

E: geology@geosociety.org W: geosociety.org/gsa T: @geosociety

FOR PEER REVIEW - CONFIDENTIAL

Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain.

Tracking no: G45631R

Authors:

Robert Duller (University of Liverpool), John Armitage (Institut de Physique du Globe de Paris), Hayley Manners (University of Plymouth), Stephen Grimes (University of Plymouth), and Tom Dunkley -Jones

Abstract:

Sediment routing systems (SRS) are a critical element of the global response to ongoing climate change. However SRS response to climate forcing is complex, fragmentary and obscured when viewed over short, human timescales (10-1-102 yrs). Over long timescales (>102-103 yrs) the aggregated, system-wide response of SRS to climate forcing can be gleaned with more confidence from the sedimentary record; but the nature and timescales of this aggregated response to abrupt climate change is still poorly understood. Here, we investigate the aggregated temporal response of a SRS in northern Spain to abrupt climate warming at the Paleocene-Eocene thermal maximum (PETM). Our results show that terrestrial sites in northern Spain record a temporal lag of 16.5{plus minus}7.5 kyrs between the onset of the PETM, defined by an abrupt negative excursion in δ 13C profile, and the onset of coarse-grained deposition. Within the same SRS at the deep marine site 500 km to the west we observe a temporal lag of 16.5{plus minus}1.5 kyrs using an age model independent of that used for the terrestrial sites. These results suggest that the aggregated, system-wide response of SRS to present-day global warming - if we take the PETM as an appropriate modern-day analogue - may persist for many millennia into the future.

1	Delayed sedimentary response to abrupt climate change at
2	the Paleocene-Eocene boundary, northern Spain.
3	Robert A. Duller ¹ , John J. Armitage ² , Hayley Manners ³ , Stephen Grimes ³ , Tom
4	Dunkley Jones ⁴
5	¹ Department of Earth, Ocean and Ecological Sciences, University of Liverpool,
6	Liverpool <mark>L69 3BX</mark> , UK
7	² Institut de physique du globe de Paris–Sorbonne Paris Cité, Université Paris Diderot,
8	CNRS, UMR7154, 1 rue Jussieu, 75238 Paris CEDEX 05, France
9	³ School of Geography, Earth & Environmental Sciences, Plymouth University, Drake
10	Circus, Plymouth, Devon PL4 8AA, UK
11	⁴ School of Geography, Earth and Environmental Sciences, University of Birmingham,
12	Edgbaston, Birmingham B15 2TT, UK
13	ABSTRACT
14	Sediment routing systems (SRSs) are a critical element of the global response to
15	ongoing climate change. However SRS response to climate forcing is complex,
16	fragmentary, and obscured when viewed over short, human time scales $(10^{-1}-10^2 \text{ yr})$.
17	Over long time scales (> 10^2 – 10^3 yr), the aggregated, system-wide response of SRSs to
18	climate forcing can be gleaned with more confidence from the sedimentary record; but
19	the nature and time scales of this aggregated response to abrupt climate change is still
20	poorly understood. Here, we investigate the aggregated temporal response of a SRS in
21	northern Spain to abrupt climate warming at the Paleocene-Eocene thermal maximum
22	(PETM). Our results show that terrestrial sites in northern Spain record a temporal lag of

