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Abstract

This paper is interested in model updating problems which consists in iden-
tifying optimal values of model parameters by comparing the model outputs
with the experimental outputs. Such a problem generally yields a challeng-
ing multivariate inverse problem to be solved in high dimension. The high-
dimensionality requires the use of a global optimization algorithm in order
the explore efficiently the parameters space. In this paper we propose an
alternative algorithm which allows each model parameters to be identified
separately and sequentially by solving separated univariate inverse problems.
For each parameter, a devoted inverse problem is introduced by identifying
an output which is sensitive to this parameter only, the sensitivity being
quantified using Sobol indices. The proposed method is illustrated through
a three-storey structure for which experimental measurements are collected.

Keywords: Model Updating, Sobol Indices, Sensitivity Indices, Inverse
problems )

1. Introduction

In the context of model validation, the model updating methods consist in
calibrating a computational model in order to reduce the distance between
the experimental outputs and the outputs provided by the computational
model [7]. The model updating methods of computational models have been
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intensively studied during the last four decades. In structural dynamics, effi-
cient methods have been proposed (see for instance [10, 18, 7]) and are now
commonly used in industry. There are two main types of methods: the direct
methods (see for instance [1, 8, 14, 19]) which consist in directly modifying
the stiffness and mass matrices and the indirect methods which consists in
updating some physical parameters (see for instance [4, 5, 9]) of the model.
The latter method can be described in three steps: (1) The first one con-
sists in constructing a computational model for which the parameters are set
to nominal values. These parameters can be related to material properties
(Young’s modulus, mass density, and so on), geometry (CAD, thickness, area
moments of inertia, and so on) and boundary conditions. (2) The second step
consists in selecting the parameters to be updated. This step generally relies
on engineering expertise combined with a sensitivity analysis of the quantities
of interest with respect to the candidate parameters to be updated (see for
instance [3, 6, 11]). In [20], for updating stochastic models, the authors have
performed the model selection by defining a composite sensitivity index that
discriminates explicitly between sets of parameters with correctly-modelled
and erroneous statistics. (3) The third step consists in updating the most-
sensitive parameters using experimental data. In general, this step is carried
out by reducing a ”distance” between the experimental outputs and the cor-
responding outputs computed using the computational model.

The number of most-sensitive parameters is often very large and the up-
dating of those later generally requires the solving of a non-convex inverse
problem in high dimension. This high dimension prohibits the use of grid
search methods and global optimization methods are required such as genetic
algorithm, particle swarm optimization or simulated annealing [12]. These
classes of methods require the fitting of solver parameters in order to be
efficient and enable the escape from local minima.

The objective of the new approach proposed in the present paper consists
in addressing the problem of the high dimension in model updating method
by replacing the original inverse problem by a sequence of small dimension
(ideally dimension one) inverse problems which can be solved using a grid
search approach. To achieve this objective the proposed approach consists
in transforming the observed outputs of the model into a set of new outputs.
Each new output is sensitive to only one parameter to be updated and is not
sensitive to the other parameters. Then by comparing the new outputs of
the model to the corresponding experimental ones, it is possible to define a
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sequence of separated inverse problems in order to update all the parameters
one at a time and thus it is possible to use a grid search algorithm solver for
each one-dimensional inverse problem.

In Section 2, the new model updating method is presented. In this section,
first the construction of the new outputs is presented, then the model up-
dating method using these outputs is presented. The approach is illustrated
through simple examples. In Section 3 the updating method is validated
experimentally through a 3-storey structure for which experimental data has
been collected.

