
Stability of Low-Reynolds-Number Separated Flow
Around an Airfoil Near a Wavy Ground

Wei He∗ and Yu Guan†

Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,

People’s Republic of China

Vassilis Theofilis‡

University of Liverpool, Brownlow Hill, England L69 3GH, United Kingdom

and
Larry K. B. Li§

Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,

People’s Republic of China

DOI: 10.2514/1.J057544

In this numerical–theoretical study, a linear BiGlobal stability analysis of the steady massively separated flow

around a NACA 4415 airfoil was performed at a low Reynolds number (Re � 200) and a high angle of attack

(α � 18 deg) close to a wavy ground, with a focus on the effect of three different types of stationary roughness: 1) a

perfectly flat ground, 2) awavygroundwith small-amplitudeundulations, and3) awavygroundwith large-amplitude

undulations. On increasing the undulation amplitude h0 of the ground but keeping the mean ground clearance

constant, it was found that the lift coefficient increased owing to an increase in the static pressure under the airfoil,

which is reminiscent of the conventional ground effect over a flat surface. However, it was also found that the leading

flow perturbation was the three-dimensional stationary global mode and not the two-dimensional traveling

Kelvin–Helmholtz mode, contrary to the results of previous analogous studies of linear global instability of massively

separated flow away from the ground. This study provides new insight into the stability of airfoil–ground

flow systems at a low Reynolds number and a high angle of attack, contributing to a better understanding of the

ground-effect aerodynamics of small insects and micro air vehicles flying over rough waters or complex terrain.

Nomenclature

Cl = lift coefficient
Cp = static pressure coefficient
c = chord length of airfoil
H = clearance between mean ground profile and trailing edge

of airfoil
h0 = peak-to-peak amplitude of ground undulations
Lz = spanwise wavelength
l = wavelength of ground undulations
q = total field vector of velocity and pressure
�q = base-flow vector
~q = small perturbation
q̂ = amplitude function of perturbation
Re = Reynolds number based on airfoil chord
Sr = Strouhal number defined as ωr∕2π
t = dimensionless time
U∞ = freestream velocity
x, y = streamwise and cross-stream directions in Cartesian

coordinates
α = angle of attack
β = real spanwise wave number
ω = complex eigenvalue

Subscripts

i = imaginary part
r = real part

I. Introduction

W HEN an aircraft or a bird flies near the ground, it can
experience an increase in aerodynamic efficiency [1],

resulting in a higher lift-to-drag ratio [2] and a reduced mechanical
power required for sustained flight [3]. This phenomenon is known as
the ground effect [4] and has been studied in a variety of applications,
ranging from flapping wing animals to unmanned aerial vehicles [5].
However, most of these studies have been carried out at moderate-to-
high Reynolds numbers {Re ∼O�105–106� [6]}, at angles of attack
α low enough to avoid stall, and with a ground surface that is
perfectly flat. These conditions may not always coincide with
reality. For example, when small insects or micro air vehicles fly over
rough waters or complex terrain, the Reynolds number can drop to
O�103–104� [7] or even O�102� [8], the angle of attack can be high
enough to induce massive flow separation [9], and the ground may
exhibit wavy undulations on its surface. Therefore, it is important to
investigate the ground effect under these more realistic conditions.
Surprisingly, only a handful of studies have investigated airfoil

flows over a wavy ground. Using Reynolds-averaged Navier–Stokes
(NS) simulations, Yang et al. [10] examined the aerodynamic
performance of a wing-in-ground-effect vehicle flying at 0.3c
(c being the chord length) above a wavy ground atRe � 6 × 107 and
α � 5 deg. The pressure under the wing was found to vary
periodically in time, producing similarly periodic variations in the
aerodynamic forces. However, comparedwith a flat ground, thewavy
ground did not produce amarked difference in lift or drag, resulting in
a relatively constant lift-to-drag ratio. By contrast, Wang [11] used
the classical slender body theory to analyze the irrotational flow
around a slender bodymoving over awavy ground. The aerodynamic
forces and moments were found to be highly dependent on the
amplitude and wavelength of the ground undulations. The ground
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effect was found to be particularly strong when the undulation
amplitude became comparable to the ground clearance and/or when
the undulation wavelength became comparable to the body length
(chord). However, to date, the effect of a wavy ground on the
massively separated flow around an airfoil at a low Reynolds number
and a high angle of attack has yet to be explored, particularly for
undulation wavelengths shorter than the chord length. This is the
focus of the present study.
Another unique aspect of the present study concerns the

