
Accepted Manuscript

Research papers

Effect of Eucalyptus plantations, geology, and precipitation variability on water
resources in upland intermittent catchments

P. Evan Dresel, Joshua F. Dean, Fahmida Perveen, John A. Webb, Peter
Hekmeijer, S. Michael Adelana, Edoardo Daly

PII: S0022-1694(18)30524-9
DOI: https://doi.org/10.1016/j.jhydrol.2018.07.019
Reference: HYDROL 22951

To appear in: Journal of Hydrology

Received Date: 19 June 2017
Revised Date: 30 May 2018
Accepted Date: 11 July 2018

Please cite this article as: Dresel, P.E., Dean, J.F., Perveen, F., Webb, J.A., Hekmeijer, P., Adelana, S.M., Daly, E.,
Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in upland intermittent
catchments, Journal of Hydrology (2018), doi: https://doi.org/10.1016/j.jhydrol.2018.07.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jhydrol.2018.07.019
https://doi.org/10.1016/j.jhydrol.2018.07.019


  

1 

 

Effect of Eucalyptus plantations, geology, and precipitation variability on water resources in 

upland intermittent catchments  

 

P. Evan Dresel
a*

, Joshua F. Dean
b,1

, Fahmida Perveen
b,2

, John A. Webb
b
, Peter Hekmeijer

a
, S. 

Michael Adelana
a
, Edoardo Daly

c
 

 

a
 Agriculture Victoria, Department of Economic Development, Jobs, Transport, and Resources, 

Bendigo, Victoria, Australia 

b
 La Trobe University, Bundoora, Victoria, Australia 

c
 Department of Civil Engineering, Monash University, Clayton, Victoria, Australia 

 

*
Corresponding author: evan.dresel@ecodev.vic.gov.au. Evan Dresel, DEDJTR, PO Box 3100 

Bendigo VIC 3554, Australia 

Keywords:  

plantation forestry, land-use change, groundwater, evapotranspiration, intermittent 

catchments, Australia 

 

Highlights: 

 Water balances of pastures and Eucalyptus plantations were studied 

 Contrasting land use differences had no clear effect on annual streamflow 

 Groundwater storage declined in plantation catchments 

 Groundwater changes had minimal effect on intermittent streamflow  

 Pasture actual evapotranspiration was higher than predicted by global relationships 

 
1
 Present address: Earth Sciences Department, Vrije Universiteit, Amsterdam, the Netherlands 

2
 Present address: Pakistan Council of Scientific and Industrial Research Laboratories Complex, 

Karachi, Pakistan 

 

Abbreviations: ETa Actual evapotranspiration, ET0 Potential evapotranspiration, P precipitation, 

Qsw streamflow, Qgw groundwater outflow, ΔSgw change in groundwater storage, ΔSvz change in 

vadose-zone moisture storage, GF Gatum Farm, GP Gatum Plantation, MF Mirranatwa Farm, 



  

2 

 

MP Mirranatwa Plantation, DFN Digby Farm North, DFS Digby Farm South, DP Digby 

Plantation  



  

3 

 

Abstract 

 

Land-use change and climate variability have the potential to alter river flow and groundwater 

resources dramatically, especially by modifying actual evapotranspiration. Seven catchments 

with intermittent flow dominated by either winter-active perennial pastures (4 catchments) or 

Eucalyptus globulus plantations (3 catchments), located in 3 geologic settings of southeastern 

Australia, were studied for over 6 years to determine the primary controls on water resources. 

Groundwater levels in the pasture sites were stable through the 2011-2016 study period, while 

levels in the plantations declined in the same period. Streamflow occurred mainly during winter. 

Annual streamflow showed no difference clearly attributable to pasture versus plantation land 

use. The presence of grass buffers along streams enhances groundwater recharge and saturation-

dependent overland flow, reducing the impacts of the plantations on streamflow. Site water 

balances indicated that the average annual actual evapotranspiration was 87-93% of precipitation 

for pasture catchments and 102-108% of precipitation for plantation catchments. Actual 

evapotranspiration greater than precipitation at the plantations was attributed to uptake of 

groundwater by the root system in parts of the catchments. Thus, change to groundwater storage 

is a critical component in the water balance. Actual evapotranspiration from pasture catchments 

was higher than previously estimated from global pasture and cropping data, instead matching 

global precipitation versus actual evapotranspiration curves for treed catchments.  

 

1. Introduction 

Anthropogenic land-use changes, including deforestation, afforestation, and agricultural 

practices, are known to alter streamflow (Qsw), groundwater recharge, and other components of 
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the hydrologic cycle (Andréassian, 2004; Beck et al., 2013; Bosch and Hewlett, 1982; Campbell 

and Barber, 2008; Colville and Holmes, 1972; Van Lill et al., 1980). 

 

The negative impacts of these shifts in land use include decreased water supply and degraded 

water quality at local and regional scales (Dean et al., 2014; Dean et al., 2015). The majority of 

previous investigations have indicated that an increase in tree cover typically affects the 

catchment water budget by increasing actual evapotranspiration (ETa), decreasing streamflow, 

and decreasing groundwater recharge, but there is high variability globally and within specific 

regions (Brown et al., 2005; McVicar et al., 2007; Scott et al., 2000; van Dijk and Keenan, 2007; 

Zhang et al., 2001). The difficulty in controlling or even characterizing variables, such as 

geologic setting (including bedrock geology, unconsolidated sediments/soils, and topography) at 

the catchment scale, means generalization of findings to other locations is problematic. The 

interrelationships between variables controlling the water balance, such as precipitation (P), 

vegetation growth, and ETa is a challenge to predicting land-use change impacts and 

development of water management policies.  

 

Table 1 summarizes some of the key findings from existing studies on the effect of afforestation 

and deforestation on water resources, including previous work at our sites and this study for 

completeness. A wide variability of responses to land uses is seen in global studies. In 

southeastern Australia, catchment studies were mainly carried out in the high-rainfall native 

Eucalyptus forests with a limited number of studies of Pinus plantations (Bren and Hopmans, 

2007; Bren et al., 2010; Bren, 1997; Bren and Lane, 2014; Burch et al., 1987; Cornish and 

Vertessy, 2001) and few catchment-scale studies on Eucalyptus plantations. Plot-scale studies of 
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ETa in southeastern Australia did not include direct measurement of groundwater or streamflow, 

so they may not apply to catchment scales (Benyon et al., 2007; Benyon and Doody, 2004; 

Benyon et al., 2009; Benyon et al., 2006). 

 

Only a few catchment studies include monitoring of the groundwater system (Almeida et al., 

2016; Istanbulluoglu et al., 2012a; Rodríguez-Suárez et al., 2011; Silveira et al., 2016). 

Therefore, the relationships between precipitation and both ETa and streamflow typically do not 

account for the effects of groundwater recharge on the water balance. When groundwater is 

considered, the catchments are usually assumed closed with respect to groundwater flow (i.e., the 

groundwater divide at the top of the catchment corresponds to the surface-water divide and 

groundwater discharges to streams within the catchments as baseflow). Soil-water storage is 

typically assumed to respond rapidly to changes in vegetation and reach a near steady state, but 

saturated groundwater storage is not usually addressed. 