23	16.5 ± 7.5 k.y. between the onset of the PETM, defined by an abrupt negative excursion
24	in the δ^{13} C profile, and the onset of coarse-grained deposition. Within the same SRS at
25	the deep marine site 500 km to the west, we observe a temporal lag of 16.5 \pm 1.5 k.y.
26	using an age model that is independent of that used for the terrestrial sites. These results
27	suggest that the aggregated, system-wide response of SRSs to present-day global
28	warming—if we take the PETM as an appropriate modern-day analogue—may persist for
29	many millennia into the future.
30	INTRODUCTION
31	The Paleocene-Eocene thermal maximum (PETM) is the most informative
32	geological analogue for understanding the impact of rapid (<5 k.y.) and large-magnitude
33	(>4 °C) warming on global hydrology and sediment routing systems (SRSs) (Haywood et
34	al., 2011; Foreman et al., 2012; Carmichael et al., 2017). The PETM is associated with a
35	large negative carbon isotope excursion (CIE) driven by the release of >4000 Pg of
36	isotopically light carbon into the global carbon cycle (Gutjahr et al. 2017). This event is
37	recorded in the carbon isotope (δ^{13} C) values of calcium carbonate minerals and organic
38	matter from both terrestrial and marine strata (McInerney and Wing, 2011). During the
39	PETM, changes in atmospheric and ocean surface temperature caused dramatic and
40	globally non-uniform change of the hydrological cycle (Bowen and Bowen, 2008;
41	Carmichael et al., 2017). Studies of mid-latitude areas in the central United States
42	(Foreman et al. 2012; Kraus et al., 2013; Baczynski et al., 2013) and northern Spain
43	(Schmitz and Pujalte 2007; Manners et al., 2013) indicate increased seasonal
44	precipitation during the PETM, within generally dry climate regimes. In northern Spain,
45	there is a clear association between the CIE and an increase in the amount, and caliber, of

46	detrital material transported to both terrestrial and marine environments (Schmitz and
47	Pujalte, 2003, 2007; Dunkley Jones et al. 2018; Pujalte et al. 2015). A laterally extensive
48	(>500 km ²), 1–7-m-thick conglomerate unit ('Claret Conglomerate') marks this change in
49	the terrestrial environment (Schmitz and Pujalte, 2003). Similarly, in Wyoming, USA, a
50	30-m-thick and laterally extensive channel-belt sandstone ('Boundary Sandstone') is
51	concomitant with the PETM (Foreman, 2014); and in Colorado, a similar change in
52	sedimentary architecture is associated with the PETM (Foreman et al., 2012). The short
53	temporal duration of PETM onset (<5 k.y.) (Bowen et al., 2015; Dunkley Jones et al.
54	2018) and the potential for precise, high-resolution stratigraphic correlation between
55	sections using $\delta^{13}C$ data, enables PETM Earth system leads and lags to be resolved at the
56	millennial scale (Knight and Harrison, 2013). The preservation and exposure of terrestrial
57	and deep-marine PETM sequences in the Tremp-Graus Basin of northern Spain (Schmitz
58	and Pujalte, 2003, 2007; Domingo et al., 2009; Manners et al., 2013; Dunkley Jones et
59	al., 2018) allows the study of system-wide response of a SRS to rapid and abrupt climate
60	warming. We use these sequences in northern Spain to explore the aggregated, system-
61	wide response of a PETM SRS.

62 METHODS

To quantify the temporal relationship between the onset of the PETM climate perturbation and the response of the Spanish PETM SRS, we first assume a close coupling existed between the onset character of the CIE and PETM climate. This is supported by high-resolution studies of expanded PETM sections from the New Jersey margin that find no significant lag between δ^{13} C and δ^{18} O records (Zeebe et al. 2016). Here we focus on quantifying the lag time (t_{lag}) between the onset of the CIE and the

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G45631.1 onset of coarse-grained detrital deposition (OCD) in a study section. To do this, we first

69

70	calculate a mean sedimentation rate for each section using the latest estimates of PETM
71	CIE duration (Westerhold et al. 2018) and the measured stratigraphic thickness of the
72	CIE at each location. To account for uncertainty in the precise identification of the CIE
73	"core" (ca. 100 ka) versus "core and recovery" (ca. 180 ka) in the study sections, we
74	calculate lower and upper estimates for sedimentation rate using both these durations
75	(Westerhold et al., 2018).
76	Our approach should give a minimum t_{lag} values for two reasons. First, sedimentation
77	rates in most sections increase substantially during the core of the PETM (Dunkley Jones
78	et al., 2018; John et al., 2007), and applying these higher sedimentation rate values to the
79	onset phase will minimize calculated t_{lag} values. Second, the basal surface of the Claret
80	Conglomerate in the Spanish Sections remove and truncate underlying strata that
81	accumulated during the onset interval of the PETM. Therefore, the preservation of a
82	stratigraphic offset between the onset of the PETM CIE and the base of the Claret
83	Conglomerate is strong evidence for a temporal lag of SRS response. On this basis, the
84	t_{lag} values calculated here are almost certainly minimum estimates. We note that, for our
85	purposes, the calculation of t_{lag} is not compromised by the 'Sadler effect' (Sadler, 1981).
86	To further explore the stratigraphic response of SRSs to abrupt hydrological
87	change, we utilize a one-dimensional (1-D) sediment transport model (see the GSA Data
88	Repository ¹). The model solves for the change in topography due to the transport of
89	sediment down slope, which is a function of both local slope and surface water discharge
90	(Armitage et al., 2016). Precipitation rate is increased from a baseline of 0.5 mm yr ⁻¹

