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Abstract

In many combustion devices, strong self-excited flow oscillations can arise from
feedback between unsteady heat release and acoustics, resulting in increased
vibration and pollutant emissions. Open-loop acoustic forcing has been shown
to be effective in weakening such thermoacoustic oscillations, but current im-
plementations of this control strategy require the forcing to be continuously
applied. In this proof-of-concept study, we experimentally demonstrate an al-
ternative method of weakening thermoacoustic oscillations in a self-excited com-
bustion system – a laminar premixed flame in a double open-ended tube. Unlike
existing methods, the proposed method combines the use of transient forcing
with hysteresis and mode switching, thus avoiding the need to continuously
supply energy to the control system. Control is achieved by exploiting the fact
that most combustors have a multitude of natural thermoacoustic modes, some
of which are linearly unstable but some are nonlinearly unstable. By applying
open-loop acoustic forcing at an off-resonance frequency and at an amplitude
higher than that required for synchronization, we find that the combustor can
switch to one of the nonlinearly unstable natural modes (f2) and remain there,
even after the forcing is removed. Dynamic mode decomposition of high-speed
chemiluminescence videos shows that this mode switching occurs because the
flame structure at f2 is more robust than that at the original linearly unsta-
ble natural mode. The final unforced state has a thermoacoustic amplitude of
just half that of the initial unforced state, even though the Rayleigh index of
the former is higher than that of the latter. Although this 50% reduction in
thermoacoustic amplitude is not as large as the 95% reduction achieved with
asynchronous quenching, it is achieved without the use of continuous forcing.
This is a distinct advantage over existing control strategies as it allows the
complexity and power requirements of the control system to be reduced. With
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further development and testing, particularly on turbulent swirling combustors,
the proposed control strategy could pave the way for a new class of open-loop
control techniques based on transient forcing rather than continuous forcing.

Keywords: thermoacoustics, combustion instability, open-loop control, flame
dynamics, gas turbines

1. Introduction1

Thermoacoustic instability is a recurring problem in many combustion de-2

vices, such as industrial furnaces, rocket engines and gas turbines [1]. It is3

caused by resonant coupling between the acoustic modes of a combustor and4

the heat-release-rate (HRR) oscillations of the flame [2]. If this coupling is such5

that the acoustic pressure and HRR are sufficiently in phase with each other, the6

latter can transfer thermal energy to the former via the Rayleigh mechanism [3],7

resulting in self-excited flow oscillations at one or more of the natural acoustic8

frequencies of the combustor [4]. Such thermoacoustic oscillations, arising from9

flame–acoustic feedback, can lead to a variety of damaging effects, including10

flame blow-off and flashback, excessive vibration, and elevated pollutant emis-11

sions [1], reducing the efficiency, reliability and environmental performance of12

the combustion system [5]. Furthermore, recent environmental regulations have13

been calling for renewed reductions in the emissions of nitrogen oxides (NOx),14

prompting gas-turbine manufacturers to switch to lean-premixed combustion15

[6]. However, lean-premixed combustion is known to increase the propensity16

for thermoacoustic instability to occur [7]. Understanding the physical mecha-17

nisms responsible for this in practical combustion devices has been an ongoing18

challenge [4], not least because various driving mechanisms (e.g. coupling via19

equivalence-ratio oscillations [8], entropy waves [9] and vortical structures [10])20

can coexist and interact with each other in non-trivial ways [1, 2]. Consequently,21

it would be useful to explore alternative strategies for weakening thermoacoustic22

oscillations in combustion systems.23

1.1. Open-loop control of thermoacoustic oscillations24

One such alternative is active control [2, 11]. This involves externally mod-25

ulating one or more of the physical parameters of the system (e.g. the air or26

fuel flow rate [12–14], equivalence ratio [15, 16], or acoustic boundary conditions27

[17, 18]) in an effort to minimize the deviation between a target state and the28

actual operating state of the system [19]. The simplest form of active control is29

open-loop control, which requires just a single actuator (e.g. a loudspeaker or a30

fuel-modulation valve) and no sensors or feedback controllers, both of which can31

be unreliable under the harsh operating conditions of most combustors [2, 20].32

1.1.1. Open-loop control as a forced synchronization process33

Open-loop control is most intuitively studied in the nonlinear framework of34

forced synchronization [21]. In forced synchronization, external off-resonance35

2
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forcing is applied to a self-excited system oscillating at a discrete natural fre-36

quency [22]. If the forcing amplitude is low, the system oscillates at both the37

natural frequency and the forcing frequency, leading to quasiperiodicity at these38

two incommensurate frequencies, as represented in phase space by a stable er-39

godic T2 torus attractor [22]. However, if the forcing amplitude is sufficiently40

high, the system locks into the forced mode, leaving no sign of the original41

natural mode [22]. The system is then said to have transitioned to a state42

known as synchronization, in which the dynamics are completely dictated by43

the forcing [21]. In recent years, several experimental and numerical studies44

have been carried out to exploit forced synchronization for open-loop control45

of hydrodynamically self-excited systems, such as low-density jets [23, 24], jet46

diffusion flames [25, 26], cross-flowing jets [27] and cylinder wakes [28]. Collec-47

tively, these studies show that when its amplitude and frequency are suitably48

chosen, open-loop forcing can be an effective means of controlling hydrodynam-49

ically self-excited oscillations in fluid systems. In the present study, one of the50

key objectives is to see how such forcing can be used to more effectively control51

thermoacoustically self-excited oscillations in combustion systems.52

1.1.2. Previous studies on open-loop control of thermoacoustic oscillations53

For combustion systems, one of the simplest forms of open-loop control is the54

application of periodic acoustic forcing. This type of forcing has been shown to55

be effective in weakening thermoacoustic oscillations in a variety of combustion56

systems, ranging from the simple Rijke tube (Reynolds numbers of Re ∼ 103
57

with natural frequencies of f1 ∼ 102 Hz) [29–31] to turbulent premixed bluff-58

body combustors (Re ∼ 104, f1 ∼ 102 Hz) [32, 33]. Open-loop acoustic forcing59

has even been shown to be effective in a model liquid-rocket combustor under-60

going high-frequency thermoacoustic oscillations (f1 ∼ 103 Hz) [34]. In most61

of these studies [29–34], periodic acoustic forcing of different amplitudes and62

frequencies was applied to a self-excited combustor, with the aim of exploring63

the nonlinear dynamics leading up to synchronization. For example, on ap-64

plying off-resonance forcing to a laminar premixed flame in a tube, Guan et65

al. [30] found (i) a transition from unforced periodicity to T2 quasiperiodicity66

via a Neimark–Sacker bifurcation; (ii) a transition from T2 quasiperiodicity to67

synchronization at a critical forcing amplitude, which increases with frequency68

detuning; (iii) a ∨-shaped Arnold tongue centered on the natural frequency; (iv)69

two distinct routes to synchronization, one via an inverse Neimark–Sacker bifur-70

cation and one via a saddle-node bifurcation; and (v) that all of these dynamics71

could be qualitatively modelled with a forced Duffing–van der Pol oscillator. In72

a related example, Balusamy et al. [33] applied similar off-resonance forcing73

to a swirl-stabilized turbulent premixed combustor and found additional syn-74

chronization dynamics, such as frequency pulling and pushing as well as phase75

drifting, slipping, locking and trapping – the latter a partially synchronized76

state characterized by frequency locking without phase locking [24].77

Perhaps most importantly, several researchers [29–34] – beginning with Bel-78

lows et al. [32] – have shown that near the onset of synchronization, the ther-79

moacoustic amplitude can be substantially reduced (often to less than 50% of80
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that of the initial unforced state) through a nonlinear process known as asyn-81

chronous quenching1 [37]. Here asynchronous quenching refers to the reduction82

in thermoacoustic amplitude produced by the open-loop application of external83

periodic forcing at a frequency sufficiently far from the natural frequency for84

there to be no resonant amplification of the forcing [38]. Asynchronous quench-85

ing has been shown to coincide with an inverse Neimark–Sacker bifurcation to86

synchronization as well as a reduced Rayleigh index [30]. This shows that the87

open-loop application of periodic acoustic forcing can not only shift the natu-88

ral frequency of a self-excited combustor to a target frequency (i.e. the forcing89

frequency) but it can also simultaneously reduce the thermoacoustic amplitude.90

Although these features are useful for mitigating thermoacoustic instability, they91

come with several trade-offs, one of which is the need for external forcing to be92

continuously applied. Should the forcing system malfunction during synchro-93

nization, the combustor would revert to its original unforced state, returning94

the thermoacoustic amplitude to its initial high value. Given this risk, it would95

be helpful to develop an alternative control strategy in which the proven ben-96

efits of open-loop forcing, such as a reduced thermoacoustic amplitude [29–34],97

can be achieved and maintained without the need for continuous forcing. The98

experimental demonstration of such a control strategy is the focus of this study.99

