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Abstract

This research concerns design optimization problems involving numerous design parameters and large
computational models. These problems generally consist in non-convex constrained optimization prob-
lems in large and sometimes complex search spaces. The classical simulated annealing algorithm rapidly
loses its efficiency in high search space dimension. In this paper a variant of the classical simulated
annealing algorithm is constructed by incorporating (1) an Itô stochastic differential equation generator
(ISDE) for the transition probability and (2) a polyharmonic splines interpolation of the cost function.
The control points are selected iteratively during the research of the optimum. The proposed algorithm
explores efficiently the design search space to find the global optimum of the cost function as the best
control point. The algorithm is illustrated on two applications. The first application consists in a simple
function in relatively high dimension. The second is related to a Finite Element model.

Keywords: Engineering Design; Simulated annealing; Itô stochastic differential equation; polyhar-
monic spline interpolation)

1 Introduction

Recent advances in computational mechanics offer engineers the possibility of constructing very predictive
computational models of complex mechanical structures. Such computational models can then be used to
assess the performance of the structure over specific design scenarios. This increase of predictability is
inevitably accompanied by an increase of the size of the computational models. In most industrial sectors, it
is common for engineers to deal with computational models having tens of millions of degrees of freedom. The
forward problem consisting in calculating the response of an already designed system can be performed using
usual computational resources. Nevertheless the design of a system represented by a large computational
model is a hard task since it generally consists in a large non-convex constrained optimization problem in a
large and sometimes complex search space and requires numerous runs of the cost function.

There exists several methods in the literature in order to find or approximate the global maximum of
a non-convex constrained optimization problem [Pardalos and Romeijn(2002)]. Among these methods, sim-
ulated annealing methods [Kirkpatrick, Gelatt, and Vecchi(1983), Černý(1985)] are attractive metaheuris-
tic random search methods which consist in assigning the design parameters a probability distribution
whose logarithm is proportional to the cost function to be minimized. Then a Markov Chain is gen-
erated and by varying the coefficient of proportionality (inverse of the temperature) in an appropriate
way, the Markov Chain converges to the global optimum. This methodology, for which the basic version
[Kirkpatrick, Gelatt, and Vecchi(1983), Černý(1985)] is easy to implement, has been improved by many
researchers (see for instance [Pardalos and Romeijn(2002), Ingber(1993), Suman and Kumar(2006)]). In
[Zolfaghari and Liang(1999)] the authors have combined the simulated annealing with a tabu search approach
in order to avoid solution re-visits. In [Mingjun and Huanwen(2004)] the authors introduce a chaotic initial-
ization and a chaotic sequence generation to improve the convergence rate of the simulated annealing method.
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Many researches have been devoted to the extension of simulated annealing method to multiobjective opti-
mization problems [Suman and Kumar(2006)]. The improvement of the annealing schedule has also interested
many researchers (see for instance [Kouvelis and Chiang(1992)] for the choice of the initial temperature and
[Ingber(1989), Noutani and Andresen(1998), Azizi and Zolfaghari(2004), Triki, Collette, and Siarry(2004)] for
the cooling schedule). Convergence results related to simulated annealing algorithm have been studied
in [Aarts and Laarhoven(1985), Lundy and Mees(1986), Faigle and Schrader(1988), Faigle and Kern(1991),
Granville, Krivanek, and Rasson(1994)] for the case where the temperature is held constant until a stationary
distribution is reached and in [Mitra, Romeo, and Sangiovanni-Vincentelli(1986), Hajek(1988), Connors and Kumar(1989),
Borkar(1992), Anily and Federgruen(1987), Yao and Li(1991)] for the case where the temperature always
changes (and then no stationary distribution can be reached). For cost functions involving large computa-
tional models, the simulated annealing algorithm can become prohibitively time consuming. To circumvent
this difficulty, an adaptative surface response can be introduced for the approximation of the cost function
[Wang, Dong, and Aitchison(2001)].

The basic version of the simulated annealing [Kirkpatrick, Gelatt, and Vecchi(1983), Černý(1985)] is based
on a Metropolis-Hastings algorithm [Hastings (1970)] for which a proposal distribution has to be provided.
If the dimension of the search spaces increases, it is not easy to defined this proposal distribution and the
Markov chain can become very slow due to numerous rejections. In this case, for large computational models,
the use of the classical simulated annealing algorithm can become prohibitive due to the large number of
runs of the cost function that are needed.

