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Abstract

Reduced-order modelling of multidisciplinary computational fluid dynamics can

enable routine industrial gust load analysis. Key to the herein presented model

reduction approach is that it modularly builds upon the widely accepted modal

structural reduced-order model, where high-fidelity aerodynamics are simply

projected onto the structural degrees-of-freedom, while opening a novel route

to account for dominant modal aerodynamics in multidisciplinary edge-of-the-

envelope flight physics. The influence of the flexible structure is captured by

aeroelastic eigenmodes which originate in the structural equations. Such global

aeroelastic modes for a large aircraft case with nearly 50 million degrees-of-

freedom are computed for the first time using exact aerodynamics from com-

putational fluid dynamics via the Schur complement method. The influence of

atmospheric gusts is captured by modes from proper orthogonal decomposition

applied to sinusoidal gust responses at discrete frequencies. Afterwards, the

two sets of modes are combined and the linearised operator of the Reynolds-

averaged Navier–Stokes equations coupled with a modal structural model is

projected onto the resulting subspace. The constructed low-dimensional model

can be solved rapidly for practical gust analysis giving accurate agreement with

the full-order reference results throughout. Feasibility of aeroelastic model re-

duction, using the industry-grade computational fluid dynamics package DLR–

TAU, for a relevant use case in transonic flight gust encounter is demonstrated.
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NOMENCLATURE

A = Jacobian matrix

CL = lift coefficient

cp = pressure coefficient

I = identity matrix

Lg = gust length

LMAC = mean aerodynamic chord

Q = matrix of oscillatory aerodynamic derivatives

R = vector of non-linear residual functions

r = relative information content in proper orthogonal decomposition

S = snapshot matrix in proper orthogonal decomposition

S = Schur complement matrix

t = time

U∞ = freestream velocity

V = diagonal matrix containing cell volumes

vg = vector of gust disturbances

vgz = vertical gust amplitude

w = vector of conservative variables

x = eigenvector in proper orthogonal decomposition

ẋ = vector of grid point velocities

x0 = gust off-set distance

z = vector of reduced space variables

ε = finite-difference step size

λ = eigenvalue in eigenmode decomposition

µ = eigenvalue in proper orthogonal decomposition

Φ, Ψ = basis for Petrov–Galerkin projection

φ = mode in proper orthogonal decomposition

φ,ψ = right and left eigenvectors in eigenmode decomposition

ω = dimensionless reduced frequency
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Subscripts

f = fluid

s = structure

EMD = eigenmode decomposition

POD = proper orthogonal decomposition

1. Introduction

Investigation of aircraft structural responses to atmospheric turbulence is

an important part of aircraft design and certification since a few extreme gust

load cases may be critical for wing sizing. Numerous parameters, e.g. flight

point, mass case, gust shape and length, need to be investigated. Thus, low-5

cost methods which offer high-fidelity results within an affordable time frame

are desired to ensure an accurate and reliable prediction of loads. Traditionally,

linear potential aerodynamic theory in frequency domain, mostly the doublet

lattice method [1], is used to obtain such loads rapidly. Examples for this are

widespread from isolated wings [2] to full aircraft configurations [3]. While10

compressibility is accounted for, non-linear aerodynamic features, such as shock

waves and boundary-layer separation, are neglected even though these are dom-

inating the flow physics in transonic flight conditions where nearly all modern

large aircraft operate. Two routes are commonly pursued to overcome this

known lack of fidelity. Correction factors, either from experiment or computa-15

tional fluid dynamics (CFD), can be applied after calculating forces from linear

aerodynamic theory to improve predictions [4]. While this first route nearly re-

tains the low computational effort of the underlying linear aerodynamic theory,

correction factors using CFD are normally based on sampling at zero frequency

only and an expertly selected set of modes, which inhibits a fully automated20

set-up due to the human in the loop. Nevertheless, correcting aerodynamic

loads is current industrial standard. The second route is analysing responses

using non-linear CFD integrated into a multidisciplinary toolset [5, 6], which

can offer improved loads predictions also at transonic conditions. However,
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computational cost of such general-purpose time-accurate simulations as part25

of industrial loads cycles remains prohibitive.

A promising, albeit not new, approach to reduced computational cost of

CFD simulations, and thus to make such higher-fidelity tools affordable in the

aircraft loads process, is reduced-order modelling (ROM) [7]. Different ap-

proaches have been proposed specifically for gust response analyses including30

the autoregressive moving average method [5] and proper orthogonal decompo-

sition from time-marching snapshots combined with convolution [8] and system

identification [9]. In contrast to previous work, we are specifically interested in

the type of ‘modal decomposition and subspace projection’ methods. As one of

those, structure-only model reduction based on projection with in-vacuum eigen-35

modes of the mass-spring system has been used for decades in aircraft loads and

aeroelastics in combination with linear aerodynamics [10], while projection with

eigenmodes has also gained interest within the fluid dynamics community [11].

Extracting eigenmodes from the operator describing higher-fidelity aerodynamic

theory is non-trivial [12, 13]. With interest in coupled fluid-structure problems40

and using linear and non-linear potential flow models, e.g. [14, 15] presented

aerodynamic ROMs with a basis of direct and adjoint eigenmodes for coupling

with a structural model, which was later resuscitated in [16] using coupled aeroe-

lastic eigensolutions directly for the projection. Turning towards higher-fidelity

aerodynamics which are more suited for feature-rich and edge-of-the-envelope45

flow physics, and initially assuming interest in wind-off structural modes, the

Schur complement method can be applied to track these eigenmodes while be-

ing affected by linearised CFD aerodynamics [17]. Critical eigenmodes of the

coupled system can be used in a centre manifold reduction to investigate tran-

sonic aeroelastic limit-cycle oscillation and to perform parametric sensitivity50

analysis [18]. While excellent agreement between results from the underlying

full-order non-linear system and ROM is observed for response to initial struc-

tural disturbance, results are not as satisfying during external forcing such as

gust excitation [19]. More recently, the authors proposed a model extension to

overcome this lack of accuracy by including additional modes representing the55
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gust response characteristics of the system [20].