1.2. Mode switching and hysteresis in thermoacoustic systems100

In thermoacoustics, mode switching typically refers to a combustor switch-101

ing from one natural mode to another, either as a function of time [39] or in102

response to variations in a control parameter [4]. Mode switching is often accom-103

panied by hysteresis and is a characteristic feature of combustors operating in104

the nonlinear regime [40]. For example, Noiray et al. [41] found that a premixed105

multi-flame combustion system can switch hysteretically from one self-excited106

thermoacoustic mode to another as the length of the upstream acoustic plenum107

is varied. Hong et al. [42] found that a backward-facing step combustor can108

switch between three distinct natural modes as the equivalence ratio is varied.109

Zhao et al. [43] found that a swirl combustor can switch between the funda-110

mental mode and its higher harmonics as the equivalence ratio is varied. Ahn111

et al. [44] found that a liquid-fuelled gas-turbine combustor can switch between112

a longitudinal mode and a Helmholtz mode as the combustor length is varied.113

Moeck et al. [45] found that a natural-gas-fuelled gas-turbine combustor can114

switch randomly in time between two stable limit-cycle modes as a result of115

turbulence-induced noise. However, to the best of our knowledge, mode switch-116

ing due to the open-loop application of periodic acoustic forcing has not been117

reported before. Crucially, it has yet to be shown how mode switching can be118

integrated into an open-loop control strategy in such a way that thermoacoustic119

oscillations can be weakened without having to apply continuous forcing.120

1This process is related to, but different from, the phenomenon of amplitude death, which
has also been observed in self-excited thermoacoustic oscillators [35, 36] but requires mutual
synchronization rather than forced synchronization.
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1.3. Contributions of the present study121

In this experimental study, we focus on two main research objectives:122

(i) The first objective is to demonstrate, as proof of concept, an alternative123

method of weakening thermoacoustic oscillations in a self-excited com-124

bustion system. Unlike existing methods (see Sec. 1.1.2), the proposed125

method combines the use of transient forcing with hysteresis and mode126

switching, thus avoiding the need to continuously supply energy to the127

control system. To achieve this, we exploit the fact that most combus-128

tors have a multitude of natural thermoacoustic modes, some of which129

are linearly unstable but some are nonlinearly unstable2 [1, 46, 47]. We130

hypothesize that if one of the nonlinearly unstable natural modes could131

be triggered with sufficiently strong forcing, the combustor might switch132

to that mode and lock onto it, even when the forcing is removed. If that133

new natural mode has a lower thermoacoustic amplitude than the orig-134

inal natural mode, then that could be a viable strategy for weakening135

thermoacoustic oscillations without the need for continuous forcing – thus136

allowing the complexity and power requirements of the control system to137

be reduced. This is the main novelty of our proposed control method.138

(ii) The second objective is to investigate, from a more exploratory angle, the139

nonlinear dynamics beyond the onset of synchronization. As Sec. 1.1.2140

has shown, although much research has already been conducted on open-141

loop control of combustion systems using acoustic forcing [29–34], most142

of that work has focused on the dynamics leading up to synchronization143

– not beyond it. A key question arises: What happens when the forcing144

amplitude increases above that required for synchronization? Does the145

combustor remain synchronized? Or does it switch to another self-excited146

state? If so, what are the dynamical properties of that new state? It is147

important to address these questions if one is to fully exploit open-loop148

forcing for control of thermoacoustic oscillations in combustion systems.149

This paper is organized as follows. We describe the experimental setup150

and measurement diagnostics in Sec. 2, present the experimental results and151

discussion in Sec. 3, and conclude with the key findings and implications of this152

study in Sec. 4.153

2. Experimental setup154

Experiments are performed on a thermoacoustic system consisting of a ducted155

laminar premixed flame subjected to periodic acoustic forcing. Figure 1 shows156

2Here the term ‘nonlinearly unstable natural mode’ is used to refer to a mode with two
stable states: (i) a fixed point of zero amplitude and (ii) a limit cycle of finite amplitude [46].
The fixed point is stable to small-amplitude perturbations but is unstable to large-amplitude
perturbations [1]. Therefore, when the mode is at the stable fixed point, a sufficiently large
perturbation (e.g. from external forcing) can push it into the basin of attraction of the stable
limit cycle – a process sometimes referred to as ‘triggering’ in thermoacoustics [1, 46, 47].

5
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the setup, which is similar to that of our previous study on controlling ther-157

moacoustic oscillations using continuous forcing [30] and is modelled after the158

numerical configuration of Kashinath et al. [29]. The system has four main159

components: a double open-ended quartz tube combustor (inner diameter, ID:160

44 mm; length: L = 860 mm), a stainless steel burner (ID: D = 16.8 mm;161

length: 800 mm), an acoustic decoupler (ID: 180 mm; length: 200 mm) and a162

loudspeaker for acoustic forcing. At the burner exit, a copper extension tip (ID:163

12 mm; length: 30 mm) containing a fine-mesh screen is installed to enhance164

flame stabilization. A rotameter (±2.5%) is used to control the flow rate of165

fuel (liquefied petroleum gas: 70% butane and 30% propane), while a mass flow166

controller (Alicat MCR series: ±0.2% FS) is used to control the flow rate of167

air. An upstream mixing chamber is used to ensure that the fuel and air are168

thoroughly mixed prior to reaching the burner inlet.169

Although this thermoacoustic system can exhibit a wide range of nonlinear170

states (including quasiperiodicity and chaos), we focus on the simplest possi-171

ble self-excited state: a periodic limit cycle. In our combustor, this state can172

be found at an equivalence ratio of 0.62 (±3.2%); a bulk reactant velocity of173

ū = 1.6 m/s (±0.2%); a Reynolds number of Re ≡ ρūD/µ = 1300, where ρ and174

µ are the density and dynamic viscosity of the reactants; and a flame position of175

xf ≡ x/L = 0.58±0.002, where x is the distance between the burner lip and the176

bottom of the combustor (see Fig. 1). At this operating condition, the natural177

frequency of the limit-cycle oscillations is f1 = 254 ± 1.5 Hz, and the modal178

structure is a 1-st harmonic standing wave with a pressure anti-node near the179

midpoint of the double open-ended tube combustor.180

The thermoacoustic system is acoustically forced at different amplitudes and181

frequencies around its natural frequency (0.9 6 ff/f1 6 1.1) in order to explore182

its synchronization dynamics under various regimes of open-loop control. A dig-183

ital function generator (Keysight 33512B) is used to generate a sinusoidal forcing184

signal, which is amplified by a power amplifier (Alesis RA150) before being fed185

into a loudspeaker (FaitalPRO 6FE100) mounted in the acoustic decoupler (see186

Fig. 1). The forcing amplitude, which is measured with a constant-temperature187

hot wire (DANTEC MiniCTA and a 55P16 probe), is defined as εf ≡ u′/ū,188

where u′ is the velocity perturbation amplitude at the burner outlet and ū is189

the time-averaged velocity of the bulk reactants issuing from the burner.190

Simultaneous measurements of the acoustic pressure and HRR are made to191

quantify the synchronization dynamics of the system via the Rayleigh index.192

The acoustic pressure is measured with two probe microphones (GRAS 40SA:193

sensitivity of 3 mV/Pa, ±2.5× 10−5 Pa) mounted 43 mm (PM-1) and 387 mm194

(PM-2) from the bottom of the combustor. These microphones are calibrated195

against a certified sound source (Brüel & Kjær Type 4231). The analog output196

from these microphones is digitized at 65536 Hz for 6 s on a 16-bit data acqui-197

sition system. The HRR is measured in two different ways: (i) via the CH*198

chemiluminescence signal, as detected with a photomultiplier tube (Thorlabs199

PMM01; ±1.5%) viewing through a bandpass filter centered on 430 nm, and200

(ii) via broadband chemiluminescence, as recorded with a high-speed camera201

(Photron FASTCAM SA-Z) operating at 4000 frames/s, with an image resolu-202

6
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tion of 512 × 512 pixels and a bit depth of 12. This frame rate is more than203