2. Model updating algorithm

2.1. Output transformation

In this paper we consider a computational model for which the output
vector y(x) ∈ R

m is a function of the vector x ∈ Cx ⊂ R
n of the model

parameters to be updated. It is assumed that a corresponding experimental
output yexp has been collected. At this stage, for readability, it is assumed
that the fidelity of model is high and therefore, the experimental response
can be predicted by the computational model if the true values of the model
parameters are used. The presence of modelling errors will be addressed
in Section 2.5. A classical way to identify the model parameter vector x

consists in finding the value xopt of the vector x which makes the model
output y(xopt) as close as possible to the experimental output yexp. The
distance between the two outputs can be measured using the mean square
distance ‖ y(xopt)− yexp ‖ for instance, i.e.,

xopt = arg min
x∈Cx
‖ y(x)− yexp ‖ . (1)

The solving of the multivariate inverse problem (1) generally requires the use
of a global optimization algorithm such as the simulated annealing algorithm,
genetic algorithms or particle swarm optimization, in order to explore the
parameter space efficiently [12]. The efficiency of these methods depends on
the correct tuning of the algorithm parameters which are problem dependent.
A bad tuning of these parameters may yield to a slow convergence of the
algorithm and a possible trap in a local minimum. The difficulty of exploring
efficiently the parameter space increases with the number of parameter

The method proposed in this paper proceeds differently. For each pa-
rameter {xi, i = 1, . . . , n}, the output y(x) is transformed into a new output
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zi(x) with values in R:

zi(x) = gi(y(x)), (2)

which is sensitive to the parameter xi only and thus is not sensitive to the
other model parameters. Furthermore it is assumed that this transform is a
linear combination of ng basis functions {fj , j = 1, . . . , ng}, i.e,

zi(x) = αi
Tf (y(x)), (3)

where f = (f1, . . . , fng
) is the vector of the basis functions andαi = (αi,1, . . . , αi,ng

)
is the vector of the coordinates in this basis. In the particular case where
f(y(x)) = y(x), the transform gi is just a linear combination of the outputs
of the model.

2.2. Calculation of the output parameters

For each model parameter xi, the transform gi and thus the vector αi need
to be calculated. Since the objective is that each output zi(x) is devoted to
the identification of the model parameter xi only, we calculate the vector
αi such that the output zi(x) is sensitive to the model parameter xi only.
By replacing the model parameter vector x by the random vector X, Sobol
indices [15, 13] enable the total variance of each random variable Xi to be
quantified. The advantage of these total-effect sensitivity indices is that they
are not local and thus do not require to set values for the other parameters.
For each output Zi = zi(X) and for each random variable Xj , the total-effect
Sobol index S̃i,j is defined by

S̃i,j =
EX

∼j

(

VarXj
(Zi | X∼j)

)

Var(Zi)
, (4)

where X∼j is a random vector for which the components are copies of all the
components of X except Xj. Then using Eq.(3) yields

S̃i,j =
αi

T [EX
∼j

(

CovXj
(F |X∼j)

)

]αi

αi
T [Cov(F )]αi

, (5)
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with F = f (y(X)). Denoting [C] = [Cov(F )] and [Cj ] = [EX
∼j

(

CovXj
(F |X∼j)

)

],
the later equation is then rewritten

S̃i,j(αi) =
αi

T [Cj]αi

αi
T [C]αi

. (6)

We can see in Eq.(6) that if matrices [C] and [Cj ] are estimated (see [13]
for the estimation of Sobol indices) then the Sobol index S̃i,j(αi) can easily
be calculated for any value of the vector αi. This will greatly facilitate the
calculation of αi.

As explained before, for each parameter xi, the vector αi defining the
corresponding output zi(x) has to be calculated such that this output is
sensitive to xi only. It can easily be shown that the valueαi

opt ofαi satisfying
this condition is such that

S̃i,i(αi
opt) = 1,

S̃i,j(αi
opt) = 0, for j 6= i.

(7)

Solving Eq.(7) is equivalent to solving the set of equations

Si,i(αi
opt) = 1,

Si,j(αi
opt) = 0, for j 6= i.