91 f	following a box	profile with a t	ime to peak	precipitation o	f 5 k.y. re	eflecting the ti	me scale
------	-----------------	------------------	-------------	-----------------	-------------	------------------	----------

92 of PETM onset (Westerhold et al., 2018).

93 **RESULTS**

94	The analysis shows that the Tendrui, Claret, and Campo sections exhibit a
95	stratigraphic offset, but that the Esplugafreda section does not (Fig. 2). The calculated
96	durations of the stratigraphic offset or t_{lag} are: Tendrui $t_{\text{lag}} = 13-24$ k.y.; Claret $t_{\text{lag}} = 9-16$
97	k.y.; Esplugafreda $t_{lag} = 0$ k.y. The lower rates of sediment accumulation at the
98	Esplugafreda section (0.1 mm yr ⁻¹) has led to a reduced level of stratigraphic
99	completeness (Sadler, 1981; Straub and Esposito, 2013); inhibiting proxy record
100	preservation and precluding the identification of a resolvable t_{lag} (Foreman and Straub,
101	2017). We tentatively estimate a value of Campo $t_{\text{lag}} = 20-36$ k.y.
102	A new age model for the deep marine segment of this SRS at Zumaia (Fig. 1),
103	alongside a record of detrital mass accumulation rate (D_{MAR}) (Dunkley Jones et al.,
104	2018), allows for a unique comparison of the terrestrial and marine response to the same
105	event. The D_{MAR} data from the Zumaia section shows an immediate response to the CIE,
106	increasing from 1 g cm ⁻² k.y. ⁻¹ to 3 g cm ⁻² k.y. ⁻¹ over the first 5 k.y. (Fig. 2E). This
107	elevated value is maintained for 10 k.y. before increasing abruptly from 3 g cm ⁻² k.y. ⁻¹ to
108	7 g cm ⁻² k.y. ⁻¹ over a period of <4 k.y., an increase that lags behind the CIE by $t_{\text{lag}} = 15-$
109	18 k.y.; while maximum D_{MAR} values are attained 25–30 k.y. after the onset of the CIE
110	(Fig. 2E). The immediate response of D_{MAR} to the CIE is due to the greater advective
111	length scales or transportability of finer-grained material (Ganti et al., 2014). However,
112	the synchroneity of the arrival of coarse material at the terrestrial sites and the increase in
113	D_{MAR} at the deep marine site suggests that a single causative mechanism is responsible

114	for the observed time lag. The data presented above strongly suggest that SRSs may take
115	$\sim 10^4$ yrs to respond to abrupt, large magnitude climate change.
116	The results of the 1-D sediment transport model demonstrate that a t_{lag} can be
117	reproduced (Fig. 3). The greater the precipitation increase over the 5 k.y. onset duration,
118	the shorter the value of t_{lag} (Fig. 3). The truncation of individual grain size profiles (e.g.,
119	Fig. 3B) signifies sediment bypass and non-deposition (i.e. a time gap) of the coarsest
120	grain size populations. In northern Spain we suggest that this phase of by-pass is recorded
121	as a 20-30-m-thick succession of fine-grained floodplain sediment that directly overlies
122	the Claret Conglomerate. The model predicts t_{lag} values of 0 k.y. at 50 km distance from
123	the origin, 10–35 k.y. at 100 km, and 45–85 k.y. at 150 km (Fig. 3D), which is not
124	dissimilar to the field estimates of t_{lag} . We acknowledge that these model results are

125 approximations.