The objective of this paper is to improve the simulated annealing algorithm in order to design, in
high-dimensional search space, complex mechanical systems represented by large computational models.
The methodology proposed in the present paper is based on two ingredients. The first one consists in
replacing the Metropolis-Hastings algorithm by an Itô stochastic differential equation (ISDE) generator
[Soize(1994), Soize(2008)] which belongs to class of Monte Carlo Markov Chain Methods (MCMC). This
generator is very well adapted in high dimension and does not require the specification of a proposal distri-
bution. Nevertheless it requires the gradient of the cost function to be evaluated thousands times making it
unusable. To circumvent this difficulty, the second ingredient of the methodology proposed here consists, as
in [Wang, Dong, and Aitchison(2001)], in introducing response surface function in order to approximate the
cost function. Since we are interested in multivariate optimization problems, a radial interpolation surface
(polyharmonic) is preferred to a polynomial approximation (as used in[Wang, Dong, and Aitchison(2001)]).
This interpolation is well adapted in relatively high input dimension and allows the gradient of the cost
function to be calculated explicitly at each step of the Markov Chain. An adaptative strategy is proposed
in order to enrich sequentially, during the numerical integration of the ISDE, the set of the control points
that are used to construct the interpolation surface. At the end of the simulation the best control point is
selected as the global optimum.

In Section 2, the design optimization problem and the classical simulated annealing algorithm are pre-
sented. Then Section 3 is devoted to the presentation the ISDE-based simulated annealing algorithm. The
constraints on the design parameters are taken into account by introducing a regularisation of the indicator
function. In Section 4, the polyharmonic interpolation of the cost function is introduced and the complete
approximate ISDE-based simulated annealing algorithmdesign optimization algorithm is presented. The
methodology is illustrated through two applications in Section 5. The first application consists in the classi-
cal Ackley’s test function in high dimension. The second one consists in a Finite Element structure submitted
to an acceleration of the soil and for which the maximal displacement has to be minimized by designing the
stiffnesses of supporting springs.

2 Design optimization problem and classical simulated annealing

algorithm

In this section the design optimization problem is formulated and the simulated annealing probability distri-
bution is constructed classically using the Maximum Entropy (MaxEnt) principle.

Let a be the vector of the design parameters with values in R
N . Let Ca ⊆ R

N be the admissible set for
vector a. It is assumed that the design optimization problem to be solved consists in searching the global
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minimum of a non-convex positive cost function D(a). Then the optimal value aopt of vector a is calculated
such that

a
opt = arg min

a∈Ca

D(a) . (1)

For instance, in case of a least square problem, the function D(a) can be written as

D(a) = ‖G(a)− g∗‖2 , (2)

in which G(a) is a performance vector-valued function and g∗ is a target vector. In random search methods,
a random vector A with values in Ca is associated with the vector a. In the simulated annealing the
probability density function (pdf) pA(a) of random vector A is constructed by using the MaxEnt principle
[Shannon(1948), Jaynes(1957), Kapur and Kevasan(1992)] under the constraints defined by the available
information related to random vector A. This information is written as

a ∈ Ca , (a)
∫

Ca

1lCa
(a) exp(−λD(a)) da) = 1 , (b)

E{D(a)} = c < +∞ , (c)

(3)

in which E{.} is the mathematical expectation. Equation(3-b) is related to the normalization of the pdf and
Eq. (3-c) is related to the finiteness of the mean value of the cost function which is interpreted as an energy
in thermodynamics. The entropy related to pdf pA is defined by

S(pA) = −
∫

RN

pA(a) log(pA(a)) da , (4)

where log is the natural logarithm. This functional measures the relative uncertainty of pA. Let C be the
set of all the possible pdfs of random vector A, satisfying the constraints defined by Eq. (3). Then the
MaxEnt principle consists in constructing the pdf pA as the unique pdf in C which maximizes entropy S(pA).
Then by introducing a positive Lagrange multiplier λ0 associated with Eq. (3-b) and a Lagrange multiplier λ
associated with Eq. (3-c), it can be shown (see [Jaynes(1957), Kapur and Kevasan(1992)]) that the MaxEnt
solution, is defined by

pA(a) = 1lCa
(a)λ0 exp(−λD(a)) (5)

in which λ0 = (
∫

Ca

1lCa
(a) exp(−λD(a)) da)−1 is a normalization constant. In the context of the simulated

annealing algorithm, the Lagrange multiplier is written as λ = 1
T (or λ = 1

βT with β > 0) in which T is the
temperature which controls the sharpness of pdf pA. Then random variable A is rewritten AT and its pdf is
rewritten as

pAT
(a) = 1lCa

(a)λ0 exp(−D(a)
T

) (6)