(8)

with,

Si,j(αi) = αi
T [Cj]αi. (9)

Indeed if Eq.(8) is satisfied then Zi = zi(X) is only sensitive to Xi and then
(αi

opt)T [C i]αi
opt = (αi

opt)T [C]αi
opt, i.e. S̃i,i(αi

opt) = 1. The solution of
Eq.(8) can be calculated by solving the following mean square problem,

αi
opt = arg min

αi∈R
ng
Γ(αi) . (10)

where

Γ(αi) = (Si,i(αi)− 1)2 +
∑

i 6=j

(Si,j(αi))
2 + λαi

Tαi. (11)

The last term in the right-hand side of Eq.(11) is a Tikhonov regularization
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term ([17]). The gradient vector ∇Γ(αi) and the Hessian matrix [H(αi)] of
function Γ(αi) are written as

∇Γ(αi) = 4 (Si,i(αi)− 1) [C i]αi + 4
∑

i 6=j

{Si,j(αi) [C
j]αi}+ 2 λαi , (12)

[H(αi)] = 4 (Si,i(αi)− 1) [C i] + 8 [C i]αiαi
T [C i]T

+4
∑

i 6=j

{Si,j(αi) [C
j] + 2 ([Cj]αiαi

T [Cj ]T}+ 2 λ [In].
(13)

Analysing the Hessian matrix [H(αi)], it can be deduced that since Si,i(αi) ≤
1, the Hessian matrix is not always positive definite unless λ is sufficiently
large. Nevertheless, in the neighbourhood of the solution, Si,i is close to
one and therefore, the Hessian matrix is locally positive definite and thus
function Γ(αi) becomes convex when approaching the solution. The regular-
ization parameter λ in Eq.(11) has to be chosen sufficiently large to guaranty
the convexity of Γ(αi) and sufficiently small to limit the impact of the reg-
ularization term. The optimization problem defined by Eqs. (10) and (11)
can be solved using any minimization algorithm. Here we suggest to solve it
using the Newton iterative method written as

αi
i+1 = αi

i − [H(αi
i)]−1

∇Γ(αi
i) . (14)

In practice, the parameter λ is first set to zero. Then, if the minimization
algorithm (14) does not converge, this value is increased until the algorithm
converges. Let [S] with entries Si,j be the sensitivity matrix between the
model parameters xj and the outputs zi. In the ideal case, after calculation
of α1

opt, . . . ,αn
opt, matrix [S] should be an identity matrix. If not, it means

that the inputs are not identifiable separately and another function basis
should be used. For instance, if a polynomial basis is chosen. Then the
basis can be enriched with higher degree polynomials until [S] is an identity
matrix. But it should be noted that increasing the size of the basis increases
the size of matrices [C], [C1], . . . , [Cn]. Then if the size of the basis is too
large, the calculation of α1, . . . ,αn becomes computationally expensive.

2.3. Examples

Before introducing the model updating method in the next section, some
examples are presented here in order to illustrate the construction of the
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transformed outputs. In the first example, x = (x1, x2, x3) ∈ [1, 2]3 and
y(x) = (x1, x2+x3, 4 x1, x3, 3). The basis functions are such that f(y(x)) =
y(x), i.e. zi(x) = αi

Ty(x) for i = 1, 2, 3. Therefore for each parameter
xi, the transformed output will be a linear combination of the components
of the output vector y(x). The previously described algorithm is run with
λ = 5 × 10−10 and 40, 000 Monte Carlo samples for the computation of the
Sobol index matrices. The random variables Xi have uniform distribution
in [1, 2]3. The initial values of α1, α2, α3 are generated randomly. The
following solutions are obtained:

α1 = (0.2, 0.0, 0.8, 0.0, 0.0),

α2 = (0.0, 3.4, 0.0, −3.4, 0.0),
α3 = (0.0, 0.0, 0.0, 3.4, 0.0),

(15)

which correspond to the exact inverse reconstructions of x1, x2, x3 respec-
tively. For this case, the sensitivity matrix [S] is exactly identity.

In the second example, x = (x1, x2, x3) ∈ [−0.4, 0.4]3 and y(x) = (cos(x1+
x2), sin(x2), x1x2, x3, 3). In a first case, the basis functions are, as the previ-
ous example, such that f(y(x)) = y(x), i.e. zi(x) = αi

Ty(x) for i = 1 . . . , 3.
Again we use λ = 5×10−10 and 40, 000 Monte Carlo samples for the compu-
tation of the Sobol index and the initial values of α1, α2, α3 are generated
randomly. The following solutions are obtained:

α1 = (33.0, 0.0, 84.2, 0.0, 0.0),

α2 = (0.0, 8.7, 0.0, 0.0, 0.0),

α3 = (0.0, 0.0, 0.0, 8.7, 0.0).