Instead of attempting to extract global eigenmodes that properly describe

gust behaviour, proper orthogonal decomposition (POD) is used [21]. POD

was first used in fluid dynamics to model coherent structures in turbulent flow

fields [22]. This common model reduction technique is based on subspace pro-60

jection, too. It allows the creation of a reduced basis for problems of very large

size because the system response is sampled rather than quizzing the eigenmode

characteristics of the Jacobian matrix, which quickly becomes computationally

prohibitive for industry relevant cases. A small eigenvalue problem, related to

snapshots generated by numerically analysing the full system, is solved to ob-65

tain modes. This approach was soon extended towards frequency-domain sam-

pling data from an incompressible three-dimensional vortex lattice method [23].

Linearised CFD aerodynamics were first considered to analyse the aeroelastic

behaviour of a pitch-plunge aerofoil [24] and a three-dimensional wing [25]. Re-

cently, an application to aeroelastic gust responses has been presented for an70

aerofoil in sub- and transonic flow conditions, showing excellent agreement at

two orders of magnitude reduced computational cost [20]. Results have subse-

quently been presented for a large civil aircraft [26]. Closely related work can

also be found in [27, 28]. Combining POD with a linearised frequency-domain

method not only reduces computational cost further, but, more importantly, an75

interpolation for frequencies not pre-computed can be avoided.

The current paper consolidates these developments by enriching an eigen-

mode decomposition (EMD) ROM with POD modes to increase the prediction

accuracy for loads occurring during transient gust encounter of a flexible large

civil aircraft. Importantly, practical feasibility is demonstrated for such a test80

case of industrial relevance with an industry-grade CFD package solving the

Reynolds-averaged Navier–Stokes (RANS) equations. The construction of the

EMD ROM is first discussed and mode traces as well as global modes are anal-

ysed. The lack of accuracy for gust responses is demonstrated for a typical 1–cos

gust scenario. A POD model of the aerodynamics is then introduced and the two85

modal sets are combined. Responses of the coupled ROM are compared with
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full-order model simulations scrutinising integrated aerodynamic loads, surfaces

pressures and structural deformations. Finally, computational cost for creating

and solving the ROM is elucidated.

2. Theoretical Formulation90

2.1. Introducing Linearised Dynamics

The coupled full-order non-linear system is first presented. The state-space

vector w of dimension n can be written as

w =
[
wT

f ,w
T
s

]T
(1)

where wf and ws denote fluid and structural degrees-of-freedom, respectively.

While a typical dimension of ws is O(100) using a linear modal structural95

model, derived from a full finite-element discretisation of the structure, the fluid

degrees-of-freedom can amount to very many millions. The governing equations

in semi-discrete form are

d
dt (Mw) = R(w,vg) (2)

where R is the vector of non-linear residual functions corresponding to the un-

knowns w, and vg denotes external disturbances due to gusts. The diagonal100

matrix M is partitioned just as the vector of unknowns and contains the cell

volumes V for fluid degrees-of-freedom, since we apply an industry-standard

finite-volume CFD method (specifically the DLR–TAU solver, cf. Section 3.1),

and an identity matrix I for the structure. The difference between an equi-

librium steady-state solution w̄ of Eq. (2) and the instantaneous state-space105

vector w is introduced as

w̃ = w − w̄ (3)

and accordingly for external disturbances vg and the cell-volume matrix V .
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The residual in Eq. (2) is expressed around the equilibrium point by a first-

order Taylor expansion assuming small disturbances

M dw̃
dt ≈ R(w̄, v̄g) +

∂R

∂w
w̃ +

∂R

∂vg
ṽg (4)

where R(w̄, v̄g) represents the steady-state solution and is assumed to be zero110

without loss of generality due to enforced linearity. For ease of notation, the

diagonal matrix at steady state is denoted M (and V for the corresponding

cell-volume matrix) dropping the overbar (̄ ). The term ∂R/∂w = A denotes

the coupled Jacobian matrix which is partitioned, too, as

A =

Aff Afs

Asf Ass

 (5)

The meaning of the different sub-blocks has been discussed elsewhere [29], but115

shall be summarised for convenience. Blocks Aff and Afs, which require access to

the spatial discretisation of the aerodynamic model including boundary condi-

tions, describe the fluid Jacobian matrix and the influence of structural motion

on the fluid, respectively. The second coupling block Asf essentially involves the

differentiation of the generalised forces, contained in the structural equations,120

with respect to the fluid unknowns, and Ass is the structural Jacobian matrix,

well known from structural dynamics, describing mass and stiffness proper-

ties. Matrix ∂R/∂vg is used to introduce gust disturbances ṽg via artificial

mesh velocities, following the widely applied field velocity method [30]. Since

such gust definition does not directly act on the structural equations, but only125

through generalised aerodynamic forces, the structural part of the latter matrix

(∂Rs/∂vg = 0) is only required to keep consistent matrix/vector dimensions.

Note that the product of equilibrium solution and time rate of change of cell

volumes, w̄ dM̃
dt , which is a by-product of dealing with finite-volume discreti-

sations and respecting the geometric conservation law, is contained within the130

matrix block Afs to simplify the notation [31]. This additional term only applies

to the fluid equations and is irrelevant for the structural degrees-of-freedom.
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2.2. Unified Modal Basis and Model Reduction

An aeroelastic ROM is introduced to investigate the influence of gust exci-

tation on flexible structures by combining the individual bases of eigenmodes135

and POD modes, to be introduced below,

Φ = [ΦEMD , ΦPOD] and Ψ = [ΨEMD , ΨPOD] (6)

where ΨPOD = ΦPOD. Only the aerodynamic subsystem is considered to iden-

tify ΦPOD and thus all POD modes are padded with zero entries in the struc-

tural degrees-of-freedom of the coupled system. POD sampling which includes

structural responses is possible (cf. [32] for solution of the coupled linearised140

equations) but shall not be discussed herein. Such a model reduction tech-

nique combining subspaces where each of them addresses a specific aspect of

the coupled system enables the robust construction of a multi-purpose ROM.