126 **DISCUSSION**

127 Stratigraphic sections from the terrestrial and deep marine segments of the 128 northern Spain PETM SRS show strong evidence for a time lag between the onset of the 129 PETM CIE and the onset of coarse-grained deposition. The results of a 1-D sediment 130 transport model support this. The observed t_{lag} was generated by the internal response of 131 the SRS; so what was this mechanism? It is possible that the natural avulsion of river 132 channels could generate a stratigraphic offset and so t_{lag} , but the t_{lag} value would be 133 spatially variable. This maximum value of an *avulsion-related time lag* can be 134 approximated by a compensation timescale, $T_c = h/r$, (where h is channel depth and r is 135 aggradation rate). This defines the time window over which sediment can be delivered to 136 the majority of a river valley width (Straub et al., 2009; Wang et al., 2011), which is

137	calculated to be $T_c = 6.5 \pm 3.7$ k.y. for the sections in northern Spain. This value of T_c
138	represents a maximum value given that the time taken for a channel to visit 95% of the
139	river valley width could be of the order of $\sim 0.25T_c$ (Straub and Esposito, 2013), and
140	channel mobility increases with increasing sediment flux (Wickert et al., 2013) and a
141	change in vegetation type and coverage (Foreman, 2014). We note that $T_c = 6.5 \pm 3.7$ k.y.
142	also represents a minimum resolvable lag time using geochemical proxies (Foreman and
143	Straub, 2017). Our preferred mechanism for the generation of t_{lag} is a delay in sediment
144	transport from source area(s) to down-system locations as transport slopes adjust to the
145	increased transport capacity of the fluvial system. This mechanism can explain a SRS-
146	wide response. However, given our limited knowledge of the relationship between
147	temperature change magnitude, the onset of hydrological system response, and the onset
148	of landscape response, we cannot completely rule out a 'critical hydrological-landscape
149	threshold' mechanism, whereby the time it takes to reach this critical threshold is
150	manifested as a t_{lag} . This requires further work.
151	As a comparison, t_{lag} values were calculated for two well-studied sections in the
152	Piceance Creek basin of western Colorado (Foreman et al., 2012), and the Bighorn Basin
153	of Wyoming (Foreman, 2014), giving values of $t_{\text{lag}} = 22-40$ k.y. and 14–25 k.y.,
154	respectively (see the Data Repository). The presence of a t_{lag} in PETM sections in the
155	United States and in northern Spain sections might suggest a common mechanism of
156	generation. However, we advise slight caution on this as the value of t_{lag} will depend on
157	the input grain size of the sediment supply, location within the basin, and local basin and
158	Earth surface conditions that dictate the degree of stratigraphic completeness (Foreman
159	and Straub, 2017).

160	Given the lag times present in many of the studied PETM sections our results
161	suggest that it may take \leq 15 k.y. for SRS to achieve total and aggregated, system-wide
162	response to modern abrupt climate forcing. This time scale probably represents an upper
163	estimate given that anthropogenic carbon release rates are an order of magnitude greater
164	than that associated with the PETM CIE (Zeebe et al., 2016). The aggregated, system-
165	wide response time scale described here is akin to the timescale necessary for 'system
166	clearing' (Jerolmack and Paola, 2010; Foreman et al., 2012) to occur in an individual
167	SRS following abrupt climate forcing. This temporal and spatial character of SRS
168	response is a function of the nature of climate forcing and the size and sensitivity of the
169	SRS (Jerolmack and Paola, 2010; Knight and Harrison, 2013). From a stratigraphic
170	perspective, accurately decoding past climate from sedimentary caliber or type alone is
171	problematic given the observed complex response of SRSs, where sedimentary layers
172	may well be recording an event that took place 10^4 yrs earlier. From the perspective of
173	modern global change, it is clear that the response of SRS to anthropogenically induced
174	climate change has only just started. Based on the available PETM data, dramatic
175	changes in sediment erosion, sediment flux and sediment accumulation rates, across both
176	terrestrial and marine segments of SRS, are likely to evolve and persist for millennia to
177	come.