15 times the natural frequency of the self-excited thermoacoustic oscillations204

(f1 = 254 ± 1.5 Hz) and is thus high enough for the imaging to be considered205

time resolved. These high-speed chemiluminescence videos, serving as proxies206

for the spatial distribution of HRR [48], are analyzed with dynamic mode de-207

composition (DMD) in order to extract the dominant HRR structures of the208

flame at the frequencies of interest, as will be discussed in Sec. 3.2.209

3. Results and discussion210

3.1. Forced synchronization of the thermoacoustic system211

In this section, we examine the forced synchronization of the thermoacoustic212

system, focusing on mode switching, hysteresis, and the dynamical states ap-213

pearing before and after the onset of synchronization. The system is forced over214

a wide range of amplitudes (0 6 εf 6 30%) and frequencies (0.9 6 ff/f1 6 1.1)215

but, for the purposes of demonstration and conciseness, only results from the216

most representative forcing conditions are shown. Figure 2 shows the (a) time217

trace, (b) power spectral density (PSD) and (c) Poincaré map of the acoustic218

pressure (p′ from PM-2) in the combustor at ff/f1 = 1.08, with the forcing219

amplitude (εf ≡ u′/ū, expressed in %) starting from zero (an unforced state),220

increasing to a value above that required for synchronization, and then decreas-221

ing back to zero (another unforced state).222

3.1.1. Natural dynamics: a periodic limit cycle223

When unforced (Fig. 2, bottom row in burgundy: εf = 0.0%), the combus-224

tor is thermoacoustically self-excited, oscillating in a limit cycle at a natural225

frequency of f1. This is evidenced by a regular waveform in the time trace226

and by a clear peak at f/f1 = 1 in the PSD. There are also weaker peaks at227

the higher harmonics (not shown), indicating that the acoustic pressure is not228

oscillating perfectly sinusoidally in time. In the Poincaré map, there are two229

isolated points, indicating that the phase trajectory is a closed loop – a charac-230

teristic feature of a periodic limit cycle [49]. This unforced state is classified as231

a period-1 (P1) limit cycle because its phase trajectory loops around itself once232

every cycle. This state is labelled as P11, where the subscript 1 indicates that233

the combustor dynamics are dominated by the natural mode at f1.234

3.1.2. Approaching synchronization: two-frequency quasiperiodicity235

When the forcing amplitude is low (Fig. 2, pink: εf = 2.2%), the combus-236

tor responds at both the natural frequency (f1) and the forcing frequency (ff ),237

as well as at their linear combinations, resulting in sidebands in the PSD and238

amplitude modulations in the time trace at a beating frequency of |ff − f1|. In239

the Poincaré map, two closed rings emerge, indicating that the combustor has240

transitioned from an unforced periodic state to a two-frequency quasiperiodic241

state via a Neimark–Sacker bifurcation [22]. These are the classical features of a242

forced self-excited oscillator before the onset of synchronization [21]. This state243

7
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is classified as a two-frequency quasiperiodic state because its phase trajectory244

spirals around the surface of a stable ergodic torus attractor with two incom-245

mensurate modes [21]: the natural mode (f1) and the forced mode (ff ). This246

state is therefore labelled as T2
1,f .247

3.1.3. Onset of synchronization: periodicity and asynchronous quenching248

When forced above a critical amplitude (εf = 3.8%; for example, Fig. 2,249

green: εf = 7.1%), the combustor synchronizes with the forcing. This is evi-250

denced by the PSD becoming dominated by a single peak at ff , with no sign of251

the original natural mode at f1. Moreover, the two rings in the Poincaré map252

collapse into two discrete points, indicating a transition from a two-frequency253

quasiperiodic state to a synchronized periodic state [22]. In phase space, this254

transition coincides with the collapse of the T2
1,f torus attractor into a stable255

periodic orbit at ff via an inverse Neimark–Sacker bifurcation [30]. The time256

trace no longer exhibits modulations. Instead, its oscillation amplitude becomes257

significantly smaller than that of the initial unforced state (P11: εf = 0.0%).258

Similar reductions in the thermoacoustic amplitude have been reported before259

in experiments [30] and numerical simulations [29] on forced self-excited ducted260

flames. Such reductions can be attributed to asynchronous quenching [37],261

which will be examined further in Sec. 3.1.6. This periodic state is classified as262

a synchronized P1 state because its phase trajectory loops repeatedly around a263

closed orbit at ff . This state is therefore labelled as P1f .264

For a fixed value of ff/f1, the maximum amplitude reduction typically oc-265

curs at the onset of synchronization, i.e. just beyond the boundary between266

T2
1,f and P1f . Figure 3(a) shows the thermoacoustic amplitude at the onset267

of synchronization as a function of ff/f1. Here the thermoacoustic ampli-268

tude is normalized by its reference value at the initial unforced state (P11):269

p̃ ′sync ≡ p ′RMS,sync/p
′
RMS,P11

. It can be seen that p̃ ′sync exceeds 1 at frequencies270

slightly below ff/f1 = 1. This is consistent with the fact that asynchronous271

quenching cannot occur if ff/f1 is not sufficiently far from 1, as demonstrated272

by experiments [30] and G-equation simulations [29] of forced ducted premixed273

flames, and by theoretical analyses of forced self-excited oscillators [50]. Never-274

theless, as ff/f1 deviates further from 1, p̃ ′sync drops below 1, which is consis-275

tent with an inverse Neimark–Sacker bifurcation to synchronization with asyn-276

chronous quenching [30]. The minimum forcing amplitude required to produce277

synchronization increases as ff/f1 deviates from 1, as shown in Fig. 3(b). This278

is a classical feature of periodically forced self-excited oscillators [21, 22].279

It is clear that asynchronous quenching is a promising strategy for weakening280

thermoacoustic oscillations. After all, as previous studies [29–34] and our results281

show, the thermoacoustic amplitude can be reduced significantly at the onset of282

synchronization (by up to 95% in Fig. 3a).3 In our setup, the average electrical283

power required by the loudspeaker to achieve asynchronous quenching when284

3Note that this 95% reduction differs from the 90% reduction quoted in our earlier study
[30] because the present study uses a smaller step-size for εf : 0.4% here vs. 0.8% in Ref. [30].
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0.9 6 ff/f1 6 1.1 is 8× 10−2 W, which is less than 0.02% of the thermal power285

of the flame (430 W). Nevertheless, as mentioned earlier, this control strategy286

is not without its trade-offs, one of which is the need for external forcing to287

be continuously applied (Sec. 1.1.2). A key objective of the present study is288

to explore how the thermoacoustic amplitude can be reduced without the use289

of continuous forcing (Sec. 1.3). Thus, we shall proceed to increase εf further,290

to values above that required for synchronization, so as to excite one of the291

nonlinearly unstable natural modes and to ultimately induce mode switching.292

3.1.4. Beyond synchronization: three-frequency quasiperiodicity293

At sufficiently high forcing amplitudes (Fig. 2, purple: 8.7 6 εf 6 12.7%),294

the original natural mode reemerges, as can be seen in the PSD by a sharp295

peak at f1. This is important because it shows that acoustically forcing a self-296

excited thermoacoustic system beyond the onset of synchronization can cause297

that system to transition out of synchronization.298

Besides the original natural mode (f1) and the forced mode (ff ), a sec-299

ond natural mode emerges at f2, which is not a rational multiple of f1 or ff .300