 

Few studies have taken place in intermittent catchments, although several workers have noted a 

change from perennial to intermittent flow with afforestation (Brown et al., 2013; Brown et al., 

2005; Scott and Lesch, 1997; Scott and Prinsloo, 2008; Scott et al., 2000; Zhang et al., 2012). 

Uptake of groundwater by deep-rooted vegetation, such as plantation trees, can alter the 

catchment water balance by increasing ETa (Benyon et al., 2007; Benyon, 2002; Benyon and 

Doody, 2004; Benyon et al., 2009; Benyon et al., 2006). Streamflow and groundwater flow are 

expected to be affected by a number of factors related to intermittent flow. The limited 

connection between groundwater and surface water in intermittent streams decreases baseflow 

compared to perennial systems (Istanbulluoglu et al., 2012b). There is likely to be a greater lag in 
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establishment of valley-bottom saturation and saturation-dependent overland flow in intermittent 

catchments and the extent of area contributing to saturation-dependent flow is likely to be 

smaller. This suggests that the streamflow may be sensitive to changes in the groundwater 

system induced by land-use change. 

 

This study investigates the interrelated effects of land use, geologic settings, and precipitation 

variability on the water yield of small, intermittent, upland catchments in Victoria, Australia. 

Hardwood Eucalyptus globulus (blue gum) plantation was the dominant land use within one 

catchment at each setting, and winter-active native perennial pasture was the dominant land use 

at the other catchments.  

 

<Table 1 here please > 

 

The primary research questions were: 

1. What are the differences between plantations and pastures in terms of groundwater 

resources and how important is it to factor groundwater into water-balance changes? 

2. What are the effects of contrasting land uses on streamflow and ETa? Do the water 

dynamics in our research catchments support the water-budget relationships derived from 

other global studies and, particularly, studies in southeastern Australia? 

3. How does the geologic setting affect the water balance and  relate to the water resource 

effects of plantations? 
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These objectives provide the structural sub-headings used in the following Methods, Results and 

Discussion sections. The Discussion section additionally addresses the implications of the 

research to water and land-use management policy. 

 

2. Study Area 

2.1. Site description 

The study area is located in the Hopkins and Crawford River catchments of the Glenelg River 

basin in southwestern Victoria, Australia (Figure 1). The study includes seven catchments in 

three areas, named according to the closest adjacent townships: Gatum Farm (GF) and Gatum 

Plantation (GP), Mirranatwa Farm (MF) and Mirranatwa Plantation (MP), and Digby Farm 

North (DFN), Digby Farm South (DFS), and Digby Plantation (DP). 

 

< Figure 1 here please > 

 

The farm catchments are predominantly sheep and cattle grazing of winter-active perennial 

grasses with minor cropping and small treed areas. The plantation catchments include varying 

amounts of pasture and unplanted grassland areas along the valley bottoms. GP was planted in 

2005, with a stand density of ~800 trees/ha (Adelana et al., 2015) that decreased to ~730 in 2015. 

Mean diameter at breast height over bark at the end of 2016 was 23.8 cm with a mean tree height 

of ~20 m. At MP, planted in 2008, surveys taken between 2011 and 2015 saw the mean height of 

trees increase from 8.9 to 13.7 m, with the mean diameter at breast height over bark growing 

from 9.6 to 14.3 cm; the number of trees per hectare declined from 1,139 to 889 [Darren 
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Shelden, Macquarie Forestry, pers. comm.]. The plantation at DP was planted in 2001 at a 

stocking density of ~700 to 800 trees/ha and was harvested between late 2015 and early 2016 

[Adrian Marty, Elders Forestry, pers. comm.]. The DP catchment includes ~55 ha of native 

Eucalyptus forest that was not harvested. 

 

2.2. Geologic setting and topography 

The catchment designations, geology, and physical characteristics are listed in Table 2. 

Catchment perimeters and areas were determined using differentially corrected Global 

Positioning System (GPS) elevations tied to Geoscience Australia benchmarks. Elevations used 

the Australian Height Datum (AHD). Interpolation between measured locations was performed 

by hand and guided by topographic maps and field observations. Catchments were subdivided 

into valley bottom, mid slope, and upper slope landscape positions (see Table 2), based on 

subjective evaluation of the topographic maps, except at DP where only mid slope and valley 

bottom were used because of the low relief. 

 

<Table 2 here please > 

 

Calculation of height above nearest drainage (HAND) is a method to assess the hydrologic 

effects of topography and to classify landscapes to develop conceptual models (Gharari et al., 

2011; Nobre et al., 2011; Rennó et al., 2008). The HAND analysis calculates the height 

difference (m) between each cell in a Digital Terrain Model (DTM) and the height of the cell 

where flow from that location first reaches the drainage line. We used HAND, based on a 20-m 

by 20-m DTM with vertical accuracy of 5 m or better (Department of Environment Land Water 
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& Planning, 2014) to assess the topographic differences between the monitored catchments. The 

low relief in some locations meant that the boundaries shown in the HAND analysis, determined 

from the state-wide 20-m by 20-m DTM, are less accurate than our more detailed surveyed 

catchment areas. The drainage-line cells were defined as those where flow accumulation is from 

an area ≥ 0.1 km
2
. This value was chosen because it captures drainage networks in each study 

catchment and is similar to the drainage shown in the State of Victoria topographic layers.  

 

The HAND map for each study catchment and histograms of the distribution show similarity in 

topography and stream drainage for catchments within each geologic setting (Figure 2). The 

Mirranatwa catchments are the steepest. At the Gatum sites, GP has the drainage extending 

somewhat farther up the catchment, but the differences are considered unlikely to have a major 

effect on the flow dynamics. The relatively flat topography at the Digby sites means that large 

areas of each catchment are near stream level. The central part of DFS is dominated by an 

ellipsoidal area at stream level. A smaller area with elevations near the stream is also seen in the 

center of the DFN catchment. The central part of the DP catchment shows drainage on the 

HAND map, but was a closed depression until a drain to the north was constructed. We interpret 

these features as being dolines in the underlying Port Campbell Limestone, indicating potential 

recharge areas.  

 

< Figure 2 here please > 

 

Soil development contrasts between locations. The Gatum site is dominated by yellow and 

brown mottled Chromosol soil developed over saprolitic Gatum Ignimbrite rhyolite of the Lower 
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Devonian Rockland Volcanics (Baxter and Robinson, 2001). The Mirranatwa site has yellow and 

brown Solodic soil over weathered granitic Devonian Victoria Valley Batholith (Sibley, 1967). 

The soil type at the Digby sites is variable with DP generally being sandier; Baxter and Robinson 

(2001) described it as a black Vertisol developed on late Miocene-Pliocene marine Loxton clay 

and sands that overlie late Oligocene to late Miocene Heytesbury Group Port Campbell 

Limestone. Depth to limestone is ~8 m at DFS and DFN, while ~60 m at DP (Perveen, 2016). 