introduction of three-dimensionality to this problem, through the use
of global flow stability analysis. To develop effective control
strategies to suppress flow separation and improve aerodynamic
performance requires a sound understanding of the instability
characteristics of the base flow [12–18]. Linear stability analysis has
been used to successfully predict the primary stability of two- and
three-dimensional flows [19]. For example, by combining local and
global linear stability analyses on the flow around airfoils at a low
angle of attack, Theofilis et al. [20] and Lin and Pauley [21] were able
to attribute the dominant perturbation to the Kelvin–Helmholtz (KH)
mode. Likewise, at a high angle of attack, a similar dominance by the
KH mode was found in the massively separated flow around a series
of NACA airfoils at a low Reynolds number [22,23]. For steady
separated flow around an airfoil at a low Reynolds number, Kitsios
et al. [24] observed the existence of three-dimensional stationary
modes, which were first reported by Theofilis et al. [25] in a flat-plate
boundary layer. However, these three-dimensional stationary
modes have recently been found to be less unstable than the two-
dimensional KHmode [23]. A similar conclusion was reached by He
et al. [26], who analyzed both the primary and secondary instabilities
of the unsteady separated flow around a NACA 4415 airfoil at
300 ≤ Re ≤ 1000 and α � 20 deg. The airfoil was positioned at a
nondimensional height (based on the chord length) of 0.2 ≤ H ≤ ∞
above two different types of flat ground: a stationary ground and a
moving ground. Results from the latter linear stability analysis
showed that, consistent with previous studies and regardless of
ground type, the two-dimensional KH mode always dominates over
the three-dimensional stationary global mode. However, no attempt
was made to analyze the stability of the flow at Reynolds-number
values below that required for the onset of unsteady vortex shedding
or in the presence of a wavy ground.
In this numerical–theoretical study, we perform a linear BiGlobal

stability analysis of the steady but massively separated flow around
a NACA 4415 airfoil at a low Reynolds number (Re � 200) and a
high angle of attack (α � 18 deg), with a focus on the effect of
three different types of stationary ground: 1) a perfectly flat ground,
2) a wavy ground with small-amplitude undulations, and 3) a wavy
ground with large-amplitude undulations. The aim was to see
whether and how the presence of short-wavelength undulations of
different amplitudes on the ground can influence the structure and
stability of the flow, particularly at a Reynolds-number value below
that required for the onset of unsteady vortex shedding.

II. Problem Formulation

A. Wavy Ground Definition

The wavy ground is defined by a set of cosine functions:

h�x� ≡ h0
2

�
1� cos

2πx

l

�
; x ∈ �0; l� (1)

in which l is the wavelength, and h0∕2 is the amplitude of the ground
undulations. The wave trough is fixed at h � 0, but the wave crest is
set by h � h0. When h0 � 0, the ground defaults to a flat surface, as
shown in Fig. 1. With this ground definition [Eq. (1)], if an airfoil
were positioned at a fixed height above the datum h � 0, increasing
h0 would have the side effect of reducing the mean ground clearance
H, which is defined as the vertical distance between the trailing edge
of the airfoil and the mean ground profile (horizontal dashed lines in
Fig. 1). Therefore, to enable an investigation of the sole effect of h0,
we shift the airfoil up as h0 increases, such thatH is kept constant at
0.2. All length scales are nondimensionalized by the chord length c.

A perspective viewof this airfoil–ground system is shown in Fig. 2, in
which the airfoil (NACA4415) andwavy ground are colored in black
and blue, respectively.