Describing the change in state-space vector w̃ by

w̃ = Φz (7)

where the complex-valued vector z describes the state-space variables in the145

reduced space (essentially the modal amplitudes), and substituting in Eq. (4),

gives after performing a projection in the Petrov–Galerkin sense,

ΨHMΦż = ΨHAΦz + ΨH ∂R

∂vg
ṽg (8)

where ( )H denotes Hermitian (conjugate) transpose and ˙( ) is the temporal

derivative d()
dt . Since bi-orthonormality of the unified basis, in contrast to the

individual bases, is no longer fulfilled for the coupled model, i.e. ΨHMΦ 6= I, the150

inverse of ΨHMΦ is pre-multiplied resulting in the time-domain representation

of the coupled reduced-order model

ż = (ΨHMΦ)−1ΨHAΦz + (ΨHMΦ)−1ΨH ∂R

∂vg
ṽg (9)
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While multiplying with the inverse changes the projection based on Ψ , the

reduction described by AΦ remains unchanged. Solving the reduced system in

either frequency (making the usual exponential function ansatz for z) or time155

domain, and reconstructing full-order solutions afterwards, is an efficient way

to investigate gust encounter for coupled fluid-structure systems.

2.3. Basis from Eigenmode Decomposition

Right and left eigenvectors, φj and ψj , of the coupled Jacobian matrix A are

calculated by solving the direct and adjoint eigenvalue problems, respectively,160

corresponding to the homogeneous form of the linearised Eq. (4) (i.e. without

gust forcing term),

Aff Afs

Asf Ass

φj = λjMφj and

AT
ff AT

sf

AT
fs AT

ss

ψ∗j = λjMψ
∗
j for j = 1, . . . ,m

(10)

for which the number m is far smaller than the initial system size n while grant-

ing convergence of the numerical solution. The complex conjugate of the adjoint

eigenvector ψ is denoted ψ∗. The eigenvectors φ and ψ (or ψ∗ accordingly) are165

partitioned just as the state-space vector in fluid and structural components.

The eigenvalue λj = σj + iωj describes the eigenmode’s growth rate σj and

reduced frequency ωj , made non-dimensional using freestream velocity U∞ and

reference chord length LMAC (where MAC is mean aerodynamic chord).

The Schur complement method is used to determine eigenmodes by tracking170

structural modes in a matched-point fashion while they are increasingly affected

by the fluid with decreasing altitude. Specifically, interest is in eigenvalues

emerging from the structural block Ass (at high-altitude, effectively-uncoupled

conditions), as aerodynamic stability is assumed [33]1, which allows the solution

1While the herein discussed gust response problem also assumes structural stability, this is
not a requirement for the Schur complement method and structural instability is permissible in
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of small non-linear eigenvalue problems, related to the structural degrees-of-175

freedom, for right and left structural eigenpairs, respectively,

S(λj)φs,j = λjφs,j and ST (λj)ψ
∗
s,j = λjψ

∗
s,j for j = 1, . . . ,m (11)

where the matrix S(λj) is the Schur complement of Aff in A,

S(λj) = Ass −Asf(Aff − λjV )−1Afs (12)

Different levels of approximation have previously been proposed to decrease

computational cost using CFD aerodynamics. All of them approximate the

aerodynamic influence term, Asf(Aff − λjV )−1Afs, solely describing the aero-180

dynamic response due to the structural motion which is then projected onto

the structural degrees-of-freedom. An extension to external forcing via gust

responses, similar to traditional loads analysis with linear aerodynamic the-

ory [34], is possible but shall not be discussed herein. The most simplistic way

is to use the linearised frequency-domain incarnation of the discretised RANS185

operator and to sample the aerodynamic influence using a purely imaginary

shift only, i.e. =(λj) = ωj ,

Asf(Aff − λjV )−1Afs ≈ Q(ωj) = Asf(Aff − iωjV )−1Afs (13)

Evaluation for all modes in an offline pre-computation step requires solutions

of large (corresponding to the dimension of the fluid system), but sparse linear

systems of equations for the columns in matrix Afs as right-hand side. The190

direct and adjoint systems in Eq. (11) become

(
Ass −Q(ωj)

)
φs,j = λjφs,j and(

Ass −Q(ωj)
)T
ψ∗s,j = λjψ

∗
s,j for j = 1, . . . ,m

(14)

general. Irrespective of the Schur complement method, the eigenmode basis can in principle be
adapted to deal with dominant (i.e. weakly damped or unstable) global aerodynamic modes,
but this discussion is beyond the scope of this work.
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Newton’s method is chosen to solve Eq. (14) at each altitude using either

wind-off structural frequencies initially or the solution at a previous altitude as

initial guess to the eigenvalue [17]. The eigenvector can be initialised randomly

or for the wind-off structural system. We use the International Standard Atmo-195

sphere model to calculate density and velocity (via Mach number and speed of

sound) at a defined altitude, required for the coupling between fluid and struc-

tural systems via the generalised force terms contained in matrix Asf . Note

that, as a simplification to ease computational cost, the aircraft’s elastically

trimmed shape at the target altitude is frozen, whereas the generalisation is200

easily possible conceptually and expensive numerically. During the Newton and

altitude iterations, a Kriging surrogate model, as presented in [35], is used to

interpolate between the pre-computed samples of Q(ωj) rather than solving the

full aerodynamic system in Eq. (13) in the loop.

This approach is closely related to pk-style flutter stability analysis [36].205

For flutter stability analysis, normally both the crossing of an eigenvalue with

the imaginary axis and weakly damped modes are of interest and thus the

assumption of neglecting a damped oscillation during sampling is well justified

and established for decades using linear aerodynamic theory. Similar to the

classical p method for flutter investigation also a damped shift can be used for210

pre-sampling [37]. The impact of a pk-type assumption will be investigated

below (cf. Figs. 5 and 7); while results for our flexible but fixed-in-space aircraft

indicate that a standard pk-type approach is justified, other test cases which

e.g. add flight dynamics modes to the analysis or have very low wing-bending

frequencies (or both and hence the coupling becomes of interest) will have to be215

scrutinised more thoroughly concerning these approximations [38].