This new natural mode is linearly stable but nonlinearly unstable, because it301

becomes excited only after the forcing amplitude has reached a critically high302

value (εf > 8.7% for ff/f1 = 1.08). This critically high value of the forcing303

amplitude increases as ff/f1 deviates from 1 – similar to the behavior of the304

synchronization boundary (see Fig. 3b). The excitation of this new mode is con-305

sistent with the observation that most combustors have a multitude of natural306

thermoacoustic modes, some of which are linearly unstable but some are nonlin-307

early unstable [1, 46, 47]. This opens up the possibility of mode switching, which308

will be explored in the next subsection. In phase space, this new mode gives309

rise to another stable ergodic torus attractor, but with three incommensurate310

frequencies: f1, ff and f2. In the Poincaré map, the trajectory intercepts are311

stretched by the third frequency (f2), resulting in a folded structure featuring312

two hollow intersecting rings, whose boundaries are more convoluted than those313

of the T2
1,f attractor found at εf = 2.2%. The PSD has a large number of sharp314

peaks at linear combinations of the three incommensurate frequencies (f1, f2,315

ff ), while the amplitude of the time trace is modulated irregularly. The com-316

bustor remains at this quasiperiodic state until εf becomes high enough to blow317

out the flame. This state is classified as a three-frequency quasiperiodic state318

because its phase trajectory spirals around the surface of a torus attractor with319

three incommensurate modes: the original natural mode (f1), the nonlinearly320

unstable natural mode (f2), and the forced mode (ff ). This state is therefore321

labelled as T3
1,2,f .322

3.1.5. Returning to an unforced state: mode switching and hysteresis323

In previous studies on open-loop control of thermoacoustic systems (Sec 1.1.2),324

synchronization was reached exclusively by increasing εf , with no retracement325

through subsequent decreases in εf . Thus, the possibility of hysteresis could326

not be explored. Another feature that could not be explored is the control327

strategy proposed in Sec. 1.3, which involves (i) forcing a self-excited combustor328
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such that it switches to another, less damaging, natural mode, (ii) removing329

the forcing altogether, and then (iii) allowing the system to persist on that new330

natural mode, thereby reducing the thermoacoustic amplitude without having331

to use continuous forcing. In this subsection, we not only increase εf above that332

required for synchronization, but then decrease it back to zero (unforced state)333

so as to explore the reversibility of the synchronization path and the viability334

of using mode switching to weaken thermoacoustic oscillations.335

When the forcing amplitude is reduced from the value required for T3
1,2,f336

(Fig. 2: εf = 8.7 → 2.2%), the combustor transitions to a two-frequency337

quasiperiodic state without passing through an intermediate synchronized state.338

This bypassing of a synchronized state is in stark contrast to the P1f state ob-339

served when εf increases towards synchronization (Fig. 2: εf = 2.2 → 7.1 →340

8.7%). This new two-frequency quasiperiodic state (T2
2,f ) is dominated by f2341

and ff , with no sign of the original natural mode at f1. The two-frequency342

nature of this state is corroborated by the emergence of two closed rings in the343

Poincaré map. Crucially, this two-frequency quasiperiodic state (T2
2,f ) differs344

from the one (T2
1,f ) found when εf increases from 0.0 to 2.2%. That earlier345

torus attractor was formed from the original (linearly unstable) natural mode346

(f1) and the forced mode (ff ), whereas the present one is formed from the347

new (nonlinearly unstable) natural mode (f2) and the forced mode (ff ). This348

shows that the combustor can be attracted to different dynamical states de-349

pending on the specific synchronization route taken, with T2
1,f appearing when350

εf increases towards synchronization and with T2
2,f appearing when εf increases351

beyond synchronization and then decreases. To the best of our knowledge, this352

is the first definitive evidence of mode switching and hysteresis occurring in a353

thermoacoustically self-excited combustor undergoing forced synchronization.354

When the forcing amplitude is reduced to zero (Fig. 2, top row in navy:355

εf = 0.0%), the combustor returns to a periodic state. However, unlike the ini-356

tial periodic state found before the application of forcing (Fig. 2, bottom row in357

burgundy: εf = 0.0%), which was dominated by f1, here the final periodic state358

is dominated by f2, as evidenced in the PSD by a sharp peak at f2/f1 = 0.74.359

This constitutes further evidence of hysteresis and mode switching. The spectral360

peak at f2/f1 = 0.74 is accompanied by weaker peaks at its higher harmonics361

(2f2 is shown), indicating that the oscillations are not perfectly sinusoidal in362

time. The Poincaré map shows two discrete points, confirming that the phase363

trajectory is indeed a closed-loop orbit, a distinguishing feature of a periodic364

limit cycle [49]. This state is labelled as P12 because the combustor dynamics are365

dominated by the nonlinearly unstable natural mode at f2. Such mode switch-366

ing indicates that the combustor has multiple stable states, some of which, like367

P12, can only be reached via the application and subsequent removal of strong368

forcing. Crucially, the time trace, PSD and Poincaré map all show that this369

final unforced state (P12) has a lower thermoacoustic amplitude than the initial370

unforced state (P11), demonstrating that it is indeed possible to weaken ther-371

moacoustic oscillations using transient forcing, hysteresis and mode switching.372

This control strategy will be examined further in the next subsection.373
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3.1.6. Controlling self-excited thermoacoustic oscillations using transient forc-374

ing, hysteresis and mode switching375

To investigate the reduction in thermoacoustic amplitude observed between376

states P12 and P11, we show in Fig. 4 four system indicators, all of which are377

normalized by their respective values at the initial unforced state (P11) and are378

plotted against εf . These indicators are (a) the root mean square (RMS) of p′379

from PM-2: p̃ ′ ≡ p′RMS/p
′
RMS,P11

; (b) the PSD of p′; (c) the RMS of the HRR380

fluctuation q′ measured by PMT: q̃ ′ ≡ q′RMS/q
′
RMS,P11

; and (d) the Rayleigh381

index: R̃I ≡ RI/RIP11
where RI ≡ 1/T

∫ T

0
p′ (t)q′ (t) dt.382

Along the forward path, as εf increases from zero (Fig. 4a), p̃ ′ by definition383

starts from one at P11, decreases during T2
1,f , and then reaches a minimum of384

around 0.05 at the onset of synchronization P1f . This reduction in p̃ ′ is due to385

asynchronous quenching (see Sec. 3.1.3). As εf increases further, p̃ ′ bounces off386

its minimum and increases throughout the rest of P1f as well as into T3
1,2,f .387

Along the return path, as εf decreases from its maximum, p̃ ′ in T3
1,2,f ini-388

tially follows the same path down as it did on the way up. However, it eventually389

diverges to a hysteretic path along which a T3
1,2,f → T2

2,f transition occurs with-390

out an intermediate synchronized state. As εf approaches zero, p̃ ′ approaches391

0.48 at the final unforced state (P12), indicating that the thermoacoustic am-392

plitude is nearly half that of the initial unforced state (P11). Although this393

reduction in p̃ ′ is not nearly as large as the 95% reduction observed at the onset394

of synchronization (P1f ), it is achieved with a combination of transient forc-395

ing, hysteresis and mode switching – rather than with continuous forcing. As396

mentioned earlier, this is a unique feature of the proposed control strategy.397

This sequence of state transitions (P11 → T2
1,f → P1f → T3

1,2,f → T2
2,f →398

P12) can also be seen in the PSD. As Fig. 4(b) shows, the initial unforced state399

(P11), which is at the start point on the path of increasing εf (bottom frame),400

has a natural frequency (f1) different from that (f2) of the final unforced state401