(16)

For this case, the sensitivity matrix [S] is

[S] =





0.5 0.5 0.0

0.0 1.0 0.0
0.0 0.0 1.0



 . (17)

As we can see in the first row of [S], the algorithm has failed to construct
an output sensitive to x1 only, which can be easily understood regarding
the function y(x). For the second case, the function basis is enriched using
using the squares of the model parameters in the combination, i.e. f(y(x)) =
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(y(x),y(x)2). In this case, the new solutions are

α1 = (36.6, 0.0, 163.3, 0.0, 0.0, 68.1, 82.2, −5.8, 0.0, 0.0),
α2 = (0.0, 8.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),

α3 = (0.0, 0.0, 0.0, 8.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0).

(18)

For this case, the matrix [S] is

[S] =





1.0 0.006 0.0

0.0 1.0 0.0

0.0 0.0 1.0



 , (19)

therefore [S] is almost identity. The obtained result can be explained using
quadratic approximations of cosine and sine functions which are present in
the function y(x). For more complex functions more enrichments may be
necessary.

2.4. Model updating

Once the vectors α1
opt, . . . ,αn

opt are calculated, then the matrix [S] with
entries Si,j can be estimated. Each entry Si,j represents how much the output
zi (defined by vector αi) is sensitive to the model parameter xj . Ideally, this
matrix should be the identity matrix, meaning that for each model parameter
xi, the function zi (constructed using the optimal value αi

opt) is exclusively
sensitive to xi. In practice, this rarely happens (even if the basis is enriched)
and, for each input xi, the discrepancy with respect to this ideal case can be
quantified by the value Γ(αi

opt). If the value Γ(αi
opt) is sufficiently small

then the model parameter xi can be identified independently of the other
model parameters as the solution of the mean square problem,

xi
opt = arg min

xi∈Cxi

‖ αi
Tf (y(x1, . . . , xi, . . . , xn))−αi

Tf (yexp) ‖ , (20)

in which αi
Tf (yexp) is the transformed experimental output and where the

parameters {xj , j 6= i} can have arbitrary values. We can then define a
sequential algorithm for the identification of the model parameters:
1 - Rank the model parameters with respect to the values Γ(αi

opt). The
indices of the ranked model parameters are denoted r1, . . . , rn.
2 - Keep only the nǫ model parameters xr1 , . . . , xrnǫ

for which Γ(αri

opt) < ǫ,
ǫ being a threshold to be defined.
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3 - Initialize the model parameters vector x = x0.
4 - Identify xopt

r1
solving Eq.(20) (using any univariate inverse problem solver)

and replace x0,r1 by xopt
r1

.
5 - Identify iteratively xr2 , . . . , xrnǫ

with the same method.
Once all the model parameters xr1 , . . . , xrnǫ

are identified, we can recalculate
the vectors αrnǫ+1

, . . . ,αrn of the remaining parameters (if any) and proceed
with the same algorithm, the other model parameters being prescribed to
their identified values. The algorithm has to be repeated until all the model
parameters are identified or until all the Γ(αri

opt) > ǫ which would mean
that the remaining model parameters can’t be identified separately.

The complete model updating method is described in Algorithm 1.

Algorithm 1 Model updating algorithm

while n > 0 do

Estimate [C], [C1], . . . , [Cn]
Calculate α1

opt, . . . ,αn
opt using Eq.(14)