The fluid part of a coupled eigensolution requires additional solves of the

corresponding expressions for direct and adjoint formulations, derived from the

first row in Eq. (10),

(Aff − λjV )φf,j = −Afsφs,j and

(AT
ff − λjV )ψ∗f,j = −AT

sfψ
∗
s,j for j = 1, . . . ,m

(15)
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which adds 2m linear equation solves per modal basis. More detail of the various220

methods and approximations can be found in previous work [17, 19, 29, 35].

Collecting the eigenvectors, the right and left modal bases are formed as

ΦEMD =
[
φ1, . . . ,φm,φ

∗
1, . . . ,φ

∗
m

]
and

ΨEMD =
[
ψ1, . . . ,ψm,ψ

∗
1, . . . ,ψ

∗
m

] (16)

Note that aeroelastic eigensolutions originating in the wind-off structural modes

appear as complex conjugate pairs and these complex conjugates are added to

the modal basis at no additional cost. Eigenvectors are normalised to fulfil the225

bi-orthonormality condition

ΨH
EMDMΦEMD = I (17)

2.4. Basis from Proper Orthogonal Decomposition

We follow the method of snapshots to calculate a basis of POD modes. First,

k snapshots of the entire flow field response due to gust forcing are computed

by solving the linear system of equations corresponding to the linearised non-230

homogeneous form of Eq. (4) at discrete reduced frequencies ωj ,

(
Aff − iωjV

)
ŵf,j = −∂Rf

∂vg
v̂g(ωj) for j = 1, . . . , k (18)

with ŵ and v̂ as complex-valued Fourier coefficients, assuming that w̃ and ṽg

in Eq. (4) change harmonically in time [39]. Solutions ŵf and their complex

conjugates are stored as columns in the snapshot matrix S as

S =
[
ŵf,1, . . . , ŵf,k, ŵ

∗
f,1, . . . , ŵ

∗
f,k

]
(19)

The POD basis ΦPOD is then obtained as a linear combination of snapshots235

ΦPOD = SX (20)
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where eigenvector columns xj in matrix X are scaled so that ΦH
PODV ΦPOD = I.

The eigenvalue problem of size 2k

(SHV S)xj = µjxj j = 1, . . . , 2k (21)

is solved to ensure the best possible approximation in Eq. (20). Eigenvalues µj

are real and positive because SHV S is a Hermitian positive-definite matrix. The

relative information content rj contributed to the system by a certain mode, also240

often referred to as energy, is given by

rj = µj ·
( 2k∑

i=0

µi

)−1

for j = 1, . . . , 2k (22)

This expression can be used to decrease the number of POD modes further by

only considering those with a high relative information content, the ranking of

which is driven by the gust forcing on the rigid aircraft.

Note that the dot product has been altered by weighting with the matrix of245

fluid cell volumes V . Whereas the robustness of the previously introduced EMD

ROM is unaffected by this change in dot product, i.e. it is unconditionally stable,

the characteristics of the POD model can change dramatically. First, cells with

a small volume are becoming less important resulting in a more global flowfield

representation. Secondly and more importantly, the resulting POD model is250

more likely to be stable compared with the case which excludes V , i.e. SHS.

The fact that stability of the POD ROM from Galerkin projection cannot be

guaranteed, despite its popularity, has previously been discussed in [40] sug-

gesting best practice based on numerical empiricism. Besides an appropriate

weighting, another avenue to produce a stable ROM, following projection in the255

Petrov–Galerkin sense, is to adopt the balanced incarnation of POD [41].
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3. Numerical Approach

3.1. Multidisciplinary Simulation Methods

Aerodynamics are simulated using the DLR–TAU code which is widely used

in the European aerospace sector and validation of the code is available in the260

literature for steady [42, 43] and unsteady cases [43, 44]. The RANS equations in

conjunction with the Spalart–Allmaras turbulence model [45] are solved. Invis-

cid fluxes are discretised applying a central scheme with the scalar artificial dis-

sipation of Jameson, Schmidt and Turkel [46]. Exact gradients used for viscous

and source terms are computed using the Green–Gauss approach [47]. Steady-265

state solutions are obtained using the backward Euler method with lower-upper

Symmetric–Gauss–Seidel iterations and local time-stepping. Convergence is fur-

ther accelerated by applying a V multigrid cycle on two grid levels [47].

Structural deformations are consistently considered using a linear modal ap-

proach. Mode shapes are calculated from a finite-element discretisation of the270

chosen configuration, and these modes are splined onto the point distribution

of the CFD surface mesh to enforce the wing deformation in the coupled sim-

ulation and to obtain generalised forces integrated over the surface vice versa.

Resulting volume-mesh deformations are calculated with the radial basis func-

tion method [48]. Gusts are modelled using the field velocity approach which275

introduces an artificial mesh velocity [30]. The velocity term is added to the

fluxes in the governing equations and is prescribed based on the gust excitation

while no additional deformation of the computational grid is required. The dis-

crete geometric conservation law is fully accounted for. Previous studies have

shown that the field velocity method, although the gust field is assumed to be280

frozen without being altered by the presence of the aircraft, is sufficiently ac-

curate, compared with the far more expensive resolved gust approach, even for

gusts as short as the reference chord length [49]. The relevant parameters for a

typical 1–cos gust are visualised in Fig. 1.

During full-order unsteady simulations, aerodynamic and structural systems285

are solved alongside each other and data is exchanged on a subiteration level [50].
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Figure 1: Sketch of 1–cos gust parameters.

Subiterations at each physical time step are performed until the Euclidean norm

of the generalised-force update vector drops below 10−4 or a maximum number

of 5 subiterations with data exchange between fluid and structure is reached.