(P12), which is at the end point on the path of decreasing εf (top frame).402

Given the sizable reduction in thermoacoustic amplitude observed between403

states P11 and P12, it is reasonable to expect q̃ ′ to follow the same trend as404

p̃ ′. However, as Fig. 4(c) shows, this is not the case here. Although there are405

many similarities between q̃ ′ and p̃ ′, including identical regions of hysteretic and406

non-hysteretic behavior, there are also some notable differences. Key among407

them is that q̃ ′ for P12 is higher – by a factor of around four – than that408

for P11, despite P12 having a thermoacoustic amplitude (p̃ ′) only half that of409

P11 (Fig. 4a). This observation is unexpected because a lower thermoacoustic410

amplitude is typically assumed to be associated with a lower HRR amplitude411

and, hence, a weaker thermoacoustic driving term. To explore the cause of the412

reduced p̃ ′, we turn to the Rayleigh index, RI ≡ 1/T
∫ T

0
p′ (t)q′ (t) dt [1]. This413

is a quantitative measure of the direction and magnitude of the energy transfer414

between the flame and the acoustic field of the combustor. It accounts not just415

for the amplitude variations in q′ and p′ but also for their phase relationship [4].416

Figure 4(d) shows that the Rayleigh index behaves qualitatively similarly to417

q̃ ′ (Fig. 4c) in the sense that both quantities show hysteretic and non-hysteretic418
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regions in the response curve. The Rayleigh index drops to a minimum near the419

onset of synchronization, which explains why the thermoacoustic amplitude also420

drops to a minimum there. However, the Rayleigh index for P12 is higher than421

that for P11, much like how q̃ ′ for P12 is higher than that for P11. This shows422

that the phase lag between q′ and p′ has not changed sufficiently to overcome423

the dominance of the amplitude correlation between q′ and p′. Nevertheless,424

the fact that the Rayleigh index varies between states P11 and P12 is further425

evidence that the coupling between the flame and its surrounding acoustic field426

has been irreversibly altered by the transient forcing and mode switching.427

Although unexpected, the notion that p̃ ′ does not necessarily have to follow428

the same trend as R̃I or q̃ ′ has been hinted at before. In experiments on a429

backward-facing step combustor, Hong et al. [42] varied the equivalence ratio430

and found that both the sound pressure level (Fig. 2 in [42]) and the HRR431

amplitude (Fig. 4 in [42]) can remain constant even when the phase difference432

between p′ and q′ increases from 0◦ to 45◦. This increase in the phase difference433

implies a decrease in the Rayleigh index (although it remains positive) and,434

hence, a decrease in the energy transferred from the flame to the acoustic field435

– even though the sound pressure level remains constant.436

The combustor dynamics seen in Fig. 4 are not limited to just one value of437

ff , but can be seen across a wide range of ff around f1 (0.9 6 ff/f1 6 1.1),438

so long as synchronization occurs via an inverse Neimark–Sacker bifurcation439

[22, 30]. To illustrate this, we show in Fig. 5 the same four system indicators440

as in Fig. 4 but for ff/f1 ≈ 0.90 instead of ff/f1 ≈ 1.08. Qualitatively, the441

combustor can be seen to exhibit the same dynamics regardless of the exact442

value of ff/f1. These dynamics include (i) the existence of global minima in443

p̃ ′ and R̃I near the onset of synchronization, (ii) the coexistence of hysteretic444

and non-hysteretic regimes as εf varies, (iii) a reduction in p̃ ′ between the final445

(P12) and initial (P11) unforced states, and (iv) an increase in R̃I between446

states P12 and P11. The fact that such a detailed level of dynamical similarity447

is observed is not surprising given that many of the defining features of forced448

synchronization are known to be universal [21, 22].449

Further quantitative analysis shows that the percentage reduction in p̃ ′450

achieved at the end of the backward path (P12) does not depend on whether451

synchronization occurs via an inverse Neimark–Sacker bifurcation (ff/f1 far452

from 1) or a saddle-node bifurcation (ff/f1 close to 1). So long as the nonlin-453

early unstable natural mode at f2 is excited, the system always returns to the454

same final unforced state (P12) when the forcing is removed.455

It should be noted that the large reduction in p̃ ′ observed between states456

P12 and P11 (Figs. 4 and 5) occurs only if εf is increased to such a magnitude457

that it excites the nonlinearly unstable natural mode (f2) and, in turn, the458

three-frequency quasiperiodic state (T3
1,2,f ). This is because only after f2 has459

been excited can the combustor switch to this new natural mode on removal of460

the forcing. By contrast, mode switching cannot occur if εf simply increases to461

a value just sufficient for synchronization (P1f ) and then decreases to zero. To462

illustrate this, we show in Fig. 6 the same four indicators as in Figs. 4 and 5463
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but with εf increasing only up to the synchronized regime (not beyond it) and464

then decreasing back to zero. The absence of mode switching is evidenced by465

the dominance of f1 in the PSD along both the forward path (Fig. 6b: bottom466

frame) and the backward path (Fig. 6b: top frame). Although p̃ ′ is still signif-467

icantly reduced by asynchronous quenching at the onset of synchronization (to468

around 5% of the initial unforced value), it returns to roughly the same initial469

value when εf decreases back to zero. This highlights the need to excite the470

nonlinearly unstable natural mode (f2) if one is to reduce the thermoacoustic471

amplitude by transient forcing and mode switching.472

In summary, this section has shown that it is readily possible to reduce the473

thermoacoustic amplitude of a self-excited combustor without the use of contin-474

uous forcing. By carefully applying transient forcing and exploiting the inherent475

hysteretic and mode-switching dynamics of the combustor, we can achieve a 50%476

reduction in p̃ ′ between the final (P12) and initial (P11) unforced states. Al-477

though this is not as large as the 95% reduction achieved with asynchronous478

quenching at the onset of synchronization, the proposed control strategy has the479

unique advantage that it does not require external forcing to be continuously480

applied. This enables the complexity and power requirements of the control481

system to be reduced.482

3.2. Dynamic mode decomposition483

In thermoacoustics, it is well established that the flame dynamics play a key484

role in governing the transfer of thermal energy to the acoustic field (Sec. 1).485

To examine the flame dynamics during forced synchronization, it is helpful to486

decompose the HRR oscillations into frequency-specific modes, enabling the487

HRR structures at f1 or f2 to be isolated from those at ff – or at any other488

frequency of interest. A proven way to do this is with dynamic mode decom-489

position (DMD) [51]. This is a modal decomposition technique relying on the490

reconstruction of a low-dimensional inter-snapshot map from time-resolved in-491

put data [52, 53]. The resultant dynamic modes are mutually orthogonal in492

time, which means that each mode oscillates at a single temporal frequency493

[51]. For our flame analysis, DMD is preferred over other decomposition tech-494

niques (such as proper orthogonal decomposition [54, 55]) because it enables495

the HRR structures associated with any one particular temporal frequency to496

be identified. Moreover, DMD enables the most persistent HRR structures to497

be identified over the observation interval, independent of their energy content498