B. Linear Stability Theory

A linear BiGlobal stability analysis was performed to investigate
the evolution of three-dimensional perturbations on a nominally two-
dimensional base flow. The flow is governed by the nondimensional
incompressible NS and continuity equations:

∂tu� u ⋅ ∇u � −∇p� Re−1∇2u; ∇ ⋅ u � 0 (2)

in which the Reynolds number is defined as Re ≡ U∞c∕ν, with U∞
as the freestream velocity, c the chord length, and ν the kinematic
viscosity. The dimensionless velocity and pressure are
q�x; y; z; t� � �u; p�T � �u; v;w; p�T , which consists of a base-
flow component �q and a small perturbation ~q. In incompressible
flow, the pressure perturbation can be expressed as
~p � ∇−2�∇ ⋅ � ~u ⋅ ∇ ~u� ~u ⋅ ∇ ~u��, leading to the linearized NS
equation:

∂t ~u � L ~u (3)

in which L is a linear operator. In a BiGlobal stability analysis, the
small three-dimensional perturbations are spanwise homogeneous,
~u�x; y; z; t� � û�x; y�ei�βz−ωt� � c:c:, in which û is the amplitude
function, β ≡ 2π∕Lz is the wave number along the spanwise periodic
length Lz, and c:c: is a complex conjugate to ensure real-valued
perturbations. Here, ω is the complex eigenvalue of the matrix A in
A ~u � −iω ~u, which is derived from Eq. (3).

Fig. 1 Three ground profiles considered in this study.

Fig. 2 Perspective view of the airfoil–ground system.

Table 1 Numerical schemes used for the base-flow and
stability analyses

Projection method Time integration Eigenvalue algorithm

Base flow CG IMEX2 — —

Direct analysis CG IMEX2 Arnoldi
Adjoint analysis CG IMEX2 Arnoldi
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C. Numerical Setup

To compute the base flow, we used direct numerical simulations
(DNSs) of the NS equations in two dimensions. We did this at
Re � 200 and α � 18 deg because, as will be shown next, this
Reynolds-number value is low enough to avoid unsteady vortex
shedding, and this angle-of-attack value is high enough to induce
massive flow separation. We set the wavelength of the
ground undulations to be l � 0.2 (one-fifth of the chord length),
but explored three different undulation amplitudes (see Fig. 1):
h0 � 0, 0.04, and 0.08. The computational domain, defined by
fx; yg � f�−5∶8.5� × �0∶5�g, was discretized intoO�5400� triangular
macroelements using Gmsh [27]. Along the ground, each period of
thewavy undulating surfacewas defined by six second-order curves.
Thismacromeshwas then imported toNektar++ [28], an open-source
spectral/hp element solver [29]. In this study, we used the continuous
Galerkin (CG)method and a second-order implicit–explicit (IMEX2)
time-integration scheme to solve the incompressible NS equations.
The numerical schemes used for the base-flow and stability
analyses are summarized in Table 1. Figure 3 shows a zoomed-in
view of the mesh around the airfoil–ground system after refinement
by a spectral polynomial of order p � 7. (Each element is outlined
by red lines.) The inflow length (5c) is similar to that of previous
studies [30], and is long enough for the base-flow and stability
analyses to converge, as will be demonstrated next in a sensitivity
analysis.
For numerical stability, a robust outflow boundary condition is

applied to the top and right edges of the computational domain [31].
A uniform inflow condition (U∞ � 1; ∂np � 0) is applied to
the left edge. A no-slip wall condition (u � 0) is applied to the
airfoil surface. For the perturbations, the inflow and wall conditions
are of the homogeneous Dirichlet type (û � 0), and the outflow
condition is of the homogeneous Neumann type (∂nû � 0).
The wavy ground is modeled as a stationary stress-free wall.
In most flight conditions, an insect or micro air vehicle would fly
over a stationary ground, resulting in a time-dependent phase
relationship between the airfoil and the undulations on the ground.
In our study, however, we intentionally kept this phase relationship
constant so as to simplify the problem. Although this approach
is only partially representative of flight over a wavy ground,
it nevertheless enables the steady effect of a wavy ground to
be explored, setting the scene for future studies involving a
time-dependent phase relationship.