For the aerodynamic system a dual time-stepping combined with the second-290

order backward differentiation formula is used within subiterations, settings of

which are summarised in Table 1. Chosen time-step size and number of time

steps follow from numerical experiments and result as a trade-off between com-

putational cost (runtime) and iterative error. A Cauchy convergence criterion

with a tolerance of 10−8 for the relative error of the drag coefficient is applied295

in addition to a convergence criterion based on the density residual norm. The

structural system is integrated in time applying the Newmark-beta method [51].

The linearised frequency-domain code follows a first-discretise-then-linearise,

matrix-forming approach with an analytical, hand-differentiated fluid Jacobian

matrix Aff . Details of the implementation in the CFD solver, including the300

hand-differentiation of the chosen turbulence model, are provided in [31, 52, 53].

Matrix block Afs uses a simple central finite-difference formulation generating

one matrix column (corresponding to a structural mode) at a time, while a more

recent addition to the code would also provide hand-differentiated Jacobian

matrices related to the grid metrics [53]. Matrix Asf is calculated analytically,305

too, for the pressure components of the generalised forces only, and Ass is trivial

due to the modal structural model. The matrix for the gust excitation on the

right-hand side in Eq. (18) is discussed in more detail below. A generalised

conjugate residual solver with deflated restarting is used to solve arising linear
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Parameter Value

Number of time steps 1500
Non-dimensional time-step size 0.1
Maximum number of subiterations per physical time step 5
Convergence criterion on force-update vector norm 10−4

Convergence criterion on density residual norm 10−3

Relative Cauchy convergence criterion on drag coefficient 10−8

Table 1: Full-order time-domain numerical parameters

Parameter Value

Number of Krylov vectors 80
Number of deflation vectors 20
Convergence criterion on residual of Krylov method 10−7

Table 2: Frequency-domain numerical parameters

systems [54]. For preconditioning a block incomplete lower-upper factorisation310

of the Jacobian matrix with zero level of fill-in is selected [55, 56]. The number

of Krylov and deflation vectors employed to solve linear systems together with

the linear convergence criterion are given in Table 2 and the parameter selection

is based on previously published results [54].

3.2. Implementation Details315

Exploiting the concept of graph colouring [56], which has previously been

applied in a similar context for evaluating the fluid Jacobian and Hessian ma-

trices [57], the matrix block ∂Rf/∂vg in Eq. (9) is calculated explicitly (and

stored) using sweeps of central finite-difference residual evaluations of the gen-

eral form320

−∂Rf

∂vg
=
∂Rf

∂ẋ
=
Rf (+εẋ)−Rf (−εẋ)

2ε
(23)

which exploits the relation between mesh velocities and gust disturbance veloc-

ities [39], specifically ẋ = −vg. Computational cost is reduced by disturbing

grid-point velocities ẋ of all points that are neither first nor second neighbour

of a point in the stencil of another disturbed point. The set of disturbed points

defines the columns of the matrix, while the resulting non-zero residual entries325
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define the rows. Following a first finite-difference evaluation, a new set of, as yet

undisturbed, grid points is selected. This procedure is repeated until all points

have been traversed once. Depending on mesh connectivity and partitioning

applied, O(200) finite-difference evaluations are typically required for our test

case to build the full matrix. In the absence of an analytical or automatic dif-330

ferentiation for this specific task, the finite-difference sweeps, implemented in

the chosen flow solver for this purpose, to construct the full matrix ∂Rf/∂vg

enables response simulations to arbitrary gust inputs.

Since a linear Taylor expansion is used, the assumption of a dynamically

linear response also extends to integrated quantities, such as lift and moment335

coefficient. Thus, changes in global coefficients, e.g. lift coefficient C̃L, can be

computed by forming the partial derivative ∂CL/∂w using steady-state infor-

mation only and then substituting using Eq. (7),

C̃L =
∂CL

∂w
w̃ =

∂CL

∂w
Φz (24)

This enables the analysis of global coefficients without the need of reconstructing

the surface solution from the ROM data, even though this can be done easily.340

Note that this formulation accounts for changes in integrated global coefficients

due to aerodynamic as well as structural perturbations.

4. Results

The chosen test case is the large civil aircraft configuration XRF1, a three-

view illustration of which is offered in Fig. 2. The XRF1 research test case is used345

by Airbus to engage with external partners on development and demonstration

of relevant capabilities. XRF1 is an industrial standard multidisciplinary re-

search test case representing a typical configuration for a long-range, wide-body

aircraft. As such it features a total mass of about 200,000 kg and a fuselage

length-to-diameter ratio of about 11. Consistent with the figure, the wing has350

approximate planform parameters as follows; an aspect ratio of about 8.5, a ta-

per ratio of 0.22 and a 30◦ quarter-chord sweep angle. The MAC of the model
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Figure 2: Three-view illustration of XRF1 aircraft configuration with surface-mesh detail.

is approximately 7.5 m with a span and reference area of 57 m and 380 m2,

respectively. Engine nacelles are treated as flow-through. While structural

damping is not included in the analysis, structural mode shapes and frequencies355

are calculated from a global finite-element model of the configuration. The first

wing-bending structural mode, multiplied by a scaling factor for enhanced vi-

sualisation, is shown in Fig. 3(a) together with the undeformed surface. While

rigid-body dynamics are excluded in the present study, altogether 94 modes of

the flexible structure are considered for static trimming, to be described below,360

and 15 modes of which are retained for dynamic analysis, due to cost consider-

ations. The computational mesh consists of nearly 8 million points, including

circa 130,000 points on the solid wall surfaces. The far-field boundary is located

at a distance of roughly 77 reference chord lengths.

The reference flow conditions, near the design point in the current study, are365

an altitude of 10 km, a freestream Mach number of 0.85 and a Reynolds number

based on reference chord length of 52 million. A steady-state solution is obtained
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(a) (b)

Figure 3: Representative wing-bending structural mode shape with baseline geometry in light
grey in (a) and artificial horizontal tail plane mode in (b).

using an elastic trimming procedure based on Broyden’s method [58], which

balances lift and weight while ensuring zero pitching moment. In addition to

the 94 structural modes to represent elastic deformation, an artificial trimming370

mode is used for rotating the horizontal tail plane, as illustrated in Fig. 3(b).