[52]. DMD has previously been used to extract dynamical information from a499

variety of thermofluid systems, ranging from the Rijke tube [56] to turbulent500

swirling premixed flames [57–59] to model gas-turbine/rocket combustors [60].501

In this study, to gain further insight into the mode-switching dynamics of502

the combustor (Sec. 3.1.6), we use DMD to examine the HRR structures of503

the ducted flame for the three broad classes of synchronization states identified504

in Figs. 2 and 4: periodic states (P11, P12, P1f ), two-frequency quasiperiodic505

states (T2
1,f , T2

2,f ), and a three-frequency quasiperiodic state (T3
1,2,f ).506

The DMD procedure adopted in this study follows Refs. [51, 52]. First, a507

sequence of 800 flame snapshots is extracted from each time-resolved chemilu-508
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minescence video (see Sec. 2). These snapshots, representing around 50 natural509

oscillation cycles at f1 = 254 Hz, are transformed into two matrices, X1 and X2,510

as per Refs. [51, 52]. The singular value decomposition of X1 is then performed511

as X1 = UΣV H , where U and V are unitary matrices and Σ is a diagonal matrix512

containing the singular values of X1. Next the modal structures are extracted513

from S̃ = UHAU = UHX2V Σ−1, and the dynamic modes are expressed as514

φi = Uyi, where yi is the ith eigenvector of S̃, i.e. S̃yi = µiyi. Finally, the515

frequencies (f = Im (λi/2π)) and growth rates (σ = Re (λi)) of the dynamic516

modes are found from the spectrum λi = 1
∆t log (µi), where ∆t is the inverse of517

the sampling frequency and µi contains the eigenvalues.518

3.2.1. Periodic states: P11, P12 and P1f519

Figure 7 shows the normalized amplitude (Ã) and growth rate (σ) of the520

DMD modes as a function of the normalized frequency (f̃ ≡ f/f1) for three521

different periodic states: P11, P12 and P1f . For each state, the mode ampli-522

tude is normalized by the mode amplitude at 0 Hz, which is the highest in the523

spectrum. In the spectra shown in Figs. 7(a–c), the two most dominant modes524

are highlighted with colored markers. Because all three states are periodic, the525

two most dominant modes are the fundamental and the second harmonic, with526

the former at a higher amplitude than the latter, which is consistent with the527

trends observed in the PSD (Fig. 2b). For each of the three periodic states, the528

two most dominant modes have a growth rate of around zero (Fig. 7d–f), as529

would be expected for saturated oscillations at a limit cycle.530

Figures 7(g–i) show the spatial distribution of the DMD modes at their re-531

spective dominant frequencies: (g) f̃ = 1.00 for f1, (h) f̃ = 0.74 for f2, and532

(i) f̃ = 1.08 for ff . There are many similarities but also some notable differ-533

ences among these periodic modes. For all three modes, convective wavepackets,534

which are a typical feature of periodic flows [52], can be seen along the edges535

of the flame body. These wavepackets are symmetric with respect to the flame536

centerline, with each wavepacket representing one full wavelength of the mod-537

ulation. The wavepackets on the inside of the flame front are consistently out538

of phase with those on the outside. For P11 and P1f , the dominant frequen-539

cies (f1, ff ) are very close to each other, resulting in these two states having a540

similar set of wavepackets. For P12, however, the nonlinearly unstable natural541

mode is excited, producing longer wavepackets because the dominant frequency542

(f2) is lower than f1 and ff . The wavepackets for P12 are also wider than those543

for P11 and P1f . Furthermore, they taper down in width from the flame base544

to the flame tip, whereas the opposite trend is observed for P11 and P1f . This545

tapering towards the flame tip for P12 can be attributed to this state having a546

flame with a smaller radius of curvature and a smaller average height (see the547

insets in Fig. 7g–i) than those of P11 and P1f . This concurs with our high-speed548

chemiluminescence videos, which show that shorter curvier flames, like that of549

P12, oscillate more strongly at the base than they do at the tip.550

To illustrate this, we compare in Fig. 8 the instantaneous flame fronts of551

the two unforced periodic states: P11 and P12. Here the flame fronts are ex-552

tracted from the chemiluminescence images by applying an inverse Abel trans-553
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form and then tracking the locus of maximum pixel intensity. For both P11554

(Fig. 8a) and P12 (Fig. 8b), clear evidence of cusp formation and pinch-off can555

be observed, consistent with previous studies on periodically oscillating conical556

premixed flames [61]. From Fig. 7, it is known that the P11 flame oscillates557

at a higher frequency (f̃ = 1) than the P12 flame (f̃ = 0.74), which explains558

why the former has shorter roll-up wrinkles than the latter. The flame front559

is wrinkled by a travelling wave propagating from the flame base to the flame560

tip [62]. Overlaying the two flames on top of each other (Fig. 8c), we find that561

the P12 flame (shown in blue) oscillates with a larger amplitude than the P11562

flame (shown in red). This concurs with Fig. 4(c) in that q̃ ′ is higher for P12563

than it is for P11. Furthermore, we also find that the P12 flame oscillates more564

strongly at its base than at its tip (h1/h2 = 0.85), whereas the opposite trend565

is observed in the P11 flame (d1/d2 = 1.55). The P12 flame front also has a566

smaller radius of curvature than the P11 flame front. Taken together, these567

observations provide further evidence that shorter curvier flames, like that of568

P12, oscillate more strongly at the base than they do at the tip.569

Figures 7(j–l) show the spatial distribution of the DMD modes at their570

respective second harmonics: (j) f̃ = 2.00 for 2f1, (k) f̃ = 1.48 for 2f2, and (l)571

f̃ = 2.16 for 2ff . The wavepackets in these modes are generally shorter than572

those at the dominant frequencies (Fig. 7g–i) because the second harmonics573

are higher in frequency. Most of the modal features identified at the dominant574

frequencies (Fig. 7g–i) are also present in the second harmonics (Fig. 7j–l).575

In summary, this section has shown that while the DMD modes for all three576

periodic states exhibit a similar convective structure, the scale of the individ-577

ual wavepackets depends on the dominant frequency of the flame dynamics.578

Crucially, the flame in the final unforced state (P12) is found to oscillate more579

strongly than that in the initial unforced state (P11), which is consistent with580

the higher values of q̃ ′ and R̃I observed for P12 (see Sec. 3.1.6).581

3.2.2. Two-frequency quasiperiodic states: T2
1,f and T2

2,f582

Figure 9 is analogous to Fig. 7 but for the two different two-frequency583

quasiperiodic states identified in Figs. 2 and 4: T2
1,f and T2

2,f . For both states,584

the two most dominant modes are the natural mode (f1 or f2) and the forced585

mode (ff ), as shown in the DMD spectra of Figs. 9(a–b, g–h). The dominance586

of these two incommensurate modes is consistent with the pressure spectra of587

Fig. 2b. For both T2
1,f (Figs. 9a–f) and T2

2,f (Figs. 9g–l), the amplitude of588

the natural mode is higher than that of the forced mode, but the growth rates589

of both modes are close to zero (Figs. 9c,i), indicating that they are neither590

growing nor decaying with time. In addition to these two modes, there are also591

spectral peaks at linear combinations of f1 and ff (for T2
1,f ) as well as f2 and592

ff (for T2
2,f ). Although most of these combinatory modes are weak, a few of593

them can approach the magnitude of the forced mode, e.g. f = 2f1 − ff for594

T2
1,f (Fig. 9b) and f = 3f2 − ff for T2

2,f (Fig. 9h).595

For T2
1,f (Figs. 9d–f), the spatial distribution of the DMD modes is extracted596

at the three most dominant frequencies: (d) f̃ = 1.00 for f1, (e) f̃ = 1.08 for597

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ff , and (f) f̃ = 0.92 for 2f1 − ff . For T2
2,f (Figs. 9j–l), the same procedure598

is performed: (j) f̃ = 0.74 for f2, (k) f̃ = 1.08 for ff , and (l) f̃ = 1.14 for599

3f2− ff . The DMD modes at the natural frequency (f1 or f2; Figs. 9d,j) share600

several common features with their counterparts from the periodic states of601

Figs. 7(g,h). These features include symmetric convective wavepackets and out-602

of-phase dynamics between the wavepackets on the inside of the flame front and603

those on the outside. However, the DMD modes at ff exhibit a qualitatively604

different structure (Fig. 9e,k), with their support concentrated at the inner605

and outer edges of the unsteady flame front, in contrast to the more uniform606

distribution found in both the natural (f1 or f2) and forced (ff ) modes of the607

periodic states (Figs. 7g–i). The increased non-uniformity of the DMD modes608

at ff (Fig. 9e,k) is thought to be due to interactions between the two frequencies609

of the quasiperiodic states, T2
1,f and T2

2,f . In Fig. 9(e,k), the flame is perturbed610

at two incommensurate frequencies simultaneously: a natural mode (f1 or f2)611

and a forced mode (ff ). In Figs. 7(g–i), however, the flame is perturbed at612

just one frequency: a natural mode (f1 or f2). It is therefore sensible to expect613

the mode structure to be more intricate in the former case than in the latter614

case. The modes with the third highest spectral amplitude can be found at615

linear combinations of the natural and forcing frequencies (Fig. 9f ,l). In these616

combinatory modes, the wavepackets exhibit a ‘sandwich’ pattern, with each617

wavepacket appearing as a superposition of multiple individual wavepackets618

from the forced (ff ) and natural (f1 or f2) modes.619

In summary, this section has shown that, when compared with the periodic620

states of Sec. 3.2.1, the presence of two-frequency quasiperiodicity does not621

significantly alter the structure of the DMD modes at the natural frequency (f1622

or f2). However, it does alter the structure of the DMD modes at the forcing623

frequency (ff ), by increasing the concentration of support at the inner and outer624

edges of the unsteady flame front.625

3.2.3. Three-frequency quasiperiodic state: T3
1,2,f626

Figure 10 is analogous to Figs. 7 and 9 but for the three-frequency quasiperi-627

odic state identified in Figs. 2 and 4: T3
1,2,f . The amplitude spectrum (Fig. 10a)628

shows that the nonlinearly unstable natural mode (f2) is stronger than the forced629

mode (ff ), which is itself stronger than the linearly unstable natural mode (f1).630