178 CONCLUSION

A linked terrestrial to deep marine sediment routing system in northern Spain records a stratigraphic offset between the abrupt onset of warming and hydrological change at the PETM, and the arrival of coarse-grained (>2 mm) material to terrestrial sections, and the increase in detrital mass accumulation rate at a deep marine section. The

183	calculated duration of this stratigraphic offset (t_{lag}) is of the order of 16.5 ± 7.5 k.y. for
184	terrestrial sites and 16.5 \pm 1.5 k.y. for the deep-marine site, each using independent age
185	model. This SRS-wide response and t_{lag} value range is reproduced using a 1-D sediment
186	transport model, which supports the mechanism of delayed sediment transport from the
187	sediment source area to locations down-system. Our data provide new field and modeling
188	constraints on the response of SRSs to abrupt climate change and highlight the protracted
189	response of our landscape to current global warming, which may take millennia.
190	ACKNOWLEDGMENTS
191	We thank two anonymous reviewers and the editor. Armitage acknowledges
192	funding through the French Agence National de la Recherche, Accueil de Chercheurs de
193	Haut Niveau call, grant "InterRift".
194	REFERENCES CITED
195	Armitage, J.J., Burgess, P.M., Hampson, G.J., and Allen, P.A., 2016, Deciphering the
196	origin of cyclical gravel front and shoreline progradation and retrogradation in the
197	stratigraphic record: Basin Research, v. 30, p. 15–35,
198	https://doi.org/10.1111/bre.12203.
199	Baczynski, A.A., McInerney, F.A., Wing, S.L., Kraus, M.J., Bloch, J.I., Boyer, D.M.,
200	Secord, R., Morse, P.E., and Fricke, H.C., 2013, Chemostratigraphic implications of
201	spatial variation in the Paleocene-Eocene Thermal Maximum carbon isotope
202	excursión, SE Bighorn Basin, Wyoming: Geochemistry Geophysics Geosystems,
203	v. 14, p. 4133–4152, https://doi.org/10.1002/ggge.20265.

- 204 Bowen, G.J., and Bowen, B.B., 2008, Mechanisms of PETM global change constrained
- 205 by a new record from central Utah: Geology, v. 36, p. 379–382,
- 206 https://doi.org/10.1130/G24597A.1.
- 207 Bowen, G.H., Maibauer, B.J., Kraus, M.J., Röhl, U., Westerhold, T., Steimke, A.,
- 208 Gingerich, P.D., Wing, S.L., and Clyde, W.C., 2015, Two massive, rapid releases of
- 209 carbon during the onset of the Paleocene-Eocene thermal maximum: Nature
- 210 Geoscience, v. 8, p. 44–47, https://doi.org/10.1038/ngeo2316.
- 211 Carmichael, M.J., et al., 2017, Hydrological and associated biogeochemical consequences
- 212 of rapid global warming during the Paleocene-Eocene Thermal Maximum: Global
- 213 and Planetary Change, v. 157, p. 114–138,
- 214 https://doi.org/10.1016/j.gloplacha.2017.07.014.
- 215 Domingo, L., López-Martínez, N., Leng, M.J., and Grimes, S.T., 2009, The Paleocene-
- 216 Eocene Thermal Maximum record in the organic matter of the Claret and Tendruy
- 217 continental sections (South-central Pyrenees, Lleida, Spain): Earth and Planetary
- 218 Science Letters, v. 281, p. 226–237, https://doi.org/10.1016/j.epsl.2009.02.025.
- 219 Dunkley Jones, T., et al., 2018, Orbital forcing of terrestrial hydrology, weathering and
- 220 carbon sequestration during the Paleocene-Eocene Thermal Maximum: Climate of
- 221 the Past, https://doi.org/10.5194/cp-2017-131.
- 222 Foreman, B.Z., Heller, P.L., and Clementz, M.T., 2012, Fluvial response to abrupt global
- 223 warming at the Paleocene/Eocene boundary: Nature, v. 491, p. 92–95,
- 224 https://doi.org/10.1038/nature11513.