During tail rotation, the junction between fuselage and tail plane is handled

using the radial basis function mesh deformation technique, as described above.

Trimmed angle of attack and tail angle are iteratively adjusted until the desired

aerodynamic coefficients are reached with the density residual norm driven to375

converge seven orders of magnitude. This results in about 2.5◦ freestream angle

of attack and a horizontal tail plane rotation of −1.5◦.

The resulting steady-state surface pressure distribution is presented in Fig. 4.

A strong shock along the wingspan at roughly 70% local chord length can be

observed. The effects of the first wing bending mode in conjunction with torsion-380

dominated modes cause a decrease of sectional lift towards the wing tip. The

horizontal tail plane shows a typical suction area in the vicinity of the leading

edge due to the trim rotation.

We arbitrarily chose the 15 most amplified structural modes (including first

wing-bending mode), identified during the steady trimming, and these are con-385

sidered in the subsequent dynamic analysis. Aerodynamic responses due to

simple harmonic forcing in these structural modes are sampled at 12 reduced
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Figure 4: Surface distribution of pressure coefficient.

frequencies ω between 0 and 2, with an initial spacing of ∆ω = 0.15 up to a

value of ω = 1.25 and ∆ω = 0.25 thereafter. The evolution of the wind-off

structural eigenvalues whilst being affected by the fluid is then traced solving390

Eq. (14) with a starting altitude of 50 km until the target altitude of 10 km

is reached. Resulting mode traces are shown in Fig. 5. With decreasing alti-

tude the density increases and thus the coupling between the aerodynamics and

structure becomes stronger. This coupling causes all modes to deviate from the

imaginary axis towards a negative real part. As expected, the configuration395

does not exhibit aeroelastic instability.

The impact of a pk-type approximation for aerodynamics is analysed by per-

forming two iterations without simplifying Eq. (11). Since also the damping σ

(i.e. the real part of λ) is considered in the aerodynamic coefficient matrix Q(λ)

(instead of Q(ω)), while updating the eigenmodes, the method is referred to as400

p-type analysis to highlight the analogy to classical flutter investigations [36].

Deviations of the eigenvalues for all 15 modes are presented in Fig. 5, too. Note

that a zoom is required to distinguish the approximate pk solution from the

exact p-type one. Minor deviations, especially for strongly damped eigenvalues,

which start interacting with aerodynamic eigenvalues, are present in the real405

part. This reflects the neglected influence of a damped forced oscillation.
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Figure 5: Evolution of eigenvalues λ during mode tracing with respect to altitude.

(a) (b)

Figure 6: Visualisation of first right eigenmode φEMD,1 showing structural deformation in (a)
and magnitude of pressure component of normalised eigenvector in (b).

The fluid part of the left and right eigenvectors is computed while discarding

the real part of the eigenvalue, just as for the underlying pk-type sampling. The

resulting structural and fluid parts of the first right eigenmode φEMD,1, scaled

to satisfy bi-orthonormality, are presented in Fig. 6. The structural deformation410

is multiplied by a factor to enhance visualisation, and it results as the linear

combination of all 15 wind-off structural mode shapes, weighted by the struc-

tural degrees-of-freedom of vector φEMD,1, with the first eigenmode emphasising

bending-dominated dynamics, cf. Fig. 3. The magnitude of pressure indicates

the region in which the eigenmode has the highest influence on the pressure in415

the flowfield. Note that, since the whole flowfield is considered for the com-

putation of eigenmodes, a mode affects not only the surface. Regions of high

unsteady activity are a combination of strong wing deformations and already
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(a) (b)

Figure 7: Gust response of EMD ROM for 1–cos gust with Lg = 116 m showing (a) lift
coefficient and (b) wing-tip displacement, both normalised by gust amplitude.

distinct flow features in the steady-state flow field such as the outboard-wing

shock location and near the leading edge on the tail plane, cf. Fig. 4.420

As outlined in Section 2.3, complex conjugates of all modes are included at

no additional cost, and the coupled Jacobian and gust influence matrices are

projected onto the modal basis to reduce the system size from nearly 50 million

to only 30 degrees-of-freedom. The generated ROM from eigenmode projec-

tion is used to investigate the gust response of the flexible aircraft. The chosen425

gust parameters are a gust length of Lg = 116 m, a vertical gust amplitude of

vgz = 10−5 ·U∞ and a gust off-set of x0 = 5 ·LMAC. The gust length is represen-

tative of a medium gust considering the certification requirements for large civil

aircraft [59]. The small amplitude is imposed to ensure a dynamically linear

response of the time-marching reference solution. The changes in lift coefficient430

and wing-tip displacement in z-direction with respect to the equilibrium solu-

tion are given in Fig. 7. Responses are normalised by the gust amplitude vgz

since a linearised analysis is discussed. The ROM is not capable of reproduc-

ing the lift build-up due to the gust excitation, which effectively introduces an

angle-of-attack increment. However, once the gust has passed the aircraft and435

the aerodynamics are dominated by the damped aeroelastic response, the ROM

prediction is similar to the reference. This behaviour can also be observed for

the wing-tip deflection even though not as distinct.
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More exact eigenmodes after two p-type iterations are used to form a ROM,

too, and the gust response behaviour is analysed to investigate the influence of440

the pk approximation. A strong test on eigenmodes is the relation ΨHAΦ = Λ,

where Λ is a diagonal matrix containing the eigenvalues, which follows from

bi-orthonormality. Instead of presenting these raw numbers, which do indeed

confirm our methods and implementation, more illustrative results are shown in

Fig. 7 not revealing major differences concerning the general trends and peak445

loads and deformations. This means that the influence of the pk approximation

on the modal basis, for the chosen test case, is minor and not considered the

root cause for discrepancies with respect to full-order results. In the following

only the ROM based on the pk-equivalent mode tracing is analysed as it aligns

with current practice in the aerospace sector, while keeping in mind a potential450

source of error due to the p-to-pk simplification.