 

2.3. Climate 

Annual historic precipitation from Bureau of Meteorology (BOM) sites near the study areas are 

listed in Table 2, together with measurements from this study. Precipitation during the study was 

greatest in the Digby catchments and lowest at Mirranatwa. The study catchments were 

established in 2009-2010 at the end of the ‘Millennium Drought,’ the worst drought on record for 

southeastern Australia, with approximately 8 years of below long-term average precipitation (van 

Dijk et al., 2013; Yang et al., 2017). The drought broke in 2010 with high precipitation; 

widespread flooding continued through the 2011 summer. Precipitation is winter dominated and 

annual precipitation in the region is highly variable. Using data in the period 1984-2017 

(Hamilton Airport, BOM station 090173), February is the hottest month, having a mean monthly 

maximum temperature of 26.8 °C (daily maximum temperature range 13.8-44.5 °C) and mean 

monthly minimum temperature of 11.3 °C (daily minimum temperature range 2.1-24.7 °C). July 

is the coldest month with mean monthly maximum temperature of 12.1 °C (daily maximum 

temperature range 6.2-18.7 °C) and mean monthly minimum temperature of 4.4 °C (daily 

minimum temperature range -2.8-11.3 °C). 
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3. Data collection and analysis 

3.1. Precipitation 

Precipitation was recorded at 10-minute intervals using tipping-bucket rain gauges at Gatum, 

Mirranatwa, Digby farm, and Digby plantation. Measurements were summed to 30-min and 

daily values (mm d
-1

). Daily precipitation data were supplemented with data from nearby BOM 

stations (see Figure 1) to infill missing or suspect data when the onsite gauges clogged or data 

loggers failed. This affected a maximum of 5.4% of the data at the DP catchment, largely as the 

result of a logger failure in 2011. Correlation of daily data between our gauges and the BOM 

stations was satisfactory (r
2
 = 0.78-0.95), with the exception of the Gatum sites (r

2
 = 0.44). Only 

one daily measurement at Gatum was replaced with BOM data, so the poor correlation has little 

effect. 

 

3.2. Groundwater analysis 

Groundwater levels were measured in wells installed for this study and some pre-existing wells. 

Locations are shown in Figure 2 and construction details are given in the Supplementary Data. 

The locations and surface elevation were measured with differentially corrected, survey-grade 

GPS. Groundwater levels were measured from 2009 or early 2010 through December 2016 and 

were presented as either depth below ground surface (m) or elevation above Australian Height 

Datum (m AHD). Water-level measurements were logged at 4-hr intervals with Campbell, Diver, 

Instrumentation Northwest, or Troll data loggers. Measurements were barometrically 

compensated and corrected to periodic manual measurements. Visual trend assessment was used 
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to exclude suspect data. Data that result from data logger failure and where the water levels 

recovered slowly after purging for sampling were excluded. 

 

Changes in groundwater level were used to calculate changes in annual groundwater storage, 

ΔSgw (m
3
 y

-1
– converted to mm y

-1
), beneath the catchments. ΔSgw was calculated by multiplying 

the average decline for wells at each landscape position by area and the specific yield (unitless), 

estimated from sediment grain size (Adelana et al., 2015; Dean et al., 2015; Perveen, 2016). 

ΔSgw and other water volumes used in the water balance (Section 3.4) were converted to mm by 

dividing by the catchment area, applying unit conversion factors, and summing over the time of 

interest (e.g., daily or annual values). 

 

Groundwater outflow from the catchments, Qgw (m
3
 d

-1
, converted to mm d

-1
), was calculated 

from Darcy’s Law for one-dimensional flow, 

 Qgw = -K i A (1) 

where K (m d
-1

) is the average hydraulic conductivity of the aquifer estimated from sediment 

grainsize, i (unitless) is the hydraulic gradient calculated from a planar fit to average January 

(summer) groundwater levels in 3 widely spaced wells in each catchment, and A (m
2
) is the 

cross-sectional area of groundwater outflow. The aquifer depth used to calculate A was estimated 

from geologic maps and site drilling data. A width equal to the catchment width approximately 

perpendicular to the flow direction was selected as an upper bound to A, such that ETa calculated 

from the water balance (Section 3.4) could be considered as a lower estimate. 

 

3.3. Streamflow analysis 
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Streamflow (Qsw) was measured at flow-control weirs at the outlet of each catchment. 

Measurements were initiated in 2010, and this study considers the full calendar years 2011-2016. 

Flow data were divided by the respective catchment area and summed over time periods of 

interest to be expressed as equivalent water depth (in mm time
-1

). Intense rain periods caused 

flow to overtop some of the weirs, leading to an underestimation of total flow. This particularly 

affected the flow measured at the GP catchment, where the maximum flow rate measurable at the 

weir was 4.5 mm d
-1

 because of the logistics of installation. The events where the streams 

overtopped the weirs were generally infrequent and short-lived, with the exception of the GP 

catchment in 2016, when flood debris blocked the weir causing slow drainage. Pipe erosion 

and/or tunnelling by Cherax destructor (common yabby) caused leakage under the MP weir in 

the period February 2011 to May 2011. Accordingly, the flow at this site for that time period 

may be underestimated. This predominantly affects the estimation of the timing of flow in 2011 

rather than the total flow because the weir was repaired prior to the onset of the wet winter 

season. Some of the series had gaps in the data: 12 d were missing at GF, 18 d at MF, 5 d at DF, 

and 122 d at DP. The days missing at DP were between March and July 2012 and in January 

2013. We believe that most of the flows were recorded because these periods commonly do not 

show large flows. 

 

Streamflow for the different catchments was summarized to daily, quarterly, and yearly values. 

Flow duration curves from 30-minute flow data are presented for the combined 2011-2016 

periods.  

 

3.4. Water balance and evapotranspiration 
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Annual actual evapotranspiration (ETa) was calculated from the annual catchment water balance 

as: 

 ETa = P – Qsw – Qgw – ΔSgw – ΔSvz (2) 

where P is precipitation, Qsw is streamflow, Qgw is groundwater outflow, ΔSgw is change in 

groundwater storage (change in water volume below the water table), and ΔSvz is change in 

vadose-zone moisture storage (change in water storage between the water table and the ground 

surface – the unsaturated zone and the capillary fringe). Units for the components of equation (2) 

are mm time
-1

, totalled over the measurement period of interest. 

 

P and Qsw were measured; Qgw and ΔSgw were determined as discussed in Section 3.2. ΔSvz is 

assumed to be ~0 at the annual and longer timescales, although water content possibly decreased 

as the roots extended into the deeper vadose zone during plantation establishment. If the last 

three terms in equation (2) are neglected, as a first approximation, Qsw approaches 0 at low P and 

approaches P-ET0 at high P, where ET0 is the potential evapotranspiration (McGuire and Bren, 

2013; Zhang et al., 2001). This suggests that a plot of annual Qsw versus P may fit a power 

function of the form: 

          (3) 

where a is expected to be a small positive number, because Qsw<< P at low values of P, and b is 

positive. The parameters a and b are fit to the data by ordinary least squares. Equation (3) is 

equivalent to the Midgely & Pitman curves described in Greenwood et al. (2014), neglecting the 

linear form used above a critical threshold of P. 
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The role of vegetation type on ETa and catchment water balance from our study was compared to 

that from world-wide catchment experiments reviewed by Zhang et al. (1999; 2001), who 

developed a relationship between long-term average annual ETa and annual precipitation for 

forest and grass catchments, referred to as the “Zhang Curves”: 

        
    

    

 

    
    

 
 

 

    

      
      

    

 

      
    

 
 

 

    

   (4) 

where P is the annual precipitation and f is the fraction of forest cover. The values 1410 and 

1100 in equation (4) relate to the potential evapotranspiration for treed and un-treed catchments, 

respectively. At low values of annual precipitation, ETa increases linearly with precipitation and 

approaches a constant value equal to potential evapotranspiration at high annual precipitation.  