- Foreman, B.Z., 2014, Climate-driven generation of a fluvial sheet sand body at the
- 226 Paleocene-Eocene boundary in north-west Wyoming (USA): Basin Research, v. 26,
- 227 p. 225–241, https://doi.org/10.1111/bre.12027.
- 228 Foreman, B.Z., and Straub, K.M., 2017, Autogenic geomorphic processes determine the
- resolution and fidelity of terrestrial paleoclimate records: Science Advances, v. 3,
- 230 p. e1700683, https://doi.org/10.1126/sciadv.1700683.
- 231 Ganti, V., Lamb, M.P., and McElroy, B., 2014, Quantitative bounds on morphodynamics
- and implications for reading the sedimentary record: Nature Communications, v. 5,
- p. 3298, https://doi.org/10.1038/ncomms4298.
- 234 Gutjahr, M., Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H.,
- 235 Norris, R.D., Thomas, E., and Foster, G.L., 2017, Very large release of mostly
- volcanic carbon during the Palaeocene–Eocene Thermal Maximum: Nature, v. 548,
- 237 p. 573–577, https://doi.org/10.1038/nature23646.
- Haywood, A.M., Ridgwell, A., Lunt, D.J., Hill, D.J., Pound, M.J., Dowsett, H.J., Dolan,
- A.M., Francis, J.E., and Williams, M., 2011, Are there pre-Quaternary geological
- analogues for a future greenhouse warming?: Philosophical Transactions of the
- 241 Royal Society, v. 369, p. 933–956, https://doi.org/10.1098/rsta.2010.0317.
- 242 Jerolmack, D.J., and Paola, C., 2010, Shredding of environmental signals by sediment
- transport: Geophysical Research Letters, v. 37, L19401,
- 244 https://doi.org/10.1029/2010GL044638.
- 245 John, C.M., Bohaty, S.N., Zachos, J.C., Sluijs, A., Gibbs, S., Brinkhuis, H., and
- 246 Bralower, T.J., 2007, North American continental margin records of the Paleocene-

- 247 Eocene thermal maximum: Implications for global carbon and hydrological cycling:
- 248 Paleoceanography, v. 23, PA2217, https://doi.org/10.1029/2007PA001465.
- 249 Knight, J., and Harrison, S., 2013, The impacts of climate change on terrestrial Earth
- surface systems: Nature Climate Change, v. 3, p. 24–29,
- 251 https://doi.org/10.1038/nclimate1660.
- 252 Kraus, M.J., McInerney, F.A., Wing, S.L., Secord, R., Baczynski, A.A., and Bloch, J.I.,
- 253 2013, Paleohydrologic response to continental warming during the Paleocene-
- Eocene Thermal Maximum, Bighorn Basin, Wyoming: Palaeogeography,
- 255 Palaeoclimatology, Palaeoecology, v. 370, p. 196–208,
- 256 https://doi.org/10.1016/j.palaeo.2012.12.008.
- 257 Manners, H.R., et al., 2013, Magnitude and profile of organic carbon isotope records
- from the Paleocene-Eocene Thermal Maximum: evidence from northern Spain: Earth
- and Planetary Science Letters, v. 376, p. 220–230,
- 260 https://doi.org/10.1016/j.epsl.2013.06.016.
- 261 McInerney, F.A., and Wing, S.L., 2011, The paleocene-eocene thermal maximum: A
- 262 perturbation of carbon cycle, climate, and biosphere with implications for the future:
- 263 Annual Review of Earth and Planetary Sciences, v. 39, p. 489–516,
- 264 https://doi.org/10.1146/annurev-earth-040610-133431.
- 265 Pujalte, V., Baceta, J.I., and Schmitz, B., 2015, A massive input of coarse-grained
- 266 siliciclastics in the Pyrenean Basin during the PETM: The missing ingredient in a
- 267 coeval abrupt change in hydrological regime: Climate of the Past, v. 11, p. 1653–
- 268 1672, https://doi.org/10.5194/cp-11-1653-2015.