This trend is consistent with the pressure spectra of Fig. 2b. All three of these631

modes are incommensurate with each other and have growth rates close to zero,632

indicating that they neither grow nor decay with time (Fig. 10b). Several of the633

linear combinations of the natural modes (f1, f2) and the forced mode (ff ) have634

higher amplitudes than the original natural mode (f1) itself. This behavior was635

not observed in the periodic states (Fig. 7) or in the two-frequency quasiperiodic636

states (Fig. 9), demonstrating that robust three-frequency quasiperiodicity does637

not necessarily require all three constituent modes to be strong.638

Figures 10(c–h) show the spatial distribution of the DMD modes at the six639

most dominant frequencies: (c) f̃ = 0.74 for f2, (d) f̃ = 1.00 for f1, (e) f̃ = 1.08640

for ff , (f) f̃ = 0.34 for ff − f2, (g) f̃ = 0.40 for 2f2 − ff , and (h) f̃ = 1.14641
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for 3f2− ff . There are many similarities but also some key differences between642

these DMD modes (T3
1,2,f ) and those from the periodic states (Fig. 7: P11,643

P12, P1f ) and the two-frequency quasiperiodic states (Fig. 9: T2
1,f , T2

2,f ). For644

example, at the nonlinearly unstable natural frequency of f2, the flame structure645

for T3
1,2,f (Fig. 10c) is remarkably similar to that for P12 (Fig. 7h) and T2

2,f646

(Fig. 9j), with broad convective wavepackets dominating the flame body. This647

is despite the present three-frequency quasiperiodic state having an extra degree648

of freedom over the periodic and two-frequency quasiperiodic states. However,649

at the original natural frequency of f1, the wavepackets for T3
1,2,f (Fig. 10d) are650

broader and less coherent than those for P11 (Fig. 7g) and T2
1,f (Fig. 9d), with651

a concentration of support located at the inner and outer edges of the flame.652

This shows that the flame response at f1 is not particularly sensitive to the653

presence of a forced mode at ff , but is exceedingly sensitive to the presence of654

a nonlinearly unstable natural mode at f2. At the forcing frequency (ff ), the655

wavepackets for T3
1,2,f (Fig. 10e) are broader and more uniformly distributed656

than those for P1f (Fig. 7i), T2
1,f (Fig. 9e) and T2

2,f (Fig. 9k), with almost no657

evidence of the previously observed ‘sandwich’ structures (see Sec. 3.2.2).658

For the combinatory modes at ff − f2 (Fig. 10f) and 2f2 − ff (Fig. 10g),659

we find long-wavelength modulations of the flame structure, which can be at-660

tributed to the lower frequencies of these modes: f̃ ∼ 0.30–0.40. For the mode at661

3f2−ff (Fig. 10h), which has a relatively high frequency of f̃ = 1.14, the DMD662

structure qualitatively resembles that for T2
2,f (Fig. 9l), with short-wavelength663

wavepackets and a similar ‘sandwich’ structure appearing in the flame body.664

In summary, this section has shown that the flame structure at the nonlin-665

early unstable natural mode (f2) is universally robust, with no variations across666

P12, T2
2,f and T3

1,2,f . The flame structure at the original natural mode (f1)667

is robust only to the forced mode (ff ) but not to the f2 mode, indicating the668

presence of asymmetric coupling in the flame response. This behavior may ex-669

plain why the combustor dynamics converges to the f2 mode, rather than the670

f1 mode, as εf decreases from that required for T3
1,2,f (Figs. 2 and 4).671

4. Conclusions672

In this experimental study, we have achieved two main research objectives673

(Sec. 1.3). First, we have demonstrated that it is readily possible to reduce674

the thermoacoustic amplitude of a self-excited combustion system through the675

strategic use of transient forcing, hysteresis and mode switching – thus avoiding676

the need to continuously supply energy to the control system (Sec. 3.1.6). This677

is achieved by exploiting the fact that most combustors have a multitude of nat-678

ural thermoacoustic modes, some of which are linearly unstable but some are679

nonlinearly unstable [1, 46, 47]. By applying open-loop acoustic forcing at an680

off-resonance frequency and at an amplitude higher than that required for syn-681

chronization, we find that the combustor can switch to one of the nonlinearly682

unstable natural modes (f2) and remain there, even after the forcing is re-683

moved. Dynamic mode decomposition of high-speed chemiluminescence videos684
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shows that the flame structure at f2 is more robust than that at the original685

natural mode (f1), which could explain why the combustor dynamics converges686

to the f2 mode, rather than the f1 mode, when the forcing is removed (Sec. 3.2).687

Mode switching is caused by a change in the coupling process between unsteady688

combustion and acoustics. Its existence indicates that the combustor has mul-689

tiple stable states, some of which can only be reached via the application and690

subsequent removal of strong external forcing. For this combustor, the final un-691

forced state (P12) has a thermoacoustic amplitude of just half that of the initial692

unforced state (P11), even though the Rayleigh index of the former is higher693

than that of the latter (Fig. 4). Although this 50% reduction in thermoacous-694

tic amplitude is not as large as the 95% reduction achieved with asynchronous695

quenching at the onset of synchronization (P1f ), it is achieved without the use of696

continuous forcing. This is a distinct advantage over existing control strategies697

as it allows the complexity and power requirements of the control system to be698

reduced. With further development and testing, particularly on more realistic699

combustors featuring turbulent swirling flames, the proposed control strategy700

could pave the way for a new class of open-loop control techniques based on701

transient forcing, rather than continuous forcing. However, it should be noted702

that if stochastic forcing from turbulence is sufficiently strong, then that could703

itself trigger the nonlinearly unstable natural mode at f2 without the need for704

external forcing, resulting in a two-frequency quasiperiodic state composed of705

natural modes f1 and f2. The forced synchronization of such a quasiperiodic706

state is the subject of active research [63].707

Second, we have shown that a self-excited combustion system can exhibit708

an elaborate range of synchronization dynamics when forced at very high am-709

plitudes. When the forcing amplitude increases from zero, reaches a maximum710

above that required for synchronization and then decreases back to zero, the711

combustor passes through a complex sequence of nonlinear states (Fig. 2): un-712

forced periodicity (P11) → two-frequency quasiperiodicity (T2
1,f ) → synchro-713

nized periodicity (P1f ) → three-frequency quasiperiodicity (T3
1,2,f ) → two-714

frequency quasiperiodicity (T2
2,f ) → unforced periodicity (P12). Two features715

are particularly noteworthy: (i) mode switching and hysteresis occur along716

the routes to and from synchronization, with P11 showing a different natu-717

ral frequency than P12 owing to the excitation of a linearly stable but non-718

linearly unstable natural mode at f2 (Fig. 4); and (ii) once synchronized, the719

combustor does not necessarily remain synchronized, but can transition to a720

three-frequency quasiperiodic state (T3
1,2,f ) dominated by three incommensu-721

rate modes: the original natural mode (f1), the new natural mode (f2), and the722

forced mode (ff ). To the best of our knowledge, this is the first experimental723

observation of mode switching, hysteresis and three-frequency quasiperiodicity724

in a periodically forced self-excited combustor.725

With regard to directions for future work, although our findings are qualita-726

tively reproducible across different operating and forcing conditions, they have727

only been demonstrated here on one specific combustor, as a proof-of-concept728

initiative. In the nonlinear dynamics literature, it is well recognized that many729
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of the defining features of forced synchronization are universal across physically730

disparate systems, ranging from flashing fireflies to circadian rhythms to tri-731

ode circuits [21, 22]. Further experiments on increasingly realistic combustors732

should reveal the extent to which our findings carry over into industrial systems.733