In principle, the accuracy of responses to external excitation, such as atmo-

spheric gusts, could be increased by enriching the modal basis with eigenmodes

originating in the aerodynamic block Aff of the coupled Jacobian matrix. In fact,

this has been shown for a ROM based on linear potential theory, more specifi-455

cally using Küssner and Wagner aerodynamics for a pitch-plunge aerofoil [16].

The problem of this approach in combination with CFD-level aerodynamics is

twofold. First, the size of the Jacobian matrix directly scales with the mesh size

as well as the number of conservative variables. For the case presented herein,

this results in approximately 50 million degrees-of-freedom and thus determin-460

ing a sufficient number of eigenvalues, and selecting the eigenvalues of interest

a-posteriori, is computationally prohibitive for the time being, even though the

computation of a small number of eigenmodes for such problems is possible as

demonstrated for the challenge of shock-buffet stability analysis [60, 61]. Sec-

ondly, for such shift-and-invert eigenvalue computations, a region of interest465

must be defined a-priori which is currently not understood for gust responses.

Thus, including aerodynamics-dominated eigenmodes from Aff is considered not

feasible and instead a subspace is approximated in the following using POD

based on linearised responses of the rigid aircraft due to forced gust excitation.
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Figure 8: Magnitude of gust excitation signals in frequency domain for three gust lengths.

Figure 9: Change in lift coefficient for 1–cos gust with Lg = 116 m for POD ROM.

The gust response of the aerodynamic subsystem is sampled at 25 reduced470

frequencies ω between 0 and 5. Of those samples, 20 are evenly spaced between

0 and 2 and the remaining cover a range up to the value of ω = 5. The relation

with frequencies activated by the representative (short, medium and long) 1–cos

gust signals, discussed in this work, is presented in Fig. 8. Note that the first

root of the Fourier transform of the 1–cos gust signal is found at 4π ·LMAC/Lg,475

and each subsequent root follows with an increment of 2π · LMAC/Lg. Solving

Eq. (18), solutions of the entire flowfield and their corresponding complex conju-

gates are used as snapshots to construct a POD ROM as outlined in Section 2.4.

For model reduction, all possible 49 POD modes are retained. Analysing the

same gust parameters as described above, the change in lift coefficient for a480

24



(a) (b)

Figure 10: Response of global quantities of coupled ROM for 1–cos gust with Lg = 116 m
showing (a) lift coefficient and (b) wing-tip displacement, both normalised by gust amplitude.

full-order, rigid aircraft gust response simulation and the POD ROM is shown

in Fig. 9 with very good agreement. The full-order reference solution which

accounts for structural vibration is included for convenience. Some very minor

deviations are visible in the ROM response after the gust has passed the aircraft,

which is a result of the sampled frequency range. A more detailed discussion485

of the POD ROM for this particular case, including different levels of model

truncation and its influence on accuracy, has been presented previously [26].

The two modal bases are combined by using the technique outlined in Sec-

tion 2.2, giving a dimension of the coupled ROM of 79 which is significantly

smaller than the full system size with nearly 50 million. The coupled formula-490

tion now contains the subspace of both individual ROMs and thus is capable

of predicting a coupled fluid-structure response subject to gust excitation. The

resulting model is used to investigate the same gust parameters as above. The

changes in lift coefficient and wing-tip displacement in z-direction with respect

to the steady equilibrium solution are shown in Fig. 10. For both quantities495

of interest a clear improvement is observed. The ROM predicts the change in

lift coefficient, while the response is dominated by gust excitation, with good

agreement. Some minor differences occur around the peak value and during the

transition from an aerodynamically dominated response to structurally domi-

nated behaviour around 0.7 s. The wing-tip deflection shows an even better500
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(a) (b)

Figure 11: Change in surface pressure distribution C̃p with respect to steady state at CL,max

in (a) and corresponding difference ∆C̃p between full-order model and coupled ROM in (b) for
1–cos gust with Lg = 116 m. Black lines indicate extracted slices at 40% and 80% semi-span.

improvement making the predictions nearly indistinguishable.

The ROM not only offers global coefficients and structural degrees-of-freedom

at greatly reduced cost but also gives access to the flow topology of the whole

domain. As an example, the change in surface pressure distribution at the peak

lift value with respect to the steady state is presented in Fig. 11(a). The figure505

shows the full-order results. Note that inspection of the corresponding reduced-

order results does not give visible differences. Hence, the numerical difference

between the full-order and ROM solutions is shown in Fig. 11(b). Overall good

agreement is observed with some local errors in the region where the steady

state exhibits non-linear features, such as the shock wave.510

Based on the presented surface pressures, quantities of interest during the

aircraft loads process, such as sectional loads and root wing bending moment,

are readily accessible. To offer more detail, local changes in surface pressure

distribution have been extracted at 40% and 80% semi-wingspan. Results are

compared in Fig. 12 showing good agreement between full-order and reduced-515

26



(a) (b)

Figure 12: Change in surface pressure distribution C̃p at CL,max for 1–cos gust with
Lg = 116 m comparing full-order results and coupled ROM at selected spanwise stations;
40% semi-span in (a) and 80% semi-span in (b), as indicated in Fig. 11.

order results. Small deviations are visible around the shock location for the

inboard section, whereas reference results are closely matched throughout at

the outboard location. The route to integration of CFD-level aerodynamic

loads in the overall aircraft design process warrants further discussion [62, 63].

For instance, traditionally, integrated loads, either through global coefficients520

or spanwise sectional loads (of shear, moment and torque), have been used in

coupling with a simplified structural model. Our results suggest excellent inte-

grated aerodynamic data from the reduced model approach. More sophisticated

finite-element structural representations would be able to cope with distributed

surface loads, and the impact of resulting local errors in the aerodynamics on525

the overall design needs to be scrutinised thoroughly in the future.

Once the ROM is verified for a single 1–cos gust, arbitrary gust lengths can

be analysed at negligible additional computational cost. Dynamic responses for

the change in lift coefficient for two representative gust lengths of Lg = 18 m

and 214 m are provided in Fig. 13(a). These correspond to about the shortest530

and longest gust length, respectively, as defined by certification requirements.