 

4. Methods 

4.1. Effects on the groundwater system 

Groundwater level measurements were used to determine groundwater flow directions at the 

study sites and calculate streamflow for incorporation into the water balance. The spatial and 

temporal variation in depth to the water table across the catchments shows the degree of 

groundwater-stream connectivity. Seasonal groundwater recharge is indicated by the degree of 

water-table fluctuation (Dean et al., 2015). ΔSgw indicates the change in the groundwater system 

resulting from plantation establishment and is included in the water balance. 
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4.2. Effects on streamflow and ETa 

The effect of contrasting land uses (i.e., pasture versus plantation) on streamflow was evaluated 

by determining changes in flow at the catchment outlets on time scales that vary from the 30 min 

data collection interval to average annual values over the 2011-2016 study period. The 

measurements were used to determine the variability in quarterly and annual streamflow within 

catchments and fit to descriptive precipitation-streamflow curves (see equation 3). Flow-duration 

curves for the catchments compare the relative contributions of peak flow and delayed flow for 

the catchments and compare the duration of flow between catchments. Water-balance ETa was 

compared between catchments and to that calculated in other studies. 

 

4.3. Effect of geologic setting 

The study catchments were set in three different geologic environments to provide understanding 

of the source of variability in the relationship between precipitation, streamflow, and ETa. Our 

hypothesis was that lithology and topography change the relationship between precipitation, 

streamflow, and groundwater recharge. Steeper topography likely enhances streamflow at the 

expense of infiltration. Additionally, the hydrogeologic setting, including depth to groundwater, 

affects the ability of tree roots to reach the water table. The interpretation of these effects is 

necessarily qualitative, but forms the basis for conceptualizing catchment models e.g., Dean et al. 

(2016). 
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5. Results 

5.1. Effects on the groundwater system 

Representative catchment summer water-table maps for January 2014, near the middle of the 

study period and when influence of seasonal recharge events on individual wells is minimal, are 

shown in Figure 3. The water-table contours shown are consistent with intermittent catchments 

that are not closed with respect to groundwater flow, although the well spacing is not sufficient 

to completely constrain the flow directions. In particular, groundwater flow at the GP catchment 

is largely to the south, whereas the stream drainage is to the southwest. The southerly 

groundwater flow increases the cross-sectional area used to calculate Qgw over that of GF. The 

groundwater at the DP catchment is interpreted to converge on a drainage to the east, controlled 

by solution-enhanced permeability within the underlying limestone. This means that the 

groundwater gradient in the eastern part of the site converges sharply from the north and south, 

but the gradient to the east is much lower. The depth to groundwater along the west-east line 

through the catchment is >25 m. 

 

< Figure 3 here please > 

 

Groundwater levels at the farm site wells were generally steady, except for seasonal fluctuations 

(Figure 4). The levels increased from higher precipitation and recharge in 2010, 2011, and 2016 

and decreased slowly during drier years. Water-table fluctuations at the GF and MF catchments 

are greatest along the valley bottoms as a result of greater recharge and a shallower depth to 

groundwater (Dean et al., 2015).  
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< Figure 4 here please > 

 

The plantation monitoring wells show declining water levels and lower seasonal fluctuation, 

showing that recharge is nearly absent, except near the streams and in areas lacking trees. The 

water-table decline in MP was slow through 2011, apparently because of the recently planted 

trees, but it is difficult to separate the effect of tree growth from the high precipitation in late 

2010 and early 2011. In spite of the maturity in DP, the water table continued to decline, at least 

through 2015. In 2016, water levels increased in DP wells 5532, 5537, and 5540 because of the 

high precipitation combined with harvesting of the plantation trees in late 2015-early 2016. The 

small but continuing water-table decline at DP prior to harvesting in late 2015-2016 shows that a 

new steady state was not reached within the harvest cycle of 14 years. 

 

5.2. Effects on streamflow and ETa 

Catchment flow is dynamic with sharp peaks associated with rain events (Figure 5). Flow peaks 

typically occur within 4 hours of precipitation peaks. Late spring through late autumn flow is 

only associated with large rain events; more continuous flow occurs during the winter, except in 

2015, which was very dry, resulting in minimal winter flow. Annual total flow in all catchments 

is very low when annual precipitation is below ~400 to 600 mm y
-1

 (Table 3, Figure 6).  

 

< Figure 5 here please > 

< Figure 6 here please > 
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<Table 3 here please > 

 

Annual and mean streamflow over the 6-year period was lower at the GP and DP compared to 

GF and both DFN and DFS; however, it was almost identical in the case of the two sites at 

Mirranatwa, MP and MF, (see Table 3). Flow at GP is lower than GF when precipitation is less 

than ~800 mm y
-1

. Streamflow at GP in 2016, the wettest year, apparently exceeded that of GF, 

but this may be caused by the difficulty of measuring large flows accurately. The similarity in 

average streamflow for the Mirranatwa catchments is largely because of the much higher peak 

flow for MP offsetting MF’s higher flow between intense rain events. The Mirranatwa 

catchments were better fit by linear regression than by power functions. 

 

Figure 6 showed that the flow in the winter-quarter (Q3), between July and September, is 

linearly correlated between catchments for each geologic setting. During the other quarters, the 

plantation flow often plots above the Q3 trend in response to intense rain events following 

periods of no flow. This can be explained by a proportionally greater effect of infiltration-excess 

overland flow at the plantations from differences in under-story vegetation or soil 

hydrophobicity. 

 

The timing of flow was highly variable from year to year (Figure 7). Winter flow was continuous 

in the July-September (Q3) period most years, but could start as early as April and extend as late 

as November, depending on the catchment and year. Flow-duration curves, constructed from the 

30-min measurements (Figure 8), show that the period of catchment flow ranged from 18% of 



  

20 

 

the time at DFS to a maximum of 45% at GF; 75% of the flow volume occurred in less than 10% 

of the time period for every catchment.  

 

< Figure 7 here please > 

< Figure 8 here please > 

 

The flow-duration curves have high slope at the high-flow periods and become steep again when 

the catchments cease flowing. The latter, sudden drop in flow, likely results from nonlinearity in 

the drainage (Chapman, 1999). The shallow slope in the center of the flow-duration curves is 

commonly attributed to groundwater baseflow, although other delayed flow, such as drainage of 

surface-water storage or perched flow, may also contribute. The curves show higher delayed 

flow at farm catchments than at plantations. 

 

The flow duration does not appear to be affected by the declining groundwater levels in the 

plantations (see Table 3). The most likely explanation is that the annual flow duration is 

controlled by the extent of water storage along the valley bottom rather than groundwater 

baseflow. This storage may be in near-stream soils or farm dams, possibly supplemented by flow 

in perched aquifers. Water levels measured in some of the wells that were installed at GF and 

MF during early 1990s are still much deeper than the depths before the ‘Millennium Drought’. 