269 Sadler, P.M., 1981, Sediment accumulation rates and the completeness of stratigraphic 270 sections: The Journal of Geology, v. 89, p. 569–584, https://doi.org/10.1086/628623. 271 Schmitz, B., and Pujalte, V., 2003, Sea-level, humidity, and land-erosion records across 272 the initial Eocene thermal maximum from a continental-marine transect in northern 273 Spain: Geology, v. 31, p. 689–692, https://doi.org/10.1130/G19527.1. 274 Schmitz, B., and Pujalte, V., 2007, Abrupt increase in seasonal extreme precipitation at 275 the Paleocene-Eocene boundary: Geology, v. 35, p. 215–218, 276 https://doi.org/10.1130/G23261A.1. 277 Straub, K.M., Paola, C., Mohrig, D., Wolinsky, M.A., and George, T., 2009, 278 Compensational stacking of channelized sedimentary deposits: Journal of 279 Sedimentary Research, v. 79, p. 673–688, https://doi.org/10.2110/jsr.2009.070. 280 Straub, K.M., and Esposito, C.R., 2013, Influence of water and sediment supply on the 281 stratigraphic record of alluvial fans and deltas: Process controls on stratigraphic 282 completeness: Journal of Geophysical Research: Earth Surface, v. 118, p. 625–637, 283 https://doi.org/10.1002/jgrf.20061. 284 Wang, Y., Straub, K.M., and Hajek, E.A., 2011, Scale-dependent compensational 285 stacking: An estimate of autogenic time scales in channelized sedimentary deposits: 286 Geology, v. 39, p. 811–814, https://doi.org/10.1130/G32068.1. 287 Westerhold, T., Röhl, U., Wilkens, R., Gingerich, P.D., Clyde, W., Wing, S., Bowen, G., and Kraus, M., 2018, Synchronizing early Eocene deep-sea and continental 288 289 records—New cyclostratigraphic age models from the Bighorn Basin Coring Project: 290 Climate of the Past, v. 14, p. 303–319, https://doi.org/10.5194/cp-14-303-2018.

- 291 Wickert, A.D., Martin, J.M., Tal, M., Kim, W., Sheets, B., and Paola, C., 2013, River
- channel lateral mobility: metrics, time scales, and controls: Journal of Geophysical
- 293 Research: Earth Surface, v. 118, p. 396–412, https://doi.org/10.1029/2012JF002386.
- 294 Zeebe, R.E., Ridgwell, A., and Zachos, J.C., 2016, Anthropogenic carbon release rate
- unprecedented during the past 66 million years: Nature Geoscience, v. 9, p. 325–329,
- 296 https://doi.org/10.1038/ngeo2681.

297 FIGURE CAPTIONS

- Figure 1. Site location, location map, and early Paleogene paleogeography of the Spanish
- 299 Pyrenees. Section locations: CL—Claret; T—Tendrui; E—Esplugafreda; C—Campo;
- 300 Z—Zumaia. Main cities: Sa—Santander; SS—San Sebastian; Vi—Vitoria; To—
- 301 Toulouse. Modified from Pujalte et al. (2015).
- 302
- 303 Figure 2. Sedimentary logs and associated isotopic profiles. Sections in northern Spain
- 304 are: A—Tendrui; B—Claret; C—Esplugafreda D—Campo (Manners et al., 2013); E—
- 305 Zumaia (Dunkley Jones et al., 2018). Dark gray solid line overlaying carbon isotope data

306 in A, B, and C represents the five-point running average of the data.

- 307
- 308 Figure 3. Model results of time delay as a function of distance from source. A: Four
- 309 'increased precipitation' scenarios, each with an initial starting value of 0.5 m yr⁻¹. B, C:
- 310 Chronostratigraphic plots showing the grain size response of each precipitation scenario.
- 311 PO—PETM onset; OCD—onset of coarse detrital deposition; SBP—sediment by-pass.
- 312 The time difference between PO and OCD is the time delay or lag (t_{lag}). D: Model t_{lag}
- 313 results (white fill symbols) and field data results (greyscale filled symbols) plotted as a

- 314 function of distance. T-Tendrui; CL-Claret; C-Campo; Z-Zumaia; D_{MAR} max-
- 315 Maximum detrital mass accumulation rate at Zumaia (Dunkley Jones et al., 2018).
- 316
- ¹GSA Data Repository item 2019xxx, details of 1-D sediment transport model and values
- 318 used to calculate the duration of stratigraphic offset, is available online at
- 319 www.geosociety.org/pubs/ft2019.htm, or on request from editing@geosociety.org.

Figure 1

Figure 2