A large value of the temperature makes pAT
tend to the uniform distribution and a small value of the

temperature makes pAT
tend to a Dirac distribution centred at the optimal value. Then the classical simulated

annealing algorithm consists in constructing a sequence (A1,A2, . . . ,Ant) using the Metropolis-Hastings
(MH) algorithms [Hastings (1970)] with the pdf pAT

while decreasing slowly the temperature (see for instance
[Noutani and Andresen(1998)] for the cooling strategies). The algorithm is summarized in Algorithm 1. In
this algorithm 1, it is often set Mk = 1 for k = 1 . . . , nt, skipping the burning phase. In this case, there
is only one loop and the temperature is changed at each iteration. Under some conditions related to the
rate of decreasing of the temperature, the algorithm converges to the global optimum. Two difficulties are
usually referred for the classical simulated annealing algorithm:(1) it requires numerous calculation of the cost
function D(a) making it unusable for large computational model and (2) if the dimension of random design
vector AT is large, the Metropolis-Hastings algorithms may have difficulties to explore efficiently the design
search space. In the next sections two modifications are introduced to circumvent these two difficulties. The
first one consists in replacing the Metropolis-Hastings generator by an ISDE generator in order to explore
efficiently the design search space in high dimension. The second one consists in introducing a polyharmonic
spline interpolation of the function a 7→ D(a) for which the list of control points is enriched during the
algorithm.
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Algorithm 1 Classical simulated annealing algorithm

INITIALIZATION:

Generate initial value A0 A
1 = A0 LOOP:

for k = 1, . . . , (nt − 1) do
Set temperature Tk

Set the size Mk of the MH sequence
MH algorithm:
for ℓ = 1, . . . , (Mk − 1) do

Generate a neighbour Ak,new of Ak

if D(Ak,new) < D(Ak) then

A
k ← A

k,new

end

else
Generate u uniformly in [0, 1]
if u < exp(−(D(Ak,new)−D(Ak))/Tk) then

A
k ← A

k,new

end

end

end

A
k+1 ← A

k

end

3 Construction of a new ISDE-based simulated annealing algo-

rithm

The ISDE generator consists in constructing the pdf of random vector AT as the density of the invariant
measure pAT

(a)da associated with the stationary solution of a second-order nonlinear ISDE. This method-
ology, which has similarities with the Hamiltonian (or Hybrid) Monte Carlo method [Duane, et al(1987),
Salazar and Toral(1997)], has recently been revisited [Soize(1994), Soize(2008)] in the context of the genera-
tion of random vectors in high dimension for which the pdf is constructed using the MaxEnt principle with
complex available information. The advantages of this generator compared to the other MCMC generators
such as the Metropolis-Hastings algorithm (see [Hastings (1970)]) are: (1) there is no need to introduce a
proposal distribution (uniform in case of random walk) for the exploration of the admissible space, (2) a
damping can be introduced in order to rapidly reach the invariant measure and (3) mathematical results
concerning ISDEs can be used for convergence analyses. Below, we first present the ISDE generator followed
by its application for generating independent realizations of AT . Then a new simulated algorithm based on
the use of this ISDE generator is presented

3.1 ISDE generator

Let Ψ(u) be a positive function. Let {(U(r),V (r)), r ≥ 0} be a stochastic process with values in R
N × R

N

satisfying, for all r ≥ 0, the following ISDE [Itô(1951), Soize(1994)]

dU(r) = V (r) dr

dV (r) = −∇uΨ(U) dr − 1
2
[D]V (r) dr + [S] dW (r) ,

(7)

with the initial conditions

U(0) = U0 , V (0) = V 0 a.s . (8)

In Eq. (7), ∇uΨ(u) is the gradient of function Ψ(u) with respect to u. The matrix [D] is a symmetric positive-
definite damping matrix, the lower triangular matrix [S] is such that [D] = [S][S]T and W = (W1, . . . ,WN )
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is the normalized Wiener stochastic process indexed by R
+. The random initial condition (U0,V 0) is a

second-order random variable independent of the Wiener stochastic process {W (r), r ≥ 0}. Then it can be
proven (see [Soize(1994), Soize(2008)]) that, if u 7→ Ψ(u) is continuous on R