Thus, connectivity between the groundwater and surface water in the pastures may still be 

affected by the drought. 
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ETa in the water balance (see equation 2) makes up 87% to 108% of the precipitation (Table 4). 

All plantation catchments had higher calculated ETa than the farm catchments in comparable 

geologic settings. However, this did not directly translate to a reduction in streamflow because of 

differences in ΔSgw and Qgw. The calculated ETa for the plantations was greater than 100% 

because of a loss of groundwater from storage in the plantation catchments. The importance of 

ΔSgw in evaluating ETa and catchment baseflow has previously been noted (Istanbulluoglu et al., 

2012b). Groundwater storage loss within the plantation catchments cannot be explained by 

baseflow to the streams or Qgw because ΔSgw is greater than Qsw + Qgw, even though our 

calculation was designed to place an upper bound on Qgw. Thus, the ΔSgw is best explained by 

direct uptake of groundwater by the trees. This uptake is greatest in the mid-slope position. 

Higher in the catchment, the water table appears to be too deep for access by the tree roots. 

Lower in the catchment, much of the land is not treed, and the water table is affected by focused 

recharge in the valley bottom. It appears that higher salinity in the valley bottom is detrimental to 

growth and limits the groundwater uptake (Dean et al., 2016), although some Eucalyptus species 

are known to tolerate saline groundwater (Benyon et al., 1999; Feikema et al., 2010). 

 

Plantation water balance ETa, higher than that calculated from the Zhang curves, is largely 

explained by inclusion of groundwater components of the water balance (Table 4). The 

difference in ETa calculated for plantation versus farm catchments ranges from 14% for Gatum 

and Mirranatwa to 21% for Digby (DFN versus DP). The difference calculated from the Zhang 

curve ranges from 16% to 17% at Gatum and Mirranatwa to 25% at Digby. However, if ETa is 

calculated from only P-Qsw, as used for the Zhang data, the difference in ETa between farm and 
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plantation catchments at Gatum and Mirranatwa is < 2%. P-Qsw is still 19% higher at DP than at 

DFN because of the low streamflow from the DP’s central depression. 

 

<Table 4 here please > 

 

5.3. Effect of geologic setting 

The subsurface limestone karst at the Digby sites had a large effect on the groundwater and 

surface-water systems. Other sites illustrate features related to groundwater-flow direction, 

artesian conditions, and perched flow.  

 

The runoff at Digby is largely controlled by flow in the underlying karstic limestone, although 

the water table is in the upper clays and sands. The relationship between annual precipitation and 

streamflow at the Digby farm sites is highly variable. Years with precipitation between 700 and 

800 mm y
-1

 have streamflow varying by more than three times (see Figure 6). The variability is 

controlled by both the timing of precipitation within the year and the continued effects from 

previous years’ precipitation level. The flow-duration curve at DFS is much shorter than at DFN, 

but the shape during high-flow periods is nearly identical (see Figure 8). Thus, peak overland 

flow is largely unaffected by the geologic differences. 

 

The annual flow at DP is considerably lower than at the Digby farm catchments during wet years 

in spite of slightly higher precipitation (Figure 6). DP flow tends to be less continuous than DFN 

but more continuous than DFS most years (Figure 7). The deep water table in the center of the 

DP catchment means that there is no groundwater connectivity to produce saturation-dependent 
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overland flow. The surface depression holds runoff to drain slowly, extending the flow duration 

curve (Figure 8). The doline may focus recharge to the aquifer, mitigating the effect of the 

plantation ETa on the water budget.  

 

The geologic setting has more subtle effects at the Mirranatwa sites. The aquifer at the MP weir 

is strongly artesian with head above the land surface. The water level contours in Figure 3 

suggest that this is largely due to pressure induced by the granite at higher elevation to the 

northwest (not shown) and the potential for preferential fracture flow (Dean et al., 2014). The 

upward gradient near the MP stream prolongs saturation of the sediments contributing to the 

longer but lower flow duration curve at MP compared to MF (Figure 8) This interpretation is 

supported by radon measurements (Dean et al., 2015). The head in well 2292, near the MP weir, 

remains artesian but is declining so the conditions contributing to the extended flow duration 

may not persist as the plantation matures (Figure 4). This suggests the curve may reach a tipping 

point where the aquifer cannot support streamflow through baseflow or saturation-dependant 

overland flow. Alternatively, the artesian head might mitigate impacts on flow duration through 

the entire growth and harvest cycle. 

 

It is unclear how the local geology relates to the extremely large streamflow response to high 

precipitation at GP in 2016. The rapid response to precipitation events and the observed debris 

near the weir indicate enhanced overland flow. This suggests waterlogging is induced by lateral 

flow within the soil B horizon and within the kaolinized pallid zone on top of the weathered 

ignimbrites as observed at GF by Brouwer and Fitzpatrick (2002).  
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6. Discussion 

6.1. Groundwater-flow direction and level trends 

The plantation catchment groundwater levels declined markedly in most monitoring wells away 

from the stream lines, whereas the levels did not change significantly in the farm catchment 

monitoring wells. In addition, the seasonal fluctuation was higher in farm wells. The decreased 

seasonality and declining water levels in the plantations are consistent with a decrease in 

groundwater recharge as a result of increased ETa by the trees. This decrease in groundwater 

recharge is in agreement with previous research (Amdan et al., 2013; Fan et al., 2014; 

Rodríguez-Suárez et al., 2011), although no decrease was seen by Silveira et al. (2016). The 

change in ΔSgw is seldom included in catchment water-balance calculations. However, it can be 

significant where the catchments are not closed to groundwater; i.e., where groundwater is not 

discharged as baseflow that is incorporated into streamflow. 

 

The un-treed buffer left along drainage lines in the plantations results in recharge on the lower 

slopes similar to that in the pasture catchments. Runoff concentrates the recharge in the lower 

landscape (Dean et al., 2015). Flow in perched water tables can also concentrate recharge in the 

lower landscape.  

 

Water levels at or near the surface in valley bottom monitoring wells suggest hydraulic 

connection between groundwater and surface water causing saturation-dependent overland flow 

during and shortly after winter P. Saturation-dependent overland flow will promote high 

streamflow during rain events.  
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6.2. Streamflow and ETa 

Most previous research has concluded that streamflow declines with afforestation as a result of 

greater ETa (see Table 1). However, large variability in the precipitation-streamflow relationship 

has been noted and the findings of decreased streamflow are not universal. We did not see an 

indication of decreased streamflow in the plantation catchments. This is in contrast to the work 

of Silveira et al. (2016), where streamflow increased with afforestation but no effect on recharge 

was seen. Our results support previous findings that ETa is increased where groundwater is 

accessible to the tree roots and suggest that the depths where this occurs may be greater than 

indicated by plot studies (Benyon, 2002; Benyon and Doody, 2004; Benyon et al., 2009; Benyon 

et al., 2006). 