III. Results and Discussion

A. Base Flow

Table 2 shows the results of a grid independence study for
H � 0.18, which requires a higher-resolution mesh than for
H � 0.2. Convergence is assessed by increasing the polynomial
order of the mesh (p) and monitoring five indicators: 1) the lift
coefficient Cl; 2) the drag coefficient Cd; and 3–5) the spanwise
vorticityωz � ∂v∕∂x − ∂u∕∂y at three different locations around the
airfoil, which are near the leading edge [P1�0.1; 0.6�], near the
trailing edge [P2�1.0; 0.22�], and in the separation bubble
[P3�1.1; 0.55�]. The relative error in each of these indicators
(ϵCl

, ϵCd
, and ϵωz

) is shown in Table 2. Of all the indicators examined,
ωz is the most sensitive to changes in grid resolution. Nevertheless,
the maximum relative error in ωz is still relatively small, at less than
1.1% forp � 7. Therefore, to balance the numerical accuracy and the
computational cost, we used p � 7 in our base-flow simulations and
stability analysis.
Figure 4 shows DNS streamlines and spanwise vorticity contours

(−5 ≤ ωz ≤ 5) around the airfoil at Re � 200 and α � 18 deg for
three different types of ground, from left to right: 1) a flat ground,
h0 � 0; 2) a wavy ground with small-amplitude undulations,
h0 � 0.04; and 3) a wavy ground with large-amplitude undulations,
h0 � 0.08. For all three cases, the flow is steady in time, confirming
that Reynolds number is indeed low enough to avoid unsteady vortex
shedding. There is massive flow separation behind the airfoil,
resulting in a robust separation bubble with two large recirculation
zones. As the undulation amplitude h0 of the ground increases, the
length of the separation bubble also increases, but its overall structure
remains largely unchanged. Figure 5 shows the static pressure
coefficient Cp on the airfoil surface. As h0 increases, Cp remains
relatively constant on the suction side of the airfoil, but increases
slightly on the pressure side, especially near the midchord location,
resulting in an increase in the lift coefficient Cl, as shown in the
legend of Fig. 5.

B. Stability Analysis

Direct stability analysis is performed by finding the least stable
eigenvalues of A using the Arnoldi iteration in a time-forward
mapping scheme, implemented in Nektar++. Adjoint stability
analysis is performed by solving the adjoint operator of Eq. (3) in a
time-backwardmapping scheme. Both types of stability analysis give
the same eigenvalues if the problem is domain independent. We used
this feature to demonstrate that our computational domain is
sufficiently large. Table 3 shows a sensitivity analysis performed on
the size of the computational domain for a sample flow condition
(h0 � 0.04; β � 0). The agreement in growth rate and frequency
between the direct and adjoint modes is good, confirming that the
computational domain is large enough for the instability properties
to converge.
Figure 6 shows the growth rate (ωi) and Strouhal number

(Sr ≡ ωr∕2π) as a function of the spanwise wave number β for the
flow conditions of Fig. 4. Two different classes of instability modes
can be identified: 1) two-dimensional traveling KH modes (denoted
by hollow markers), for which Sr > 0; and 2) three-dimensional
stationary global modes (denoted by filled markers), for which
Sr � 0 (not plotted). As mentioned earlier, similar modes have been
identified before in both steady [24] and unsteady [20] separated
flows around an airfoil with [26] and without [23,32] the ground
effect. However, in contrast to those earlier studies, in which the KH

Fig. 3 Zoomed-in view of the computational domain around the airfoil.

Table 2 Grid independence study based on the relative errors in Cl, Cd, and ωz at three different
locations around the airfoil

p ωz at P1 ωz at P2 ωz at P3 ϵωz
, % Cd ϵCd

, % Cl ϵCl
, %

5 −17.674540 −2.281345 −2.174560 3.15 0.5166 0.04 1.4172 0.04
7 −17.673402 −2.380518 −2.173184 1.06 0.5168 0.02 1.4166 0.02
9 −17.670292 −2.355664 −2.174399 —— 0.5170 —— 1.4168 ——