N , if u 7→ ‖∇uΨ(u)‖ is locally
bounded on R

N (i.e. is bounded on all compact set in R
N ), and if

inf
‖u‖>R

Ψ(u)→ +∞ ifR→ +∞ , (9)

inf
u∈RN

Ψ(u) = Φmin withΦmin ∈ R , (10)

∫

RN

‖∇uΨ(u)‖ exp(−Ψ(u)) du < +∞ , (11)

then the ISDE defined by Eqs. (7) and (8) admits an invariant measure defined by the pdf ρ(u,v) which is
written as

ρ(u,v) = λ0 exp(−∇uΨ(u)× (2π)−N/2 exp(−1

2
‖v‖2) . (12)

It can then be deduced that, for r → +∞, the stochastic process {U(r), r ≥ 0} tends to a stationary
stochastic process in probability distribution, for which the one-order marginal probability distribution is
pUst(u) such that

pUst(u) = λ0 exp(−Ψ(u)) . (13)

Therefore, using an independent realization of the Wiener stochastic process W and an independent re-
alization of the initial condition (U0,V 0), an independent realization random variable U

st related to the
probability distribution (13) can be constructed as the solution of the ISDE defined by Eqs. (7) and (8), for
r sufficiently large. In other words, independent realizations of any random variable having a probability
distribution of the form (13) (verifying the required continuity and regularity properties for function Ψ) can
be obtained by solving the ISDE defined by Eqs. (7) and (8). The value r0 of r for which the invariant
measure is approximatively reached depends on the choice of the damping matrix [D] and on the probability
distribution of the random initial conditions. The damping induced by the matrix [D] has to be sufficiently
large in order to rapidly kill the transient response but a too large damping introduces increasing errors in
the numerical integration of the ISDE.

The solution of the ISDE can be constructed numerically using a for instance a modified Euler inte-
gration schemes which has a better accuracy than a classical Euler integration schemes (see [Soize(2008),
Burrage(2007)]). Let ∆r be the integration step size and let {rℓ, ℓ = 1, . . . ,M} be the sampling points, M
being a positive integer. Let {U ℓ, ℓ = 1, . . . ,M} and {V ℓ, ℓ = 1, . . . ,M} be the time series related to the
discretization of random processes U(r) and V (r). Then, after having generated the random initial values
U1 = U0 and V 1 = V 0, the following updating rules applies

V
ℓ+1 = ([I]− ∆r

2
[D])V ℓ −∆r∇uΨ(U ℓ) + [S]∆W

ℓ+1 ,

U
ℓ+1 = U

ℓ +∆rV ℓ+1

(14)

The vector ∆W
ℓ+1 is a second-order Gaussian centered random vector with covariance matrix equal to

∆r [IN ] and the random vectors ∆W
1, . . . ,∆W

M are mutually independent.

3.2 ISDE generator for random variable AT

Equation (6) can be rewritten as

pAT
(a) = λ0 exp(log(1lCa

(a))−D(a)
T

) (15)
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Comparing equations (13) and (15), we naturally introduce the function

ΨT (a) =
D(a)
T
− log(1lCa

(a)) , (16)

Unfortunately, due to the presence of the indicator function a 7→ 1lCa
(a), the function ΨT (u) is not dif-

ferentiable and then cannot be used within an ISDE generator. To solve this issue, the indicator func-
tion a 7→ 1lCa

(a) is replaced by the regularized indicator function a 7→ 1lregCa
(a). For simple manifolds,

explicit regularized indicator function can be constructed. Two simple examples are given below (see
[Batou and Soize(2014)]):
Example 1: Positive design variables
Assume that the constraints on a are

ai > 0, i = 1 . . . , N . (17)

In this case, the regularized indicator function can be constructed as follow

1lregCa
(a) =

N
∏

i=1

1

2

(

1 + tanh

(

ai
αi

))

, (18)

where αi > 0, i = 1 . . . , N are shape parameters
Example 2: Design variables belonging to independent intervals
Assume that the constraints on a are

li < ai < ui, i = 1 . . . , N , (19)

where li and ui, i = 1 . . . , N are lower and upper bounds. In this case, the regularized indicator function can
be constructed as follow

1lregCa
(a) =

N
∏

i=1

1

4

(

1 + tanh

(

ai − li
αi

))(

1 + tanh

(

ui − ai
αi

))

. (20)

For more complex manifolds, a general kernel-smoothing regularization approach has been proposed in
[Guilleminot and Soize(2014)].
Then a regularized ISDE can be introduced by replacing, in Eq.(7), Ψ by Ψreg

T such that

Ψreg
T (a) =

D(a)
T
− log(1lregCa

(a)) , (21)

and then independent realizations of random variable AT can be constructed.