 

The higher ETa for our pasture catchments compared to the Zhang et al. (1999) un-treed 

catchment curve is in agreement with their pasture and crop data from Australia (Figure 9). This 

high ETa for the pasture was not expected and means that afforestation only has a small effect on 

the water balance unless plantation ETa is supplemented by groundwater uptake. Conversely, 

Dye (2013) noted that the extremely low water use of the native fynbos in South Africa 

exaggerates the difference in water use between fynbos and Pinus plantations, suggesting caution 

is needed in applying results between landscapes with different pre-existing vegetation. The 

cause of the high pasture ETa for the Australian setting is unknown. 

 

< Figure 9 here please > 
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A relative increase in plantation streamflow compared to pasture flow was attributed to overland 

flow in three specific situations in our study. To our knowledge, this has not been observed in 

previous catchment investigations. The first is the annual flow in the GP catchment in 2016, 

which was close to that in GF. This suggests that during periods of intense rainfall, the increased 

ETa of trees has little effect on runoff. This contrasts with the Zhang curve model, where Qsw for 

treed catchments is predicted to remain below that of un-treed catchments. Trees likely increase 

leaf and litter interception, and drier soil may delay the start of infiltration-dependent overland 

flow. But once the system is wet, there will be no further effect on runoff. Thus, the 

precipitation-streamflow relationship will depend not only on the amount of precipitation but on 

the intensity. The second case is the relatively higher plantation response to intense summer 

rains. This is consistent with soil hydrophobicity seen in Eucalyptus plantations and forests. Dry 

hydrophobic soils will enhance runoff and will become less hydrophobic in wetter seasons 

(Burch et al., 1987; Burch et al., 1989; Doerr et al., 2003; Doerr et al., 2000; Ferreira et al., 

2000). Infiltration tests at the Gatum site showed higher infiltration for the farm pasture than for 

the plantation (Reynolds, 2010). This makes little difference in annual streamflow but may be 

important ecologically in helping the persistence in remnant surface-water pools in 

intermittent/ephemeral streams. The final situation is the greater runoff that may be induced by 

deep ripping of soil during plantation establishment, as described by Dean et al. (2016). This 

suggests that design changes might be useful in improving catchment water management; e.g., 

by channelling runoff downslope for greater water yield or, conversely, by delaying runoff to 

decrease peak flows.  

 

6.3. Effect of geologic setting 
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Differences in geologic setting alter the groundwater recharge, affect connectivity between 

groundwater and surface water, and increase the variability in catchment flow in response to 

precipitation. The water-table decline noted in our plantation catchments implies that flow 

duration in these intermittent catchments may ultimately become shorter, although the variability 

in precipitation dominates the inter-annual flow variability. Thus, the impacts may be different in 

regions with more consistent precipitation and for plantations with longer harvest cycles. The 

nonlinearity in precipitation versus annual flow complicates inter-catchment comparison and 

indicates that extrapolation of flow relationships, such as those used in paired-catchment studies, 

may not be appropriate because the nonlinear relationship cannot always be predicted from a 

limited measurement period. 

 

Land-use impacts of plantation development have been studied in the South Australia karst, 

where the impact of direct uptake of groundwater was documented (Colville and Holmes, 1972; 

Holmes and Colville, 1970). Our study shows the influence of subsurface limestone, even when 

covered by other sedimentary formations. The karst topography controls the depth to 

groundwater and ability for direct groundwater use by trees, the development of saturation-

dependent overland flow, and may induce focused recharge along streams and in depressions. 

Karst areas may need special consideration because their precipitation-streamflow relationship is 

highly variable and dependent on local conditions. 

 

6.4. Policy implications 

The State of Victoria has developed strategies to manage the water-resource impacts of land-use 

change, but these have not yet been enacted (Department of Sustainability and Environment, 
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2011a; Department of Sustainability and Environment, 2011b). The policy recognizes potential 

streamflow and groundwater impacts, but much of the focus has been on streamflow. South 

Australian policy, in contrast, has focused more on groundwater use by plantations. New 

plantations in southeastern South Australia may be licensed to use groundwater users because of 

the shallow water table and minimal surface-water use (Greenwood, 2013). Our investigation 

indicates that groundwater use by plantations in Victoria is significant, in keeping with previous 

work (Benyon and Doody, 2004), while the maximum depth to groundwater for uptake by trees 

has not been established. The larger ETa in the plantation catchments, however, was not seen to 

have a major effect on the streamflow because baseflow is already minimal as a result of the 

seasonal nature of the precipitation and only seasonal connectivity between groundwater and 

surface water. Thus, we suggest that policy development in Victoria should increase focus on 

areas where the groundwater resource is of significant importance. This is particularly true in 

freshwater aquifer recharge areas, as recharge will be reduced by the increased ETa of 

plantations. 

 

The variability of pasture and plantation streamflow in different geologic settings presents a 

challenge in developing water management policy. The site-specific nature of the land-use 

impacts suggests that flexibility may be possible within management areas if the industry can 

show that a proposed plantation development is unlikely to have major impact. 

 

The high pasture water use, calculated from water balance for our study and others in Australia, 

shows that the baseline pasture water use has not always been properly considered in evaluating 
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the effects of afforestation. The discrepancy from global curves indicates that those curves are 

not appropriate for evaluating the effects of land-use changes in Australia. 

 

7. Conclusion 

Our investigation demonstrated a large effect of plantations on the groundwater system with a 

major reduction in groundwater recharge and a loss of groundwater storage, but there was no 

clear effect on streamflow. Consideration of groundwater levels and flow directions indicated 

that the intermittent stream catchments were not closed to groundwater flow and that baseflow to 

streams was small. Thus the change in ΔSgw , must be considered in the water balance 

calculation of ETa. The reduced recharge and uptake of groundwater by tree roots led to a loss of 

groundwater storage. However, apportioning groundwater flux within the catchment between 

baseflow, streamflow, and uptake by deep-rooted vegetation remains challenging. 

 

Most global studies have shown high ETa in forests and plantations and, thus, increased water 

use caused by plantation establishment. This study does not contradict the high ETa in plantation 

systems, but, instead, indicates that ETa for pastures in the 500 to 1000 mm y
-1

 annual 

precipitation region of southeast Australia is higher than for pastures in equivalent P regions 

elsewhere in the world. The explanation for the high pasture ETa in southeastern Australia has 

not been established. 
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Table 1 Selected studies of land-use change effects on water resources 
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Table 3 Annual streamflow and precipitation for study catchments 

Table 4 Summary of average annual water balance 2011-2016 for study catchments and annual 

ETa as percentage of annual precipitation. Water balance ETa determined by difference 

from other components (equation 2). 

Figures 

Figures 2-4, Figure 7, and Figure 9 in color  

Figure 1 Location of the Glenelg River Basin and the seven study catchments. 

Figure 2 Height above nearest drainage (HAND) and monitoring-well locations. The color 

scheme is based on deciles of the statewide values and emphasizes the near-zero values. 

Figure 3 January 2014 water-table levels and land cover. 

Figure 4 Depth to water table from ground surface for wells in farms (on the left) and plantations 

(on the right). 

Figure 5 Daily streamflow and precipitation for study catchments 

Figure 6 Annual streamflow against annual precipitation and quarterly (q) streamflow 

comparison in the period 2011-2016 

Figure 7. Days with flow in the different study catchments in different years. 