The relative error in ωz is the maximum value found across the three sampling locations.
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mode was always found to dominate over the stationary mode, here,
we found the opposite behavior: the KHmode is more stable than the
stationary mode. The former is dominant at small wave numbers
(β ≈ 0), whereas the latter is dominant at largewave numbers (β ≈ 3).
Ash0 increases, the frequencyof theKHmode decreases. Thegrowth
rates of both the KH and stationary modes also decrease, but to a
lesser extent, with the former mode being slightly more stable than
the latter mode. All the growth rates of the perturbations are negative,
implying that both the KH and stationary modes decay in the
long-time asymptotic limit.
Figure 7 shows the three components of the perturbation amplitude

function q̂ at β � 1 (KH mode) and β � 3 (stationary mode) for
h0 � 0.04; these components are normalized by their respective
maximum velocities. As mentioned earlier, the KH mode is stable at
this Reynolds number (Re � 200). However, a recent work by He
et al. [26] on the separated flow around a NACA 4415 airfoil above a
flat ground has shown that, when the Reynolds number exceeds
roughly 500, the KH mode becomes unstable, destroying the steady
separation bubble behind the airfoil and producing large-scale vortex
shedding downstream at a well-defined frequency. Thus, at higher
values of Reynolds number, the KH mode is expected to cause the
airfoil wake to transition from a spatial amplifier of extrinsic
perturbations to a self-excited oscillator with an intrinsic natural

frequency [33]. Such a transition, which is often referred to as a
Hopf bifurcation [34], has been reported before not only in airfoil
wakes [35], but also in cylinder wakes [36], crossflowing
jets [37], and low-density jets [38–40]. To examine the evolution of
the optimal perturbations, we performed a transient growth
analysis by estimating the energy gain G�τ� over a time horizon τ.
Figure 8 shows that G�τ� grows to O�10� over a short time horizon,
and then decays linearly, indicating the presence of convective
instability [23].
Unlike the spatially growing stationarymode identified byHe et al.

[23], here, the spatial structures of the stationary mode dominate the
wake behind the airfoil, and then decay downstream. The streamwise
perturbation is consistently stronger than the other two components.
The perturbation functions for the other two values of h0 (0 and 0.08)
are qualitatively similar to that for h0 � 0.04 (Fig. 7). Figure 9 shows
a three-dimensional reconstruction of the least stable stationarymode
at β � 3, as represented by the λ2 criterion and the streamwise
vorticity (transparent isocontours). It can be seen that the vortical
structure of the perturbation is most complex behind the trailing edge
of the airfoil, with two long stable vortices developing downstream.
The streamwise velocity of the stationary mode is visualized by
dashed and solid lines (−0.01 ≤ û ≤ 0.01) in a vertical plane
at x � 4.

Fig. 4 DNS streamlines and spanwise vorticity distribution around the airfoil-ground system.

Fig. 5 Static pressure coefficient on the airfoil surface at the conditions
of Fig. 4.

Table 3 Sensitivity analysis based on the size of the
computational domain for a sample flow condition

(h0 � 0.04; β � 0)

Mode ωi ωr

Direct −0.10434 2.2171
Adjoint −0.10293 2.2220

Fig. 6 Linear BiGlobal stability analysis at the flow conditions of Fig. 4.

Fig. 7 Normalized perturbation amplitude function q̂ at h0 � 0.04 for (top row) the KH mode and (bottom row) the stationary mode.
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IV Conclusions

A linear BiGlobal stability analysis of the steady massively
separated flow around a NACA 4415 airfoil has been performed at a
low Reynolds number (Re � 200) and a high angle of attack
(α � 18 deg), with a focus on the effect of three different types of
stationary ground: 1) a perfectly flat ground, 2) a wavy ground with
small-amplitude undulations, and 3) a wavy ground with large-
amplitude undulations. For a fixed ground clearance (H � 0.2), it
was found that increasing the undulation amplitude h0 of the ground
leads to a higher lift coefficient, similar to the classical ground effect
over a flat surface. However, it was also found that the leading flow
perturbation is the three-dimensional stationary global mode and not
the two-dimensional traveling KH mode, contrary to previous
analogous studies away from the ground. Increasing h0 was found to
reduce the growth rates and frequencies of the KH and stationary
modes. This work shows that the spanwise periodicity length of the
leading stationary disturbances in the wake of an airfoil is ofO�2c�.
This study provides new insight into the stability of airfoil–ground
flow systems at a low Reynolds number and a high angle of attack,
contributing to an improved understanding of natural flyers and
micro air vehicles. Possible directions for future work include
adopting a dynamicmesh so that the effect of a time-dependent phase
relationship between the airfoil and thewavy ground can be explored.
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