3.3 ISDE based simulated annealing algorithm

Now that an ISDE generator for random variable AT is constructed, we can use this generator for replacing
the MH algorithm in the classical simulated annealing algorithm 1. This ISDE based simulated annealing
algorithm is summarized in Algorithm 2.
At each changing of the temperature, three parameters have to be set: the steps in the ISDE ∆rk, the damp-
ing matrix [Dk] = [Sk][Sk]

T and the number of steps Mk in the ISDE. By analogy to second-order dynamical
systems, the time step that guaranties the stability of the modified Euler scheme is calculated using the eigen-
values related the conservative part of the dynamical equation. In the ISDE (7), the corresponding ”mass”
matrix is identity and the ”stiffness” matrix for given ”displacement” U is the hessian matrix [HΨT

(U)] of
function ΨT (U). Then at each iteration k, the step is calculated as ∆rk = 2 π/(m

√
λmax) where m is an inte-

ger such that m > 10 and λmax is the largest eigenvalue of the hessian matrix [HΨT
(U1)]. When approaching

the border of the admissible domain Ca, the ISDE can become very ”stiff”, which may yield stability issues.
To avoid this, the integer m has to be chosen large enough but not too large in order to avoid a too slow
integration of the ISDE. Alternatively, an adaptative step-size algorithm can be used to automatically choose
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Algorithm 2 ISDE-based simulated annealing algorithm

INITIALIZATION:

Generate U0 and V 0

A
1 = U0

U
1 = U0

V
1 = V 0

LOOP:

for k = 1, . . . , (nt − 1) do
Set temperature Tk

Set damping matrix [Dk] = [Sk][Sk]
T

Set increment ∆rk
Set number of steps Mk

Solve ISDE :
for ℓ = 1, . . . , (Mk − 1) do

V
ℓ+1 = ([I]− ∆rk

2
[Dk])V

ℓ −∆rk∇uΨ
reg
Tk

(U ℓ) + [Sk]∆W
ℓ+1

U
ℓ+1 = U

ℓ +∆rk V
ℓ+1

end

A
k+1 = UMk

U
1 ← UMk

V
1 ← V Mk

end

the best step-size at each iteration of the Euler Scheme [Guilleminot and Soize(2014)]. The damping matrix
has to be large enough in order to kill rapidly the transient response. But a too large damping will introduce
errors during the integration. A good compromise consists in imposing the largest damping rate equal to
ξ = 0.7. This can achieved approximatively by choosing [Dk] = 2 ξ

√
λmax[IN ]. The number of steps of Mk

can be chosen as invariant and then determined through an off-line convergence analysis. The convergence
can also be controlled during the integration of each ISDE yielding different values for M1, . . . ,Mk.

4 Approximation of the cost function

In this section, the function a 7→ D(a) in the ISDE is approximated using multivariate polyharmonic splines.
This approximation allows to reduce the computational cost for large computational models. Furthermore
it allows to derive explicitly the gradient a 7→∇aD(a), avoiding the calculation of the gradient numerically.
The multivariate polyharmonic splines approximation a 7→ Dmps(a) of function a 7→ D(a) is written as

Dmps(a) = w
T
b(a), (22)

in which b(a) = (b1(a), . . . bnc
(a)) is the vector of the nc p-order polyharmonic splines defined at nc control

points c1, . . . , cnc and which are such that, for i = 1, . . . , nc

bi(a) = ‖a− c
i‖p if p is odd,

bi(a) = ‖a− c
i‖p log(‖a− c

i‖) if p is even.
(23)

For the odd and even cases, if a = ci then bi(a) = 0. In Eq. (22), w is the weight vectors in R
nc . Classically,

this vector should be calculated by solving the set of nc equations

D(ci) = w
T
b(ci), i = 1, . . . , nc , (24)

yielding nc independent equations allowing vectors w to be calculated. The function Ψreg
T (a) in Eq. (21) is

then approximated by the function Ψmps
T (a) defined by

Ψmps
T (a) =

wTb(a)