Rank the model parameters such that Γ(αr1

opt) < . . . < Γ(αrn

opt)
Keep only the nǫ model parameters for which Γ(αri

opt) < ǫ
Initialize the model parameters vector xopt

for ℓ = 1, . . . , nǫ do

Identify xopt
rℓ

solving Eq.(20) (using any univariate inverse problem
solver)
Update the rthℓ component of xopt

end

x← (xnǫ+1, . . . , xnǫ+1)
n← n− nǫ

end

2.5. Remarks

i - Other measures of dependence

In the present paper, to construct outputs which depend only on one pa-
rameter, sensitivity indices have been used. Instead we could have used the
mutual information (which is a measure of dependence between two random
variables) between model parameters and the transformed output. Unfortu-
nately this approach would require the estimation of probability distributions
in high dimension for the calculation of the parameters αi

opt and would not
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enable to separate αi as it was the case using sensitivity indices (see Eq.(6)).
Another possibility would consist in weakening the independence using corre-
lation between the system parameters and the output instead of the mutual
information. This method is numerically very efficient but provides, as ex-
pected, good results only when the systems parameters and the outputs have
approximatively Gaussian probability distributions (in which case correlation
and dependence are equivalent).

ii - Computational cost

In the method presented here, the computational cost is mainly devoted to
the estimation of matrices [C], [C1], . . . , [Cn] using the Monte Carlo sim-
ulation method. This estimation is performed before the calculation of
α1

opt, . . . ,αn
opt. The other steps (calculation of α1

opt, . . . ,αn
opt and iden-

tification of xopt) are negligible.

iii - Modelling errors

If modelling errors are present due, for instance, to the simplicity of the
model or measurement noise, then they can be taken into account using a
probabilistic approach by introducing a random vector N at an advanced
stage of the calculation. There are several ways to do this. For instance,
an additive random vector N can be included directly in the output of the
model:

ȳ(x) = y(x) +N . (21)

There are other ways to take into account uncertainties induced by modelling
error. For instance, in structural dynamic, the nonparametric probabilistic
approach [16] uses a random matrix approach to take into account these un-
certainties. In this case, random vector N contains the entries of the random
matrices. For all the cases, the matrix [Cj] = [EX

∼j

(

CovXj
(F |X∼j)

)

] is
replaced by

[C̄j ] = [EX
∼j

(

CovXj ,N(F | X∼j)
)

]. (22)

Then the rest of the method is kept unchanged. When introducing modelling
errors, the variance of the output increases, making the search of a sensitivity
matrix [S] equal to identity difficult. Therefore, the algorithm for calculating
the vectors αi will automatically discard the components of the outputs that
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Figure 1: 3-storey struture.

are highly impacted by modelling errors, making the updating method more
robust to modelling errors.

3. Experimental application

In this section, the methodology presented in this paper is applied to the
model updating of a 3-storey structure equipped with accelerators.

3.1. Test rig

The real structure is made up with 4 aluminium blocks connected each
with the others with thin aluminium plates (see Fig. 1). The blocks have
length 0.2 m, width 0.15 m and thickness 0.02 m. The thin plates have length
0.15 m, thickness 0.0012 m and width 0.015 m. The lowest block is clamped
to the ground. The three other ones are equipped with accelerometers. The
top block is excited with a hammer shock along x-direction. The measured
Frequency Response Functions FRFs of the acceleration across x-direction
are plotted in Fig. 2. As expected, we can see three peaks corresponding to
the three global modes of the structure.
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Figure 2: Experimental FRF in acceleration for storey 1 (left) and storey 2 (right).

Figure 3: Three masses model.

3.2. Model

The torsional and axial vibrations of the structure and the local vibration
of the blocks and the plates are neglected. Therefore the structure is modelled
as three masses connected by springs and dampers as shown in Fig. 3. The
masses of the plates are m1 = m2 = m3 = 1.63 kg. The equivalent stiffnesses
of the springs (representing the bending stiffness) are k1 = k2 = k3 = 1.35×
104 N/m. The damping ratio associated with the viscous dampers (ξi =
di/(2

√
miki), i = 1, 2, 3) are ξ1 = ξ2 = ξ3 = 1.4 × 10−3. The FRFs of the

model (before updating) is compared to the experimental ones in Fig. 4. It
can be seen in this figure large discrepancies in all the frequency band of
analysis. To reduce this discrepancies, all the parameters will be updated in
the next section.
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Figure 4: Comparison between the experimental and numerical FRF in acceleration for
storey 1 (left) and storey 2 (right).