Figure 8 Flow-duration curves for study catchments, 2011-2016, and annual streamflow-duration 

relationship between farm and plantation catchments. Flow is expressed in mm d
-1

 over 

30-min periods. 
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Figure 9 Comparison of average annual ETa versus average annual precipitation for the study 

catchments to Australian data and model curves from Zhang et al. (1999) 
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Table 1 Selected studies of land-use change effects on water resources 

Study Location Flow regime Groundwater 

measurement 

Land use Key results 

Reviews 

Hibbert (1967), Bosch and 

Hewlett (1982), Zhang et al. 

(1999; 2001) 

Global Not specified No Variable Evaluation of catchment flow versus P. Development of ETa versus P 

curves 

Scott et al. (2000) South Africa Not specified No Eucalyptus, Pinus plantation 

afforestation and 

deforestation 

Wide variety in amount of flow reduction as a result of plantation 

growth. Peak reductions tend to occur early in rotation, then reduction 

diminishes. 

Brown et al. (2005) Global Perennial to 

intermittent with 

afforestation; 

intermittent to 

perennial with 

deforestation 

No Eucalyptus, Pinus plantation 

afforestation, regrowth, 

deforestation 

Good agreement seen between paired catchment and water-balance 

approaches. Takes more than 5 y to reach equilibrium after land-use 

change. Largest flow-volume changes occur in wet periods, but winter-

dominant and snow-affected catchments show larger proportional 

change in summer months. 

McVicar et al. (2007) Loess Plateau, 

China 

Perennial No Pinus, Populus Afforestation Provides review of land-use change research on Loess Plateau. 

Afforestation reduces streamflow by up to 78%. Zhang curves used to 

develop decision-support tool for revegetation. 

van Dijk and Keenan (2007) Global Decline from near 

perennial to 

intermittent with 

afforestation 

No Pinus plantation afforestation Runoff generation from clearing is substantially less than predicted. 

Difference from experimental studies was attributed to scale effects 

Dye (2013) South Africa Not specified No Eucalyptus plantation 

afforestation 

The native vegetation that was replaced had very low water use. Young 

trees have lower water use efficiency 

Global Studies 

Scott and Lesch (1997), 

Scott et al. (2000), Scott and 

Prinsloo (2008) 

South Africa Perennial  Eucalyptus Pinus plantation 

afforestation of scrubland 

and forest; harvest 

Streamflow decreased or ceased after planting in several catchments 

and resumed several years after harvest, but there was large variability 

in response. 

Rodríguez-Suárez et al. 

(2011) 

Spain  Yes Eucalyptus plantation 

afforestation of pasture and 

cropland 

Dry-season water table declined; streamflow reduction increased as 

plantation matured. 

Almeida et al. (2016) Brazil  Yes Eucalyptus plantation 

deforestation 

Pasture had higher discharge; harvest increased plantation discharge, 

but P increased during the study period 

Silveira et al. (2016) Uruguay  Yes Natural grassland pasture to 

Eucalyptus plantation 

Plantation growth increased stream flow but no conclusive effect on 

groundwater recharge. 

Brown et al. (2013) Australia, South 

Africa, New 

Zealand 

 No Eucalyptus Pinus plantation 

afforestation, deforestation 

Low flows proportionately more effected than high flows but total 

volume change mainly associated with high flows. 

Australian Studies 

Holmes and Colville (1970) South Australia   Yes Grassland comparison to 

Pinus plantation 

Winter and spring ETa of up to 2.2 times greater under forests 

Colville and Holmes (1972) South Australia Intermittent Yes Grassland comparison to 

Pinus plantation 

Recharge from plantation ~ 50% that of pasture. Karst flow system 

complicates interpretation of groundwater flow 
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Study Location Flow regime Groundwater 

measurement 

Land use Key results 

Bren and Turner 

(1985),;Bren (1997),;Bren et 

al. (2006),;Bren and 

Hopmans (2007), Hopmans 

and Bren (2007), Bren et al. 

(2010) 

Victoria 

Australia  

  Native Eucalyptus harvest 

and regrowth or conversion 

to Pinus plantation 

Harvesting increased water yield 300 mm y
-1

, but the flow subsequently 

declined and remained lower than the control for 34 y. Conversion to 

plantation immediately increased the water yield up to 300 mm y
-1

 

followed by decline in response, but it remained higher than the native 

forest in dry years. Conversion of grassland to plantation decreased 

flow  

Burch et al. (1987) Victoria 

Australia 

Intermittent No. Perched 

zone was 

monitored 

Native Eucalyptus forest 

deforestation 

Higher Qsw in grassland attributed to lower soil hydraulic conductivity 

rather than ETa differences 

Cornish and Vertessy (2001) Victoria 

Australia 

  Native Eucalyptus harvest, 

regrowth 

Increased flow for 2 y after logging and then declining flow, reaching 

levels statistically below pre-harvest after 12 y 

Webb et al. (2012) New South 

Wales Australia 

  Eucalyptus harvest and 

regrowth 

Eucalyptus forest regrowth Qsw may follow curves where water use 

initially increases but then decreases to levels below pre-harvest flow 

as seen in Eucalyptus regnans forest. 

Benyon (2002), Benyon and 

Doody (2004), Benyon et al. 

(2006), Benyon et al. (2007), 

Benyon et al. (2009) 

Victoria and 

South Australia  

Not specified No Eucalyptus plantation 

afforestation 

Plot scale studies. ET for Eucalyptus plantations approaches P. ETa > P 

attributed to groundwater uptake by tree roots. 

Greenwood and Cresswell 

(2007) 

South Australia Intermittent No Pinus plantation regeneration 

after fire 

Plantation resulted in ~85% reduction in streamflow. Maximum 

impacts were detected after 5 y of regrowth. 

Adelana et al. (2015) Gatum Site 

Victoria 

Australia (site 

included in 

current study) 

Intermittent  Eucalyptus plantation 

afforestation 

Consistently higher streamflow seen in pasture catchment than in 

plantation using 2 y data. Water table rose in pasture catchment but fell 

in plantation.  

Dean et al. (2015) Mirranatwa Site 

Victoria 

Australia (site 

included in 

current study) 

Intermittent Yes Eucalyptus plantation 

afforestation 

Groundwater recharge occurred dominantly in valley bottoms. 

Groundwater levels declined in the plantation but not the pasture. 

Groundwater was lost from the plantation catchment dominantly by 

ETa. 

Dean et al. (2016) Mirranatwa Site 

Victoria 

Australia (site 

included in 

current study) 

Intermittent Yes Eucalyptus plantation 

afforestation 

ETa in plantation catchment was greater than P and greater than in 

pasture catchment, but Qsw was similar over a 4 y period. Downslope 

orientation of plantation furrows promoted runoff. 