T
− log(1lregCa

(a)) , (25)
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whose gradient is

∇aΨ
mps
T (a) =

∇aDmps(a)

T
+

∇a1l
reg
Ca

(a)

1lregCa
(a)

, (26)

with

∇aDmps(a) = [∇ab(a)]w, (27)

where

[∇ab(a)]ij = p(ai − cji )‖a− c
j‖p−2 if p is odd,

[∇ab(a)]ij = (ai − cji )(1 + p log(‖a− c
j‖))‖a− c

j‖p−2 if p is even.
(28)

It should be noted that for p = 1, the approximated gradient is not defined at the control points. Then only
the case p ≥ 2 will be considered. It can be shown that as ‖a‖ → +∞, function Dmps(a) in Eq.(22) is such
that

Dmps(a) ∼
‖a‖→+∞

‖a‖p
nc
∑

i=1

wi if p is odd,

Dmps(a) ∼
‖a‖→+∞

‖a‖p log(‖a‖)
nc
∑

i=1

wi if p is even.

(29)

Then since the limit of log(1lregCa
(a)) as ‖a‖ → +∞ is −∞ if the domain Ca is bounded and zero otherwise, a

sufficient condition for Eq.(9) holds is
∑nc

i=1 wi ≥ 0. This condition condition can be enforced by imposing
the following condition

nc
∑

i=1

wi = ǫ > 0 , (30)

when solving Eq.(24) (introduction of a Lagrange multiplier). The verification of Eq.(11) is straightforward
using the preceding remark and the continuity of function b(a). Concerning the condition Eq.(10), we
have

∫

RN ‖∇uΨ
mps
T (u)‖ exp(−Ψmps

T (u)) du =
∫

RN 1lregCa
(u)‖∇uΨ

mps
T (u)‖ exp(−Dmps(u)) du ≤

∫

RN 1lregCa
(u)

‖(∇uDmps(u))/T ‖ exp(−Dmps(u)) du+
∫

RN ‖∇u1l
reg
Ca

(u)‖ exp(−Dmps(u)) du. Since (1) the function 1lregCa
(a)

generally decreases very rapidly out of Ca and (2) for large values of the components of a, (a) the exponential
exp(−Dmps(a)) decreases rapidly under the condition Eq.(30) and (b) the gradient∇aDmps(a) is polynomial,
then it can be deduced that the two integrals are finite and then Eq.(11) holds.
In this section, we have used polyharmonic splines for approximating the function D(a). Other radial basis
functions such as Gaussian or Hardy [Buhmann(2003)] types could also be used. The polyharmonic functions
have been preferred since they do not require shape parameters to be estimated. It should be noted that,
even if radial interpolation methods are well adapted for the interpolation of multivariate functions, they
suffer, like other surface response, of the curse of dimensionality. Therefore, they are not adapted if the
input research space dimension is very high.

5 Approximate ISDE-based simulated annealing algorithm

The approximate ISDE-based simulated annealing algorithm is similar to Algorithm 2, with the difference
that function Ψreg

Tk
is replaced by its polyharmonic splines approximation Ψmps

Tk
introduced in the previous

section. Furthermore after each iteration k, the polyharmonic splines approximation Ψmps
Tk

is enriched by
adding a new control point as the end value reached during the integration of the ISDE. The algorithm
is initialized by generating nc control points randomly in Ca. The complete algorithm is summarized in
Algorithm 3.
This procedure allows the added control points to be distributed according to the temperature-dependent
distribution. This algorithm can be parallelized by integrating simultaneously several ISDEs with different
randomly generated initial conditions at each iteration k.
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Algorithm 3 Approximate ISDE-based simulated annealing algorithm

INITIALIZATION:

Generate U0 and V 0

A
1 = U0

U
1 = U0

V
1 = V 0

Generate nc control points c1, . . . , cnc

Calculate D(c1), . . . ,D(cnc)
Calculate w solving Eq. (24)
LOOP:

for k = 1, . . . , (nt − 1) do
Set temperature Tk

Set damping matrix [Dk] = [Sk][Sk]
T

Set increment ∆rk
Set number of steps Mk

Solve ISDE :
for ℓ = 1, . . . , (Mk − 1) do

V
ℓ+1 = ([I]− ∆rk

2
[Dk])V

ℓ −∆rk∇uΨ
mps
Tk

(U ℓ) + [Sk]∆W
ℓ+1

U
ℓ+1 = U

ℓ +∆rk V
ℓ+1

end

A
k+1 = UMk

U
1 ← UMk

V
1 ← V Mk

nc ← nc + 1
Add c

nc = A
k+1 to the list of control points

Calculate D(cnc)
Update w solving Eq. (24)

end

6 Application

6.1 Ackley’s test function

The objective here is to illustrate and show the efficiency of both Algorithms 2 and 3. For this purpose, we
use the Ackley’s function which is a classical function for testing multivariate optimization algorithms. This
function is defined by