Excellent agreement between the reduced model and the full-order reference

solutions is obtained for the longer gust, as the gust response is quasi-steady.

Minor differences occur around maximum lift for the shorter gust length. Adding
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(a) (b)

Figure 13: Gust responses of coupled ROM for 1–cos gusts with Lg = 18 m and Lg = 214 m
showing (a) lift coefficient and (b) wing-tip displacement, both normalised by gust amplitude.

more samples at higher reduced frequencies for the POD ROM might improve535

results further for shorter gust lengths, cf. Fig. 8. Indeed, for the two longer

gusts, good agreement was already found with those 20 samples going up to

ω = 2. The additional 5 samples to cover frequencies all the way to ω = 5 helped

to improve the short-gust lift prediction. In any case, the dynamic response of

the wing-tip deflection in Fig. 13(b) shows good agreement throughout.540

Computational cost is summarised in Tables 3 and 4. Timings were obtained

on the high performance computing facility ARCHER2 using 192 standard com-

pute cores. Since the computational time for a time-marching non-linear 1–cos

gust simulation depends on the investigated gust length, the time listed with

47 h is an average of all three presented gust responses. The CPU time of545

120 h for the ROM generation includes the time needed for producing all sam-

pling data and the subsequent coupled model construction. Solving the ROM

can afterwards be done on a single core desktop computer and requires roughly

7 min, again slightly depending on the gust length of interest. It should be noted

that roughly 95% of this time is needed for forming the matrix-vector product550

(ΨH∂R/∂vg) · ṽg repeatedly, since this is performed over the full-order dimen-

sion. The term in brackets only needs to be computed once though. Further

2Advanced Research Computing High End Resource
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Offline Tasks (192 cores) core-hours/cores

Full-order simulation (single 1–cos response) 47 h
Reduced-order model construction 120 h

a) Sampling EMD basis 107 h
b) Sampling POD basis 13 h
c) Constructing coupled ROM �1 h

Table 3: Comparison of computational cost for aircraft case — offline task

Online Tasks (1 core) core-hours/cores

Reduced-order model solving 7 min
Rebuilding global coefficients �1 min
Rebuilding surfaces pressure distributions �1 min

Table 4: Comparison of computational cost for aircraft case — online tasks

approximations of this term can be investigated in the future. Cost for re-

construction of global coefficients, surface pressure distributions and structural

deformations is negligible. Also, as demonstrated above, the ROM, without re-555

building it, can be used to investigate a wide range of gust parameters, assuming

the frequency range of interest is covered in the initial sampling. Thus, the ROM

offers a speed-up compared to a full-order time-marching coupled fluid-structure

simulation once more than two different sets of gust parameters are required.

Based on the acceptable means of compliance [64], published together with the560

certification requirements, around 30 different sets of gust parameters are of

interest at one flight point which results in a speed-up factor of one order of

magnitude using the ROM approach presented herein.

It shall be emphasised that most of the data generated for the EMD basis

construction is required already when using the frequency-domain CFD model565

for aerodynamic database generation and aeroelastic (flutter) stability analy-

sis. Similar argument applies to the gust response sampling. Thus, the actual

speed-up will be higher than stated, when considering the entire aircraft de-

sign and certification process and regarding the tools presented in this work as

modular add-ons. In principle, our ROM formulation is a generalisation of the570
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conventional modal structural ROM (including projection of arbitrary aerody-

namic surface data) already used for decades in industry with linear potential

flow theory [34] and more recently established employing linearised CFD aero-

dynamics, cf. for instance [28, 65, 66]. While such established ROM is restricted

to the dynamics of structural degrees-of-freedom, our formulation can deal with575

dominant aerodynamic modal behaviour, too, depending on choice of modal

basis, and is hence better suited for edge-of-the-envelope applications. A re-

cent example of such interesting aerodynamic challenge has been presented in

the context of incipient transonic wing shock-buffet physics [60, 61], and its

ramification in the aeroelastic setting is yet to be seen.580

5. Conclusions

A method of model order reduction is outlined to compute coupled fluid-

structure aircraft gust responses at low computational cost while preserving

the physical fidelity of the underlying computational fluid dynamics solver. A

‘modal decomposition and projection’ philosophy is followed. Structural motion585

is accounted for by considering aeroelastic eigenmodes which originate from the

wind-off structural degrees-of-freedom. This basis is expanded by adding proper

orthogonal decomposition modes calculated from snapshots of rigid-aircraft si-

nusoidal gust responses to enhance the prediction accuracy during gust en-

counter. The linearised operator of the Reynolds-averaged Navier–Stokes equa-590

tions (including the turbulence model), coupled with the structural equations,

is projected onto the subspace in a Petrov–Galerkin sense. Once the reduced

model is constructed, a large number of gust responses can be analysed at neg-

ligible computational cost on a local desktop computer.

The chosen practical test case is an elastically-trimmed large aircraft in595

transonic flow with a Mach number of 0.85 and flight Reynolds number. Global

direct and adjoint eigenmodes with nearly 50 million degrees-of-freedom, to

describe structural vibration, are calculated with an industry-grade multidisci-

plinary computational fluid dynamics package. The number of aeroelastic eigen-

30



modes follows industrial practice for modal structural analysis. The model based600

on proper orthogonal decomposition for rigid-aircraft gust encounter matches

full-order reference solutions closely with a small number of modes only. The

resulting combined modal basis remains small in size. Thus, a significant re-

duction is achieved compared to the original problem. The constructed reduced

model is verified for three different gust lengths, covering short, medium and605

long gusts according to large aircraft certification requirements, showing ex-

cellent results throughout. Computational cost is scrutinised to evaluate the

efficiency gain provided by the presented model reduction. Feasibility of rapid

turnaround time using computational fluid dynamics in the industrial loads

context is demonstrated, which presents a step towards the ambition of virtual610

aircraft design and certification and digital in-service operational support.
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