This Study Victoria 

Australia 

Intermittent Yes Eucalyptus plantation 

afforestation 

 

 

Table 2 Catchment characteristics 
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Catchment 

Total 

area 

ha 

Valley 

bottom 

ha 

Mid 

slope 

ha 

Upper 

slope 

ha 

Tree 

cover 

ha, % 

Mean annual 

precipitation 

2011-2016 

(long term 

mean
*
) 

mm y
-1

 

Average 

annual  

potential 

ET0** 

mm y
-1

 

Geology 

Gatum Farm (GF) 151 33 50 68 5, 3% 
622 

(627) 
1080 

Weathered 

Devonian acid 
volcanics 

Gatum Plantation 
(GP); established 
in 2005 

338 45 99 194 
230, 

68% 

Mirranatwa Farm 
(MF) 

47 8 11 28 2, 3% 

595 
(672) 

1300 
Weathered 
Devonian 

granite 

Mirranatwa 
Plantation 

(MP);;established 
in 2008 

78 10 25 43 51, 66% 

Digby Farm North 
(DFN) 

195 50 66 79 38, 19% 
702 

(734) 
1044 Tertiary 

marginal marine 
clays and sands 

over limestone 

Digby Farm South 
(DFS) 

160 59 73 28 2, 1% 

Digby Plantation 
(DP); established 
in 2001 

391 274 117 - 
375, 
96% 

771 
(734) 

1020 

*
 Long-term mean precipitation from nearest Bureau of Meteorology Sites: Gatum Station 089043; Mirranatwa Station 89019; Digby 

Station 090057. http://www.bom.gov.au/climate/data/ 

** Potential ET calculated using the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith formula from 

http://www.longpaddock.qld.gov.au/silo 

 

Table 3 Annual streamflow and precipitation for study catchments 
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  Gatum Mirranatwa Digby 

Year P Farm  Plantation  P Farm  Plantation  Farm 

P 

Farm North  Farm South  Plantation  

P 

Plantation  

  Qsw Duration Qsw Duration  Qsw Duration Qsw Duration  Qsw Duration Qsw Duration  Qsw Duration 

 

mm 
y-1 

mm 
y-1 

% * mm 
y-1 

% * mm 
y-1 

mm 
y-1 

% * mm 
y-1 

% * mm 
y-1 

mm 
y-1 

% * mm 
y-1 

% * mm 
y-1 

mm 
y-1 

% * 

2011 722 54 61 25 26 734 26 42 40 50 787 141 55 121 22 978 37 53 

2012 527 23 39 11 22 561 22 28 16 38 774 57 35 44 21 764 4 35 

2013 574 46 40 24 17 583 22 21 18 27 765 101 37 103 20 845 13 33 

2014 537 20 40 11 16 476 7 10 5 14 655 49 29 2 3 590 2 18 

2015 491 8 38 2 12 397 1 3 1 3 479 11 26 2 7 557 ~0 7 

2016 879 159 55 189 42 819 42 36 43 37 750 156 41 124 36 890 32 40 

Mean 622 52 46 44 23 595 20 23 20 28 702 86 37 66 18 771 15 31 

Min 491 8 38 2 12 397 1 3 1 3 479 11 26 2 3 557 0 7 

Max 879 159 61 189 42 819 42 42 43 50 787 156 55 124 36 978 37 53 

S.D. 150 55 10 72 11 158 14 15 17 17 119 57 10 57 12 168 16 16 

 

* Duration is the percent of time with measurable streamflow 
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Table 4 Summary of average annual water balance 2011-2016 for study catchments and annual 

ETa as percentage of annual precipitation. Water balance ETa determined by difference from 

other components (equation 2). 

Average Annual Water Balance, mm y
-1

 (% of P) 

 
GF GP MF MP DFN DFS DP 

P 622 622 595 595 702 702 771 

Qsw 52 (8) 44 (7) 20 (3) 20 (3) 86 (12) 66 (9) 15 (2) 

ΔSgw 23 (4) -73 (-12) -1 (-0.1) -80 (-13) -8 (1) -3 (-0.4) -29 (-4) 

Qgw 6 (0.9) 19 (3) 21 (4) 11 (2) 6 (0.9) 5 (0.7) 1 (0.2) 

ETa 541 (87) 632 (102) 555 (93) 643 (108) 617 (88) 634 (90) 783 (102) 

Water Balance ETa, mm y
-1

 (% of P) 

Year GF GP MF MP DFN DFS DP 

2011 611 (85) 752 (104) 660 (90) 728 (99) 677 (86) 677 (86) 961 (98) 

2012 533 (101) 640 (121) 523 (93) 593 (106) 750 (97) 751 (97) 837 (110) 

2013 503 (88) 585 (102) 541 (93) 642 (110) 610 (80) 625 (82) 828 (98) 

2014 550 (102) 612 (114) 480 (101) 568 (119) 678 (103) 686 (105) 659 (112) 

2015 567 (116) 595 (121) 410 (103) 494 (125) 510 (107) 494 (103) 596 (107) 

2016 481 (55) 606 (69) 716 (87) 835 (102) 478 (64) 568 (76) 821 (92) 

Average 541 (87) 632 (102) 555 (93) 643 (108) 617 (88) 634 (90) 783 (102) 

SD 47 (21) 62 (20) 114 (6) 122 (10) 106 (16) 92 (12) 133 (8) 

Zhang Curve ETa, mm y
-1

 (% of P) 

Year GF GP MF MP DFN DFS DP 

2011 530 (73) 613 (85) 535 (73) 618 (84) 583 (74) 555 (71) 821 (84) 

2012 429 (81) 475 (90) 449 (80) 499 (89) 576 (74) 550 (71) 679 (89) 

2013 456 (79) 510 (89) 461 (79) 515 (88) 572 (75) 546 (71) 736 (87) 

2014 435 (81) 483 (90) 398 (84) 434 (91) 516 (79) 496 (76) 547 (93) 

2015 407 (83) 447 (91) 346 (87) 370 (93) 409 (86) 399 (83) 520 (93) 

2016 595 (68) 709 (81) 572 (70) 671 (82) 565 (75) 540 (72) 765 (86) 

Average 475 (78) 540 (88) 460 (79) 518 (88) 537 (77) 514 (74) 678 (89) 

SD 72 (6) 101 (4) 84 (6) 112 (4) 67 (4) 61 (5) 121 (4) 
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Figure 1 Location of the Glenelg River Basin and the seven study catchments. The catchments 

are: GF: Gatum Farm, GP: Gatum Plantation, MF: Mirranatwa Farm, MP: Mirranatwa 

Plantation, DFN: Digby Farm North, DFS: Digby Farm South, DP: Digby Plantation.  
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Figure 2 Height above nearest drainage (HAND) and monitoring-well locations. The color 

scheme is based on deciles of the statewide values and emphasizes the near-zero values.  
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Figure 3 January 2014 water-table levels and land cover.   
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Figure 4 Depth to water table from ground surface for wells in farms (on the left) and plantations 

(on the right). 
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Figure 5 Daily streamflow and precipitation for study catchments 
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Figure 6 Annual streamflow against annual precipitation and quarterly (q) streamflow 

comparison in the period 2011-2016 
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Figure 7. Days with flow in the different study catchments in different years. 
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Figure 8 Flow-duration curves for study catchments, 2011-2016, and annual streamflow-duration 

relationship between farm and plantation catchments. Flow is expressed in mm d
-1

 over 30-min 

periods.  
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Figure 9 Comparison of average annual ETa versus average annual precipitation for the study 

catchments to Australian data and model curves from Zhang et al. (1999) 

 