D(a) = −20 exp(− 0.2√
N
‖a‖)− exp(

1

N

N
∑

i=1

(cos(2πai)) + exp(1) + 20, (31)

with the following constraints

−5 < ai < 5, i = 1, . . . , N . (32)

For this case the global maximum is reached at

ai ≃ 0, i = 1, . . . , N . (33)

For N = 1 and N = 2 the cost functions are plotted on Figs. 1 and 2. The number of local minima increases
rapidly with dimension.
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Figure 2: Function a 7→ D(a) for N = 2.

6.1.1 Exact ISDE-based simulated annealing algorithm

For case N = 2, the ISDE-based simulated annealing sequence, described in Algorithm 2, is generated. The
total number of ISDE integrations is nt = 500. For each ISDE, there are Mk = 40 steps. The temperature
decreasing law is chosen as

Tk = T1 exp(−β k) + b. (34)

in which T1 = 36.7, β = 2.0 × 10−2, b = 3.51 × 10−2. This function is represented in Fig. 3. To take into
account the constraints, the regularized indicator function in Eq.(20) with α1 = α2 = 0.3. Figure 4 shows
the values A1, . . . ,Ant

generated using Algorithm 2. It can be seen the capacity of the algorithm to escape
from local minima and to converge to the global minimum. There are still fluctuations at the end of the
simulation since the end-temperature is not zero.
Let’s now increase the dimension to N = 256. The parameter of the temperature decreasing law are T1 = 2.5,
β = 2.0 × 10−2, b = 5.1 × 10−3. Figure 5 shows the values A1, . . . ,Ant

generated using Algorithm 2). It
can be seen in this figure that all the components converge to the global minimum. To show the efficiency
of this algorithm, these results are compared with the ones obtained using the classical simulated annealing
algorithm (1). The same temperature law, and the same increment size calculation method (based on the
Hessian of cost function) has been used. Nevertheless, since the calculations of the gradient in Algorithm
(2) is more expensive than the simple function evaluations in Algorithm (1), Mk = 170 steps for each MH
sequence has been set in order to have the same calculation time. The results of the optimisation using the

10
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Figure 5: ISDE-based algorithm, N = 200, functions k 7→ Ak
i for i = 1, . . . , 200.

classical simulated annealing algorithm are shown in Fig. 6. It can be seen in this figure that the result
obtained using the ISDE based algorithm are better than those obtained using the classical SA algorithm.
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Figure 6: Classical SA algorithm, N = 200, functions k 7→ Ak
i for i = 1, . . . , 200.

6.1.2 Approximate ISDE-based simulated annealing algorithm

This section illustrates Algorithm 3 for which the cost function is approximated using a polyharmonic spline
approximation at order p = 2. The initial number of control points is nc = 140. The number of enrichments
is nt = 500. For each ISDE, there are Mk = 40 steps. It should be noted that for this simple application the
computation time is larger using the adaptative Algorithm 3 than using the Algorithm 2 (without approx-
imation of the cost function). The objective here is just to validate the methodology. The computational
gain of Algorithm 3 will be illustrated in the next application which consists in a Finite Element simulation.
For case N = 2, Fig. 7 shows the values A1, . . . ,Ant

. It can be seen again that the algorithm converges
rapidly to the global minimum. The approximate cost function obtained after the 500 enrichments is plotted
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Figure 7: Approximate ISDE-based algorithm, N = 2, functions k 7→ Ak
1 and k 7→ Ak

2 .

on Fig. 8. Compared with Fig. 2, it can be seen a good approximation of the cost function is the visited
regions. For case N = 32, Fig. 10 shows the values A1, . . . ,Ant

. It can be seen the ability of the algorithm
to converge to the global minimum when increasing the dimension.