3.3. Model updating

The model parameters that are used to update the model are: the three
masses, the three stiffnesses and the three damping ratios. For each of these
9 parameters, a multiplicative updating coefficient is introduced. The prior
output corresponds to the concatenation of the logarithm of the modulus
of the FRFs shown in Fig. 4. A random noise is included in the model
corresponding to independent and identically distributed centred Gaussian
random variables with standard deviation 0.19. To construct the transformed
outputs for the updating, we use λ = 1 × 10−5 and 2, 000 Monte Carlo
samples for the computation of the Sobol index matrices. The common
logarithm (log10) of the multiplicative updating parameters have uniform
distributions in [−0.1, 0.1]. This parametrization enables the multiplicative
parameters to vary between 0.1 and 10. The initial values of αi, i = 1, . . . , 9
are generated randomly. The so-obtained sensitivity matrix [S] is represented
in Fig. 5. We can see in this figure that only the first six parameters (the three
masses and the three stiffnesses) can be identified separately from the other
parameters. We have tried to improved the sensitivity matrix by enriching
the functional basis with quadratic and cubic functions. Nevertheless no
noticeable improvement has been observed. Therefore the identification of
the three other parameters (damping ratios) will require another iteration
for which the results will be presented later. As described in Algorithm
1, the three masses and the three stiffnesses are then identified separately
using the new outputs and a grid search for each parameter. The new values
for these parameters are m1 = 1.47 kg, m2 = 1.52 kg, m3 = 1.54 kg, k1 =
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Figure 5: Sensitivity matrix [S].

1.41×104 N/m, k2 = 1.30×104 N/m, k3 = 1.41×104 N/m. The corresponding
new FRFs are plotted in Fig. 6. Compared to the initial results plotted
in Fig. 2, we can see that the updating of the masses and stiffnesses has
drastically reduced the discrepancies between the experimental FRFs and
the numerical one.

As explained before the damping ratios could not be identified in the pre-
vious iteration. Therefore, these parameters are calibrated in a new iteration
by recalculating the vectors αi, with these parameters only. The value for
the other parameters are fixed to the ones identified in the previous iteration.
The sensitivity matrix [S] is represented in Fig. 7. The obtained matrix is not
perfectly diagonal. But the error is sufficiently low to identify the damping
ratios separately. The new values of the damping ratios are ξ1 = 4.5× 10−3,
ξ2 = 5.1×10−4 and ξ3 = 2.1×10−3. The corresponding new FRFs are plotted
in Fig. 8. Compared to Fig. 6, we can see a slight improvement concerning
the amplitude of the three resonance peaks.

4. Conclusions

In this paper, a new model updating method has been presented. This
method enables the updating of each model parameter separately by con-
structing, for each parameter, a transform of the measured output which is
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Figure 6: Comparison between the experimental and numerical FRF in acceleration for
storey 1 (left) and storey 2 (right), after the first updating iteration (6 parameters only).
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Figure 7: Sensitivity matrix [S].

15



5 10 15 20 25 30

Frequency (Hz)

10
-2

10
0

10
2

F
R

F
 (

m
/(

s
2
H

z
)

5 10 15 20 25 30

Frequency (Hz)

10
-2

10
0

10
2

F
R

F
 (

m
/(

s
2
H

z
)

Figure 8: Comparison between the experimental and numerical FRF in acceleration for
storey 1 (left) and storey 2 (right), after the second updating iteration (3 damping ratios
only).

sensitive to this parameter only. The sensitivity is measured by Sobol indices.
The separability of each parameter can be directly quantified using the ob-
tained sensitivity matrix. Then each separable parameter can be updated
using a univariate inverse problem solver. Then the procedure is restarted
with the remaining non-separable parameters.

The method has been illustrated with a 3-storey structures for which
experimental FRFs are measured. All the parameters of the model have
been updated using two iterations of the algorithm. The response of the
updated model is then very close to the experimental response. Such results
would have been difficult to obtain using a manual updating.

In this work modelling errors are taken into account. Nevertheless other
sources of uncertainties/variability may exist in the model. In this case a
stochastic model should be constructed and should be updated using real-
izations of experimental outputs. The extension of the present work to the
updating of such stochastic models will be addressed in future works.
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