This work was funded by the Research Grants Council of Hong Kong (Projects734

16235716 and 26202815).735
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Figure 1: Illustration of the self-excited thermoacoustic system, which consists of a quartz
tube combustor, a stainless steel burner, a copper burner extension, an acoustic decoupler
with mixture inlets, a loudspeaker, and a motorized linear traverse for adjustment of the
flame position (xf ≡ x/L) within the combustor. The measurement diagnostics include two
probe microphones (PM-1, PM-2), a hot-wire probe at the burner outlet (not shown), a high-
speed camera (HSC), and a photomultiplier tube (PMT) fitted with a bandpass filter centered
on 430 nm for CH* chemiluminescence detection. The insets along the right column are
instantaneous inverse-Abel transformed images of the unsteady flame front for one complete
cycle of the self-excited mode at f1 = 254 Hz. These flame images were taken with the HSC
and post-processed with an edge-detection algorithm. This figure is adapted from Ref. [30].
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Figure 2: Forced synchronization of the self-excited thermoacoustic system at ff/f1 ≈ 1.08.
The (a) time trace, (b) PSD and (c) Poincaré map of the acoustic pressure in the combustor
are shown for eight forcing amplitudes (εf ≡ u′/ū). Period-1 attractors (limit cycles) are
labelled as P1, two-frequency torus attractors are labelled as T2, and three-frequency torus
attractors are labelled as T3. The frequency content of these attractors is indicated by the
subscripts 1, 2 and f , which correspond respectively to the self-excited natural mode at f1,
the nonlinearly unstable natural mode at f2, and the forced mode at ff .

0.9 0.95 1 1.05 1.1

ff/f1

0

10

20

30

ǫ
f
(%

)

Excitation of f2
Onset of synchronization

0.9 0.95 1 1.05 1.1

ff/f1

0

0.5

1

1.5

2

p̃
′ sy
n
c
≡

p′ R
M
S
,s
y
n
c/
p′ R

M
S
,P
1 1(a) (b)

Figure 3: (a) Thermoacoustic amplitude at the onset of synchronization and (b) the minimum
forcing amplitude required to produce synchronization and to excite the nonlinearly unstable
natural mode (f2), all plotted as a function of the forcing frequency (ff/f1).
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Figure 4: Control of self-excited thermoacoustic oscillations using transient forcing, hysteresis
and mode switching at the conditions of Fig. 2 (ff/f1 ≈ 1.08). Four indicators of the combus-
tor are shown: (a) the RMS of p′, (b) the PSD of p′, (c) the RMS of q′, and (d) the Rayleigh
index. All four indicators are normalized by their respective values at the initial unforced state
(P11) and are plotted as a function of the forcing amplitude (εf ≡ u′/ū). The filled markers
are for the forward path (increasing εf ), while the hollow markers are for the backward path
(decreasing εf ). In subfigure (b), the bottom frame is for the forward path (increasing εf ),
while the top frame is for the backward path (decreasing εf ). In subfigures (a,c,d), the light
gray region denotes potential synchronization, while the dark gray region denotes excitation
of the nonlinearly unstable natural mode at f2. At this forcing frequency (ff/f1 ≈ 1.08),
synchronization occurs via an inverse Neimark–Sacker bifurcation (i.e. a torus-death bifur-
cation), which causes phase trapping to occur just before the boundary between T2

1,f and
P1f .
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Figure 5: Demonstration of the robustness of the proposed strategy for controlling self-excited
thermoacoustic oscillations. The quantities shown are the same as those in Fig. 4 but for
ff/f1 ≈ 0.90 instead of ff/f1 ≈ 1.08. The filled markers are for the forward path (increasing
εf ), while the hollow markers are for the backward path (decreasing εf ). In subfigure (b),
the bottom frame is for the forward path (increasing εf ), while the top frame is for the
backward path (decreasing εf ). In subfigures (a,c,d), the light gray region denotes potential
synchronization, while the dark gray region denotes excitation of the nonlinearly unstable
natural mode at f2. At this forcing frequency (ff/f1 ≈ 0.90), synchronization occurs via
an inverse Neimark–Sacker bifurcation (i.e. a torus-death bifurcation), which causes phase
trapping to occur just before the boundary between T2

1,f and P1f .
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Figure 6: Example of a case without excitation of f2 and thus without mode switching. The
quantities shown are the same as those in Fig. 4 (ff/f1 ≈ 1.08) but with εf increasing up to
only the synchronized regime and then decreasing back to zero. The filled markers are for the
forward path (increasing εf ), while the hollow markers are for the backward path (decreasing
εf ). In subfigure (b), the bottom frame is for the forward path (increasing εf ), while the top
frame is for the backward path (decreasing εf ). In subfigures (a,c,d), the light gray region
denotes synchronization. At this forcing frequency (ff/f1 ≈ 1.08), synchronization occurs via
an inverse Neimark–Sacker bifurcation (i.e. a torus-death bifurcation), which causes phase
trapping to occur just before the boundary between T2

1,f and P1f .
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Figure 7: DMD of the flame chemiluminescence emission for the three different periodic states
identified in Figs. 2 and 4, from left to right column: P11 (initial unforced state), P12 (final
unforced state), and P1f (synchronized state). Shown are (a–c) the amplitude spectrum,
(d–f) the growth rate spectrum, and (g–l) the dynamic modes (real part only), with the
frequency indicated in the upper left corner. The modes shown in (g–i) are those with the
highest spectral amplitude, while the modes shown in (j–l) are those with the second highest
spectral amplitude. The insets in (g–i) are the modes at 0 Hz. The walls of the burner outlet
extension (12 mm inner diameter) are shown at the bottom of (g–l).
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Figure 8: Comparison of the instantaneous flame fronts between two unforced periodic states:
(a) P11, (b) P12, and (c) P11 and P12 overlaid on top of each other.
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Figure 9: DMD of the flame chemiluminescence emission for the two different two-frequency
quasiperiodic states identified in Figs. 2 and 4: (a–f) T2

1,f and (g–l) T2
2,f . Shown are (a,g) the

amplitude spectrum, (b,h) its magnified view, (c,i) the growth rate spectrum, and (d–f ,j–l)
the dynamic modes (real part only), with the frequency indicated in the upper left corner.
For T2

1,f , the modes are extracted at (d) f1, (e) ff and (f) 2f1 − ff . For T2
2,f , the modes

are extracted at (j) f2, (k) ff and (l) 3f2 − ff . The insets in (d,j) are the modes at 0 Hz.
The walls of the burner outlet extension (12 mm inner diameter) are shown at the bottom of
(d–f) and (j–l).

32



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0 0.5 1 1.5 2

f̃

0

0.2

0.4

0.6

0.8

1

Ã
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Figure 10: DMD of the flame chemiluminescence emission for the three-frequency quasiperi-
odic state identified in Figs. 2 and 4: T3

1,2,f . Shown are (a) the amplitude spectrum, (b)

the growth rate spectrum, and (c–h) the dynamic modes (real part only), with the frequency
indicated in the upper left corner. The modes are extracted at (c) f2, (d) f1, (e) ff , (f)
ff − f2, (g) 2f2 − ff , and (h) 3f2 − ff . The inset in (c) is the mode at 0 Hz. The walls of
the burner outlet extension (12 mm inner diameter) are shown at the bottom of (c–h).
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