6.2 Finite Element model

We are interested in the maximal response of the 2-storey structure represented in Fig. 10 submitted to the
soil acceleration plotted in Fig. 11. This structure is made up with two 3.0 × 3.0 m2 plates (blue color),
eight vertical beams (red color), eight horizontal beams (red color). The structure is linked to the ground
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Figure 8: Approximate cost function a 7→ Dmps(a) for N = 2.
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Figure 9: Approximate ISDE-based algorithm, N = 32, functions k 7→ Ak
i for i = 1, . . . , 32.

by four linear springs. The bottom plate has thickness 5.0 × 10−3 m, Young’s modulus 6.31 × 1010 Pa,
mass density 1800 kg/m3, Poisson ratio 0.29. The top plate has thickness 5.0 × 10−3 m, Young’s modulus
6.47 × 1010 Pa, mass density 1800 kg/m3 and Poisson ratio 0.29. All the vertical beams have length 3 m,
diameter 3.5 × 10−2 m (circular section) Young’s modulus 1.3 × 1011 Pa, mass density 7800 kg/m3 and
Poisson ratio 0.3. All the horizontal beams have length 3 m, diameter 3.5 × 10−2 m (circular section)
Young’s modulus 1.3 × 1011 Pa and Poisson ratio 0.3. The north, east, south and west horizontal beams
have mass density 5800 kg/m3, 6800 kg/m3, 7100 kg/m3 and 6800 kg/m3 respectively. The initial value
for the springs’ stiffnesses (same value for the three directions) are k1 = k2 = k3 = k4 = 70000 N/m.
The structure is subjected to the seismic ground acceleration plotted in Fig. 11 along x-direction. We are
interested in the displacement at the observation point located at (2, 2, 2) m on the top plate. The norm
of this displacement is plotted in Fig. 12. The objective is to design the stiffnesses of the springs in order
to minimize the maximum value of the norm of the displacement. Then a = (k1, k2, k3, k4).To perform this
task, the approximated ISDE-based simulated algorithm 3 is used with a polyharmonic approximation at
order p = 2. The admissible domains for the stiffnesses are [5000, 120000] N/m. The initial number of control
points is nc = 140. The number of enrichments is nt = 200. The number of steps for each ISDE between two
enrichments is Mk = 40. The temperature decreasing law is plotted in Fig. 13. The optimal control point is
aopt = (19787, 18298, 59092, 70160) N/m. The evolution of the stiffnesses and the exact cost function during
the simulation are shown in Figs. 14 and 15. It can be seen it these figures that the optimum is rapidly reach
using a few number of function calls. The exact and approximate univariate variations of the cost function
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Figure 10: Finite element mesh.
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Figure 11: Soil acceleration.

around the optimal value are illustrated in Fig. 16.The exact and approximate bivariate variations of the
cost function around the optimal value are illustrated in Figs. 17 and 18. It can be seen in these figures that
the global optimum has been found despite the presence of local minima. Furthermore, it can be seen that
the polyharmonic splines provide a good approximation of the cost function around the optimal value. It
should be noted that these figures seem to show that the algorithm has reach the global minimum but there
is no guaranty unless all the research space is rigorously explored. The new norm of the displacement of
the observation point calculated using the designed structure is plotted on Fig.19. The previous maximum
displacement was 5.97× 10−2 m. The new one, after optimization, is 4.82× 10−2 m.
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Figure 12: Norm of the displacement at observation point.
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7 Conclusions

We have presented an original variant of the simulated annealing algorithm (1) by incorporating an ISDE
generator for the temperature-dependent probability distribution in order to explore efficiently the search
space and (2) by interpolating the cost function using polyharmonic splines in order to calculate explicitly
and efficiently the cost function and its gradient. Several Markov Chain can be generated in parallel in
order to accelerate the enrichment of the interpolation surface. The algorithm has been illustrated on two
applications. The first application has shown the potentiality of the algorithm in high dimension and its
ability to escape from local minima. The second application shows the potentiality of the algorithm for
large computational models. In addition, all the improvements that have been proposed in [Ingber(1993),
Pardalos and Romeijn(2002)] for the classical simulated annealing algorithm could be used to improve the
algorithm proposed in the present paper. Two remaining issues will be treated in future works. The first one
concerns the choice the temperature law which has not been discussed in this paper since the convergence
properties for classical simulated annealing are not preserved exactly. The second issue concerns the choice
of the size step for the integration of the ISDE. Since the cost function is know explicitly by its polyharmonic
spline representation, an adaptative step size could be studied and implemented in the algorithm.
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