutination promoted by PCV 
vaccination
(A) Percentage of pneumococcal agglutination promoted by nasal wash samples from PCV 

vaccinated subjects before inoculation, carriage− (closed dots, n=20) and carriage+ subjects 

(open dots, n=5)) before (Pre-V) and after (Post-V) vaccination. Data are presented as GMC 

and 95% CI. Results were analysed using Mann-Whitney test.

(B) Correlation between IgG levels to CPS 6B Post-V in nasal washes and promoted 

pneumococcal agglutination % in carriage− (closed dots) and carriage+ (open dots) subjects. 

Spearman r= 0.60 and p=0.002.
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FIGURE 6. Nasal wash agglutination capacity does not correlate with protection from 
experimental carriage in control vaccinated subjects
(A) Percentage of pneumococcal agglutination promoted by nasal wash samples obtained 

from control group (Hep-A vaccinated) before pneumococcal inoculation, carriage− (closed 

dots, n=20) and carriage+ subjects (open dots). Data are presented as GMC and 95% CI. 

Results were analysed using Mann-Whitney test.

(B) Correlation between IgG levels to CPS 6B in nasal washes and promoted pneumococcal 

agglutination % in carriage− subjects. Spearman r= 0.06 and p=0.79.
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(C) Correlation between IgG levels to CPS 6B in nasal washes and promoted pneumococcal 

agglutination % in carriage+ subjects. Spearman r= 0.13 and p=0.56

Mitsi et al. Page 19

Mucosal Immunol. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	A flow cytometric assay to quantify pneumococcal agglutination by antibody
	Capsule is the major agglutinating antigen and leads to enhanced protection
	Anti-PS IgG-mediated protection against experimental carriage in PCV vaccinated subjects
	Carriage boosts pre-existing levels of IgG to CPS of inoculated strain
	Correlation between levels of IgG to 6B CPS in serum and nasal wash samples
	IgG mediates bacterial agglutination in the nasal mucosa in PCV vaccinated subjects

	DISCUSSION
	MATERIALS AND METHODS
	Pneumococcal strains
	Pneumococcal Conjugate Vaccine Experimental Human Pneumococcal Carriage (PCV/ EHPC) study
	Antibody level measurements
	Hep-A specific IgG purification from human serum samples
	Rabbit antisera
	Agglutination assay
	Passive immunization experiments
	Statistics

	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6

